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SUMMARY
This paper describes a simulation model for a multi-legged
locomotion system with joints at the legs having viscous
friction, flexibility and backlash. For that objective the
robot prescribed motion is characterized in terms of
several locomotion variables. Moreover, the robot body
is divided into several segments in order to emulate the
behaviour of an animal spine. The foot-ground interaction
is modelled through a non-linear spring-dashpot system
whose parameters are extracted from the studies on soil
mechanics. To conclude, the performance of the developed
simulation model is evaluated through a set of experiments
while the robot leg joints are controlled using fractional
order algorithms.

KEYWORDS: Robotics; Walking; Dynamic modelling;
Kinematics; Simulation; Saturation; Friction; Backlash;
Fractional calculus.

I. INTRODUCTION
Walking machines allow locomotion in terrain inaccessible
to other type of vehicles, since they do not need a continuous
support surface.1 On the other hand, the requirements for leg
coordination and control impose difficulties beyond those
encountered in wheeled robots.2 These aspects deserve great
interest and, in order to study them, different approaches
may be adopted. One possibility is to design and build a
walking robot and develop study based on the prototype.
An alternative perspective consists on the development of
simulation models of walking machines that serve as the
basis for the research. This second approach has several
advantages, namely lower development costs and a smaller
time for implementing the modifications. Due to these
reasons, several different simulation models were developed,
and are used for the study, design, optimization, gait analysis
and development of control algorithms.

The gait analysis and selection is a research area requiring
an appreciable modelling effort for the improvement of
mobility with legs in unstructured environments. Several
articles addressed the structure and selection of locomotion
modes.3,4 Nevertheless, there are different optimization
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criteria such as energy efficiency,5 stability,4 velocity 6,7 and
mobility.8

With respect to the control of legged robots, there exist a
class of walking machines for which locomotion is a natural
dynamic mode. Once started on a shallow slope, a machine
of this class will settle into a steady gait, without active
control or energy input.9,10 However, the capabilities of these
machines are quite limited. Previous studies focused mainly
in the control at the leg level and leg coordination using
neural networks,11 fuzzy logic,12 central pattern generators,13

subsumption architecture14 and virtual model control.15

There is also a growing interest in using insect locomotion
schemes to control walking robots. In spite of the diversity
of approaches, for multi-legged robots the control at the
joint level is usually implemented through a simple PID like
scheme with position/velocity feedback. Other approaches
include sliding mode control,16 computed torque control17

and hybrid force/position control.18

In this line of thought, this paper presents a simulation
model for multi-leg locomotion systems and several periodic
gaits. This tool is the basis for the study of the best system
configuration and the type of movements that lead to a better
mechanical implementation.19–21 Moreover, the model is also
used to study the control, at the joint leg level, in the presence
of joints with viscous friction, flexibility and backlash.22,23

Bearing these facts in mind, the paper is organized as
follows: Section two introduces the robot kinematic model
and the motion planning scheme. Sections three and four
present the robot dynamic model and the foot-ground
interaction model. Section five develops a set of experiments
to evaluate the system performance under Fractional Order
(FO) joint leg control. Finally, section six outlines the main
conclusions.

II. ROBOT KINEMATIC MODEL
We consider a walking system (Figure 1) with n legs, equally
distributed along both sides of the robot body, having each
two degrees of freedom (dof ) corresponding to two rotational
joints (i.e. j ={1, 2} ≡ {hip, knee}).

Motion is described by means of a world coordinate
system. The kinematic model comprises: the cycle time T ,
the duty factor β, the transference time tT = (1 − β)T , the
support time tS =βT , the step length LS , the stroke pitch SP ,
the body height HB , the maximum foot clearance FC , the ith
leg lengths Li1 and Li2 and the foot trajectory offset Oi

(i = 1, . . . , n). Moreover, we consider a periodic trajectory
for each foot, with constant body velocity VF =LS/T .

Gaits describe discontinuous sequences of leg movements,
alternating between transfer and support phases and, in the
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Fig. 1. Kinematic and dynamic multi-legged robot model.

simulation model, we consider the Wave gait, Equal Phase
Half Cycle gait, Equal Phase Full Cycle gait, Backward Wave
gait, Backward Equal Phase Half Cycle gait and Backward
Equal Phase Full Cycle gait {WG, EPHC, EPFC, BW,
BEPHC, BEPFC}.2 Given a particular gait and duty factor β,
it is possible to calculate, for leg i, the corresponding phase
φi , the time instant where each leg leaves and returns to
contact with the ground and the Cartesian trajectories of the
tip of the feet (that must be completed during tT ).2 Based on
this data, the trajectory generator is responsible for producing
a motion that synchronises and coordinates the legs.

