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abstract

We discuss classes of risk measures in terms both of their axiomatic definitions and of the
economic theories of choice that they can be derived from. More specifically, expected utility
theory gives rise to the exponential premium principle, proposed by Gerber (1974), Dhaene et al.
(2003), whereas Yaari’s (1987) dual theory of choice under risk can be viewed as the source of
the distortion premium principle (Denneberg, 1990; Wang, 1996). We argue that the properties
of the exponential and distortion premium principles are complementary, without either of the
two performing completely satisfactorily as a risk measure. Using generalised expected utility
theory (Quiggin, 1993), we derive a new risk measure, which we call the distortion-exponential
principle. This risk measure satisfies the axioms of convex measures of risk, proposed by Fo« llmer
& Shied (2002a,b), and its properties lie between those of the exponential and distortion
principles, which can be obtained as special cases.
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". Introduction

Recent years have witnessed the emergence in the financial literature of a
sophisticated theory of risk measures, as a means for determining capital
requirements for the holders of risky portfolios. A landmark in this
development has been the axiomatic definition of coherent risk measures by
Arztner et al. (1999), which has by now achieved the status of a classic.
However, the functional forms and fundamental properties of risk measures
have been extensively studied in the actuarial literature for more than 30
years, in the guise of premium calculation principles (e.g. Bu« hlmann, 1970;
Goovaerts et al., 1984). A specific class of coherent risk measures, termed
distortion premium principles, were introduced in an insurance pricing
context by Denneberg (1990) and Wang (1996).
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There are two alternative ways of defining (classes of) risk measures. One
is to start with a set of desirable properties that risk measures should satisfy,
and then determine mathematically their corresponding functional
representations. Artzner et al. (1999) propagated such an axiomatic
approach. The second way, often encountered in the actuarial literature, is to
determine the functional form of risk measures via economic indifference
arguments. The zero-utility premium principle was defined by Bu« hlmann
(1970) by considering an insurer whose preferences are characterised by
expected utility (von Neumann & Morgenstern, 1947). Furthermore it can be
shown that the distortion risk measures proposed by Denneberg (1990) and
Wang (1996) can also be obtained via indifference arguments, based
on Yaari’s (1987) dual theory of choice, which was proposed as a
complementary approach to expected utility.

Our aim in this paper is to associate these two approaches of defining
risk measures by discussing the sets of properties that risk measures, derived
via alternative economic theories of choice, are characterised by, and vice
versa. We believe that the simultaneous study of sets of properties and
corresponding economic theories is illuminating in both directions. On the
one hand, it sheds light on the implicit economic assumptions behind the
choice of a specific risk measure, while, on the other, it studies the explicit
consequences of decision making with a specific theory of choice. As an
example of such an interaction between axiomatic definition and economic
theory, we note the recent discussion of the appropriateness of coherent
measures of risk for setting capital requirements. Fo« llmer & Schied (2002a)
observed that the positive homogeneity and subadditivity properties of
coherent risk measures make them insensitive to liquidity risk. Meanwhile
Dhaene et al. (2003) phrased a similar criticism, pointing out the
incompatibility of coherent risk measures with expected utility theory. They
proposed instead the use of the exponential premium principle, which is
derived from an exponential utility function, and has an additional
justification originating in actuarial ruin theory.

Our view is that both the (coherent) distortion risk measures, which are
compatible with the dual theory of choice, and risk measures derived from
expected utility, such as the exponential premium principle, are not
completely satisfactory. Our criticism lies both in terms of their
corresponding sets of properties and of the accuracy with which they describe
economic agents’ preferences. We propose a class of risk measures based on
generalised expected utility theory (Quiggin, 1993), which is a combination of
expected utility and the dual theory of choice, and provides a better
characterisation of individual preferences. Using an exponential utility
function and an arbitrary probability distortion function, we define a risk
measure which we call the distortion-exponential premium principle. The
properties of this risk measure lie in between those of the distortion and the
exponential premium principles. We provide numerical illustrations of the
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proposed risk measure’s properties, which show that, for relatively small
portfolios of risks, it behaves approximately like a coherent risk measure,
whereas for larger portfolios, for which liquidity and risk aggregation
becomes an issue, it inherits properties of the exponential premium
principle.

The structure of the paper is as follows. In Section 2 we give a brief
exposition of alternative characterisations of economic agents’ preferences,
namely expected utility theory, the dual theory of choice under risk, and
generalised expected utility. In Section 3 we define risk measures and
discuss alternative sets of properties that they should obey. Subsequently,
in Section 4 we proceed with the definition of risk measures via
indifference arguments for the three theories of choice that were presented
earlier, and discuss their respective properties. In Section 5 we define the
distortion-exponential principle and compare its basic properties to those
of distortion risk measures and the exponential premium principle. Finally,
we present our conclusions in Section 6.

Æ. Choice under Risk

2.1 Preference Operators and Functionals
Suppose that an economic agent (e.g. an insurance company) is exposed

to a risk X 2 X , where X is a random variable representing (the payoff from)
a portfolio and X is the set of available portfolios that the agent may hold.
The agent will prefer some elements of X to others. We characterise the
agent’s preferences via the binary operator ‘�’, where X � Y for X; Y 2 X is
understood as meaning ‘portfolio X is at least as preferable as portfolio Y ’.
Given that the operator ‘�’ has some reasonable properties (see Appendix A
for details), we can use it to order all portfolios with random payoffs in X
with respect to how desirable they are to the agent.

In order to be able to carry out such an ordering of risky portfolios in
practice, it is useful to associate the preference relation ‘�’ with a real-valued
function V , defined on X via:

X � Y , V ðXÞ � V ðY Þ for X; Y 2 X : ð1Þ

V is called the preference functional associated with ‘�’. The exact form of
V will depend on the assumptions that we make for the general properties of
the preference operator ‘�’; different assumptions lead to different
representations in terms of V . In this section we will discuss three cases:
expected utility theory, based on the work of von Neumann & Morgenstern
(1947), the dual theory of choice developed by Yaari (1987), and the
generalised or rank-dependent utility framework, which is a synthesis of the
two previous approaches (Schmeidler, 1989; Quiggin, 1993). Conditions
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under which each theory emerges are discussed in more detail in
Appendix A, while a table summarising alternative characterisations of
preferences can be found in Appendix B.

2.2 Risk Aversion and Second Stochastic Dominance
Economic theories of choice provide formal ways in which to characterise

agents’ behaviour, which often is risk averse. Risk aversion is a standard
assumption in the literature, while being also widely observed in the practice
of economic decision making. One prominent example is the buying of
insurance by an individual at a higher cost than the expected loss that the
individual faces. Formally, an agent is risk averse if he always prefers a
deterministic portfolio R to a random one X, with expected value E½X� ¼ R
(if the reverse is true, the agent is called risk seeking):

E½X� � X, V ðE½X�Þ � V ðXÞ 8X 2 X : ð2Þ

A more sophisticated characterisation of risk aversion is via the concept
of second order stochastic dominance. Stochastic dominance provides a way
of ordering risky portfolios in terms of their risk characteristics. Let
X; Y 2 X be two portfolios that we wish to compare and SX; SY their
respective survival functions. We say that X second stochastically dominates
Y and write X � 2nd Y , if:Z 1

x

SY ðtÞdt �

Z 1
x

SXðtÞdt for all x 2 R ð3Þ

with the inequality being strict for some x 2 R. The above equations have
the interpretation that, if portfolio X second stochastically dominates Y , the
expected profit from X in excess of any level x is higher than the expected
profit from Y .

