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The eigenmodes and eigenfrequencies of two-dimensional elastic structures in contact
with a liquid are investigated within the linear theory of hydroelasticity. The shapes
of the structural vibrations and the hydrodynamic loads acting on the structure are
calculated at the same time. The wet modes are obtained as superpositions of the dry
modes of the structure, where the coefficients are solutions of a matrix equation with
the hydrodynamic loads being represented by an added-mass matrix. The added-mass
matrix of a homogenous elastic plate is calculated analytically through Bessel functions.
Added-mass matrices of complex structures are obtained using representations of the dry
modes through dry modes of the homogeneous plate of the same length. Relations between
wet and dry modes and their frequencies depending on parameters of the problems are
studied. The structure could be made of several plates, connected or not, completely or
partially wetted, and of any variable thickness and rigidity. The main contribution to
a wet mode comes from the corresponding dry mode. The wet frequency is below the
corresponding dry frequency with their ratios being weakly dependent on the properties
of the structure. This finding is new. The obtained added-mass matrices are suggested to
use in problems of hydroelastic slamming for any geometry of impacting elastic body
and any distributions of its elastic characteristics. The matrices can be also used to
design an interface between hydrodynamic and structural solvers in numerical analysis
of hydroelastic slamming.

Key words: general fluid mechanics, wave–structure interactions

1. Introduction

The hydroelastic vibration analysis of complex elastic plates in full or partial contact with
fluid is performed. The elastic deflection is two-dimensional, without any damping and
external forcing. The elastic plate is thin, of finite length, with certain edge supports,
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with possible extra supports at some internal points of the plate, with cracks and other
inhomogeneities. Both the thickness and rigidity of the plate may vary along the plate. The
plate can be composed of different parts connected or not, but without gaps between the
parts. The equilibrium shape of the plate is flat or can be well approximated as flat near the
place of the plate contact with the fluid free surface. We shall determine eigenfrequencies
and eigenmodes of such complex plates both in air and in contact with the fluid.

The fluid is inviscid and incompressible, of infinite depth and unbounded in horizontal
directions. The fluid is at rest, with flat and horizontal free surface before the plate
vibrations start. The interval of contact between the plate and the fluid free surface is given.
Gravity, viscosity of the fluid and its surface tension are neglected, which is justified for
frequencies of the plate vibration greater than

√
g/L, ν/L2 and

√
σ/ρL3 correspondingly,

where g is the gravitational acceleration, L is the characteristic length of the plate, ν is
kinematic viscosity of the fluid, σ is the surface tension coefficient and ρ is the fluid
density. Acoustic effects can be neglected for plate frequencies smaller than c0/L, where
c0 is the sound speed in the fluid at rest. Gravity, surface tension and acoustic effects are
responsible for decay of plate vibrations due to radiation of gravity, capillary and acoustic
waves by the vibrating plate. Viscosity of the fluid and structural damping in the plate
also lead to decay of plate vibrations in time. Therefore, natural or eigenvibrations of
an elastic plate in air or in contact with a fluid could not exist without external forcing.
However, the frequencies and shapes of such vibrations do not depend on forcing but on
characteristics of the plate, fluid and the plate/fluid contact. Eigenfrequencies of a plate are
the frequencies of excitation at which the plate resonates with the amplitudes of the plate
responses being much higher than at other frequencies. In this way, the eigenfrequencies
of dry plate vibrating in the air and wet plate vibrating in full or partial contact with a
fluid can be measured. The corresponding shapes of the vibrations, which are known as
eigenmodes of the plate, can be visualised with the Chladni figures, see Chladni (1787). It
was observed that the corresponding eigenmodes of a dry and wet elastic plate are close to
each other but the corresponding eigenfrequencies of the wet plate are significantly smaller
than those of the dry plate (see Korobkin 1996b), where wet modes and frequencies of an
elastic rectangular simply supported plate is contact with a liquid surface were computed
and compared with the corresponding dry modes and frequencies.

Eigenfrequencies and modes of dry and wet plates are used to evaluate plate response
and stresses in the plate caused by distributed external loads. Problems of an elastic plate in
contact with a fluid free surface are especially challenging because deflections of the plate
depend on the hydrodynamic loads which, in turn, depend on the plate deflections. Such
problems are called coupled problems of hydroelasticity. They can be effectively solved
using either dry modes of the plate and the so-called added-mass matrix of the modes or
wet modes of the plate. If the wet modes are not used and the plate deflection in contact
with the fluid is sought as a superposition of the dry modes with unknown in advance
time-dependent coefficients, then this method is called the normal mode method. Within
another approach, which cannot be used if the contact region between the plate and the
fluid changes in time, the dry modes of an elastic complex plate are obtained first together
with the corresponding frequencies. The wet modes are sought as superpositions of the
dry modes with coefficients to be determined. The equation of thin plates and equations of
hydrodynamics together with the boundary conditions provide an algebraic homogeneous
system for the coefficients in the series of the wet modes. The eigen wet frequencies are
obtained using the condition that the solutions of the algebraic system are non-zero. A
superposition of the wet modes is then used to represent the plate deflection depending on
the forcing.
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Eigenmodes and added-mass matrices of hydroelastic vibrations

Wet modes are solutions of a coupled linear hydroelastic problem. The flow caused by
the plate vibration is described by a velocity potential, which satisfies Laplace’s equation
in the flow region and the linearised boundary conditions on the free surface and in the
contact region between the fluid and the wetted surface of the elastic plate. The velocity
potential in the contact region, which is needed for evaluating the hydrodynamic loads
on the plate, is related to the time derivatives of the coefficients in the series for the
plate deflection through an added-mass matrix. Once such a matrix is known, we can find
the wet modes and their frequencies, as well as solve different problems of hydroelastic
slamming including problems, where the size and position of the contact region vary in
time.

To the best of the authors’ knowledge, added-mass matrices were introduced by
Kvålsvold & Faltinsen (1993, 1995) in the problem of wave impact onto a wetdeck
of a multihull vessel. The wetdeck was modelled as Euler and Timoshenko beams
correspondingly. Hydrodynamics loads were evaluated within the Wagner theory of water
impact. It seems that the concept of added-mass matrices was not used in numerical
computations before the papers by Kvålsvold & Faltinsen (1995) and Faltinsen (1997).
Elements of the added-mass matrix were given by integrals and by series of Bessel
functions in these two papers correspondingly. The plate deflection in the impact region
was approximated by a linear function in Kvålsvold & Faltinsen (1995) and by a Fourier
series in Faltinsen (1997). Inspired by work of Faltinsen and his group, Korobkin (1995)
used the same approach in the problem of wave impact on the bow end of a catamaran
wetdeck. He showed that the elements of the corresponding added-mass matrix are
given by double singular integrals, which were evaluated numerically. The contact region
between an elastic wetdeck and impacting wave was expanding in time. The added-mass
matrix had to be computed at each time step of integration of the elastic plate equation
in time. This made calculations of the wetdeck response using the concept of added-mass
matrix impractical. Korobkin (1995) performed numerical calculations only within the
one-mode approximation.

Added-mass matrix was obtained in analytical form by Khabakhpasheva & Korobkin
(1997) for an elastic plate, edges of which are supported by springs; however, details of
analytical calculations were not given. The formulae for the elements of the added-mass
matrices of a simply supported Euler plate impacted by a wave were published by
Korobkin (1998) for symmetric impact and by Korobkin & Khabakhpasheva (1998) for
asymmetric impact. Only Bessel functions J0(x) and J1(x) appeared in the formulae.
These analytical formulae made it possible to perform calculations of wave impact on
elastic plates with large number of modes demonstrating convergence of the numerical
solution for the elastic stresses. The obtained added-mass matrices were used by Korobkin
& Khabakhpasheva (1999a) to find the modes of an elastic plate vibration in full contact
with the fluid free surface, which are the so-called wet modes. It was shown that the
lowest dry and wet modes are close to each other, see also Faltinsen, Kvålsvold & Aarsnes
(1997).

Added-mass matrix for a cylindrical shell entering water was calculated by Ionina &
Korobkin (1999) and Ionina (1999). Reinhard, Korobkin & Cooker (2013) and Reinhard
(2013) calculated the added-mass matrix for water impact of an elastic plate at high
horizontal speed.

In three-dimensional impact problems, added-mass matrices were derived for circular
elastic plates by Scolan (2004), Pegg, Purvis & Korobkin (2018), and Vega-Martinez et al.
(2019) to investigate different problems of water impact and water exit. Three-dimensional
problems are not considered in this paper.
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Added-mass matrices of floating elastic plates were used by Khabakhpasheva &
Korobkin (2021) to study stresses in the plates caused by a rigid body impact onto the
plates.

The papers cited above deal with homogeneous plates of constant thickness with
different edge conditions. However, it was shown that the normal mode method and the
concept of added-mass matrix can be used for complex structures as well. Khabakhpasheva
& Korobkin (2003, 2013) applied this method to the problem of an elastic wedge entering
water and studied different approximations of the corresponding added-mass matrix. Fu &
Qin (2014) used the discrete vortex method to calculate the added-mass matrix for elastic
wedges. It was shown that the elements of the added-mass matrix computed numerically
well approximate the elements evaluated by Khabakhpasheva & Korobkin (2013). Feng
et al. (2021) obtained an added-mass matrix by boundary element method and used it
to solve numerically coupled problems of hydroelastic slamming. Korobkin, Gueret &
Malenica (2006) calculated the added-mass matrix for finite-element model of an elastic
wedge.

The experience gained with calculations of the added-mass matrixes in problems of
hydroelastic slamming is generalised in the present paper to complex elastic structures
made of several different sections with different types of connectors between them. It is
impossible to cover all configurations. The algorithm of obtaining added-mass matrices is
described in the following in several steps.

The problem of a free–free floating plate of constant thickness is formulated in § 2
in dimensionless variables. The wet modes, their frequencies, and the corresponding
added-mass matrix are introduced. The added-mass matrix of such a plate is obtained
in § 3. The algorithm is explained in full details. In § 4, the results of § 3 are generalised
to different edge conditions (§ 4.1) and partly wetted plates (§ 4.2). Added-mass matrix
and wetted modes of a complex floating structure made of several plates of constant
thicknesses with internal supports and connectors are studied in § 5. Plates of variable
thickness are considered in § 6. It is shown in § 6.2 how to calculate the added-mass
matrix and wetted modes for a plate with a piecewise linear thickness. The algorithm
is illustrated by examples for particular compositions of floating structures. Relations
between dry and wet modes and dry and wet frequencies are investigated for each
example. The numerical algorithm of the present paper and the obtained results are
summarised in § 7. The paper cannot be considered as a handbook/catalogue of solutions
of hydroelastic problems. Sections of the paper are intended to guide readers and
help them to derive wet modes and added-mass matrices for their own practical
problems.

2. Formulation of the wet mode problem

A free–free elastic plate of contact thickness h is placed on the surface of inviscid and
incompressible fluid of infinite depth. The edges of the plate are free of stresses and shear
forces. The plate length 2L is much greater than the plate thickness. At equilibrium the
fluid free surface is flat and horizontal. The plate floats on the fluid surface with its draft
being smaller than the plate thickness h. The flow and plate deflection are described in
the Cartesian coordinate system Ox′y′, see figure 1. The line y′ = 0 corresponds to the
equilibrium position of the fluid free surface. A prime stands for dimensional variables.
The origin of the system is at the plate centre. The plate position can be approximated in
the leading order by the interval y′ = 0, −L < x′ < L. The plate deflection, y′ = w′(x′, t′),
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x
L

y = w(x, t)
y

–L

Figure 1. Floating elastic plate and notation.

is described by the Euler beam equation, see Timoshenko & Young (1955),

m
∂2w′

∂t′2
+ D

∂4w′

∂x′4 = p′(x′, 0, t′) (−L < x′ < L) (2.1)

with the edge conditions

∂2w′

∂x′2 = 0,
∂3w′

∂x′3 = 0 (x′ = ±L), (2.2)

where m is the mass of the plate per unit area, D is the rigidity coefficient and p′(x′, 0, t′)
is the hydrodynamic pressure acting on the wetted surface of the plate. Within the linear
theory of hydroelasticity, the hydrodynamic pressure is given by the linearised Bernoulli
equation, p′(x′, y′, t′) = −ρ∂ϕ′/∂t, where ρ is the fluid density and ϕ′(x′, y′, t′) is the
velocity potential which is the solution of the following boundary-value problem

∇2ϕ′ = 0 ( y′ < 0), (2.3a)

ϕ′(x′, 0, t′) = 0 ( y′ = 0, |x′| > L), (2.3b)

∂ϕ′

∂y′ (x
′, 0, t′) = ∂w′

∂t′
(x′, t′) ( y′ = 0, |x′| < L), (2.3c)

ϕ′ → 0 (x′2 + y′2 → ∞). (2.3d)

The boundary condition on the plate, where y′ = 0 and |x′| < L, is linearised and imposed
on the equilibrium level of the fluid without account for the plate draft and deflection in
the leading order for a thin plate, small draft and small plate deflection. The dynamic
boundary condition on the free surface, where y′ = 0 and |x′| > L, is also linearised.
Note that gravity effects are not included in (2.1)–(2.3). The velocity potential satisfies
Laplace’s equation in the flow region, y′ < 0, and decays with distance from the plate.
Initial conditions are not required.