Concerning the movement of the tip of the feet during the
transfer phase, the trajectories must be performed in such
a way to avoid collisions with ground or any obstacles that
may be in the vicinity of the robot. This problem is more
acute when the robot is walking with a periodic gait because,
during the locomotion in irregular terrains, where it may
be necessary to adopt a non-periodic locomotion gait, the
trajectory of each robot feet might have to be distinct of each
other.

To solve this problem several different strategies have
been proposed. The following sub-section describes several
foot trajectory planning schemes. Based on those studies, in
sub-section II.2, it is presented the adopted solution, while
detailing the entire robot locomotion planning process.

II.1. Transfer phase feet trajectory planning
When the robot design is a mimic of an animal, a frequently
adopted approach consists on copying the animal feet
trajectories. These animals are often filmed with special
techniques, while walking on a treadmill, and the resulting
film is analyzed to extract their feet trajectories in order to
implement similar ones in the walking machines. Examples
of this approach are the works of Bai et al. on the study of the
cockroach,24 Villanova et al. on the study of the hedgehog,25

and Laksanacharoen et al. on the study of the cricket.26

A slightly different approach has been adopted by Pfeiffer
et al..27 The study of the stick-insect is the base for
implementing the feet trajectories of the TUM walking
hexapod. However, on this case, the knee and the ankle
joint leg coordinates are a mathematical function of the value
of the hip joint coordinate. It was shown that the resulting

trajectories are very close to the ones observed in insects
during their locomotion.

Another strategy, often adopted, considers that the robot
feet trajectories, in the Cartesian space, are mathematical
functions based on the sine and cosine functions28–30 or
combinations of these.31 Different mathematical formulae,
such as circle arcs,32 ovals,33 ellipsis 30 and cycloidal
functions 34 have also been adopted. Alternatively, Koyachi
et al. adopt a spline to describe the feet trajectory during
the transfer phase.35 Jiménez and Santos established a
rectangular trajectory during the feet transfer phase, either in
the world or on the robot coordinate system, for the Rimho
quadruped robot.36 According to them, the rectangular
trajectory in the world coordinate system presents the
disadvantage of not being able to avoid collisions with the
terrain, since the feet do not present a vertical movement
during the lift-off and return to contact with the ground.

The trajectory of feet transfer phase can also be defined
based on the optimization of mathematical indices.37,38

Finally, Chevallereau et al. established ballistic dynamics
during the transfer phase (i.e. no torque applied to the
leg actuators during this period) to define the reference
trajectories of a quadruped robot.39

II.2. Robot trajectory planning
Motivated by the above described methods, on a previous
work we evaluated two alternative space-time foot
trajectories, namely a cycloidal function (1a) where the feet
lift-off and return to contact with the ground is vertical and a
sinusoidal function (1b) where the trajectory is horizontal
at those locations.23 For example, considering that the
transfer phase starts at t = 0 for leg i = 1 we have for
pFd(t) = [xiFd(t), yiFd(t)]T:

• during the transfer phase:

PFd(t) =
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[
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(1b)

• during the stance phase:

PFd(t) = [VF T 0]T (2)

It was demonstrated that the cycloid is superior to the
sinusoidal function, because it improves the hip and foot
trajectory tracking, while minimising the corresponding joint
torques.23 For different acceleration profiles of the foot
trajectory there were no significant changes of these results.

From the studies in biomechanics, Hodgins concludes that
the disturbances that occur at the instants of feet impact
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with the ground can be diminished by lowering the relative
speed of the feet and the ground at the contact time.40 This
technique, often called ground speed matching, appears to
justify the reason why the feet cycloidal trajectory is superior
to the sinusoidal one.