It is desirable that a preference relation is consistent with second
stochastic dominance. We say that a preference operator ‘�’ preserves second
stochastic dominance whenever:

X � 2nd Y ) V ðXÞ � V ðY Þ: ð4Þ

2.3 Expected Utility Theory
The first approach to modelling preferences on a collection of risky

portfolios that we discuss here is expected utility theory. This theory was
introduced in the classic book by von Neumann & Morgenstern (1947), and
developed further by several authors. The intellectual roots of utility theory
are however earlier, and date back to the 18th century and the work of
the mathematician Daniel Bernoulli. Expected utility theory, despite its
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drawbacks that will be discussed later, is the framework most widely used
by economists for modelling the preferences of economic agents.

We define expected utility as a preference functional U : X 7!R of the
form:

UðXÞ ¼ E½uðXÞ� ¼

Z þ1
ÿ1

uðxÞdFXðxÞ ð5Þ

where E½�� is the mathematical expectation operator, FX is the cumulative
probability distribution of X, and u is a real valued increasing function,
called a utility function. The utility function u can be interpreted as a non-
linear transformation of the agent’s wealth, that produces a mechanism for
assigning a different weight to each outcome of X. The fact that we require
the utility function to be increasing is simply a consequence of the fact that
any reasonable agent would prefer more rather than less money (this simple,
but important, property is usually referred to as ‘increasing preferences’).

Given that an agent’s preferences are consistent with expected utility
theory, a utility function u will exist, such that the agent’s preferences are
characterised by the expected utility functional UðXÞ ¼ E½uðXÞ�, in the sense
of equation (5). Furthermore, this utility function will be unique up to an
affine transformation, i.e. if the utility function u characterises the agent’s
preferences, so does the function auð�Þ þ b, where a > 0.

Utility functions have proved very useful for modelling the risk aversion
of economic agents. Characterisation of risk aversion via utility functions
turns out to be very simple. In the framework of expected utility, risk
aversion is equivalent to requiring:

E½uðXÞ� � uðE½X�Þ: ð6Þ

It follows from Jensen’s inequality that concavity of the utility function u
is a sufficient condition of risk aversion:

u is a concave function) E½uðXÞ� � uðE½X�Þ 8X 2 X : ð7Þ

The concavity of the utility function represents ‘diminishing marginal
returns’, in the sense that, as the risk averse agent’s wealth increases, the
additional benefit is smaller than the one obtained by the previous unit of
wealth. In the context of choosing between risky positions, this property can
be interpreted as follows. A risk averse agent with initial wealth w is offered a
fair bet: a coin is tossed, and if the outcome is heads the agent receives an
amount a; while if the outcome is tails the agent has to pay a. The expected
value of the bet is zero, so if the agent is risk averse he will not accept the bet.
In terms of a concave utility function, an increase of wealth by a produces a
lower increase in the agent’s utility than the decrease caused by losing a, and
the bet is thus unfavourable.
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Concavity of the utility function is a necessary and sufficient condition
for the preservation of second stochastic dominance, a stronger assumption
than just risk aversion. It can be shown that X second stochastically
dominates Y if, and only if, it is E½uðXÞ� � E½uðY Þ� for all concave utility
functions (Quiggin, 1993).

It is apparent that risk aversion is closely related to the concavity of the
utility function. It would be desirable to quantify this relationship and define
a corresponding measure of risk aversion. Assuming that the utility function
is twice differentiable, a sensible measure of risk aversion is the Arrow-Pratt
absolute risk aversion coefficient (risk aversion coefficient for short):

raðwÞ ¼ ÿ
u00ðwÞ

u0ðwÞ
: ð8Þ

Since the utility function is increasing by definition, it is obvious that the
risk aversion is positive if and only if the utility function is concave,
equivalently the agent is risk averse. The division by the first derivative of u
is carried out in order to ensure that the risk aversion is invariant under
affine transformations of the utility function. Note that, given a risk aversion
coefficient raðwÞ, and subject to a normalisation (e.g. uð0Þ ¼ 0; u0ð0Þ ¼ 1), the
corresponding utility function can be uniquely determined by solving the
differential equation (8).

In some cases an agent might actually be risk seeking. In such a case he
will always prefer a risky position with mean R to a safe one equal to R, the
corresponding utility function will be convex, and the risk aversion
coefficient will be negative.

It can be seen that risk aversion is, in general, a function of the agent’s
wealth. Thus risk aversion can be decreasing in wealth, as for a logarithmic
utility function:

uðwÞ ¼ ln w) raðwÞ ¼
1
w

ð9Þ

or increasing in wealth, as for a quadratic utility:

uðwÞ ¼ wÿ
1
2c

w2 ðc > 0;w � cÞ ) raðwÞ ¼
1

cÿ w
: ð10Þ

A very important case is the one of exponential utility, which exhibits
constant risk aversion:

uðwÞ ¼
1
a
ð1ÿ eÿawÞ ) raðwÞ ¼ a: ð11Þ
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Exponential utility functions are widely used in applications, the main
reason being that the assumption of constant risk aversion often yields
explicit solutions to otherwise intractable mathematical problems. The
independence of risk aversion from wealth is particularly appealing, as in
many cases the initial wealth of an economic agent is not known.

2.4 The Dual Theory of Choice under Risk
Even though the axioms on which utility theory is built are generally

accepted as being reasonable, violations of utility theory often take place in
practice. These violations manifest themselves in the famous Elsberg and
Allais paradoxes (e.g. Quiggin, 1993). A fairly common violation of expected
utility occurs when an individual simultaneously buys insurance (risk averse
behaviour) and plays the lottery (which constitutes risk seeking behaviour,
since the odds are always against the player). In general, there is empirical
evidence that agents tend in their economic decision making to overstate the
probabilities of extreme events, both of adverse (such as having a serious
accident) and of favourable ones (such as winning the lottery) (Quiggin,
1993).

Attempts to address these problems of utility theory have been made by
several authors, including Quiggin (1982) and Machina (1982). In terms of
the axiomatic foundations of alternative theories of choice, the point of
contention has, in general, been the ‘independence axiom’ of expected utility
theory, which has been substituted by alternative formulations or dropped
altogether (Puppe, 1991; Quiggin, 1993), see Appendix A. Here we briefly
discuss Yaari’s (1987) ‘dual theory of choice under risk’, which was
developed as a complementary approach to expected utility theory. Yaari’s
theory resolves some of the paradoxes created by expected utility, while
creating others of its own.

Yaari (1987) proposes the following preference functional:

HðXÞ ¼

Z 0

ÿ1

ðhðSXðxÞÞ ÿ 1Þdxþ

Z 1
0

hðSXðxÞÞdx ð12Þ

where SXðxÞ ¼ 1ÿ FXðxÞ ¼ PðX > xÞ is the decumulative probability
distribution function (survival function) of X, while h : ½0; 1� 7! ½0; 1� is an
increasing function satisfying hð0Þ ¼ 0 and hð1Þ ¼ 1, which we will call a
probability distortion function. Without loss of generality, let us, for
simplicity, assume that X � 0, such that:

HðXÞ ¼

Z 1
0

hðSXðxÞÞdx: ð13Þ

Observe that the mean of X can be written as:
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E½X� ¼

Z 1
0

SXðxÞdx: ð14Þ

Also observe that the function hðSXðxÞÞ is itself a decumulative distribution,
though different from the original one. Thus, from equation (13) it can be
seen that the effect of the probability distortion h is to modify (‘distort’) the
probability distribution of the random portfolio. The preference functional is
the expected value of the portfolio with respect to the modified distribution
function. In expected utility theory the preference functional is given as the
expected value of a non-linear transformation of wealth; in the dual theory it
is the expected value of wealth under a non-linear transformation of the
probability distribution.