The flow velocity given by the gradient ∇ϕ′ is unbounded at the edges of the
plate, x′ = ±L, y′ = 0, see Faltinsen et al. (1997), Gakhov (2014) and Korobkin
(1996a). The vertical velocity component on the free surface, where y′ = 0 and
|x′| > L, behaves as ∂ϕ′/∂y′(x′, 0, t′) = O([(x′)2 − L2]−1/2) near the plate edges.
Correspondingly, the horizontal velocity component on the plate, y′ = 0, |x′| < L,
behaves as ∂ϕ′/∂x′(x′, 0, t′) = O([L2 − (x′)2]−1/2) at the edges. The velocity potential is
continuous at the edges and behaves there as ϕ′(x′, 0, t′) = O([L2 − (x′)2]1/2). Only the
velocity potential will be required in the following in calculations of the wet modes and
their frequencies, as well as in calculations of the elements of the added-mass matrix. The
distribution of the velocity potential along the plate is given by a Cauchy principal value
integral, see Appendix A.
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We shall determine time-periodic solutions of the coupled problem (2.1)–(2.3) and the
corresponding frequencies ω,

w′(x′, t′) = W ′(x′) cos(ωt′), ϕ(x′, y′, t′) = −Φ ′(x′, y′) sin(ωt′). (2.4a,b)

There is no forcing in this formulation.
Dimensionless variables, which are denoted by the same symbols without primes,

x′ = Lx, y′ = Ly, t′ = t/ω, W ′ = WscW(x), Φ ′ = ωWscLΦ(x, y), (2.5a–e)

are used in the following. Here Wsc is a formal scale of deflection. Equations (2.1)–(2.4)
provide the following coupled problem for the shapes of the eigenoscillations of the
floating plate W(x) and the corresponding potential Φ(x, y) in the dimensionless variables
(2.5),

d4W
dx4 = Ω[αW +Φ(x, 0)] (|x| < 1),

d2W
dx2 = d3W

dx3 = 0 (x = ±1), (2.6a,b)

∇2Φ = 0 ( y < 0), (2.7)

Φ = 0 ( y = 0, |x| > 1), Φy = W(x) ( y = 0, |x| < 1), (2.8a,b)

where α = m/ρL, Ω = ρL5ω2/D. There are two ‘static’ non-zero solutions of the
eigenvalue problem (2.6)–(2.8), W1(x) = C1 and W2(x) = C2x, where C1 and C2 are any
constants, corresponding to eigenvalues Ω1 = Ω2 = 0. Other solutions Wk(x) correspond
to Ωk > 0. The solutions Wk(x) are called wet rigid (k = 1, 2) and elastic (k ≥ 3) modes
of the floating plate in the dimensionless variables. These modes are not normalised and
they are not orthogonal in a standard sense. The dimensional frequencies of the wet elastic
modes are given by ωk = [ΩkD/(ρL5)]1/2.

The non-zero solutions of the boundary problem (2.6) with Φ(x, 0) = 0 are known as
the dry modes ψn(x). The dry modes are the solutions of the spectral problem,

d4ψn

dx4 = λ4
nψn (|x| < 1),

d2ψn

dx2 = d3ψn

dx3 = 0 (x = ±1), (2.9a,b)

where λn is a spectral parameter, n ≥ 1. The dry modes ψn(x) are orthogonal and
normalised, ∫ 1

−1
ψn(x)ψm(x) dx = δnm, (2.10)

where δnn = 1 and δnm = 0 for n /= m. There are two modes, ψ1(x) = 1/
√

2 and ψ2(x) =√
3/2x, which satisfy (2.9) and correspond to λ1 = λ2 = 0. There are the rigid modes

of the free–free plate. Elastic dry modes start from n = 3. Dry dimensionless modes
of Euler beam, ψn(x), and the corresponding eigenvalues λn are independent of elastic
characteristics of the beam but on the edge conditions only. The frequencies of the elastic
dry modes are ω(d)n = λ2

n[D/(mL4)]1/2.
The wet elastic modes Wk(x), k ≥ 3, are sought as superpositions of the dry modes,

Wk(x) =
∞∑

n=1

Wknψn(x), (2.11)

with coefficients Wkn and the eigenvalues Ωk to be determined. Note that the rigid dry
modes, ψ1(x) and ψ2(x), also contribute to the wet elastic modes.
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Eigenmodes and added-mass matrices of hydroelastic vibrations

The corresponding velocity potential Φk(x, y) can be decomposed as

Φk(x, y) =
∞∑

n=1

Wknφn(x, y), (2.12)

by using series (2.11) and the boundary condition on the plate, where y = 0 and x ≤ 1.
The new potentials φn(x, y) are solutions of the following problems

∇2φn = 0 ( y < 0), (2.13)

φn = 0 ( y = 0, |x| > 1),
∂φn

∂y
= ψn(x) ( y = 0, |x| < 1). (2.14a,b)

Substituting the series (2.11) and (2.12) in (2.6), multiplying the result by ψm(x), m ≥ 1,
and integrating both sides of the equation with respect to x from −1 to +1, we arrive at
the matrix equation

[D −Ωk(αI + S)]Wk = 0 (2.15)

for the vector Wk = (Wk1,Wk2,Wk3, . . .)
T of the coefficients in the series (2.12). Here D

is diagonal matrix, Dnm = 0 for n /= m, Dnn = λ4
n, I is the unit matrix, Inm = δnm, and S is

the so-called added-mass matrix,

Snm =
∫ 1

−1
φn(x, 0)ψm(x) dx. (2.16)

The added-mass matrix is symmetric, Snm = Smn, which follows from Green’s second
identity. Therefore, the matrix of (2.15) is symmetric, as a sum of symmetric matrices, and
the eigenvalues Ωk of this matrix equation are real and positive. The eigenvalues Ωk are
the solutions of the equation

det[D −Ωk(αI + S)] = 0. (2.17)

The vector Wk is the eigenvector of the matrix [D −Ωk(αI + S)].
Equation (2.17) for the eigenvalues Ωk and the infinite system of the algebraic (2.15)

for the coefficients Wnk are solved by truncation retaining Nw equations in (2.15) and
setting Wkn = 0 for n > Nmod. Practical convergence of the numerical solution is achieved
by increasing the number Nmod. The numerical calculations are straightforward if the
added-mass matrix S is known for a large number of its elements.

The wet modes Wk(x) given by (2.11) satisfy the edge conditions at x = ±1 because the
dry modes ψn(x) satisfy these conditions, see (2.6), (2.9) and (2.11). The wet modes are
orthogonal in the following sense,∫ 1

−1
(αWnWm +Φn(x, 0)Wm(x)) dx = 0 (n /= m). (2.18)

The prove (2.18), one should write (2.6) for Wn(x) and Ωn, multiply both sides by Wm(x),
m /= n, and integrate the results in x from −1 to +1. The left-hand side of the resulting
equation is integrated by parts twice using the edge conditions. Then we swap n and
m and subtract the new equation from the original one. Finally using Green’s second
identity for Φn and Φm and the fact that Ωn /=Ωm for n /= m, we arrive at (2.18). The
orthogonality relation (2.18) can be used to solve problems of impact onto a floating ice
plate, see Khabakhpasheva & Korobkin (2021).
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3. Added mass matrix of free–free floating plate

It was shown in § 2 that the wet modes of a floating elastic plate and the corresponding
frequencies can be accurately calculated if the added-mass matrix S given by (2.16) is
known for large number of its elements. It will be shown in full details in this section
for a free–free floating elastic plate how to evaluate integrals (2.16) analytically through
the Bessel functions. In the following sections, it will be shown how to modify the
analysis of this section to evaluate added-mass matrices for different edge conditions,
partly wetted plates, cracked plates, plates with variable thickness, as well as how to apply
the added-mass matrices to different problems of hydroelastic slamming.

3.1. Dry modes of free–free elastic plate
The added-mass matrix (2.16) describes interactions of the dry modes ψn(x) through the
fluid, see (2.9) and (2.14). A general solution of the fourth-order differential equation (2.9)
has the form

ψn(x) = Ln1fn1(x)+ Ln2fn2(x)+ Ln3fn3(x)+ Ln4fn4(x), (3.1)

fn1(x) = cos(λnx), fn2(x) = sin(λnx), fn3(x) = e−λn(1+x), fn4 = e−λn(1−x),
(3.2a–d)

where Lnj, j = 1, 2, 3, 4, are coefficients specific for imposed edge conditions. Substituting
(3.1) in the four edge conditions we arrive at four equations with respect to the coefficients
Lnj. The right-hand sides of these linear equations are zero. Non-zero solutions of the
system exist only for some special values of the spectral parameter λn, which are obtained
by equating the determinant of the system to zero. These solutions are determined up to
factors, which are obtained using the normalisation condition (2.10). For a free–free dry
plate with the edge conditions shown in (2.9), we obtain two modes, n = 1 and n = 2,
with λ1 = λ2 = 0, which correspond to rigid motions of the plate,

ψ1(x) = 1√
2
, ψ2(x) =

√
3
2

x, (3.3a,b)

and normalised elastic modes (3.1), where

Ln1 = 1√
2 cos λn

, Ln2 = 0, Ln3 = 1√
2(1 + e−2λn)

, Ln4 = Ln3, (3.4a–d)

for odd numbers, n = 2m + 1, m ≥ 1, and

Ln1 = 0, Ln2 = 1√
2 sin λn

, Ln3 = −1√
2(1 − e−2λn)

, Ln4 = −Ln3, (3.5a–d)

for even numbers, n = 2m + 2, m ≥ 1. Here λn are real positive roots of the equation,

cosh(2λn) cos(2λn) = 1. (3.6)

For large n we have

λn = π

4
(n − 2)+ O(e−(π/2)n), |Ln3| = 1√

2
+ O(e−(π/2)n), (3.7a,b)

see, for example, Khabakhpasheva & Korobkin (2021).
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3.2. Added masses as bilinear forms of dry modes
The elements Snm of the added-mass matrix, where n,m ≥ 1, are given by the integral
(2.16) and depend on the modeψm(x) directly and on the modeψn(x) through the potential
(2.14) in the interval y = 0, −1 < x < 1. It is convenient to introduce a bilinear form

U[F(x),G(x)] =
∫ 1

−1
Ψ (x, 0)G(x) dx, (3.8)

where F(x) and G(x) are smooth functions defined in the interval −1 < x < 1, and the
potential Ψ (x, y) is the solution of the following mixed boundary-value problem,

∇2Ψ = 0 ( y < 0), Ψ = 0 ( y = 0, |x| > 1), Ψy = F(x) ( y = 0, |x| < 1),
(3.9a,b)

which decays at infinity, Ψ → 0 as x2 + y2 → ∞, and is continuous in y ≤ 0. The bilinear
form U[F(x),G(x)] has the following properties:

(a) it is symmetric,
U[F(x),G(x)] = U[G(x),F(x)], (3.10)

which follows from Green’s second identity;
(b) it is linear with respect to each argument,

U[C1F1(x)+ C2F2(x),G(x)] = C1U[F1(x),G(x)] + C2U[F2(x),G(x)], (3.11)

U[F(x),C1G1(x)+ C2G2(x)] = C1U[F(x),G1(x)] + C2U[F(x),G2(x)]; (3.12)

(c) it is zero if the product F(x)G(x) is an odd function of x;
(d)

U[F(−x),G(x)] = U[F(x),G(−x)] = ±U[F(x),G(x)], (3.13)

where plus is for even G(x) and minus is for odd G(x);
(e)

U[eαx, eβx] =
{

π[I0(α)I1(β)+ I1(α)I0(β)]/(α + β) (α /=−β),
π[I2

0(α)− I2
1(α)− I0(α)I1(α)/α] (α = −β), (3.14)

where α and β are complex numbers and I0(α), I1(α) are the modified Bessel
functions of the first kind; formula (3.14) is derived in Appendix A.

Then Snk = U[ψk(x), ψn(x)], where ψn(x) is given by (3.4) for n ≥ 3 and by (3.3) for
n = 1 and n = 2. Let us consider first the elastic modes, n, k ≥ 3, and the corresponding
elements of the added-mass matrix. Substituting (3.1) in the bilinear form, we find

Snk = U[ψk(x), ψn(x)] =
4∑

j=1

4∑
i=1

LkjU[ fkj(x), fni(x)]Lni = Lk · Se(nk) · Ln, (3.15)

where Ln = (Ln1, Ln2, Ln3, Ln4) and Se(nk) is a symmetric 4 × 4 matrix with the elements

Se(nk)
ij = U[ fkj(x), fni(x)] (1 ≤ i, j ≤ 4, n, k ≥ 3). (3.16)

Note that Se(nk)
12 = Se(nk)

21 = 0, which follows from (3.2) and property (d) of the bilinear
form (3.13). As a result, calculations of the elastic part of the added-mass matrix are
reduced to evaluation of eight integrals (3.16). Other elements of the matrix are obtained
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using the symmetry relation Se(nk)
ij = Se(kn)

ji . The elements Se(nk)
ij are evaluated using

properties of the bilinear form and (3.2) and (3.14). For example,

Se(nk)
34 = U[e−λk(1+x), e−λn(1−x)] = e−λk−λnU[e−λkx, eλnx]

=
{

π[Ĩ1(λn)Ĩ0(λk)− Ĩ1(λk)Ĩ0(λn)]/(λn − λk) (n /= k),
π[Ĩ2

0(λn)− Ĩ2
1(λn)− Ĩ0(λn)Ĩ1(λn)/λn] (n = k),

(3.17)

where Ĩ0(x) = I0(x) e−x and Ĩ1(x) = I1(x) e−x for x ≥ 0. We used in (3.17) that I0(x) is
even and I1(x) is odd functions. Other elements for both elastic and rigid modes are
calculated analytically in Appendix A.

3.3. Wet modes of free–free plate and their frequencies
The elastic kth wet mode, k ≥ 3, is given by series (2.11), where the coefficients Wkn
are solutions of the algebraic system (2.15). The value Ωk is a solution of the (2.17).
This solution depends on a single parameter α. The solutions are real because the matrix
of the system (2.15) is symmetric but not necessary positive. Only positive solutions of
(2.17) provide the frequencies of the wet modes, ωk = [ΩkD/(ρL5)]1/2. We consider only
positive solutions. We truncate the matrix [D −Ω(αI + S)] retaining Nmod terms and
calculate its determinant as a function of Ω with a certain step in Ω starting from Ω = 0.
The intervals, where the determinant changes its sign, are identified and the bisection
method is used within each interval to find the roots Ωk, 1 ≤ k ≤ Nmod, with required
accuracy of 10−4. Then the roots are determined for larger number of retained terms Nmod
to confirm convergence of the roots with respect to the number of retained equations. The
system (2.15) is solved for each root Ωk, convergence of which has been confirmed.