The robot body, and by consequence the legs hips,
is assumed to have a desired horizontal movement with
a constant forward speed VF . Therefore, for leg i the
Cartesian coordinates of the hip of the legs are given by
pHd(t) = [xiHd(t), yiHd(t)]T:

PHd(t) = [VF t HB]T (3)

The algorithm for the forward motion planning accepts
the desired cartesian trajectories of the leg feet pFd(t)
and hips pHd(t) as inputs and, by means of an inverse
kinematics algorithm �−1, generates the related joint
trajectories �d(t) = [θi1d(t), θi2d(t)]T, selecting the solution
corresponding to a forward knee:

Pd(t) = [xid (t) yid(t)]T = PHd(t) − PFd(t) (4a)

Pd(t) = �[�d(t)] ⇒ �d(t) = �−1[Pd(t)] (4b)

�̇d(t) = J−1[Ṗd(t)], J = ∂�

∂�
(4c)

To avoid the impact and friction effects, at the planning
phase we estimate null velocities of the feet in the instants of
landing and taking off, assuring also the velocity continuity.

III. ROBOT DYNAMICAL MODEL

III.1. Inverse dynamics computation
In order to derive the inverse dynamic equations of the multi-
legged locomotion robot we adopt the Lagrange method ((5a)
and (5b)):

L = K − U (5a)

� = d

dt

(
∂L

∂�̇

)
− ∂L

∂�
(5b)

This formalism requires the calculation of the potential
and kinetic energies, both for the body, the links and the
feet of all robot legs. Other alternative derivation methods,
for yielding the robot inverse dynamics, are described by
different authors.17,41–44

The model for the robot inverse dynamics is formulated
as:

� = H(�)�̈ + c(�, �̇) + g(�) − FRH − JT
F(�)FRF (6)

where � = [fixH, fiyH, τi1, τi2]T(i = 1, . . . , n) is the vector
of forces/torques, �= [xiH, yiH, θi1, θi2]T is the vector
of position coordinates, H(�) is the inertia matrix and
c(�, �̇) and g(�) are the vectors of centrifugal/Coriolis and
gravitational forces/torques, respectively. The n× m matrix
JT

F(�) is the transpose of the robot Jacobian matrix, FRH
is the m × 1 vector of the body inter-segment forces and

Fig. 2. Model of the leg joint: a) ideal actuator and transmission,
b) actuator with friction and transmission flexibility, and c) actuator
and transmission with friction, flexibility and backlash.

FRF is the m × 1 vector of the reaction forces that the ground
exerts on the robot feet. Consequently, the FRF forces are null
during the foot transfer phase. During the system simulation,
equation (6) is integrated numerically through the Runge-
Kutta two method.

III.2. Dynamical effects at the joints
Furthermore, we consider that the joint actuators are not
ideal, exhibiting a saturation given by:

τijm =
{

τijC, |τijm| ≤ τijMax

sgn(τijC)τijMax, |τijm| > τijMax
(7)

where, for leg i and joint j , τijC is the controller demanded
torque, τijMax is the maximum torque that the actuator can
supply and τijm is the motor effective torque.

The simulation also supports different dynamical effects
at the joints implemented through distinct model levels of
detail.

In a first level of modelling, we consider that the
joint actuators and transmissions are ideal (Figure 2a).
Afterwards, in a second level of detail, we consider that
the joint transmissions are non-ideal, exhibiting a compliant
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behaviour (Figure 2b) described by:

�m = Jm�̈m + Bm�̇m + KT(�m − �) (8a)

kT(�m − �) = H(�)�̈ + c(�, �̇)

+ g(�) − FRH − JT
F(�)FRF (8b)

where �m = [τi1m, τi2m]T(i = 1, . . . , n) is the vector of motor
torques, �m = [θi1m, θi2m]T is the vector of motor position
coordinates and Jm, Bm and KT are the n× m matrices of the
motor and transmissions inertia, viscous friction coefficients
and stiffness, respectively.

Finally, in a third level of model detail, we consider that
the joint transmissions also include backlash (Figure 2c),
which causes the occurrence of impacts at the gear. These
collisions obey the principle of conservation of Momentum,
and the Newton’s law, yielding:

�m = Jm�̈m + Bm�̇m (9a)

θ̇ij t = θ̇ijT (Jij − εijJijm) + θ̇ijmJijm(1 + εij )

Jij + Jijm

(9b)

θ̇ijm = θ̇ijT Jij (1 + εij ) + θ̇ijm(Jijm − εijJij )

Jij + Jijm

(9c)

kT(�T− �) = H(�)�̈ + c(�, �̇)

+ g(�) − FRH − JT
F(�)FRF (9d)

where, for leg i and joint j , 0 ≤ εij ≤ 1 is the restitution
coefficient, θijT and θijm are, respectively, the transmission
and motor position coordinates just before the impact and
θ ′
ijT and θ ′

ijm are the corresponding position coordinates just
after the impact, Jij and Jijm are the leg link and motor
inertia, respectively, and �T = [θi1T , θi2T ]T is the vector of
transmission position coordinates.