Similarly to the case of expected utility theory, risk aversion can be
simply characterised in terms of the distortion function. It follows from
equations (14) and (13) that an agent is risk averse if, and only if, his
distortion function is always below the line hðsÞ ¼ s:

HðXÞ � E½X� ¼ HðE½X�Þ 8X 2 X , hðsÞ � s 8s 2 ½0; 1�: ð15Þ

However, for the agent’s preferences to preserve second stochastic
dominance, a more stringent condition on the distortion function is required
(Quiggin, 1993):

The operator HðÞ preserves second stochastic dominance on X
, h is a convex function:

ð16Þ

Thus, in the dual theory of choice, risk aversion is closely related to the
convexity of the distortion function. To better understand the effect of the
distortion function, rewrite equation (13) as:

HðXÞ ¼

Z 1
0

xh0ðSXðxÞÞ fXðxÞdx ¼ E½Xh0ðSXðXÞÞ� ð17Þ

where fX is the probability density of X. Because h is convex, its first
derivative h0 is an increasing function, and thus h0ðSXðxÞÞ is decreasing in x,
i.e. h0ðSXðxÞÞ becomes small for large values of the random variable X. We
can thus regard h0ðSXðxÞÞ as a weighting mechanism which discounts the
probability of desirable events (high X), while loading the probability of
adverse events (low X). In expected utility theory risk aversion is induced by
exaggerating the effects of adverse events; in the dual theory this is done by
exaggerating their probability.

To give a measure of risk aversion in the dual theory of choice, we define
the uncertainty aversion coefficient, which is a dual to the Arrow-Pratt risk
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aversion coefficient of utility theory:

uaðwÞ ¼
h00ðsÞ

h0ðsÞ
: ð18Þ

Examples of probability distortion functions are the dual power distortion
(which has increasing uncertainty aversion):

hðsÞ ¼ 1ÿ ð1ÿ sÞ
q 0 < q � 1) uaðsÞ ¼ ð1ÿ qÞð1ÿ sÞ

ÿ1
ð19Þ

and the exponential distortion function (which has constant uncertainty
aversion):

hðsÞ ¼
ebs
ÿ 1

eb ÿ 1
b > 0) uaðsÞ ¼ b: ð20Þ

2.5 Generalised Expected Utility
The von Neumann-Morgenstern utility theory and Yaari’s (1987) dual

theory of choice are complementary approaches. In fact, Yaari presented his
theory less as a complete characterisation of agents’ preferences, but more
as an illustrative example of preference functionals and orderings alternative
to the ones produced by expected utility.

We can actually produce a comprehensive description of an economic
agent’s preferences by combining the two above-mentioned approaches. (A
rigorous axiomatic characterisation of such preferences is given by
Schmeidler (1989), while the book by Quiggin (1993) is also dedicated to the
subject). Thus, we equip our agent with both a utility u and a probability
distortion h. This yields the generalised expected utility operator:

Vu;hðXÞ ¼

Z 0

ÿ1

ðhðSuðXÞðxÞÞ ÿ 1Þdxþ

Z 1
0

hðSuðXÞðxÞÞdx: ð21Þ

The preference functional Vu;h represents expected utility, calculated under a
distorted probability distribution.

In the context of generalised utility theory, second stochastic dominance
again gives us a clue about the shape of the utility and distortion functions.
The preference functional Vu;h preserves second stochastic dominance if, and
only if, the utility function u is concave and the distortion function h is
convex (Quiggin, 1993). These two conditions will be standing assumptions
for the rest of this paper.
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â. Risk Measures and their Properties

3.1 Definition of Risk Measures
Risk measures are defined as functions that take random variables, which

represent the terminal value of assets and/or liabilities at a fixed later date,
as arguments. Risk measures return a real number which encapsules the risk
assessment of the portfolio, whose random value is used as an argument. The
output of the risk measure represents the amount of additional capital that
the holder of the portfolio must add to his position in order that a regulator,
or a rating agency, or indeed the agent himself deems the aggregate position
acceptable (this definition is due to Artzner et al. (1999)). Formally, a risk
measure r is defined as a real valued functional on a collection of portfolios
X . Hence the holder of the risky investment X has to keep an amount rðXÞ
safely invested (for simplicity, in our paper this means with zero interest).
The higher the risk assessment (as produced by the risk measure) of the
position X, the more will be the capital that the agent has to reserve.

3.2 Risk Measures and Premium Principles
Risk measures are in many respects akin to actuarial premium

calculations principles. For an insurance carrier exposed to a liability X, a
premium calculation principle P gives the minimum amount PðXÞ that the
insurer must raise from the insured in order that it is in his interest to
proceed with the contract. Thus, a premium calculation principle can be
directly interpreted as a risk measure. A notational issue emerges here,
because in the actuarial literature insurance liabilities are usually denoted by
positive random variables, while in the more general risk management
literature liabilities are denoted by negative variables. In order not to
contradict either convention, we will use the notation PðXÞ ¼ rðÿXÞ for a
premium calculation principle and the associated risk measure. The relation
between risk measures and premium calculation principles is further
discussed in Section 4.1.

3.3 Properties of Risk Measures
Before discussing specific classes of risk measures emerging from the

three theories of choice examined in the previous sections, we give a brief
exposition of possible (sets of) desirable properties that risk measures and the
associated premium principles should satisfy.

A first natural requirement that we can impose on a risk measure is that
a portfolio whose value at the end of one period is always higher than that of
another should also induce lower capital requirements. This property,
monotonicity, can be summarised as:

Monotonicity: If X � Y almost surely, then rðXÞ � rðY Þ.
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(Note that, in terms of premium calculation principles, monotonicity is
expressed as PðXÞ � PðY Þ for X � Y .)

Recall that a risk measure has been defined as a function giving the
amount of safely invested capital that the holder of a risky position has to
add to his position in order to make it acceptable. Then it is obvious that,
should the investor add a cash amount to his position, the risk of the
aggregate should be reduced by an equal amount. This consideration induces
the translation invariance property of risk measures:

Translation invariance: If a 2 R then rðXþ aÞ ¼ rðXÞ ÿ a.

(In terms of premium calculation principles, translation invariance is
expressed as PðXÿ aÞ ¼ PðXÞ ÿ a.)

The behaviour of a risk measure with respect to the aggregation of risky
positions, manifested by the award of diversification discounts or the
imposition of penalties, is crucial. The question can be posed as follows:
given two portfolios X and Y and their joint probability distribution, how
does the risk of the aggregate rðXþ Y Þ relate to the risks of the individual
positions rðXÞ and rðY Þ?