The only parameter of the problem, α, is small in the theory of thin plates. The ratios of
wet, ωn, and dry, ω(d)n , elastic natural frequencies,

ωn

ω
(d)
n

=
√
αΩn

λ2
n

, ωn =
(
ΩnD
ρL5

)1/2

, ω(d)n = λ2
n

(
D

mL4

)1/2

, (3.18a–c)

are shown in figure 2(a) for different numbers n ≥ 3 and different α. Note that this ratio
is independent of the plate rigidity. The ratios are not monotonic for n = 3, 4, 5, then
monotonically increase with increase of n for all values of α, and approach 1 for large
n. The ratios increase with increase of α for any n, and are always smaller than one.
Wet frequencies are also defined for α = 0, where the ratios tend to zero. Scaled wet
frequencies for small α are shown in figure 2(b). To confirm convergence of the results,
calculations for α = 0.1 and 0.01 were performed with Nmod equal to 30 and 50. It was
found that the absolute differences of the ratios ωn/ω

(d)
n calculated with Nmod = 30 and

Nmod = 50 for 3 ≤ n ≤ 20 is less that 5 × 10−6 for both values of α.
For each root Ωk, we set Wkk = 1 in (2.15), truncate the system to Nmod equations and

Nmod unknowns, move kth column of (2.15) to the right-hand side and cut kth row from
the system. The obtained finite system with non-zero right-hand side is solved numerically.
The elements Wkn of the resulting vector W k are listed in table 1 for α = 0.01 with three
significant figures. Red entries in this table are for Wkk which are set to one. It is seen that
the wet modes have approximately the same shapes as the corresponding dry modes, but
the natural frequencies of the modes are very different, see figure 2. The main contribution
to the kth wet mode comes from the kth dry mode, the second mode, which provides the
highest contribution, is the (k + 1)th mode but its contribution is less than 10 % for even
modes and 20 % for odd modes.
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Figure 2. The ratio (3.18a–c) of the wet and dry frequencies (a) and the scaled ratios for small α (b) as
functions of the frequency number for different values of the parameter α.

n\k 3 5 7 9 11 13

1 0.066 0.009 0.003 0.001 0.001 0.000
3 1.0 0.095 0.030 0.013 0.007 0.004
5 −0.098 1.0 0.141 0.060 0.032 0.019
7 −0.017 −0.153 1.0 0.015 0.073 0.042
9 −0.005 −0.042 −0.173 1.0 0.153 0.077
11 −0.002 −0.017 −0.057 −0.181 1.0 0.15
13 −0.001 −0.011 −0.026 −0.065 −0.183 1.0
15 −0.000 −0.008 −0.014 −0.033 −0.07 −0.182
17 −0.000 −0.005 −0.009 −0.019 −0.037 −0.072
19 −0.000 −0.003 −0.005 −0.012 −0.023 −0.039
21 −0.000 −0.002 −0.004 −0.008 −0.015 −0.025
n\k 4 6 8 10 12 14
2 −0.018 −0.003 −0.001 0.000 0.000 0.000
4 1.0 0.063 0.020 0.009 0.004 0.003
6 −0.065 1.0 0.079 0.032 0.016 0.009
8 −0.016 −0.083 1.0 0.082 0.036 0.020
10 −0.006 −0.027 −0.088 1.0 0.081 0.038
12 −0.003 −0.012 −0.032 −0.089 1.0 0.08
14 −0.001 −0.006 −0.016 −0.035 −0.089 1.0
16 −0.001 −0.003 −0.009 −0.019 −0.037 −0.087
18 −0.000 −0.002 −0.006 −0.011 −0.021 −0.037
20 −0.000 −0.001 −0.004 −0.007 −0.013 −0.021
22 −0.000 −0.001 −0.002 −0.005 −0.009 −0.014

Table 1. The coefficients Wkn in the series (2.11) of the kth wet mode as superposition of the dry modes ψn(x)
for α = 0.01. Wet modes with odd numbers are listed in the top of the table and the wet modes with even
numbers are listed in the bottom of the table.

4. Partially wetted elastic plate with different edge conditions

In this section, the results from § 3 are generalised to other edge conditions and to elastic
plates, only part of which is in contact with a fluid.

4.1. Added-mass matrix of elastic plate with different edge conditions
For edge conditions different from those in (2.6), eigenmodes of an elastic dry plate
still have the form (3.1), (3.2) but with the coefficients Lnj and λn being specific for
these conditions. The elements of the added-mass matrix are still given by (3.15) with
the 4 × 4 matrix Se(nk) being independent of the edge conditions. For example, for a
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simply supported plate in full contact with the fluid, the edge conditions in (2.6) should
be changed for W(±1) = W ′′(±1) = 0, which provide the following end conditions in the
spectral problem (2.9), ψn = ψ ′′

n = 0 at x = ±1. Symmetric dry modes of such a plate
and the corresponding eigenvalues read

ψn(x) = cos(λnx), λn = −π

2
+ πn (n ≥ 1). (4.1a,b)

Therefore, Ln1 = 1 and Ln2 = Ln3 = Ln4 = 0 in (3.1) and the elements of the added-mass
matrix (3.15) for symmetric vibrations of the plate are given by (see Appendix A)

Snk = U[cos(λkx), cos(λnx)] = Se(nk)
11

=
{

π[λnJ1(λn)J0(λk)− λkJ1(λk)J0(λn)]/(λ2
n − λ2

k) (n /= k),
π[J2

0(λn)+ J2
1(λn)]/2 (n = k).

(4.2)

The added-mass matrix (4.2) corresponds to that in Korobkin (1998, equation (41)) with
c = 1, where the plate is completely wetted.

4.2. Added-mass matrix of an elastic plate in partial contact with fluid
An elastic plate corresponds to the interval −1 < x < 1 in the dimensionless variables
(2.5). However, now only a part of the plate, a < x < b, is in contact with the fluid, where
−1 ≤ a < b ≤ 1. Then the boundary-value problem (2.14) for the potentials φn(x, y) and
the definition of the elements of the added-mass matrix (2.16) should be changed as follows

∇2φn = 0 ( y < 0), (4.3)

φn = 0 ( y = 0, x < a and x > b),
∂φn

∂y
= ψn(x) ( y = 0, a < x < b), (4.4a,b)

Snm =
∫ b

a
φn(x, 0)ψm(x) dx. (4.5)

The dry modes of the plate are given by (3.1) with the coefficients Lnj and λn being
dependent on edge conditions. The elements Snm in (4.5) are evaluated using the results of
§ 3.

To this aim, we introduce new variables, x = Ax̃ + B, y = Aỹ, φn = Aφ̃n(x̃, ỹ), and
λ̃n = λnA, where A = (b − a)/2 and B = (b + a)/2. Substituting x = Ax̃ + B in (3.1) and
denoting ψn(Ax̃ + B) = ψ̃n(x̃), one obtains that ψ̃n(x̃) has the same form as (3.1) but with
modified coefficients,

ψ̃n(x̃) = L̃n1 f̃n1(x̃)+ L̃n2 f̃n2(x̃)+ L̃n3 f̃n3(x̃)+ L̃n4 f̃n4(x̃), (4.6)

where

L̃n1 = Ln1 cos(λnB)+ Ln2 sin(λnB), L̃n2 = Ln2 cos(λnB)− Ln1 sin(λnB), (4.7a)

L̃n3 = Ln3 e−λn(1+a), L̃n4 = Ln4 e−λn(1−b), (4.7b)

f̃n1(x̃) = cos(λ̃nx̃), f̃n2(x) = sin(λ̃nx̃), f̃n3(x̃) = e−λ̃n(1+x̃), f̃n4 = e−λ̃n(1−x̃). (4.8)
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Eigenmodes and added-mass matrices of hydroelastic vibrations

Equations (30) and (31) in the new variables read

∇̃2φ̃n = 0 (ỹ < 0), φ̃n = 0 (ỹ = 0, |x̃| > 1), (4.9a)

∂φ̃n

∂ ỹ
= ψ̃n(x̃) (ỹ = 0, |x̃| < 1), (4.9b)

Snm = A2
∫ 1

−1
φ̃n(x̃, 0)ψ̃m(x̃) dx̃. (4.10)

Equations (4.6) and (4.9) are identical to (3.1) and (2.14). The only difference of (4.10)
from (2.16) is the factor A2 in (4.10). Therefore, (3.15) and detailed equations from
Appendix B for the elements of the added-mass matrix can be used directly after
modification of the coefficients (4.7), changing the eigenvalues λn for λ̃n = λnA, and
multiplying the final results by A2. It can be checked directly that for a simply supported
plate, which is in contact with the fluid in the interval −c < x < c, where 0 < c < 1, the
added-mass elements (4.2) treated by the procedure described in this subsection, provide
equation (41) from Korobkin (1998).

It is important to note that the contact region a < x < b, in general, is not symmetric,
a /=−b. The approach of this section cannot be used if an elastic plate is in contact with
the fluid in several disconnected intervals, see Korobkin & Khabakhpasheva (2006, § 5).
In such a case, the problem (2.14) should be solved numerically and the integrals (2.16) for
the added-mass elements should be evaluated numerically as well.

5. Added-mass matrix of elastic complex plate

If a floating elastic structure is made of Np elastic plates of different length, a′
j < x′ < a′

j+1,
1 ≤ j ≤ Np, a′

1 = −L and a′
Np+1 = L, different rigidity, Dj, different mass per unit area, mj,

and different thickness, hj, where a′
j < x′ < a′

j+1, then the structural deflection is described
by (2.1) written for each plate,

mj
∂2w′

∂t′2
+ Dj

∂4w′

∂x′4 = p′(x′, 0, t′) (a′
j < x′ < a′

j+1), (5.1)

with appropriate edge conditions at x = −L and x = L, and certain conditions at the
connections between the plates at x = a′

j+1, 1 ≤ j ≤ Np − 1. There are two conditions
at each edge and four matching conditions at each connector of the structure. In the
dimensionless variables (2.5), the wet modes of the complex structure are described by
(2.7), (2.8) for the hydrodynamic part of the problem, but the structural (2.6) should be
modified as

d4W
dx4 = ΩD̃j[αjW +Φ(x, 0)] (ak < x < aj+1), (5.2)

with the corresponding edge and connector conditions, where αj = mj/ρL, Ω =
ρL5ω2/D1, and D̃j = D1/Dj. The velocity potential Φ(x, y) in (5.2) is the solution of the
problem (2.7), (2.8), which is independent of elastic characteristics of the floating plate.
The wet elastic modes are sought as superposition of the dry modes, see (2.11). However,
now the dry and wet modes can be discontinuous. For example, if we study wet modes
of several different floating elastic plates with free–free edges and without gaps between
the plates, then the dry modes and their frequencies are obtained for each plate separately.
The dry modes are independent in this example. They interact one with another through
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the fluid. In this example, the dry modes of these plates, as a structure, are all the modes
of each plate with other plates being at rest. These dry modes of the several elastic plates
are ranged in such a way that their frequencies are monotonically increasing. It is possible
that several modes have the same frequency, when some of the plates are identical.

The idea of the analysis is to determine dry modes of the complex structure, ψn(x),
n ≥ 1, and approximate them using the dry normalised modes of an elastic homogeneous
plate with the same edge conditions but without any connectors between plates of
the original structure, ψ̄k(x), k ≥ 1. For a floating complex plate with free–free edge
conditions, the corresponding dry modes of an elastic homogeneous plate ψ̄k(x) are given
by (2.9) and (2.10) and are of the form (3.1), (3.2). Equations for the dry modes of the
complex structure, ψn(x), are derived in the following. Note that the modes ψ̄k(x) are
smooth but the modesψn(x) can be discontinuous together with their first, second and third
derivatives. In such cases, accurate approximation of ψn(x) with superposition of ψ̄k(x)
requires large number of terms and could be special techniques to sum up the resulting
series.

Let the coefficients Cmk in the superposition

ψm(x) =
∞∑

k=1

Cmkψ̄k(x) (5.3)

be known. Substituting (5.3) in (2.14), we find

φn(x, y) =
∞∑

k=1

Cnkφ̄k(x, y), (5.4)

where

∇2φ̄k = 0 ( y < 0), (5.5)

φ̄k = 0 ( y = 0, |x| > 1),
∂φ̄k

∂y
= ψ̄n(x) ( y = 0, |x| < 1). (5.6a,b)

Substituting finally (5.3) and (5.4) in the definition of the added-mass elements (2.16), we
find

Snm =
∞∑

k=1

Cnk

∞∑
s=1

Cms

∫ 1

−1
φ̄k(x, 0)ψ̄s(x) dx =

∞∑
k=1

Cnk

∞∑
s=1

CmsS̄ks, (5.7)

where S̄ks are the elements of the added-mass matrix for the dry modes ψ̄k(x).
Correspondingly, in the matrix form

S = C S̄ CT , (5.8)

where C is the matrix with the elements Cmk, see (5.3). The matrix S̄ is calculated by
the method of § 4.1, if all Np plates are in full contact with the fluid, and by method
of § 4.2, if some of the plates are not in full contact with the fluid. Therefore, the
added-mass matrix S of a complex plate can be calculated once the dry modes ψn(x) and
the transformation matrix C are known. We shall explain how to determine the dry modes
and their frequencies, derive the conditions under which the dry modes are orthogonal,
and to show how to calculate the coefficients Cmk in (5.3). The algorithm will be applied
to a floating free–free elastic plate made of two plates with the same elastic characteristics
but of different thickness connected by a torsional spring.
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5.1. Dry modes of a compound elastic plate
Dry modes of a compound elastic plate, ψm(x), where m ≥ 1 and −1 < x < 1, in the
dimensionless variables (2.5) are the non-zero solutions of (5.2) without the potential
Φ(x, 0) for the plates, 1 ≤ j ≤ Np, the compound plate is made of. The dry modes are not
necessary continuous functions of x. They and/or their derivatives can be discontinuous at
the connectors, x = aj, 2 ≤ j ≤ Np, between the elementary plates. It is convenient to write
these equations for each plate separately, where ψm(x) = ψmj(x) in aj < x < aj+1. The
functionsψmj(x) are smooth in their corresponding intervals. The functionψm1(x) satisfies
the edge condition at x = −1. The function ψmNp(x) satisfies the edge condition at x = 1.
The functions ψmj(x) satisfy also the conditions at the connectors, x = aj, 2 ≤ j ≤ Np,
between the elementary plates. The edge and connection conditions are not specified at this
stage. We know that there are two edge conditions at x = −1, two edge conditions at x = 1
and four connection conditions at each connector. Therefore, there are 4Np conditions to
be satisfied by the Np functions ψmj(x). These functions satisfy the equations

d4ψmj

dx4 = λ4
mμ

4
j ψmj (ak < x < aj+1), (5.9)

where λm is a spectral parameter, m ≥ 1, to be determined, and μj = (D̃jmj/m1)
1/4

are known parameters. The frequencies of the dry modes are given by ω
(d)
m =

λ2
m[D1/(m1L4)]1/2, where 2L is the length of the whole structure.
General solutions of the fourth-order differential equations (5.9) have the form