III.3. Robot body model
Figure 1 presents the dynamic model for the hexapod body
and foot-ground interaction.

This was considered a robot body compliance because
walking animals have a spine that allows supporting
the locomotion with improved stability.45 This model is
inspired on several studies that point out this structure. For
example, the hedgehog presents muscles in the omoplata
that apparently actuate as spring dashpot systems. This
biomechanical structure absorbs part of the energy generated
during the feet contact with the ground and returns that energy
a little before the feet lift-off the ground.25

In fact, several authors have also followed this line of
thought. Some walking robots adopt a structure similar to
a spine having, however, a smaller number of dof than the
animals in which they are inspired.46 Berkemeier proposed a
quadruped model having a body-leg connection implemented
through a linear spring-dashpot system.47 This model seems
to agree with biomechanics, since it is recognized that
animals use the compliance of muscles and tendons in order
to increase their locomotion efficiency.48 Therefore, the joint
actuators are placed in series with the spring-dashpot system,
just like in the case of animals where the muscles are in series

Table I. System parameters.

Robot model parameters

SP 1 m Lij 0.5 m
Oi 0 m Mb 88.0 kg
Mij 1 kg Mif 0.1 kg
KxH 105 Nm−1 KyH 104 Nm−1

BxH 103 Nsm−1 ByH 102 Nsm−1

Ji1m 0.00375 kgm2 Ji2m 0.000625 kgm2

Bijm 10 Nm rad−1s KijT 100000 Nm rad−1

BijT 10 Nm rad−1s hij 0.001 rad
εij 0.8 Ji1T 0.001875 kgm2

Ji2T 0.0003125 kgm2

Locomotion parameters Ground parameters

β 50% KxF 1302152.0 Nm−1

LS 1 m KyF 1705199.0 Nm−1

HB 0.9 m B ′
xF 2364932.0 Nsm−1

FC 0.1 m B ′
yF 2706233.0 Nsm−1

VF 1 ms−1 vy 0.9

with the tendons. The quadruped robot of Zhifeng et al. uses
a passive spring actuated degree of freedom at the hip joint
in order to accommodate to ground irregularities.49

In the present study, the robot body is divided in n

identical segments (each with mass Mbn
−1) and a linear

spring-dashpot system is adopted to implement the intra-
body compliance:

fixH =
u∑

i ′=1

[−KxH (xiH − xi ′H ) − BxH (ẋiH − ẋi ′H )] (10a)

fiyH =
u∑

i ′=1

[−KyH (yiH − yi ′H ) − ByH (ẏiH − ẏi ′H )] (10b)

where (xi ′H , yi ′H ) are the hip coordinates and u is the total
number of segments adjacent to leg i, respectively.

Concerning the definition of the numerical values for the
parameters of (10a) and (10b) different methods have been
proposed. Bhat presents a model of a human being where
the distinct body segments are joined through linear spring-
dashpot systems.50 The set of parameter values for these
systems are identified from tests on human beings. On the
other hand, Villanova et al. propose that the parameters
of the passive joints of a hedgehog model, implemented
through linear spring-dashpot systems, should be such that
the simulated trajectories are similar to the real ones.25 In this
study, the parameters BηH and KηH (η = {x, y}) are defined
so that the body behaviour is similar to the one expected to
occur on a live animal (Table I).

IV. FOOT-GROUND INTERACTION MODEL
The contact of the robot feet with the ground can be analyzed
through different viewpoints leading to distinct models. One
method is to use the exact force-deflection relationships.
Another method, and under specific restrictions, is to use
approximate models of the ground deformation based on the
studies of soil mechanics.
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One example of the first approach was used by Manko,
which models the foot-ground interactions through force-
deflection relationships, for different loading conditions on
flat and sloped surfaces.1 Manko uses a bilinear equation for
the vertical foot-ground interactions while the lateral forces
are modelled with an expression describing an exponential
transition to Coulomb’s equation. Another example was
given by Bekker that relates the vertical sinkage and the local
pressure normal to the ground surface through an exponential
function.51 Bekker relates the horizontal deflection with the
local shear stress at the ground surface using a ratio of
exponential functions.