The answer to this question might be related to the way in which X and
Y stochastically depend on each other. Let us now present some well-known
notions (e.g. Joe, 1997) of dependence that we will refer to in this section. A
useful characterisation of positive dependence is positive quadrant dependence
(PQD). Two risks X; Y are PQD whenever:

PðX � x and Y � yÞ � PðX � xÞPðY � yÞ 8x; y 2 R: ð22Þ

Essentially two risks being PQD means that their probability of assuming
low (or high) values simultaneously is higher than it would be, were they
independent. The negative analogue of PQD is negative quadrant dependence
(NQD):

PðX � x and Y � yÞ � PðX � xÞPðY � yÞ 8x; y 2 R: ð23Þ

Finally, comonotonicity is defined as the strongest possible form of positive
dependence. Two random variables X; Y are called comonotonic if there is a
random variable U and non-decreasing functions g; h such that:

X ¼ gðUÞ; Y ¼ hðUÞ: ð24Þ

We now return to the issue of defining suitable aggregation properties for
risk measures. Few would disagree with the claim that, if the positions X and
Y are negatively related, then to some extent the one risk is a hedge for the
other, and if X and Y are pooled, this fact should be acknowledged with a
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reduction in risk capital. Thus, a risk measure should be subadditive for
NQD risks:

Subadditivity forNQD risks: IfX; Y are NQD, then rðXþ Y Þ � rðXÞ þ rðY Þ:

Opinions are divided as to what should happen when positive dependence
occurs. On the one hand one could argue (as Dhaene et al. (2003) do
extensively) that aggregating positively dependent risks actually increases the
riskiness of the portfolio and that this should induce higher capital
requirements. Thus, in addition to subadditivity for NQD risks we could
require:

Superadditivity for PQD risks: If X; Y are PQD, then rðXþ Y Þ � rðXÞ þ rðY Þ

and

Additivity for independent risks: If X; Y are independent, then rðXþ Y Þ ¼
rðXÞ þ rðY Þ.

A different school of thought, represented by Wang et al. (1997) and
Artzner et al. (1999), holds that risk measures should be subadditive for any
dependence structure:

Subadditivity: rðXþ Y Þ � rðXÞ þ rðY Þ for any X; Y 2 X .

The argument for subadditivity is that even positively dependent risks
provide some diversification, so there is no reason that capital requirements
should be increased. From a regulatory perspective, Artzner et al. (1999)
argue that there should be no incentives for investors to split their portfolios,
which would be the result of superadditive risk measurement.

In a subadditive risk measure, positive dependence can be acknowledged
by requiring that, for comonotonic risks, it becomes additive:

Additivity for comonotonic risks: If X; Y are comonotonic, then rðXþ Y Þ ¼
rðXÞ þ rðY Þ.

That is equivalent to saying that, since perfect positive dependence means
that pooling X and Y does not produce any diversification, there is no reason
for the risk measure to be subadditive.

Artzner et al. (1999) proposed the further requirement of positive
homogeneity on a risk measure:

Positive homogeneity: If a 2 Rþ then rðaXÞ ¼ arðXÞ.
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The interpretation that they gave for this property was the fairly
uncontroversial statement that a change in units of measurement (e.g.
currency) should not result in a change in capital requirements. However,
positive homogeneity can also be understood in a different way: that
changes in the size of an agent’s portfolio, given that its composition is
unchanged, should only affect a proportional change in capital
requirements. Such an assertion has not been without its critics, see for
example Fo« llmer & Schied (2002a) and Dhaene et al. (2003). The criticism
can be summarised in the observation that positive homogeneity does not
account for liquidity risk. Positive homogeneity does not acknowledge that
very large portfolios of risks might produce very high losses that, in turn,
can make it difficult for the holder of the portfolio to raise enough cash in
order to meet his obligations. Note that positive homogeneity is
consistent with comonotonic additivity, while being contradictory to
superadditivity for PQD risks.

A relaxation of positive homogeneity and subadditivity has been
proposed by Fo« llmer & Schied (2002a), who replaced both properties with
the requirement for convexity:

Convexity: rðlXþ ð1ÿ lÞY Þ � lrðXÞ þ ð1ÿ lÞrðY Þ for all X Y 2 X ,
l 2 ½0; 1�.

Convexity has the interpretation of reduction in risk brought about by
diversification, while not implying the insensitivity to risk aggregation and
liquidity risk brought about by the combination of subadditivity and positive
homogeneity.

We conclude with some terminology. Risk measures that satisfy
monotonicity, translation invariance, subadditivity and positive homogeneity
are called coherent (Artzner et al., 1999). If additivity for comonotonic risks
is added to these properties, we end up with a specific sub-class of coherent
risk measures called distortion premium principles (Wang, 1996; Wang et al.,
1997). On the other hand, risk measures satisfying monotonicity, translation
invariance and convexity are called convex (Fo« llmer & Schied, 2002a).
Finally, risk measures that are additive for independent risks are called
additive (Gerber, 1974).

ª. Risk Measures Induced by Theories of Choice

4.1 Risk Measures and Indifference Arguments
Risk measures provide, in some sense, an ordering of portfolios with

random payoffs in terms of their riskiness. In this section we will be
concerned with the way in which such an ordering can be associated with the
preference orderings stemming from theories of choice that were discussed
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previously. In other words, given a risk measure r, we are interested in
preference functionals V such that:

rðXÞ � rðY Þ , V ðXÞ � V ðY Þ 8X; Y 2 X : ð25Þ

A relation such as the above emerges when producing risk measures from
preference functionals, via indifference arguments. Such a process can be
explained simply through the example of pricing an insurance contract. In an
insurance context, an interpretation of risk measures is as premium
calculation mechanisms. The premium PðXÞ that an insurer asks for insuring
a liability ÿX should be equal to the capital rðÿXÞ that the insurer has then
to reserve in order to remain solvent. (This is, of course, a simplified version
of reality. We are not concerned here with the more realistic case where the
insurer invests the premium in, say, stocks, thus achieving a higher return,
but being exposed to new sources of risk.) Consider now an insurer with
initial surplus (cash) w, who insures a liability ÿX. The insurer’s preferences
are described by a preference functional V : X 7!R, such as the ones
encountered in Section 2. The premium PðXÞ that the insurer will charge can
be determined via an indifference argument, i.e. it should be the sum for
which it is indifferent to the insurer whether to go ahead with the contract or
not. Such indifference can be formalised by requiring that evaluations of the
preference functional before and after the contract yield the same result:

V ðwÞ ¼ V ðwÿXþPðXÞÞ: ð26Þ

The premium PðXÞ will then be obtained as a solution to the above
equation. As discussed above, a risk measure can then be defined as:

rðXÞ ¼ PðÿXÞ 8X 2 X : ð27Þ

From now on, whenever the relationship (27) holds, we will call P the
premium calculation principle associated with the risk measure r and vice
versa. The minus sign essentially comes from the fact that in premium
calculation positive outcomes are generally considered to be losses, while in
the more general framework of risk measurement positive values of the
portfolio denote gains.
In Sections 4.2, 4.3 and 4.4 we show how classes of premium principles

(and the associated risk measures), satisfying alternative sets of properties, can
be derived from the economic theories of choice discussed earlier. The
comparison between these premium principles is summarised in Appendix B.

4.2 Risk Measures Derived from Expected Utility
4.2.1 Zero-utility premium calculation

In this section we consider agents whose preferences conform to the
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theory of expected utility discussed in Section 2.3. Consider an insurer with
a utility function u and initial surplus w, who prices a liability ÿX. The
indifference argument (26) now becomes:

uðwÞ ¼ E½uðwÿXþPuðXÞÞ�: ð28Þ

If w is set to zero, the above equation becomes:

uð0Þ ¼ E½uðÿXþPuðXÞÞ�: ð29Þ

The premium calculation principle Puð�Þ that emerges as the solution of (29)
is called the principle of zero utility (Bu« hlmann, 1970). Note that the zero-
utility principle is monotonic and translation invariant, as a direct result of
equation (29). Moreover, all zero-utility principles associated with concave
utility functions are consistent with the ordering of risks according to second
stochastic dominance, as discussed in Section 2.3.

Equation (29) has, in general, no analytical solution. However, in the
special case of a quadratic utility function (10), a solution does exist:

Puq
ðXÞ ¼ E½X� þ cÿ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 ÿ s2

ðXÞ

q
ð30Þ

which, for small values of the variance s2
ðXÞ � c, can be approximated by

(Bu« hlmann, 1970):

Puq
ðXÞ ’ E½X� þ

s2

2c
: ð31Þ

This premium calculation principle is termed the variance principle.