ψmj(x) = Lmj1fmj1(x)+ Lmj2fmj2(x)+ Lmj3fmj3(x)+ Lmj4fn4(x), (5.10)

fmj1(x) = cos(λmμjx), fmj2(x) = sin(λmμjx), (5.11a)

fmj3(x) = e−λmμj(aj−x), fmj4 = e−λmμj(aj+1−x), (5.11b)

where Lmji, i = 1, 2, 3, 4, are coefficients specific for imposed edge and connection
conditions (compare with the solution (3.1) and (3.2) for a homogeneous plate). There are
4Np coefficients in (5.10), which are obtained by using the 4Np edge conditions and the
conditions at the connectors. There are no forcing at the edges and connectors. Therefore,
we arrive at 4Np linear equations with zero right-hand sides for 4Np coefficients Lmji.
Equating the determinant of the matrix of this algebraic system to zero, we obtain equation
for the spectral parameter λ. In general, the solutions λm of this nonlinear equation are
complex. Calculations of the determinant for complex values of λ are straightforward
because the elements of the matrix are given by the analytical functions (5.11) and their
first, second and third derivatives. In the simplest case, the solutions of the equation are
real and positive as for a free–free floating homogeneous plate, see dispersion relation
(3.6). Equations (5.9) yield

(λ4
n − λ4

m)
1
α1

Np∑
j=1

αj

∫ aj+1

aj

ψnj(x)ψmj(x) dx

= Unm(aNp+1)− Unm(a1)−
Np∑
j=1

[Unm(aj)], (5.12)
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where

[Unm(aj)] = Unm(aj + 0)− Unm(aj − 0), (5.13a)

Unm(x) = 1

D̃j
{ψ ′′′

n (x)ψm(x)− ψ ′′′
m (x)ψn(x)+ ψ ′′

m(x)ψ
′
n(x)− ψ ′′

n (x)ψ
′
m(x)}. (5.13b)

Therefore, the dry modes with λn /= λm are orthogonal,

Np∑
j=1

αj

∫ aj+1

aj

ψnj(x)ψmj(x) dx = 0, (5.14)

if the edge conditions are such that Unm(aNp+1) = 0, Unm(a1) = 0, and the connectors are
such that [Unm(aj)] = 0 for 2 ≤ j ≤ Np. The edge and connection conditions, which do not
provide orthogonal modes, are not considered in this study. The dry modes are normalised
as

Np∑
j=1

αj

∫ aj+1

aj

ψ2
nj(x) dx = α1. (5.15)

Such normalisation is selected to match the case of a homogeneous plate with the
normalisation (2.10).

The coefficients Cmk in (5.3) are obtained by multiplying both sides of (5.3) by ψ̄n(x),
integrating the result with respect to x from −1 to 1 using (2.10), and changing finally n to
k,

Cmn =
∫ 1

−1
ψm(x)ψ̄n(x) dx =

Np∑
j=1

∫ aj+1

aj

ψmj(x)ψ̄n(x) dx, (5.16)

where the integrals over the intervals (aj, aj+1) are evaluated by multiplying both sides of
(5.3) by ψ̄n(x) and integrating the result by parts,

∫ aj+1

aj

ψmj(x)ψ̄n(x) dx = D̃j
Ũnm(aj)− Ũnm(aj+1)

λ4
mμ

4
j − λ̄4

n
. (5.17)

In (5.17), λ̄n is the value of the spectral parameter corresponding to the dry mode ψ̄n(x),
and Ũnm(x) is equal to Unm(x), where ψn(x) is changed to ψ̄n(x).

5.2. Wet modes of a compound elastic plate
The wet modes Wk(x), k ≥ 1, which are the solutions of (5.2), are sought as the series
(2.11), where ψn(x) are the dry modes of the complex plate and the coefficients Wkn are
to be determined. Dividing both sides of (5.2) written for the wet mode Wk(x) by D̃j,
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Eigenmodes and added-mass matrices of hydroelastic vibrations

substituting (2.11), and using (5.9), we find

1
α1

∞∑
n=1

Wknλ
4
nαjψnj(x) = Ωkαj

∞∑
n=1

Wknψnj(x)+ΩkΦk(x, 0). (5.18)

Using the series (2.12) for Φk(x, 0), multiplying both sides of (5.18) by ψm(x), and
integrating the result with respect to x from −1 to 1 using (2.16) and (5.14), we obtain

λ4
mWkm = Ωkα1Wkm +Ωk

∞∑
n=1

WknSnm. (5.19)

Equation (5.19) in the matrix form reads

[D −Ωk(α1I + S)]Wk = 0, (5.20)

compare with the (2.15) for a homogeneous plate. Here Wk = (Wk1,Wk2,Wk3, . . .)
T is

the vector of the coefficients in the series (2.11), D is diagonal matrix, Dnm = 0 for n /= m,
Dnn = λ4

n, I is the unit matrix, Inm = δnm, and S is the added-mass matrix given by (5.8).

5.3. Wet modes of two elastic plates connected by a torsional spring
The approach of this section is illustrated for two identical floating plates of different
length connected by a torsional spring of rigidity KT . In this example, Np = 2, a1 = −1,
a2 = � and a3 = 1, where −1 < � < 1. The elastic characteristics of the plates are
identical, μ1 = μ2 = 1 and D̃1 = D̃2 = 1 and α1 = α2 = α. The edges of the plate,
x = ±1, are free of stresses and shear forces, see figure 3. The (5.9) for the dry modes
in the dimensionless variables (2.5) together with the edge conditions and conditions at
the spring connector provide the following spectral problem

d4ψ

dx4 = λ4ψ (−1 < x < 1), (5.21a)

d3ψ

dx3 = d2ψ

dx2 = 0 (x = ±1), (5.21b)[
d3ψ

dx3

]
=
[

d2ψ

dx2

]
= [ψ] = 0,

d2ψ

dx2 = kT

[
dψ
dx

]
(x = l), (5.21c)

where kT = KTL/D is the dimensionless stiffness of the torsional spring and [w] = w(�+
0, t)− w(�− 0, t). The condition, ψ ′′(l) = kT [ψ ′], comes from the dimensional condition
for the bending moments at the spring,

M′(�′, t′) = KT

(
∂w′

∂x′ (�
′ + 0, t′)− ∂w′

∂x′ (�
′ − 0, t′)

)
, (5.22a)

M′(�′, t′) = EJ
∂2w′

∂x′2 (�
′, t′), (5.22b)

where M′(�′, t′) is the bending moment at the spring. The modes of the problem (5.21)
converge to the modes of the homogeneous plate when kT → ∞ and to the modes of two
plates with hinged connection when kT → 0.
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l0 1–1

 h = 1

Figure 3. Sketch of two elastic plates connected by a torsional spring.

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10

n = 7

n = 6 n = 6

n = 5

n = 4

n = 3 l = 0

n = 7

n = 5

n = 4

n = 3
l = 0.25

kT

λn

kT

(a) (b)

Figure 4. The spectral values λn(kT ) of the elastic dry modes with 3 ≤ n ≤ 7 as functions of the
dimensionless rigidity kT for the spring at the centre of the plate, � = 0 (a), and for the spring at � = 0.25 (b).

A general solution of the fourth-order differential equation of the spectral problem (5.21)
reads

ψ(x) = A1 cos(λx)+ B1 sin(λx)+ C1 e−λ(1+x) + D1 e−λ(l−x) (−1 < x < l), (5.23a)

ψ(x) = A2 cos(λx)+ B2 sin(λx)+ C2 e−λn(x−l) + D2 e−λn(1−x) (l < x < 1), (5.23b)

where the eight coefficients are solutions of the algebraic system of eight equations, which
are obtained by substituting (5.23) in the eight edge and connection conditions of (5.21).
Non-zero solutions of the system exist if the determinant of the system det(λ) is zero. The
determinant is a function of the spectral parameter λ with two dimensionless parameters
� and kT . The system and its determinant are not displayed here. The determinant is
calculated as a function of λ starting from λ = 0 with step�λ = 0.01. The intervals, where
the determinant det(λ) changes its sign, are identified and the roots of the determinant
are determined for each interval with a required accuracy by the bisection method. In
the present calculations, the bisections stop when the interval of a root is shorter than
10−10. The calculations are terminated when a required number of positive roots, Nmod,
is obtained. The positive roots correspond to elastic modes of the dry plate. In our
calculations, Nmod = 49. Note that λ = 0 is a double root of the determinant with the
corresponding modes being modes of the rigid motions, heave and pitch, of the compound
plate. The spectral values λn(kT) of the lowest elastic modes, 3 ≤ n ≤ 7 as functions of
the dimensionless rigidity kT for � = 0 and � = 0.25 are shown in figure 4. Here λn(0) are
the spectral values for the hinged connection, and λn(kT) → λ̄n for kT → ∞, where λ̄n
are the spectral values of the corresponding homogeneous plate. We could not prove that
the equation det(λ) = 0 for particular values of the parameters kT and � has only real and
positive solutions. We are unaware of such deep analysis by others.

The linear homogeneous system of eight equations for the coefficients in (5.23) is
solved for each computed spectral parameter λn. The obtained coefficients provide the
elastic modes of the compound plate, ψn(x), n ≥ 3, which depend on the location of the
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Figure 5. Dry elastic modes ψn(x), n = 3, 4, 5, 6, for � = 0.25 and kT = 0, 1, 5,∞.

spring and its rigidity. Equation (5.14) yields that the dry modes ψn(x) are orthogonal in a
standard sense, because α1 = α2, and can be normalised as, see (5.14) and (5.15),∫ 1

−1
ψn(x)ψm(x) dx = δnm. (5.24)

Note that the elastic modes with odd numbers are even, and the modes with even
numbers are odd with respect to the coordinate x along the plate. Therefore, for a spring at
the centre of the plate, � = 0, the modes with even numbers are not affected by the spring
because the deflections of these modes and their second derivatives are zero at x = 0. This
implies, see the conditions at x = � in the spectral problem (5.21), that the first derivatives
of the odd modes are continuous at the place of the spring and the dry modes are the same
as for the plate without a spring. Figure 3(a) shows that the calculated spectral values of
the odd modes, λ4(kT) and λ6(kT), are indeed constant.

Figure 4 shows that λ3(kT) → 0 as kT → 0, which means that the lowest elastic mode,
ψ3(x), converges to a rigid mode, see figure 4(a), when the spring becomes weak. This
third rigid, flapping, mode is such that both the left and right parts of the plate move as
rigid plates with hinged connection. The shapes of the elastic modes, ψ3(x), ψ4(x), ψ5(x)
and ψ6(x), for different rigidity of the spring are shown in figure 5 for � = 0.25. For this
location of the spring, the mode ψ5(x) is not sensitive to the spring rigidity, see figure 5(c).
The corresponding spectral value λ5(kT) is almost constant, see figure 4(b). We conclude
that some elastic mode can be weakly dependent on the spring rigidity if the spring is at a
certain location. It was shown above that, if the spring is at the plate centre, the odd modes
are independent of the spring rigidity. In the following, we show how to find modes weakly
dependent on the spring rigidity for other locations of the spring. Figures 4 and 5 indicate
that the presence of a spring can be approximately disregarded for spring dimensionless
rigidity kT being greater than seven for any location of the spring.

Equations (5.16) and (5.17) provide the coefficients Cmk in the presentation (5.3) of
the dry elastic mode ψm(x), m ≥ 3, as a superposition of the modes ψ̄k(x), k ≥ 1, of the
corresponding homogeneous plate,

Cmk = ψ ′′
m(�)ψ̄

′′
k (�)

kT(λ̄
4
k − λ4

m)
. (5.25)
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Figure 6. The rigid mode, ψ3(x) (a), and the elastic mode, ψ6(x) (b), shown by red lines for the hinged
connection, kT = 0, at � = 0.25 approximated by linear superposition of Napprox modes of the homogeneous
plate, where Napprox = 10, 20, 50.

It is seen that, if the spring is placed at x = � where ψ̄ ′′
k (�) = 0 for a certain k, then ψ̄k(x)

is also a mode of the compound plate for any rigidity of the spring.
The dry modes ψ3(x) and ψ6(x) for � = 0.25 and kT = 0 are shown in figure 6 together

with their approximations by series (5.3), where 10, 20 and 50 terms are retained. It is seen
that 50 terms in (5.3) accurately approximate these 2 dry modes with 10 terms providing
a reasonable approximation everywhere except the vicinity of the spring.

The added-mass matrix S is calculated by formula (5.8). Note that S̄ in this formula
depends only on the type of the edge conditions, and the transformation matrix C, in
addition to that, depends on the position of the spring, �, and the spring rigidity, kT . The
dimensionless wet frequenciesΩk, k ≥ 3, of the wet elastic modes are obtained by solving
the equation det[D −Ωk(αI + S)] = 0, where the matrix [D −Ωk(αI + S)] is truncated
to Nmod × Nmod. The wet frequencies depend on three parameters �, kT , and α.