The second approach models the foot-ground interaction
through a linear system with damping BηF and stiffness
KηF (η ={x, y}) in the {horizontal, vertical} directions,
respectively, according to equation:52

fiηF = −KηF (ηiF − ηiF0) − BηF (η̇iF − η̇iF0) (11)

where ηiF0 are the coordinates of foot i touchdown.
This point of view was used by several authors. For

example, Lee et al. study a quadruped using a linear spring-
dashpot system to simulate the ground behaviour.53 They
adopt numerical values for the parameters so that the forces
at the robot feet are identical to the pseudo-inverse solution
for the same model considering closed kinematic chains.
Taga has a similar model for the ground but adopts identical
values for the parameters independently of the force direction
(KηF = 30000.0 Nm−1 and BηF = 1000.0 Nsm−1).54

Another approach, used in the present article, estimates
the values for the parameters based on the studies
of soil mechanics. The parameters are given by
KxF = 2(1 + µ)Gβx

√
BL and KyF = [G/(1 − µ)]βy

√
BL,

where µ if the Poisson’s ratio (that varies from 0.35, for
soils of low saturation, up to 0.5, for fully saturated soils52),
B is the width of the feet touching the ground and L the
corresponding length. The values of βx and βy are extracted
from pre-calculated tables as functions of L/B.52 Finally, G

is the shear modulus and is calculated using the expression
G =E/[2(1 + µ)] where E if the Young’s modulus of
elasticity of the soil type. The Young’s modulus of elasticity
of some common soil types are indicated in Table II.55

Concerning the values of damping (BxF and ByF ) these
can be calculated considering that the above expressions
apply to a mass-spring-dashpot system whose damping
ratios are extracted from pre-calculated tables as functions
of b = M/(ρR3) where M if the equivalent mass of the
system under consideration (in our case Mbn

−1), ρ is the

soil mass density and R is the radius of the feet-ground
contact area.52,55 For the typical dimensions of the robot
under consideration, the ground damping ratio both in the
horizontal and vertical directions is ζ < 0.15.

Based on the above equations, Table II presents the values
for the ground model parameters of typical soils commonly
found in nature and in the living environments.

While computationally simple, the linear foot-ground
interaction model presents several weaknesses.56 The first
inconsistency is that the contact force is discontinuous at the
moment of impact. The second problem is that the model
allows not only forces due to compression at the contact
point but also forces that tend to hold the objects together.
A final weakness is the dependence of the coefficient of
restitution on the mass of the impacting bodies and the lack
of dependence on the impact velocity. A solution to these
shortcomings, proposed by Hunt and Crossley, is to replace
the linear spring/damper parallel combination through a non-
linear one.57

While Hunt and Crossley make use of non-linear stiffness
and friction elements,57 we adopt a mixed strategy, that is,
we model the contact of the ith robot feet with the ground
through a linear stiffness KηF and a non-linear damping
B ′

ηF (η ={x, y}) in the {horizontal, vertical} directions,
respectively, yielding:

fiηF = −KηF (ηiF − ηiF0)

− B ′
ηF [−(yiF − yiF0)]νη (η̇iF − η̇iF0),

νx = 1.0, νy = 0.9 (12)

where xiF0 and yiF0 are the coordinates of foot i

touchdown and vη is a parameter dependent on the ground
characteristics.57

In order to convert the parameters of this non-linear foot-
ground interaction model (B ′

xF , B ′
yF ) to the parameters of

the linear model (BxF , ByF ), described by equation (11), we
use the following relations:

−B ′
ηF (−�iyFMax)

νη = −BηF (13)

where �iyFMax if the maximum depth that the robot feet
penetrates the ground.

V. MODEL TEST
In this section we present a set of experiments to evaluate
the system modelling for a hexapod locomotion adopting

Table II. Young’s moduli and ground model parameters for different soil types.

Soil Type Young’s Modulus (kNm−2) KxF (Nm−1) BxF (Nsm−1) KyF (Nm−1) ByF (Nsm−1)

Concrete 30000000 2604304130 153097 3410398265 175196
Wood 13000000 1128531790 100781 1477839248 115328
Gravel 100000–200000 17362028 12500 22735988 14305
Sand 10000–80000 6944811 7906 9094395 9047
Compact Clay 3000–15000 1302152 3423 1705199 3917
Loose Clay 500–3000 260430 1531 341040 1752
Peat 100–500 43405 625 56840 715
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Fig. 3. Robot control architecture.

the periodic wave gait and different dynamic phenomena at
the leg joints. For simulation purposes we consider the loco-
motion, robot and ground parameters presented in Table I.