4.2.2 The exponential premium principle
A very interesting premium principle emerges when the utility function is

of the exponential type (11). Then equation (28) yields the following solution
(the exponential utility function’s constant risk aversion makes the initial
surplus irrelevant, and we do not need to set it to zero):

Puexp
ðXÞ ¼

1
a

ln E½eaX� a 2 ð0;1Þ ð32Þ

(where it is understood that for a ¼ 0 the premium principle reduces to the
net premium, Puexpja¼0ðXÞ ¼ E½X�). This premium calculation mechanism is
called the exponential premium principle, and has been proposed by several
authors, see for example Gerber (1974), Bu« hlmann (1985). The risk measure
associated with the exponential premium principle is:

Risk Measures and Theories of Choice 973

https://doi.org/10.1017/S1357321700004414 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700004414


ruexp
ðXÞ ¼

1
a

ln E½eÿaX�: ð33Þ

Some important properties of the exponential premium principle and the
associated risk measure are (Gerber, 1974; Dhaene et al., 2003):
ö monotonicity;
ö translation invariance;
ö subadditivity for negatively related (NQD) risks;
ö additive for independent risks; and
ö superadditivity for positively related (PQD) risks.

The last two properties imply that the aggregation of positively
dependent investment positions increases the risk of the portfolio super-
linearly. Note that this implies that the premium principle and associated
risk measure are not positively homogenous. Thus, the exponential
premium principle is sensitive to the liquidity risk and aggregation issues
discussed in Section 3.3. These properties are a direct result of the
association with expected utility theory, since an increase in the scale of
losses would lead to a steeper than linear reduction in utility. We also note
that the exponential premium principle (with the net premium as a special
case) is the only zero-utility premium principle that is additive for
independent risks (Gerber, 1974).

We consider, however, the properties of the exponential principle as being
excessively strict, as far as relatively small portfolios are concerned. The
superadditivity for positively related risks is present even for very small
portfolios, where liquidity risk and aggregation are not of primary
importance. Furthermore, for small portfolios the exponential principle will
approximately equal the net premium, and thus no safety loading will be
produced.

4.2.3 Exponential premium principle and ruin theory
An alternative interpretation of the exponential premium principle can be

given in terms of ruin theory, see for example Bu« hlmann (1985). Consider an
insurer with an initial surplus S0. Each year t the insurer is exposed to
stochastic insurance losses Xt and has a premium income ct. Thus, the
insurer’s surplus process is:

St ¼ Stÿ1 þ ct ÿXt t ¼ 1; 2; ::: : ð34Þ

Assume now that the annual total claims Xt; t ¼ 1; 2; . . . ; are identically and
independently distributed. Denote as X a random variable with the same
distribution as Xt. Let the premium ct be given by premium principle P, i.e.
ct ¼ PðXtÞ. Since the liabilities Xt have same distribution each year, each
year’s premium will also be the same, so that ct ¼ c ¼ PðXÞ.
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Ruin is defined as St becoming negative at some time t > 0. Denote the
probability of ruin as c. The question posed now is: “Given the premium
calculation principle P, what is the probability of ruin?’’ A similar question
is: “Can we control the probability of ruin by choosing an appropriate risk
measure?’’ Assuming that X has exponentially bounded tails, the probability
of ruin c is bounded by:

c � eÿlS0 ð35Þ

where l is called the ‘adjustment coefficient’ and is the solution of the
equation:

elc ¼ E½elX� ð36Þ

which in turn yields:

c ¼
1
l

ln E½elX�: ð37Þ

Thus, calculating the premium by the exponential principle with a risk
aversion coefficient of l introduces an upper bound of eÿlS0 on the probability
of ruin. It can be seen that the higher l is, the lower the probability of ruin.
This relation can be interpreted as a specific upper bound on the probability of
ruin, implying a risk aversion parameter for the insurer and vice versa. It is
also important that the probability of ruin depends on the initial surplus; the
lower that is, the more likely ruin becomes.

4.3 Risk Measures Derived from the Dual Theory of Choice
4.3.1 The distortion premium principle

Here we repeat the indifference argument of Section 4.1 for the case that
preferences are modelled by the dual theory of choice under risk that was
discussed in Section 2.4. Thus, risk aversion is induced by an increasing
convex probability distortion function h, and the resulting preference
functional is of the form (12). The indifference argument (26) becomes:

HhðwÞ ¼ HhðwÿXþPhðXÞÞ: ð38Þ

This equation can be explicitly solved for the premium Ph:

PhðXÞ ¼ ÿHhðÿXÞ ¼ ÿ

Z 0

ÿ1

ðhðSÿXðxÞÞ ÿ 1Þdxþ

Z 1
0

hðSÿXðxÞÞdx

� �
ð39Þ

and the corresponding risk measure is:
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rhðXÞ ¼ ÿHhðXÞ ¼ ÿ

Z 0

ÿ1

ðhðSXðxÞÞ ÿ 1Þdxþ

Z 1
0

hðSXðxÞÞdx

� �
: ð40Þ

We can rewrite equation (39) in the simpler form:

PhðXÞ ¼

Z 0

ÿ1

ðgðSXðxÞÞ ÿ 1Þdxþ

Z 1
0

gðSXðxÞÞdx ð41Þ

where gðsÞ ¼ 1ÿ hð1ÿ sÞ is called the conjugate distortion function of h.
When the liability X is strictly positive we end up with only the second term
in the above equation, which was introduced in the context of insurance
pricing by Denneberg (1990) and Wang (1996), and is often known as the
distortion premium principle.

It can be shown (Denneberg, 1990; Wang et al., 1997) that, whenever h is
convex (equivalently g is concave), the distortion premium principle satisfies
the following five key properties:
ö monotonicity;
ö translation invariance;
ö positive homogeneity;
ö subadditivity; and
ö additivity for comonotonic risks.

The first four of these properties ensure that the distortion principle is a
coherent risk measure in the sense of Artzner et al. (1999), while
comonotonic additivity is a desirable attribute for a subadditive risk
measure, as already discussed in Section 3.3. Furthermore, it can be shown
that every premium principle (risk measure) that satisfies the five properties
above can be represented as a distortion premium principle, subject to a
technical condition (Wang et al., 1997).

Note that, because of its association with the dual theory of choice, the
distortion premium principle is also consistent with second stochastic
dominance. The association with the dual theory is also the reason behind the
property of positive homogeneity. It was seen in Section 2.4 that, under the
dual theory, the agents are risk neutral with respect to the absolute size of
potential losses or gains, since the distortion function affects only the
probabilities of adverse events. Thus, positive homogeneity is a consequence
of the linearity in wealth that the dual theory implies. This makes the
distortion principle insensitive to liquidity risk and risk aggregation.