The ratios of wet, ωn, and dry, ω(d)n , elastic natural frequencies,

ωn

ω
(d)
n

=
√
αΩn

λ2
n

, ωn =
(
ΩnD1

ρL5

)1/2

, ω(d)n = λ2
n

(
D1

m1L4

)1/2

, (5.26a–c)

are shown in figure 7(a,b) for elastic modes, 3 ≤ n ≤ 20, with α = 0.1 and α = 0.01, � =
0.25, and different rigidity of the spring, kT . Even for the limiting cases, where kT → ∞
and kT → 0, the ratios are close to each other. The relative differences of the ratios,

�ωn =
(
ω̄n

ω̄
(d)
n

− ωn

ω
(d)
n

)/
ω̄n

ω̄
(d)
n

× 100 %, (5.27)

where a bar stands for the frequencies of the corresponding homogeneous plate, are shown
in figure 7(c) for a weak spring, kT = 10−4, and different α. It is seen that |�ωn| ≤ 3 %
for n ≥ 3. Therefore, the ratio ωn/ω

(d)
n is weakly dependent on the spring rigidity. It is

important to note that, at the same time, the relative differences of the dry frequencies,

�ω(d)n = ω̄
(d)
n − ω

(d)
n

ω̄
(d)
n

× 100 %, (5.28)

shown in figure 7(d), are not small and can be as large as 30 %. Here �ω(d)3 for very small
kT is not shown because ω(d)3 → 0 as kT → 0 and then �ω(d)3 = 100 %. In calculations
�ω

(d)
3 = 98 % for kT = 10−4.

Similar analysis is performed for kT = 1 and different positions of the spring, see
figure 8. It is seen that the ratio ωn/ω

(d)
n is weakly dependent on the position of the spring.
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Figure 7. The ratios of wet and dry frequencies for � = 0.25 and different rigidity kT with α = 0.1 (a),
α = 0.01 (b). The relative differences of these ratios (c) and the relative differences of the dry frequencies (d).

We can conclude that the ratio ωn/ω
(d)
n is weakly dependent on details of the structure and

can be approximated by the ratio calculated for homogeneous plate,

ωn

ω
(d)
n

≈ ω̄n

ω̄
(d)
n
, (5.29)

and, then,

ωn ≈ ω̄n
λ2

n

λ̄2
n
. (5.30)

The formula (5.30) can be used for preliminary estimates of wet frequencies of a
compound plate using the known frequencies of the dry plate.

The wet modes are obtained by solving the truncated system (5.20) with Wkk = 1. The
elements Wkn of the resulting vector Wk are listed for α = 0.1, � = 0.25 in table 2 for
kT = 1 and in table 3 for kT = 10−4 with three significant figures. Red entries in this table
are for Wkk which are set to one. It is seen that the wet modes have approximately the same
shapes as the corresponding dry modes. The main contribution to the kth wet mode comes
from the kth dry mode. Only the dry modes ψn(x) with numbers such that |k − n| ≤ 2
provide contributions to the wet mode Wk(x) greater than 2 %. This result depends on
the position of the spring, its rigidity and the mass parameter α. The wet elastic mode
W3(x) for a weak spring, see the first column in table 3, behaves differently with the main
contribution coming from the rigid heave mode ψ1(x). Except this special case the wet
modes are close to the corresponding dry modes, the natural frequencies of the wet and
dry modes are very different, see figure 7(c,d), but their ratios are weakly dependent on
the position and rigidity of the spring, see figure 7(a,b) and (5.29).

6. Added-mass matrix of a floating plate with variable thickness

The deflection of floating elastic plate with variable thickness h′(x′) and free–free edges,
w′(x′, t′), is described in the dimensional variables by the Euler beam equation (see
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Figure 8. The ratios of wet and dry frequencies for kT = 1 and different positions of the spring �: α = 0.1 (a),
α = 0.01 (b). The relative differences of these ratios (c) and the relative differences of the dry frequencies (d).

n\k 3 4 5 6 7 8 9 10 11 12

1 0.080 0.006 0.006 0.000 0.001 0.000 0.001 0.000 0.000 0.000
2 0.008 −0.016 0.000 −0.003 0.000 −0.001 0.000 0.000 0.000 0.000
3 1.0 0.011 0.038 −0.001 0.008 −0.002 0.004 0.000 0.002 0.000
4 −0.030 1.0 0.030 0.027 0.013 0.010 0.002 0.004 0.001 0.002
5 −0.079 −0.044 1.0 −0.033 0.060 −0.011 0.021 0.001 0.011 0.001
6 0.000 −0.041 0.043 1.0 −0.005 0.028 0.011 0.011 −0.007 0.007
7 −0.012 −0.015 −0.064 0.009 1.0 0.007 0.040 0.010 0.022 0.004
8 0.004 −0.013 0.011 −0.043 −0.005 1.0 −0.040 0.035 −0.009 0.009
9 −0.005 −0.002 −0.019 −0.018 −0.051 0.063 1.0 0.014 0.024 0.017
10 0.000 −0.004 −0.001 −0.014 −0.011 −0.042 −0.021 1.0 0.001 0.029
11 −0.002 −0.001 −0.009 0.010 −0.024 0.010 −0.037 −0.001 1.0 −0.014
12 0.000 −0.001 −0.001 −0.009 −0.004 −0.010 −0.022 −0.033 0.023 1.0
13 −0.001 0.000 −0.004 0.001 −0.008 0.006 −0.021 0.001 −0.043 −0.022
14 0.000 −0.001 0.000 −0.003 −0.003 −0.012 0.004 −0.018 −0.005 −0.021
15 0.000 0.000 −0.002 −0.001 −0.004 0.001 −0.011 −0.004 −0.012 −0.016
16 0.000 0.000 0.001 −0.003 0.001 −0.004 0.000 −0.007 0.012 −0.015
17 0.000 0.000 −0.001 0.000 −0.003 −0.001 −0.004 −0.003 −0.013 −0.002
18 0.000 0.000 0.000 −0.001 −0.001 −0.002 −0.002 −0.004 0.001 −0.008

Table 2. The coefficients Wkn in the expansion (2.11) of the kth wet mode Wk(x) as a superposition of the dry
modes ψn(x) for α = 0.1, � = 0.25 and kT = 1.

Timoshenko & Young 1955)

m′(x′)
∂2w′

∂t′2
+ ∂2

∂x′2

(
D′(x′)

∂2w′

∂x′2

)
= p′(x′, 0, t′) (−L < x′ < L), (6.1)
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Eigenmodes and added-mass matrices of hydroelastic vibrations

n\k 3 4 5 6 7 8 9 10 11 12

1 5.966 0.011 0.006 0.000 0.001 0.000 0.001 0.000 0.000 0.000
2 1.097 −0.016 0.000 −0.003 0.000 −0.001 0.000 0.000 0.000 0.000
3 1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 1.0 0.048 0.020 0.017 0.007 0.004 0.003 0.002 0.001
5 0.000 −0.047 1.0 −0.073 0.062 −0.016 0.021 0.001 0.012 0.001
6 0.000 −0.023 0.073 1.0 −0.002 0.024 0.014 0.010 −0.007 0.007
7 0.000 −0.015 −0.064 0.005 1.0 0.009 0.042 0.013 0.022 0.005
8 0.000 −0.008 0.016 −0.025 −0.005 1.0 −0.063 0.034 −0.013 0.007

Table 3. The coefficients Wkn in the expansion (2.11) of the kth wet mode ψk(x) as a superposition of the dry
modes ψn(x) for α = 0.1, � = 0.25 and kT = 10−4.

with the edge conditions

D′(x′)
∂2w′

∂x′2 = 0,
∂

∂x′

(
D′(x′)

∂2w′

∂x′2

)
= 0 (x′ = ±L), (6.2a,b)

where m′(x′) = ρph′(x′) is the mass of the plate per unit area, ρp is the density of the
plate material, D′(x′) = Eh′3(x′)/[12(1 − ν2)] is the rigidity coefficient of the plate. The
coupled problem (6.1), (6.2) for the plate deflection and (2.3) for the velocity potential
of the flow caused by vibration of the floating plate is considered in the dimensionless
variables (2.5). In addition, h′(x′) = hch(x), where hc is the mean thickness of the plate,

hc = 1
2L

∫ L

−L
h′(x′) dx′,

∫ 1

−1
h(x) dx = 2. (6.3a,b)

The wet modes of the plate are described by (2.7), (2.8) for the hydrodynamic part of the
problem and the structural equations (6.1), (6.2) which read in the dimensionless variables,

d2

dx2

(
h3(x)

d2W
dx2

)
= Ω[αh(x)W +Φ(x, 0)] (|x| < 1), (6.4)

d2W
dx2 = d3W

dx3 = 0 (x = ±1), (6.5)

where α = (ρphc)/(ρL), Ω = ρL5ω2/Dc and Dc = Eh3
c/[12(1 − ν2)]. There are two

non-zero solutions of the eigenvalue problem (2.6), (2.7) and (6.4), (6.5), W1(x) = C1
and W2(x) = C2x, where C1 and C2 are any constants, corresponding to the eigenvalues
Ω1 = Ω2 = 0. Other non-zero solutions Wk(x) correspond to Ωk > 0. The functions
Wk(x) are called wet rigid (k = 1, 2) and wet elastic (k ≥ 3) modes of the floating plate in
the dimensionless variables. These modes are not normalised and they are not orthogonal
in a standard sense. The dimensional frequencies of the wet elastic modes are given by
ωk = [ΩkDc/(ρL5)]1/2.

The non-zero solutions of the boundary problem (6.4), (6.5) with Φ(x, 0) = 0 are the
dry modes, ψn(x), of the plate. The functions ψn(x) satisfy the following equation and the
edge conditions,

d2

dx2

(
h3(x)

d2ψn

dx2

)
= λ4

nh(x)ψnn (|x| < 1),
d2ψn

dx2 = d3ψn

dx3 = 0 (x = ±1), (6.6a,b)

970 A14-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.589


A.A. Korobkin, T.I. Khabakhpasheva and K.A. Shishmarev

1 – β

1 + β

–1

1

10

Figure 9. Elastic plate with a linear thickness in the dimensionless variables.

where λn is a spectral parameter, n ≥ 1. The dry modes ψn(x) are orthogonal and
normalised,

∫ 1

−1
h(x)ψn(x)ψm(x) dx = δnm, (6.7)

where δnn = 1 and δnm = 0 for n /= m. There are two modes, ψ1(x) = 1/
√

2 and ψ2(x) =
a(x − c) which satisfy (6.6) and (6.7), and correspond to λ1 = λ2 = 0, where

c = 1
2

∫ 1

−1
xh(x) dx, a =

(∫ 1

−1
x2h(x) dx − 2c2

)−1/2

. (6.8a,b)

Dry dimensionless elastic modes, ψn(x), n ≥ 3, and the corresponding eigenvalues λn
depend on the plate thickness h(x). The dimensional frequencies of the elastic dry modes
are related to the spectral parameter λn by the formula ω(d)n = λ2

n[Dc/(ρphcL4)]1/2.
If h(x) is a piecewise constant function, the dry modes can be determined using the

approach of § 5.1. The problem (6.6) can also be solved analytically for a plate with a
linear thickness, see figure 9.

6.1. Dry modes of elastic plate with linear thickness
A general solution of the differential equation (6.6) with h(x) = 1 + βx, |β| < 1, is given
through Bessel functions (see, for example, Li 2000; Batyaev & Khabakhpasheva 2022),

ψn(x) = 1
ξ

Mn(ξ), ξ = 2
β
λn
√

1 + βx, (6.9a)

Mn(ξ) = AnJ1(ξ)+ BnY1(ξ)+ CnI1(ξ)+ DnK1(ξ), (6.9b)

where J1(ξ) and Y1(ξ) are the Bessel functions of order one of the first and second kind
correspondingly, and I1(ξ) and K1(ξ) are the modified Bessel functions of order one of the
first and second kind correspondingly. The free–free edge conditions in (6.6) are written
in terms of the function Mn(ξ) as

ξ
d3Mn

dξ3 = d2Mn

dξ2 ,
1
3
ξ

d2Mn

dξ2 + 1
ξ

Mn = dMn

dξ
(ξ = ξ±

n ), (6.10a,b)
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Eigenmodes and added-mass matrices of hydroelastic vibrations

where ξ±
n = 2λn

√
1 ± β/β, and provide four equations for the coefficients An, Bn, Cn, Dn,

An

{(
8
ξ2 − 3

)
J1(ξ)+

(
ξ − 4

ξ

)
J0(ξ)

}
+ Bn

{(
8
ξ2 − 3

)
Y1(ξ)+

(
ξ − 4

ξ

)
Y0(ξ)

}

+ Cn

{(
8
ξ2 + 3

)
I1(ξ)−

(
ξ + 4

ξ

)
I0(ξ)

}

+ Dn

{(
8
ξ2 + 3

)
K1(ξ)+

(
ξ + 4

ξ

)
K0(ξ)

}
= 0, (6.11a)

An

{(
2 − ξ2

4

)
J1(ξ)− ξJ0(ξ)

}
+ Bn

{(
2 − ξ2

4

)
Y1(ξ)− ξY0(ξ)

}

+ Cn

{(
2 + ξ2

4

)
I1(ξ)− ξ I0(ξ)

}
+ Dn

{(
2 + ξ2

4

)
K1(ξ)+ ξK0(ξ)

}
= 0, (6.11b)

where ξ = ξ±
n . Non-zero solutions of the homogeneous system (6.11) exist only if the

determinant of the system is equal to zero, which gives the dispersion equation with respect
to λn as a function of the parameter β. The solution of the system (6.11) is determined up to
a constant factor, which is obtained using the normalisation condition (6.7). This condition
written in terms of the functions Mn(ξ) reads

β3

8λ4
n

∫ ξ+
n

ξ−
n

ξM2
n(ξ) dξ = 1. (6.12)

Substituting Mn(ξ) from (6.9) in (6.12), we obtain several integrals of the form∫
ξZ1(ξ)B1(ξ) dξ, (6.13)

where Z1 and B1 are any functions J1, Y1, I1 and K1. Such integrals are evaluated
analytically, see the tables of integrals by Gradstein & Ryzhik (1965, formula 5.54).