4.3.2 Probability distortion and sets of measures
We conclude with another representation of distortion premium

principles, via sets of probability measures. A probability measure Q : F 7!R
is a real-valued set function defined on the collection (s-algebra) of events
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F that assigns a probability to each of those events. Denote as P the ‘real-
world’ or ‘actuarial’ probability measure, and as EQ½X� the expected value of
X with respect to the measure Q. Then the distortion premium principle
(39) and the corresponding risk measure can be written as:

PhðXÞ ¼ sup
Q2Qg

EQ½X� ¼ ÿ inf
Q2Qh

EQ½ÿX� ð42Þ

and

rhðXÞ ¼ sup
Q2Qg

EQ½ÿX� ¼ ÿ inf
Q2Qh

EQ½X� ð43Þ

where the sets of probability measures Qg;Qh are defined as:

Qg ¼ fQ : QðAÞ � gðPðAÞÞ; 8A 2 F g
Qh ¼ fQ : QðAÞ � hðPðAÞÞ; 8A 2 F gg:

ð44Þ

The representation (42) can be interpreted as the expected loss EQ½X� of X
under the ‘worst possible’ measure in Qg. The measures Q are sometimes
called ‘generalised scenarios’ (Artzner et al., 1999). Thus, the distortion
premium principle can be re-interpreted as a ‘worst-scenario’ approach to
calculating expected loss over the appropriate set of risk adjusted test
probabilities. On the other hand, we can consider the presence of a set of
probability measures as a way of quantifying uncertainty with respect to the
distribution function of the underlying risk (Schmeidler, 1989). The extent of
such uncertainty is determined by the concavity of g (convexity of h)
through which the set of measures Qg (Qh) is defined.

4.4 Generalised Expected Utility and Convex Measures of Risk
It is an obvious step now to synthesise the two approaches for producing

risk measures that were shown in the previous two sections. We assume that
an agent’s preferences are summarised by both a concave utility u and a
convex distortion h. Thus, the indifference argument (26) takes the form:

Vu;hðwÞ ¼ Vu;hðwÿXþPu;hðXÞÞ: ð45Þ

As the premium principle Pu;h emerges from generalised expected utility,
it inherits properties both from expected utility and the dual theory of choice.
It is thus easily understood that, as discussed by Luan (2001), in the case of
a linear utility function the distortion principle is obtained as a special case,
while, in the case of a linear probability distortion (and w ¼ 0) Pu;h reduces to
the zero-utility principle. In general, the properties of Pu;h will lie
somewhere in between those of these two extreme cases. However, its precise
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behaviour is difficult to pin down. It is, in general, difficult to determine at
which point the utility or the distortion function will have the most influence
(Quiggin, 1993). One important property is that it is consistent with second
order stochastic dominance whenever u is concave and h is convex (Quiggin,
1993). A very useful characterisation has been given by Fo« llmer & Schied
(2002b), who have shown, in a slightly different context, that risk measures
emerging from indifference arguments such as (45) are, in fact, convex
measures of risk. Thus, the premium principle Pu;h and the associated risk
measure ru;hðXÞ ¼ Pu;hðÿXÞ are monotonic, translation invariant and
convex.

ä. A Distortion-Exponential Premium Principle

In this section we propose a premium principle (and the corresponding
risk measure) which is obtained as a special case of the risk measures
considered in Section 4.4 when an exponential utility function is used. This
premium principle is mathematically tractable, while having quite interesting
properties, and we call it the distortion-exponential principle.

5.1 Definition
Reconsider equation (45), with an exponential utility function uexp and an

arbitrary convex distortion function h. As seen in Section 4.2, calculations
involving exponential utilities are much easier, and tend to yield explicit
solutions. Then the premium principle Puexp;h

ðXÞ, which we may call the
distortion-exponential principle, becomes:

Puexp;h
ðXÞ ¼

1
a

ln

Z 0

ÿ1

ðgðSeaX ðxÞÞ ÿ 1Þdxþ

Z 1
0

gðSeaX ðxÞÞdx

� �
ð46Þ

where gðsÞ ¼ 1ÿ hð1ÿ sÞ is the (concave) conjugate distortion function. The
associated risk measure can be defined by Puexp;h

ðÿXÞ.
We note that the distortion-exponential principle can be concisely

represented via the set of probability measures Qg (44):

Puexp;h
ðXÞ ¼

1
a

ln sup
Q2Qg

EQ½e
aX�

( )
: ð47Þ

Now we can rewrite the above equation as:

Puexp;h
ðXÞ ¼ sup

Q2Qg

1
a

ln EQ½e
aX�

� �
¼ sup

Q2Qg

Puexp
ðXÞ: ð48Þ
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Thus, the distortion-exponential principle is interpreted as an exponential
premium principle, evaluated with respect to the worst-case probability
measure in Qg. If we interpret the set of scenarios Qg as quantifying the
uncertainty regarding the probability distribution of a portfolio X, the above
representation can be viewed as being derived from the ruin problem
discussed in Section 4.2. Thus, the distortion-exponential principle provides a
mechanism for controlling the probability of ruin, in the presence of
distributional uncertainty, modelled via distorted probabilities.

5.2 Properties
As the distortion-exponential principle emerges from generalised

expected utility, it inherits properties both from the exponential premium
principle and risk measures based on distorted probabilities. Thus, the
properties of this composite risk measure will lie somewhere between these
two extremes of economic behaviour. As discussed in the previous section,
the distortion-exponential principle and the associated risk measure
satisfy:
ö monotonicity;
ö translation invariance; and
ö convexity.

It is easily seen that the exponential and distortion principles, obtained in
the previous two sections, are special cases of this more general premium
principle. Thus, if we let the utility function become linear (i.e. let the risk
aversion coefficient tend to zero), then convexity breaks down into positive
homogeneity and subadditivity, and we obtain a coherent risk measure. On
the other hand, if the distortion function is linear, convexity reaches its other
extreme and can be substituted by additivity for independent risks,
subadditivity for NQD risks and superadditivity for PQD ones.

5.3 Comparison of the Distortion-Exponential to the Distortion and
Exponential Principles

In the case that neither the utility nor the distortion function is linear,
whether the properties of the proposed risk measure are closer to the
exponential or the distortion principle will, to some extent, depend on the
underlying risks that are examined. Consider an insurance liability with
loss ratio X � 0, and an insurance company holding l units of the liability,
i.e. being exposed to risk lX. Note that the effect of the exponential
function in (46) will then depend on the product al. When l is small in
relation to a, then the aggregate effect is that the exponential term will be
very similar to a linear one. Thus, we can claim that, for small portfolios
the distortion-exponential principle becomes asymptotically equivalent to
the corresponding distortion principle, and inherits its properties. Thus,
for small portfolios the distortion-exponential principle will be positively
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homogenous and subadditive. However, for higher values of l the
exponential term grows, and we would expect the effect of the utility
function to become prevalent.

5.3.1 Sensitivity to portfolio size
The main criticism against positive homogeneity is that it disregards

liquidity risk. However, for small portfolios liquidity risk can be negligible,
hence it is reasonable to require that for such portfolios the risk measure
becomes approximately invariant to the scale of potential losses. The
influence of the exponential utility function on the risk assessment of
portfolios with variable sizes is illustrated in Figures 1 and 2. We assume X is
Gamma distributed with mean equal to 1 and variance equal to 0.2. First
we consider the case of a linear distortion function and an exponential utility
with risk aversion ra ¼ 0:5 � 10ÿ6. The corresponding risk assessment of lX
for 0 < l � 5 � 106, given by the exponential premium principle, is shown in
Figure 1, along with the expected loss (net premium) of lX. It can be seen
that, for small values of l, the two lines are almost indistinguishable, while
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Figure 1. Effect of portfolio size on risk assessment with the exponential
premium principle
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when l becomes comparable to 1=a the line representing risk assessment
with the exponential premium principle starts to diverge. Thus, risk aversion
only starts to ‘kick-in’ when the size of the portfolio is such that a potential
loss becomes a significant threat to the liability holder’s solvency. For small
values of l the line corresponding to the exponential premium principle is
approximately straight, which can be interpreted as (approximate) positive
homogeneity (scale invariance) at that level. However, the fact that, for small
l, the exponential principle gives the same values as the net premium is
something that one could disagree with, as it implies that, for small
portfolios, no safety loading is necessary.