Equations (6.8) provide the parameters of the second rigid dry mode, ψ2(x), for the
linear plate thickness, c = β/3 and a = 3/

√
2(3 − β2). It is seen that ψ1(x) = ψ̄1(x) =

1/
√

2 and ψ2(x) tends to ψ̄2(x) = √
3/2x as β tends to 0. It is expected that λn(β) → λ̄n

and ψn(x) → ψ̄n(x) for elastic modes, n ≥ 3, as β → 0, where ψ̄n(x) are solutions of
the spectral problem (2.9) for elastic plate of constant thickness with the corresponding
eigenvalues λ̄n. However, the limit of the dry modes (6.9) as β → 0 is singular, because
ξ → ∞ and, therefore, at least the coefficients An and Bn tend to infinity as β → 0.

To calculate wet modes and the added-mass matrix for a floating plate with linear
thickness, the dry modes, ψn(x), are represented as superposition of the dry modes of
the plate with constant thickness,

ψn(x) =
kmax∑
k=1

Cnkψ̄k(x). (6.14)

The coefficients Cnk are calculated numerically by the formula

Cnk =
∫ 1

−1
ψn(x)ψ̄k(x) dx, (6.15)

where the orthogonality condition (2.10) was used. Accuracy of the approximation (6.14)
is investigated in Appendix B.
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6.2. Wet modes of elastic plates with linear thickness

The wet rigid modes, W1(x) = 1/
√

2 and W2(x) = a(x − c), where c = β/3 and a =
3/
√

2(3 − β2), and their frequencies, ω1 = ω2 = 0, are the same as for the dry plate
with constant thickness. The wet elastic modes Wk(x), k ≥ 3, are sought as superposition
(2.11) of the dry modes ψn(x) of the same plate. Substituting the series (2.11) in the plate
(6.4), using the differential equation (6.6) for the dry modes, multiplying both sides of
the resulting equation by ψm(x), and integrating with respect to x from −1 to 1 using the
orthogonality relation (6.7), we obtain the infinite system of algebraic equations for the
coefficients Wkn in the series (2.11),

[D −Ωk(αI + S)]Wk = 0. (6.16)

This system has the same form as the corresponding system (2.15) for a homogeneous
plate. Here Wk = (Wk1,Wk2,Wk3, . . .)

T is the vector of the coefficients in the series
(2.11), D is the diagonal matrix, Dnm = 0 for n /= m, Dnn = λ4

n, where λn are the spectral
values from (6.6), I is the unit matrix, Inm = δnm. The added mass matrix S in (6.16) is
given by (5.8), where S̄ is the added-mass matrix for the plate of constant thickness, see
§ 5, and C is the transformation matrix with the elements (6.15). We conclude that the
coefficients of the wet modes Wk(x) and the dimensionless frequencies of these modes
Ωk can be obtained numerically using the same algorithm as for the plate of constant
thickness, see § 3.3.

The ratios of the wet, ωn, and dry, ω(d)n , elastic natural frequencies,

ωn

ω
(d)
n

=
√
αΩn

λ2
n

, ωn =
(
ΩnDc

ρL5

)1/2

, ω(d)n = λ2
n

(
Dc

ρphcL4

)1/2

, (6.17a–c)

are shown in figure 10(a,b) for 3 ≤ n ≤ 20, different values of the parameters β, and
α = 0.1 in (a) and α = 0.01 in (b). The ratios for β = 0, which is for the plate of constant
thickness, are shown by black dots. Calculations are performed with kmax = 40 in (6.14).
Note that the ratios ωn/ω

(d)
n are independent of the plate rigidity. The ratios decrease with

increase of the parameter of the plate inclination, β, see figure 10(a,b). Figure 10(c,d)
present relative differences �ωn, of the ratios (6.17) and the ratios calculated for the
corresponding plate with constant thickness hc. The differences �ωn, n ≥ 3, are defined
by (5.27).

It is seen that the ratios (6.17) can be approximated by the corresponding ratios for the
plate with the mean thickness, if β ≤ 0.5. The differences �ωn increase with increase of
β. The lowest wet modes, n = 3, 4, 5, are more sensitive to the thickness variation than
the higher modes. The differences �ωn increase with decrease of the mass parameter α,
which is for lighter plates. For a heavy plate with α = 0.1, and β = 0.5 the differences
�ωn are less than 4.2 % for n ≥ 3 and less than 1 % for n ≥ 7. For the same plate and
β = 0.75 the difference�ωn are less than 12 % for n ≥ 3 and less than 5 % for n ≥ 9. The
frequency ratios for lighter plates, see figure 10(d), are more sensitive to the variation of
the plate thickness. We may conclude, similar to the results of § 5.3 for compound plates,
that the wet frequencies ωn of the plate with linear thickness can be approximated by the
formula (5.30), where ω̄n are the wet frequencies of the plate with the mean thickness hc.
This approximation is less accurate for large β and lowest modes.

The solutions of (6.16) for 3 ≤ k ≤ 12 are listed in table 4 for α = 0.01 and β = 0.5.
Note that we set Wkk = 1 for each k ≥ 3, delete the kth equation, move the kth column to
the right-hand side, and solve the resulting non-homogeneous equations with respect to the
coefficients Wkn, where 1 ≤ n ≤ k − 1 and k + 1 ≤ n ≤ kmax. The coefficients are shown
with three significant figures. Red entries in this table are for Wkk which are set to one.
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Figure 10. (a) The ratios of the wet and dry frequencies for β = 0, 0.25, 0.5 and 0.75 and for α = 0.1 (a) and
α = 0.01 (b). Relative differences �ωn for the same values of β and α = 0.1 (c) and α = 0.01 (d).

n\k 3 4 5 6 7 8 9 10 11 12

1 −0.071 0.004 0.010 0.001 −0.003 0.000 −0.002 0.000 0.001 0.000
2 −0.040 0.019 0.005 0.003 −0.002 −0.001 −0.001 0.000 0.000 0.000
3 1.0 −0.042 −0.098 −0.004 0.032 0.001 0.015 0.000 −0.008 0.000
4 0.048 1.0 0.052 0.064 −0.008 −0.021 −0.003 0.009 0.002 0.005
5 0.099 −0.061 1.0 0.077 −0.149 −0.007 −0.065 0.002 0.035 0.001
6 −0.005 −0.060 −0.095 1.0 −0.085 −0.081 −0.013 0.032 0.005 0.017
7 −0.019 −0.003 0.152 0.106 1.0 0.110 0.164 −0.009 −0.079 −0.002
8 0.002 0.016 −0.011 0.073 −0.142 1.0 0.117 −0.088 −0.016 −0.038
9 −0.006 −0.002 0.045 −0.004 −0.170 −0.148 1.0 −0.143 −0.171 −0.011
10 −0.001 −0.006 0.004 −0.027 −0.014 0.072 0.186 1.0 0.149 0.092
11 0.002 0.001 −0.018 0.003 0.061 −0.004 0.173 −0.189 1.0 0.177
12 0.000 −0.003 0.002 −0.012 −0.007 0.033 −0.016 −0.067 −0.230 1.0
13 −0.001 0.000 0.009 −0.001 −0.029 0.003 −0.072 −0.004 0.169 0.228
14 0.000 0.001 −0.001 0.006 0.004 −0.017 0.008 0.035 −0.018 0.058
15 −0.001 0.000 0.005 −0.001 −0.016 0.002 −0.037 −0.004 0.078 −0.003
16 0.000 −0.001 0.001 −0.004 −0.002 0.009 −0.005 −0.019 0.010 −0.037
17 0.000 0.000 −0.003 0.001 0.009 −0.001 0.021 0.003 −0.042 0.004
18 0.000 0.000 0.000 0.002 0.001 −0.006 0.003 0.012 −0.005 0.021

Table 4. The coefficients Wkn in the series (6.14) of the kth wet mode ψk(x) as a superposition of the dry
modes ψ̄n(x) for α = 0.01 and β = 0.5.

It is seen that the wet modes have approximately the same shapes as the corresponding
dry modes, but the natural wet and dry frequencies are very different, see figure 10. The
main contribution to the kth wet mode comes from the kth dry mode, the next mode, which
provides the highest contribution, is the (k + 1)th mode but its contribution is less than
15 % for 3 ≤ k ≤ 8 and less than 23 % for 9 ≤ k ≤ 12.
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6.3. Dry and wet modes of elastic plate with piecewise linear thickness
To find the dry modes of a plate with variable continuous plate thickness h(x), the
thickness can be approximated as a piecewise linear function. Let the plate length be
divided into Np intervals, aj < x < aj+1, 1 ≤ j ≤ Np, a1 = −1 and aNp+1 = 1 in the
dimensionless variables. The plate thickness is approximated as

h(x) ≈ hj + Tj(x − aj), Tj = hj+1 − hj

aj+1 − aj
(aj < x < aj+1), (6.18a–c)

where hj = h(aj) and hj > 0. For each interval aj < x < aj+1 of the plate a general solution
of the differential equation (6.6) can be obtained using the solution (6.9), which is for
h(x) = 1 + βx, with four undetermined coefficients for each interval. These coefficients
are determined using the four edge conditions at x = ±1 and four matching conditions
at the ends of each interval. The matching conditions require that the function ψn(x) is
continuous together with its first and second derivatives at the ends of the intervals, and
the shear force d[h3(x)ψ ′′(x)]/dx is also continuous there, which gives[

d2ψ

dx2

]
=
[

dψ
dx

]
= [ψ] = 0, h

[
d3ψ

dx3

]
+ 3

d2ψ

dx2

[
dh
dx

]
= 0 (x = aj), (6.19a,b)

2 ≤ j ≤ Np. Indeed, for the interval aj < x < aj+1 and Tj /= 0, (6.6) using (6.18) reads

d2

dx2

(
[hj + Tj(x − aj)]3 d2ψ

(j)
n

dx2

)
= λ4

n[hj + Tj(x − aj)]ψ(j)n , (6.20)

where ψ(j)n (x) is the function ψn(x) in the interval under consideration. We limit ourselves
to the case where hj − Tjaj /= 0. Then (6.20) can be written as

d2

dx2

(
(1 + βjx)3

d2ψ
(j)
n

dx2

)
= λ̃4

nj(1 + βjx)ψ(j)n (aj < x < aj+1), (6.21)

where
βj = Tj/(hj − Tjaj), λ̃nj = λn/|hj − Tjaj|1/2. (6.22a,b)

It is not required now that |βj| < 1 as in § 6.1. A general solution of the differential
equation (6.21) is given by (6.9),

ψ(j)n (x) = 1
ξ

Mnj(ξ), Mnj(ξ) = AnjJ1(ξ)+ BnjY1(ξ)+ CnjI1(ξ)+ DnjK1(ξ), (6.23a,b)

ξ = bnj
√

1 + βjx, bnj = 2λn

Tj
|hj − Tjaj|1/2 sgn(hj − Tjaj), (6.24a,b)

where sgn(x) is the sign function, x = |x| sgn(x). There are 4Np coefficients Anj, Bnj, Cnj,
Dnj to be determined, 4(Np − 1) matching conditions (6.19) and four edge conditions
as in (6.6). Therefore, we have 4Np linear equations with zero right-hand sides for the
coefficients Anj, Bnj, Cnj and Dnj. This system has non-zero solutions only for λn which
are roots of the determinant of the system. Next the system is solved numerically for each
λn up to a constant factor, which is determined using the normalisation condition (6.7).
The obtained dry modes ψn(x) of the plate with piecewise linear thickness are presented
as the superpositions (6.14) of the dry mode, ψ̄k(x), of the plate with constant thickness
hc defined by (6.3), where the coefficients Cmk are given by the integrals (6.15). Finally,
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h1 = h̃1h∗ h4 = h̃4h∗
h∗

a1

a2 a3

a4

h2
h3

0
1–1

Figure 11. Shape of the plate with variable thickness.

Case number a2 a3 h̃1 h̃4 h∗ T̃1 T̃3

I −2/3 2/3 2 2 6/7 −3 3
II −0.8 0.2 2 2 4/5 −5 1.25
III −0.8 0.2 3 3 2/3 −10 2.5

Table 5. Dimensionless parameters of calculations.

the added-mass matrix of the plate with a variable thickness is calculated using (5.8),
and the coefficients of the wet modes, Wkn in (6.14), and the corresponding dimensionless
frequencies of these modes, Ωk, are obtained solving the system (6.16).

If Tj = 0 for an interval aj < x < aj+1, then the general solution (6.22) for this interval
should be replaced by the solution (3.1), (3.2), where λn is changed to λn/

√
hj. If Tj /= 0

but hj − Tjaj = 0, then (6.20) takes the form

d2

dx2

(
x3 d2ψ

(j)
n

dx2

)
= λ

4
n

T2
j

xψ(j)n , (6.25)

with its general solution being of the form (6.23), where ξ = 2λn|Tj|− 1
2 x.

Numerical calculations are performed for a plate with two intervals of linear thickness
and one interval of a constant thickness. The plate thickness h(x) is given in the
dimensionless variables by the formula

h(x) =
⎧⎨
⎩

h∗h̃1 + h∗T̃1(x − a1) (a1 < x ≤ a2),
h∗ (a2 ≤ x ≤ a3),

h∗ + h∗T̃3(x − a3) (a3 ≤ x < a4),

(6.26)

see figure 11. The parameters in (6.18) and (6.26) are related by a1 = −1, a4 = 1, h1 =
h∗h̃1, h̃2 = h̃3 = h∗, T1 = h∗T̃1, T2 = 0 and T3 = h∗T̃3. The values of the parameters in
the present calculations for three cases are given in table 5. The average thickness of a
plate should be equal to 1 in the dimensionless variables, see (6.3). This conditions gives

h∗ =
[

1 + (h̃1 − 1)(1 + a2)

4
+ (h̃4 − 1)(1 − a3)

4

]−1

. (6.27)

The expressions hj − Tjaj, j = 1, 2, 3, are not zero and positive for all the three cases of
the table 5. Therefore, general solutions of the (6.20) for the intervals (−1, a2) and (a3, 1)
are given by (6.23), where the values βj and bnj, for n = 1 and n = 3, are calculated by
formulae (6.22), (6.24) and (6.26). In the interval a2 < x < a3, where T2 = 0, a general
solution of (6.20) is given by (3.1), (3.2), where λn should be changed to λn/

√
h∗. Here

the spectral parameter λn is the same in all three intervals.
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(b)
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α = 0.1 α = 0.1

α = 0.01

α = 0.01

Figure 12. The ratios of the wet and dry frequencies for cases I, II and III and α = 0.1 (a) and α = 0.01
(b). Black circles are for the plate with constant mean thickness hc. Relative differences �ωn for the same
cases and for α = 0.1 (c) and α = 0.01 (d).

Substituting the solutions (6.23) written for the intervals (−1, a2) and (a3, 1) with β1,
β3, bn1 and bn3 given by (6.22) and (6.24), and the solution (3.1), (3.2) for the interval
(a2, a3), where λn is replaced by λn/

√
h∗, in the matching conditions (6.19) at x = a2 and

x = a3, and the edge conditions (6.2), we arrive at a system of twelve linear equations with
zero right-hand sides for the eight coefficients Anj, Bnj, Cnj, Dnj, where j = 1, 3, in (6.23),
and four coefficients Ln1, Ln2, Ln3, Ln4 in (3.1). A non-zero solutions of this system exist
only if the determinant of the system is equal to zero, which gives the equation for the
spectral parameter λn. Then the system is solved for each root of the determinant, λn, with
the solution being uniquely determined using the orthogonality condition (6.7).

To calculate the added-mass matrix S for the complex plate (6.26), the dry modes,
ψn(x), are presented as superposition of the dry modes, ψ̄k(x), of the plate with a constant
thickness by formulae (6.14), (6.15). The coefficients (6.15) in the superposition (6.14)
make a matrix C, which together with the added-mass matrix S̄ of the plate constant
thickness hc, provide the added-mass matrix of the plate (6.26) by formula (5.8). Next the
dimensional frequenciesΩk of the complex floating plate, and the vector of the coefficients
Wk in the series (2.11) representing kth wet mode Wk(x) as a series of dry modes ψk(x),
are obtained by solving the algebraic system (6.16).

The ratios of wet,ωn, and dry,ω(d)n , elastic natural frequencies of the plate with thickness
(6.26), which are defined by (6.17), are shown in figure 12(a,b) for 3 ≤ n ≤ 20, three
different cases from table 5, and α = 0.1 in (a) and α = 0.01 in (b). Calculations are
performed with 40 terms in series (6.14). Correspondingly, the matrices in (6.16) are
40 × 40. It is seen that the ratios ωn/ω

(d)
n are close to each other, even the plate thicknesses

in cases I, II and III are rather different. Figure 12(c,d) present the relative differences�ωn

of the ratios ωn/ω
(d)
n for the plate (6.26) and for the plate with constant thickness hc. The

differences�ωn, n ≥ 3, are defined by (5.27). The differences�ωn are smaller than 10 %.
They decay with increase of n.

The solutions of (6.16) for 3 ≤ k ≤ 12 are listed in table 6 for case III and α = 0.1. Red
entries in this table are for Wkk which are set to one. It is seen that the wet modes Wk(x)
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Eigenmodes and added-mass matrices of hydroelastic vibrations

n\k 3 4 5 6 7 8 9 10 11 12

1 −0.189 −0.004 −0.011 −0.001 −0.002 0.000 −0.001 0.000 0.000 0.000
2 0.007 0.042 0.003 0.005 0.001 0.001 0.000 0.000 0.000 0.000
3 1.0 0.023 0.056 −0.001 0.012 0.000 0.003 0.000 −0.001 0.000
4 −0.024 1.0 0.012 0.060 −0.001 0.014 0.002 0.004 −0.001 −0.002
5 −0.056 −0.013 1.0 −0.012 0.067 −0.003 0.019 0.001 −0.007 −0.001
6 0.002 −0.061 0.014 1.0 −0.025 0.063 −0.008 0.020 −0.001 −0.007
7 −0.008 0.000 −0.068 0.029 1.0 −0.041 0.067 −0.009 −0.021 −0.002
8 0.000 −0.011 0.000 −0.064 0.046 1.0 −0.050 0.063 0.008 −0.020
9 −0.001 −0.002 −0.015 0.004 −0.068 0.057 1.0 −0.057 −0.064 0.010
10 0.000 −0.003 −0.003 −0.016 0.004 −0.063 0.065 1.0 0.060 −0.063
11 0.001 0.001 0.005 0.003 0.017 −0.002 0.064 −0.069 1.0 −0.067
12 0.000 0.002 0.001 0.006 0.004 0.016 −0.004 0.062 0.076 1.0
13 0.000 0.000 0.003 0.002 0.007 0.004 0.017 −0.004 −0.062 0.080
14 0.000 0.001 0.001 0.004 0.002 0.007 0.005 0.015 0.003 −0.060
15 0.000 0.000 0.002 0.001 0.005 0.002 0.008 0.005 −0.015 0.004
16 0.000 0.000 −0.001 −0.002 −0.001 −0.006 −0.003 −0.008 0.005 0.015
17 0.000 0.000 −0.001 −0.001 −0.003 −0.001 −0.006 −0.002 0.008 0.005
18 0.000 0.000 0.000 −0.001 −0.001 −0.003 −0.001 −0.006 0.002 0.007

Table 6. The coefficients Wkn in the series (6.14) of the kth wet mode ψk(x) as a superposition of the dry
modes ψ̄n(x) for case III and α = 0.1.

have approximately the same shapes as the corresponding dry modes ψk(x). Contributions
of other dry modes are smaller than 8 %.

7. Conclusion

The eigenmodes and eigenfrequencies of two-dimensional complex structures in contact
with a liquid have been investigated within the linear theory of hydroelasticity. The liquid
was of infinite depth, and its flow was assumed to be two-dimensional and potential.
The structure could be made of several plates, connected or not, completely or partially
wetted, and of any variable thickness and rigidity. The wet modes of such a structure,
corresponding natural wet frequencies of the modes, and the added-mass matrix S, which
is required in the present algorithm, are numerically evaluated in the following steps.

(1) Dry modes,ψn(x), of the complex elastic structure and their frequencies are obtained
numerically by a finite-element method, for example.

(2) Dry modes, ψ̄n(x), of an elastic plate of constant thickness, which is equal to
the mean thickness of the original complex structure and their frequencies are
calculated by using the analytical solutions (3.1) for the edge conditions of the
original structure.

(3) The elements of the transformation matrix C are obtained by numerical integration
of the products ψn(x)ψ̄n(x) along the plate, see (6.15).

(4) The added-mass matrix of the plate with constant thickness, S̄, is calculated using
the formulae (3.15), (3.16) and Appendix A.

(5) The added-mass matrix S of the original complex structure is given by the product
C S̄ CT , where CT is the transpose the matrix C.

970 A14-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.589


A.A. Korobkin, T.I. Khabakhpasheva and K.A. Shishmarev

(6) The vector of coefficients of the wet modes Wk and their dimensionless frequencies
Ωk are calculated as a solution of the algebraic system (6.16).

(7) The wet modes of the complex elastic structure are finally obtained by the series
(2.11) using the vector Wk and the dry modes ψn(x).

This approach has been applied to a floating compound plate made of several plates with
constant thicknesses and to a plate with piecewise linear thickness.

It was confirmed that the main contribution to a wet mode comes from the corresponding
dry mode. However, the eigen frequencies of the wet modes are very different from
the eigen frequencies of the dry modes. The wet frequencies are smaller than the dry
frequencies and depend on the relative inertia of the structure with respect to the liquid
inertia, which is quantified by the parameter α, and elastic properties of the structure. It was
discovered that the ratios of the corresponding wet and dry frequencies strongly depend
on the inertia parameter α but weakly depend on rigidity of the structure, its thickness
and internal support. This result makes it possible to suggest the following approximate
algorithm to determine the wet modes and their frequencies: (a) the shape of a wet mode
is taken as the shape of the corresponding dry mode, (b) the frequency of the wet mode is
approximated by the corresponding dry frequency multiplied by a factor, which is between
zero and one and is the same as for the homogeneous plate with constant thickness for the
same value of the inertia parameter α; see figures 7, 8, 10, 12 and their discussions.

The fact that the ratio of the wet and dry frequencies weakly depends on the properties
of the structure, and the fact that the wet mode shapes remain very similar to the dry mode
shapes, suggest that the distribution of the velocity potential along the plate, Φk(x, 0) for
the kth wet mode, see (2.12), is approximately ‘proportional’ to the local vertical velocity
of the plate. In terms of the potentials φn(x, y), which are the solutions of the problem
(2.13), (2.14), using the formula (2.16) for the elements of the added-mass matrix and the
orthogonality conditions (2.10), we have

φn(x, 0) =
∞∑

m=0

Snmψm(x), (7.1)

where ψm(x) are ‘local vertical velocity’ of the plate for φm(x, y), see (2.14). Therefore,
the potentials φn(x, 0) are approximately proportional to the local vertical velocity of the
plate if the added-mass matrix S is diagonally dominant. This is indeed the case in the
considered hydroelastic problems. The matrix S is not strongly diagonally dominant, see,
for example, the added-mass matrix given by (4.2), however, the non-diagonal terms give
small (but not negligible) conditions to the wet modes and the ratios of dry and wet
frequencies. This observation suggests that added-mass matrices can be approximated
by keeping only their diagonal elements and setting all other elements to zero. Such
approximation is not expected to be accurate, but can provide a reasonable approximations
of wet modes and their frequencies. This approximation for a single elastic mode was used
successfully by Vega-Martinez et al. (2019).

One can expect that the approach of this paper can be generalised and applied to any
elastic structure in contact with liquid to find characteristics of elastic vibrations of the
structure.

The added-mass matrices calculated in this paper can be used to solve problems of
hydroelastic slamming within simplified models of water impact for any geometry of
impacting elastic body and any distributions of its elastic characteristics. For slamming
problems, the wetted part of the structure changes in time, which implies that the
corresponding added-mass matrix should be calculated at each time step together with
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the evolution of the wetted part of the structure. The time-dependent added-mass matrix
is obtained by the method described in § 4.2, where a(t) and b(t) are now functions
of time. Wet modes are not used at the stage of impact when the structure is partially
wetted. However, they can be used at the next, penetration stage, when the structure is
completely in contact with liquid and continues to penetrate it. Added-mass matrices
of the type described in the present paper were used in some problems of hydroelastic
slamming. The theoretical results by Ionina (1999) and Ionina & Korobkin (1999) for
water impact of cylindrical shells, by Korobkin & Khabakhpasheva (1999b) and Korobkin
& Khabakhpasheva (2006) for wave impact onto elastic plate, and by Vega-Martinez et al.
(2019) for impulsive lifting of a disc from a water surface were compared successfully with
available experimental results; see details in the cited papers.

The matrices could also help to improve convergence of numerical solutions of
hydroelastic slamming problems with iterations between a hydrodynamic solver and a
structural finite-element solver. The iterations are aiming at accounting for the coupled
feature of the hydroelastic slamming for light structures. It can be shown that the iterations
without relaxation do not converge if the inertia parameter α is small, which is the case
for the thin-walled structures used in shipbuilding. The added-mass matrices of linear
hydroelastic problems help with the relaxation algorithm. Details of this application of
added-mass matrices in numerical solutions of coupled problems of hydroelastic slamming
will be published in another paper.
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Appendix A. Bilinear form for the exponential and trigonometric functions

We start with evaluation of the integral

U[eαx, eβx] =
∫ 1

−1
φ(x, 0) eβx dx, (A1)

where φ(x, y) is the solution of the boundary-value problem,

φxx + φyy = 0 ( y < 0), φ = 0 ( y = 0, |x| > 1), (A2a)

φy = eαx ( y = 0, |x| < 1), φ → 0 (x2 + y2 → ∞), (A2b)

which is continuous up to the boundary y = 0, and α, β are complex constants.
The continuous solution of (A2) provides the following relation between the first

derivatives of the potential on the interval −1 < x < 1 of the boundary y = 0 (see Gakhov
2014),

φx(x, 0) = 1

π
√

1 − x2
p.v.

∫ 1

−1

√
1 − τ 2 φy(τ, 0)

τ − x
dτ, (A3)

970 A14-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-3605-8450
https://orcid.org/0000-0003-3605-8450
https://orcid.org/ 0000-0003-4058-0508
https://orcid.org/ 0000-0003-4058-0508
https://orcid.org/0000-0002-7915-7099
https://orcid.org/0000-0002-7915-7099
https://doi.org/10.1017/jfm.2023.589


A.A. Korobkin, T.I. Khabakhpasheva and K.A. Shishmarev

where the integral is understand as the Cauchy principal value integral. To evaluate the
integral in (A3), where φy(τ, 0) = eατ , we use the formulae

ez cos θ = I0(z)+ 2
∞∑

n=1

Ik(z) cos(kθ) [AS, 9.6.34], (A4)

Tk(cos θ) = cos(kθ) [AS, 22.3.15], (A5)

p.v.
∫ 1

−1

Tk(τ )

(τ − x)
√

1 − τ 2
dτ = πUk−1(x) [AS, 22.13.3], (A6)

Uk−1(cos θ) = sin(kθ)
sin θ

[AS, 22.3.16], (A7)

where −1 < x < 1 and Tk(x), Uk(x) are Chebyshev polynomials of the first and second
kind, respectively, and Ik(z) is the modified Bessel function of order k. Formulae
(A4)–(A7) and some other formulae in the following come together with references to
their numbers in the handbook by Abramowitz & Stegun (1964).

Using the equality
1 − τ 2

τ − x
= 1 − x2

τ − x
− (τ + x), (A8)

and the boundary condition φy(τ, 0) = eατ , where −1 < τ < 1, the integral in (A3) can
be transformed as

p.v.
∫ 1

−1

√
1 − τ 2 eατ

τ − x
dτ = p.v.