This weakness is rectified if we use, instead of the exponential premium,
the distortion-exponential principle, where an exponential distortion
function, with uncertainty aversion ua ¼ 4, is used. In Figure 2 the
behaviour of the distortion-exponential principle with respect to portfolio
size is depicted, along with risk assessments produced with the
corresponding distortion principle and expected loss. It can be seen that,
for small portfolios, the risk given by distortion-exponential principle is
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Figure 2. Comparison of the effect of portfolio size on risk assessment, for
the distortion and distortion-exponential premium principles
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asymptotically the same as the one calculated with the distortion principle,
thus it is again approximately positively homogenous. On the other hand,
positive homogeneity does not imply here the absence of a safety loading, as
is seen by the different slopes of the straight lines corresponding to the
distortion principle and the expected loss. A safety loading, even for small
portfolios, is the result of the uncertainty aversion introduced by the
distortion function, while, when the exponential utility’s non-linear effect
becomes significant, an additional loading is present, resulting from the
sensitivity to very high potential losses. Thus, with the distortion-
exponential principle we get the best of both worlds: positive homogeneity
for small portfolios; a proportional safety loading for all portfolio sizes;
plus a non-linear loading for large portfolios that pose an increased
liquidity risk.

5.3.2 Sensitivity to risk aggregation
We now turn our attention to the issue of risk aggregation. As discussed

previously, the distortion principle is insensitive to risk aggregation issues, as
it is always subadditive. On the other hand, it can be argued that the
exponential premium principle is over-sensitive to risk aggregation, since it is
superadditive for all PQD risk, even for small ones, and thus makes no
acknowledgement of the possible diversification implicit in risk pooling (in
fact using the exponential principle would create an incentive to split even the
smallest portfolio of positively related risks). Consider two random
liabilities X and Y . Given a premium principle P, we define the relative
saving from pooling gðX; Y Þ as the proportional reduction in premium (risk
capital) when X and Y are pooled:

gðX; Y Þ ¼
PðXÞ þPðY Þ ÿPðXþ Y Þ

PðXÞ þPðY Þ
: ð49Þ

If X and Y are positively related (PQD to be more precise), for a distortion
principle gðX; Y Þ will always be positive, due to subadditivity, and for an
exponential principle it will be always negative, due to superadditivity. As
discussed before, neither of those two extremes is satisfactory, since the
former disregards risk aggregation while the latter does not acknowledge
diversification.

Again, the distortion-exponential principle occupies the middle ground,
and provides an answer that is, in our view, satisfactory. Let X and Y be
Gamma distributed, both with mean 0.5 and variance 0.05, and positively
dependent with correlation 0.5 (in this example we use a Gaussian copula
(Joe, 1997) to model dependence). In Figure 3 we plot gðlX; lY Þ as a
function of l for the distortion principle, the exponential principle and the
distortion-exponential principle. It can be seen that, as expected, the
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savings from pooling are always positive for the distortion principle and
always negative for the exponential principle. For the distortion-
exponential principle the savings are positive for small l and negative for
large ones; the point where the line crosses the x-axis is the one when the
dangers from risk aggregation become more significant than the benefits
from risk pooling.

Overall, the properties of the risk measure that we introduced in this
paper lie between those of the exponential and distortion premium
principles. For small portfolios it behaves like a coherent risk measure,
while for larger ones, where liquidity risk and risk aggregation become
significant, the exponential function progressively introduces superlinearity
and superadditivity in the risk assessment. The definition of what a large
portfolio is will depend on the specific situation and preferences of its
holder, and can be controlled by modifying the risk aversion parameter of
the exponential function.
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Figure 3. Comparison of savings from pooling positively correlated
liabilities, with the distortion, exponential and distortion-exponential

premium principles
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å. Conclusions

In this paper we have discussed alternative theories of choice and the
properties of risk measures that are associated with those theories. Our
purpose has been to show that these two complementary perspectives of the
problem of risk measurement illuminate each other. Thus, risk measures
resulting from expected utility theory are sensitive to the relative scale of
potential losses, which is a direct result of the non-linearity of the utility
function. We have focused on the case of exponential utility functions, as the
resulting risk measures, called exponential premium principles, are
characterised by a transparent set of properties, while also having an
interesting interpretation in terms of the classical ruin problem. The
exponential premium principle has been shown to be particularly sensitive to
risk aggregation. On the other hand, coherent risk measures derived from
the dual theory of choice, called distortion principles, have been shown to be
insensitive to risk aggregation, as they are subadditive for all risks.
However, for small portfolios of risks, where liquidity and aggregation issues
are less prevalent, distortion principles both apply a proportional safety
loading and acknowledge diversification, which the exponential principle
fails to do.

Thus, we see that the two complementary theories of choice, expected
utility and the dual theory, induce classes of risk measures that have
complementary sets of properties, none of which are completely satisfactory.
These arguments imply that a desirable set of properties of a risk measure
would lie somewhere in between those of coherent risk measures, on the one
side, and the exponential principle, on the other. Our discussion thus
contributes to the criticism of coherent risk measures initiated by Fo« llmer &
Schied (2002a, 2002b) and Dhaene et al. (2003). Generalised utility theory,
which combines expected utility and the dual theory, gives rise to a different
class of convex measures of risk. Using again an exponential utility function,
we obtain a risk measure (which we term the distortion-exponential
principle) with properties that we believe are satisfactory. This risk measure
behaves approximately as a coherent risk measure for smaller portfolios of
risks, while for larger portfolios the risk aversion induced by the utility
function becomes prevalent, and the sensitivity to liquidity and risk
aggregation issues gradually increases. That this increase is gradual is, in our
view, a very positive feature, as the alternative would be to define a cut-off
point in portfolio size, whose relative arbitrariness could create anomalies in
risk management policy.

We observe that the theory of choice which arguably gives the most
complete characterisation of agent preferences, generalised expected utility,
also induces risk measures with what we believe to be the best properties.
This indicates that the association of risk measures with economic theories
has been a productive approach, and constitutes more than a theoretical
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exercise. We must, however, note that, even though generalised expected
utility improves on the von Neumann-Morgenstern utility theory, it is also
sometimes violated in practice (Fennema & Wakker, 1996; Georgantzis et al.,
2002). A question then arises as to whether, in the presence of these
violations, our analysis retains its validity. Economic theories of choice strive
to give mathematical descriptions of rationality, but what happens when
individual decision-makers do not conform with prescribed notions of what a
rational act is? We believe that such contradictions do not invalidate the
usefulness of the theoretical tools that we used. At the level of policy making,
one is actually in the position consciously to decide as to what a rational
decision is; the operation of risk measures is, by definition, normative rather
than descriptive. Regulation tries to strike a balance between how market
players should act and how they are actually likely to act, and we believe that
risk measures derived from generalised expected utility get this balance
about right. On the other hand, decisions violating economic theories of
choice do not necessarily imply irrationality, but are often due to other
factors which cannot be easily quantified. It is not the function of a risk
measure to negate these factors; an economic decision should not depend
exclusively on the value returned by a mathematical model. However, the
presence of a risk measure provides decision-makers with one additional
conceptual tool, serving a specific purpose. It is then a matter of best practice
to choose this tool carefully and justify that choice via economic arguments.