∫ 1

−1

(
1 − x2

τ − x
− (τ + x)

)
eατ dτ√
1 − τ 2

= (1 − x2) p.v.
∫ 1

−1

eατ dτ

(τ − x)
√

1 − τ 2
−
∫ 1

−1

τ eατ dτ√
1 − τ 2

− x
∫ 1

−1

eατ dτ√
1 − τ 2

, (A9)

where ∫ 1

−1

eατ dτ√
1 − τ 2

= πI0(α) [AS, 9.6.18, ν = 0], (A10)

πI′
0(α) = πI1(α) =

∫ 1

−1

τ eατ dτ√
1 − τ 2

[AS, 9.6.27]. (A11)

Substituting (A9)–(A11) in (A3) and using (A4)–(A7), we obtain

φx = 1
π

√
1 − x22

∞∑
n=1

Ik(α) p.v.
∫ 1

−1

Tk(τ ) dτ

(τ − x)
√

1 − τ 2

+ 1

π
√

1 − x2
[−πI1(α)− xπI0(α)]

= 2
√

1 − x2
∞∑

n=1

Ik(α)Uk−1(x)− I1(α)+ xI0(α)√
1 − x2

. (A12)

The solution of (A2) is continuous on the boundary y = 0. In particular, φ(±1, 0) = 0.
Integrating (A1) by parts,

U[eαx, eβx] =
∫ 1

−1
φ(x, 0) d(eβx/β) = − 1

β

∫ 1

−1
φx(x, 0) eβx dx, (A13)
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and substituting (A12) in the resulting integral, we find

U[eαx, eβx] = − 2
β

∞∑
n=1

Ik(α)

∫ 1

−1
Uk−1(x) ebx dx

+ 1
β

I1(α)

∫ 1

−1

eβx dx√
1 − x2

+ 1
β

I0(α)

∫ 1

−1

x eβx dx√
1 − x2

. (A14)

The second and third integrals in (A14) are equal to πI0(β) and πI1(β), correspondingly,
see (A10) and (A11). The first integral is evaluated using the substitution x = cos θ and
formula (A7),∫ 1

−1

√
1 − x2Uk−1(x) eβx dx =

∫ 0

π

sin θ
sin(kθ)

sin θ
eβ cos θ (− sin θ) dθ

=
∫ π

0
sin θ sin(kθ) eβ cos θ dθ

= 1
2

∫ π

0
[cos(k − 1)θ − cos(k + 1)θ ] eβ cos θ dθ. (A15)

Using the integral ∫ π

0
ez cos θ cos(nθ) dθ = πIn(z) [AS, 9.6.19] (A16)

and (A15), the (A14) takes the form

U[eαx, eβx] = − 2
β

π

2

∞∑
n=1

Ik(α){Ik−1(β)− Ik+1(β)}

+ π

β
I1(α)I0(β)+ π

β
I0(α)I1(β). (A17)

The series in (A17) denoted in the following by S(α, β) can be calculated using the formula

Ik−1(β)− Ik+1(β) = 2k
β

Ik(β) [AS, 9.6.26] (A18)

twice,

S(α, β) =
∞∑

n=1

Ik(α){Ik−1(β)− Ik+1(β)} = 2
β

∞∑
n=1

kIk(α)Ik(β)

= α

β

∞∑
n=1

2k
α

Ik(α)Ik(β) = α

β
S(β, α), (A19)

which gives

S(α, β)+ S(β, α) =
(

1 + β

α

)
S(α, β). (A20)
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The left-hand side in (A20) can be evaluated using the definition of S(α, β). To make the
analysis shorter, we denote Ik(α) = ak and Ik(β) = bk. Then

S(α, β)+ S(β, α) = a1b0 +
∞∑

k=2

akbk−1 −
∞∑

k=1

akbk+1 + b1a0

+
∞∑

k=2

ak−1bk −
∞∑

k=1

ak+1bk, (A21)

where the second series is equal to the third and the first series is equal to the fourth. As a
result, the four series in (A21) cancel each other giving

S(α, β)+ S(β, α) = I1(α)I0(β)+ I1(β)I0(α). (A22)

Evaluating (A20) and (A22) provides

S(α, β) = α

α + β
{I0(α)I1(β)+ I1(α)I0(β)}, (A23)

and, finally, (A17) and (A23) yield

U[eαx, eβx] = π

α + β
{I0(α)I1(β)+ I1(α)I0(β)}. (A24)

The formula (A24) shows that

U[eαx, eβx] = U[eβx, eαx], (A25)

see also the properties of the bilinear form in § 3.2. The value of U[eαx, e−αx] is calculated
as the limit of (A24) when β → −α by L’Hopital’s rule,

U[eαx, e−αx] = lim
β→−α

U[eαx, eβx] = π lim
β→−α

[I0(α)I′
1(−α)+ I1(α)I′

0(−α)]

= π[I2
0(α)− I2

1(α)− I0(α)I1(α)/α], (A26)

where the following formulae were used,

I′
0(α) = I1(α), I′

1(α) = I0(α)− I1(α)/α, (A27a)

I0(−α) = I0(α), I1(−α) = −I1(α). (A27b)

The formulae (A27) are also used together with (A24) to find

U[e−αx, eβx] = −π
I0(α)I1(β)− I1(α)I0(β)

α − β
, (A28)

U[eαx, e−βx] = −π
I0(α)I1(β)− I1(α)I0(β)

α − β
, (A29)

and, therefore,

U[eαx, e−βx] = U[e−αx, eβx]. (A30)
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Eigenmodes and added-mass matrices of hydroelastic vibrations

Formulae (A24) and (A28), (A29) provide

1
2
{U[eαx, eβx] + U[eαx, e−βx]} =

∫ 1

−1
φ(x, 0) cosh(βx) dx

= π

2
I0(α)I1(β)

{
1

α + β
− 1
α − β

}
+ π

2
I1(α)I0(β)

{
1

α + β
+ 1
α − β

}

= π

α2 − β2 [αI1(α)I0(β)− βI0(α)I1(β)], (A31)

and, similarly,

1
2
{U[eαx, eβx] − U[eαx, e−βx]} =

∫ 1

−1
φ(x, 0) sinh(βx) dx

= π

2
I0(α)I1(β)

{
1

α + β
+ 1
α − β

}
+ π

2
I1(α)I0(β)

{
1

α + β
− 1
α − β

}

= π

α2 − β2 [αI0(α)I1(β)− βI1(α)I0(β)]. (A32)

For complex α and/or β we use the formulae:

sinh(iz) = i sin(z), cosh(iz) = cos(z), (A33a,b)

I0(z) =
{

J0(iz) (−π < arg z ≤ π/2),
J0(z e−3πi/2) (π/2 < arg z ≤ π),

[AS, 9.6.3], (A34)

I1(z) =
{

−J1(iz) (−π < arg z ≤ π/2),
e3πi/2J1(z e−3πi/2) (π/2 < arg z ≤ π).

(A35)

Formulae (A34)–(A35) with z = iμ, μ > 0, and arg z = π/2, give

I0(iμ) = J0(−μ) = J0(μ), I1(iμ) = −iJ1(−μ) = iJ1(μ). (A36a,b)

Equation (A31) with β = iμ, μ > 0 using (A36) provides

U[eαx, cos(μx)] = 1
2
(U[eαx, eiμx] + U[eαx, e−iμx])

= π

α2 + μ2 [αI1(α)J0(μ)+ μI0(α)J1(μ)]. (A37)

Similarly (A32) with β = iμ, μ > 0, multiplied by −i and using (A36) provides

U[eαx, sin(μx)] = − i
2

[U[eαx, eiμx] − U[eαx, e−iμx]]

= π

α2 + μ2 [αI0(α)J1(μ)− μI1(α)J0(μ)]. (A38)

For β = 0, (A24) gives
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U[eαx, 1] = π
I1(α)

α
. (A39)

Taking the limit in (A39) as α → 0 and using the asymptotic formula I1(α) = α/2 +
O(α3), we obtain

U[1, 1] = π

2
. (A40)

Note that

U[eαx, x] = lim
β→0

∂

∂β
(U[eαx, eβx]) = π lim

β→0

∂

∂β

{
I0(α)I1(β)+ I1(α)I0(β)

α + β

}

= π lim
β→0

{
− 1
α2 [I0(α)I1(0)+ I1(α)I0(0)] + 1

α
[I0(α)I′

1(0)+ I1(α)I′
0(0)]

}

= π

{
− 1
α2 I1(α)+ 1

α
I0(α)

1
2

}
= π

2α2 [αI0(α)− 2I1(α)]. (A41)

For α → 0 in (A41), we have I0(α) = 1 + (α/2)2 + O(α4), I1(α) = 1
2α + 1

16α
3 +

O(α5), αI0(α)− 2I1(α) = α + α3/4 − 2 1
2α − 1

8α
3 + O(α5) = α3/8 + O(α3), and then

U[1, x] = 0. (A42)

The asymptotic formulae of the modified Bessel functions for small arguments and (A41)
yield for small α,

U[eαx, x] = π

2α2

[
1
8
α3 + O(α5)

]
= π

16
α + O(α3), (A43)

which gives

U[x, x] = π

16
. (A44)

Applying similar asymptotic analysis to (A37) and (A38) as α → 0, we obtain

U[eαx, cos(μx)] = π

μ
J1(μ)+ O(α2), (A45)

U[eαx, sin(μx)] = πα

2μ2 (2J1(μ)− μJ0(μ))+ O(α3). (A46)

Taking the limits as α → 0 and derivatives with respect to α in (A46), we find

U[1, cos(μx)] = π

μ
J1(μ), U[x, cos(μx)] = 0, (A47a,b)

U[1, sin(μx)] = 0, U[x, sin(μx)] = π

2μ2 (2J1(μ)− μJ0(μ)). (A48a,b)

Setting α = iλ, where λ is real, in (A37), using (A36), and separating the real and
imaginary parts, we obtain

U[eiλx, cos(μx)] = U[cos(λx), cos(μx)] + iU[sin(λx), cos(μx)]

= π

μ2 − λ2 [iλI1(iλ)J0(μ)+ μI0(iλ)J1(μ)]

= π

μ2 − λ2 [μJ0(λ)J1(μ)− λJ1(λ)J0(μ)], (A49)
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Figure 13. The approximations of the dry modes ψn(x) for n = 3 (a) and n = 4 (b) with kmax modes ψ̄k(x) of
the plate with mean constant thickness. The accuracy (B1) of the approximations of ψ3(x) (c) and ψ4(x) (d)
calculated with kmax modes ψ̄k(x) for different values of the parameter β.

and, finally,

U[cos(λx), cos(μx)] = π

λ2 − μ2 [λJ1(λ)J0(μ)− μJ0(λ)J1(μ)], (A50)

U[sin(λx), cos(μx)] = 0. (A51)

The obtained values of the bilinear form divided by π, U[F(x),G(x)]/π, are
summarised in table 7, where μ ≥ 0, λ ≥ 0,

p0 = I0(μ) e−μ, p1 = I1(μ) e−μ, q0 = I0(λ) e−λ, q1 = I1(λ) e−λ, (A52a)

r0 = J0(μ), r1 = J1(μ), s0 = J0(λ), s1 = J1(λ). (A52b)

Appendix B. Dry modes and convergence of their approximations

The approximations of dry elastic modes, ψn(x), of the plate with linear thickness,
h(x) = 1 + βx, in the dimensionless variables for n = 3 and n = 4 with different number
of the modes ψ̄k(x) in the series (6.14) are shown in figure 13(a,b) correspondingly.
Figure 13(c,d) shows maximal difference,

max
−1≤x≤1

∣∣∣∣∣ψn(x)−
kmax∑
k=1

Cnkψ̄n(x)

∣∣∣∣∣ , (B1)

as a function of kmax. It is seen that the approximation (6.14) with kmax = 40 is accurate
even for large values of the parameter β. The required number kmax of the terms in (6.14)
increases with increase of the mode number n.

The dry modes ψn(x) for n = 3, 4, 5, 6 and β = 0, 0.25, 0.5, 0.75, 1.0 are shown in
figure 14. One can see convergence of the modes ψn(x) to ψ̄n(x) as β → 0.
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Figure 14. The dry elastic modes ψn(x) for n = 3, 4, 5, 6 and β = 0, 0.25, 0.5, 0.75, 0.95.
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Figure 15. The ratios of the frequencies of the dry modes for the plate with linear thickness and for the plate
with the constant mean thickness as functions of the parameter β (a). The relative differences of the dry
frequencies for 3 ≤ n ≤ 20 and different values of the parameter β (b).

The ratios of the frequencies of dry modes of a plate with linear thickness, ω(d)n (β),
and of the plate with the constant mean thickness hc, ω̄(d)n , which are equal to λ2

n(β)/λ̄
2
n,

as functions of the parameter β are shown in figure 15(a) for 3 ≤ n ≤ 7. Figure 15(b)
presents the relative differences of the dry frequencies, �ω(d)n , see (5.28), for 3 ≤ n ≤ 20
and β = 0.25, 0.5, 0.75, 0.95. It seen that the frequencies of all modes, except n = 3, are
below the frequencies of the plate with constant means thickness.

The dry elastic modes ψn(x) of plates with piecewise linear thickness, see § 6.3 and
table 5, are shown in figure 16(a–c) for n = 3, 4, 5 and the three cases from table 5. They
are compared with the corresponding modes ψ̄n(x) of the plate with constant thickness hc.
It is seen the modesψn(x) are close to the corresponding modes ψ̄n(x) of the plate with the
constant mean thickness. However, their frequencies are rather different, see figure 16(d),
where the relative differences ω(d)n defined by (5.28) of the dry frequencies compared with
the corresponding frequencies ω̄(d)n of the plate with constant thickness hc are shown. It
is seen that �ω(d)n > 15 % for n = 3, 4, 5 in all three cases. In case III, �ω(d)n > 10 % for
3 ≤ n ≤ 20.
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Figure 16. Dry elastic modes ψ3(x) (a), ψ4(x) (b) and ψ5(x) (c) for the cases I, II and III from table 5 and the
corresponding modes ψ̄n(x) of the plate with constant thickness hc. Relative differences of the dry frequencies
ω
(d)
n from the corresponding frequencies ω̄(d)n of the plate with constant thickness hc (d).
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