The preceding discussion does not suggest how the risk measures that we
propose should be calibrated. Calibration would, of course, depend on the
context in which the risk measure will be used. If it is used as a regulatory
requirement imposed on the market, the uncertainty aversion of the
distortion function could be indicated by a regulator. Recall that the
distortion function can be interpreted as a mechanism for producing
probabilistic scenarios. This bears some similarity with the Value-at-Risk
methodology currently employed in banking regulation. On the other hand, if
the risk measure is used internally by a financial entity (bank, insurance
company, corporation), the decision would depend on the risk manager’s
view. Regarding the calibration of the (exponential) utility function, the
classical insurer’s ruin problem, discussed earlier in the paper, without being
necessarily valid in a general risk management context, provides some
insight. It was seen that the risk aversion parameter depends on the initial
surplus of the insurer, as well as on the maximum acceptable probability of
ruin. As our motivation for employing an exponential utility function was
related to the issue of how to treat large portfolios, it is reasonable to expect
the definition of what amounts to a large portfolio to be dependent on the
financial size of its holder. The implication is that the calibration of the risk
measure is a company-specific issue. We do not consider this as a weakness
of the proposed methodology. Different market players have different
characteristics and priorities, and the mathematical tools that they use should
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be flexible enough to cater for this simple fact. Furthermore, the imposition
by a regulator of a single risk measure on the whole market has been
criticised in the literature (Danielson et al., 2001) as a source of systemic risk,
as the use by all market agents of the same risk measure would result in
similar risk management strategies. This would, in turn, increase the
homogeneity of market decision-makers and increase the probability of a
systemic crisis.
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APPENDIX A

THEORIES OF CHOICE UNDER RISK:
AXIOMATIC CHARACTERISATIONS

For each theory of choice discussed in the paper, the corresponding
preference functional can be derived from a set of axioms. In this section we
briefly present such axiomatisations, without going into great mathematical
detail and the precise conditions under which the representation theorems
hold. It is significant that the sets of axioms characterising alternative theories
of choice differ with respect to the way in which they deal with aggregation
of risks. It is thus no coincidence that the risk measures induced by these
theories also have different properties relating to the risk assessment of sums
of risks (i.e. superadditivity, subadditivity, convexity). Note that alternative
axiomatisations are possible, especially in the case of generalised expected
utility. Here we follow the treatment by Puppe (1991). We also find the
discussions by Yaari (1987) and Schmeidler (1989) very useful.

Let X be a set of random variables on a probability space (O;F ;P). The
decumulative distribution function SXðxÞ of X 2 X is defined by
SXðxÞ ¼ PðX > xÞ. Denote as D the set of decumulative distributions of
elements in X . Let all elements in X take values in a compact interval M � R,
so that M is the support of distributions in D. We also assume that D is
endowed with the topology of weak convergence.

Assume a binary preference operator ‘�’ defined on D, with ‘�’ being its
asymmetric part (strict preference) and ‘�’ its symmetric part (indifference).
The relation ‘�’ is called complete if 8F;G 2 D, F � G or G � F holds. The
relation ‘�’ is called transitive if F � G and G � H imply F � H,
8F;G;H 2 D. ‘�’ is called a weak order if it is complete and transitive.

A real valued functional V : D 7!R is a representation of ‘�’ if for all
F;G 2 D:

F � G, V ðFÞ � V ðGÞ:

Consider the following axioms on ‘�’:
ö Weak order. The relation ‘�’ is a weak order, i.e. preferences are

complete and transitive.
ö Continuity. 8F 2 D the sets fG 2 D : G � Fg and fG 2 D : F � Gg are

closed in the topology of weak convergence.
ö Monotonicity. 8F;G 2 D, F � G whenever F dominates G in first order

stochastic dominance, i.e. FðxÞ � GðxÞ8x 2 R (and the inequality is strict
for at least one x).

ö Independence. 8F;G;H 2 D and a 2 ½0; 1�, F � G implies aFþ ð1ÿ aÞH �
aGþ ð1ÿ aÞH.
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Then the expected utility theorem can be stated as follows:

Theorem 1 (Expected Utility). Let ‘�’ be a binary operator on D. If and
only if ‘�’ satisfies the weak order, continuity, monotonicity and
independence axioms, there exists a strictly increasing real valued function u
such that ‘�’ can be represented by the expected utility functional:

V ðXÞ ¼

Z
M

uðxÞdð1ÿ SXðxÞÞ ¼ E½uðXÞ�:

Moreover, the utility function u is unique up to affine transformations.
Note that the independence axiom is responsible for the linearity in

probabilities of the expected utility functional. Furthermore, independence
has been found to be frequently violated in practice. Yaari’s (1987) dual
theory of choice, emerges by modifying the independence axiom. Let SX � SY

denote the decumulative distribution function of Xþ Y . Consider now the
following axiom:

Dual Independence. 8F;G;H 2 D and a 2 ½0; 1�, F � G implies
aF� ð1ÿ aÞH � aG� ð1ÿ aÞH.

The following result holds:

Theorem 2 (Yaari). Let ‘�’ be a binary operator on D. If and only if ‘�’
satisfies the weak order, continuity, monotonicity and dual independence
axioms, there exists a unique continuous and strictly increasing function
h : ½0; 1� 7! ½0; 1� such that ‘�’ can be represented by the functional:

V ðXÞ ¼

Z
M\Rÿ

ðhðSXðxÞÞ ÿ 1Þdxþ

Z
M\Rþ

hðSXðxÞÞdx:

Dual independence is responsible for the linearity in payoffs observed in
the dual theory of choice. In order to obtain a generalised utility functional
depending on both a utility and a distortion function, the independence
axiom has to be weakened and not just modified. There are several ways of
doing this and some additional conditions are needed so we will not state a
theorem for that case. Sets of alternative axioms are discussed in Puppe
(1991), while a very interesting approach is that of Schmeidler (1989). He
substituted independence with:

Comonotonic Independence. For all pairwise comonotonic F;G;H 2 D and
a 2 ð0; 1Þ, F � G implies aFþ ð1ÿ aÞH � aGþ ð1ÿ aÞH.
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The resulting preference functional is an expected utility under a non-
additive probability measure (Denneberg, 1994), which, under some technical
conditions, can be represented as a distorted probability.
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APPENDIX B

SUMMARY OF THEORIES OF CHOICE AND
RESULTING RISK MEASURES

Economic theory Expected utility Dual theory of choice Generalised expected utility

Non-linear distortion of: wealth (uðxÞ) probability (hðPÞ ¼ 1ÿ gð1ÿ PÞ) wealth and probability

Preference functional UðXÞ ¼
R þ1
ÿ1

uðxÞdFXðxÞ HðXÞ ¼
R 0

ÿ1
ðhðSXðxÞÞ ÿ 1Þdx

þ
R1
0 hðSXðxÞÞdx

Vu;hðXÞ ¼
R 0

ÿ1
ðhðSuðXÞðxÞÞ ÿ 1Þdx

þ
R1
0 hðSuðXÞðxÞÞdx

Separability axiom Independence Dual independence Comonotonic independence

Exponential Distortion Distortion-exponential
Premium principle Puexp

ðXÞ ¼ 1
a
ln E½eaX

� PhðXÞ ¼
R 0

ÿ1
ðgðSXðxÞÞ ÿ 1Þdx Puexp ;h

ðXÞ ¼ 1
a
ln
� R 0

ÿ1
ðgðSeaX ðxÞÞ ÿ 1Þdx

(using exponential utility) þ
R1
0 gðSXðxÞÞdx þ

R1
0 gðSeaX ðxÞÞdx

	
Premium as function superlinear linear linear for small portfolios
of portfolio size superlinear for large portfolios

Risk loading zero for small portfolios positive and constant positive for small portfolios
and increases with size and increases with size

subadditive for NQD subadditive for all risks convex
Sensitivity to aggregation additive for independent additive for comonotonic risks (subadditive for small risks,

superadditive for PQD risks superadditive for large PQD risks)
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