The control algorithm adopted for the robot leg joints is
introduced in the next sub-section. This controller is the basis
for the stable robot locomotion. In sub-section V.2 the results
of several simulations are presented in order to demonstrate
the correct performance of the robot model implemented both
in terms of trajectory planning, dynamics and control.

V.1. Control architecture
The general control architecture of the hexapod robot is
presented in Figure 3. The trajectory planning is held at the
cartesian space but the control is performed in the joint space,
which requires the integration of the inverse kinematic model
in the forward path. The base algorithm considers only a
position/velocity feedback and, in that case, the series of
Gc1(s) and Gc2 can be substituted by a single block. Never-
theless, the base architecture is improved with the introduc-
tion of a second internal feedback loop with information of
the foot-ground interaction force. In the case of force feed-
back, Gc1(s) and Gc2 form a cascade structure in the forward
control path. The superior performance of introducing force
feedback was highlighted for the case of having non-ideal
actuators with saturation or variable ground characteristics.23

Based on these results, in this study we adopt a FO
controller for Gc1(s) and a simple P controller for Gc2. The
FO algorithm consists on:

GC1j (s) = Kpj + Kαjs
αj , αj ∈ R, j = 1, 2 (14)

where Kpj and Kαj are the proportional and derivative gains,
respectively, and αj is the fractional order.

In what concerns equation (14) it should be noted that the
mathematical definition of a derivative of fractional order
has been the subject of several different approaches.58 For
example, (15a) and (15b), represent the Laplace (for zero
initial conditions) and the Grünwald-Letnikov definitions of
the fractional derivative of order α of the signal x(t):

Dα[x(t)] = L−1{sαX(s)} (15a)

Dα[x(t)] = lim
h→0

[
1

hα

∞∑
k=1

(−1)k�(α + 1)

�(k + 1)�(α − k + 1)
x(t − kh)

]

(15b)

where � is the gamma function and h is the time increment.

Table III. Padé approximation coefficients.

aij0 1.000000000 bij0 1.000000000
aij1 −2.250000000 bij1 −1.750000000
aij2 1.687500000 bij2 0.937500000
aij3 −0.468750000 bij3 −0.156250000
aij4 0.035156250 bij4 0.003906250

Table IV. Controller parameters.

Joint j = 1 Joint j = 2

Kp1 1500 Kp2 4000
Kα1 300 Kα2 10
α1 0.5 α2 0.5

In this paper, for implementing the FO algorithm (14) it is
adopted a discrete-time 4th-order Padé approximation (aijk ,
bijk ∈ 
, j = 1, 2) yielding an equation in the z-domain of
the type:

GC1j (z) ≈ Kj

k=4∑
k=0

aijkz
−k

/
k=4∑
k=0

bijkz
−k (16)

where Kj is the controller gain and the coefficients of the
Padé approximation are presented in Table III.

The discrete-time control algorithm is evaluated with a
sampling frequency of fsc = 2.0 kHz while the robot and
environment are simulated with a sampling frequency of
fsr = 20.0 kHz.

To tune the controller parameters we adopt a systematic
method, testing and evaluating several possible combinations
of controller parameters. Moreover, it is assumed high
performance joint actuators with a maximum actuator torque
in (7) of τijMax = 400 Nm. The adopted controller parameters
are presented in Table IV.

V.2. Simulation results
With the system and controller parameters established
previously, in this section we analyse the simulation model.

For example, Figures 4 and 5 present the charts of the
planned foot position, velocity and acceleration in the opera-
tional space for the WG, with β = 50%, and the EPFCG, with
β = 35%, respectively. It is possible to observe that in the
second situation the robot can achieve the same foot traject-
ory with lower values of velocity and acceleration, because
the transference time (tT ) is superior. The corresponding
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Fig. 4. Planned cartesian coordinates: position y1F (t), velocity ẏ1F (t) and acceleration ÿ1F (t), for the WG and β = 50%.

Fig. 5. Planned Cartesian coordinates: position y1F (t), velocity ẏ1F (t) and acceleration ÿ1F (t), for the EPFCG and β = 35%.

Fig. 6. Planned joint coordinates: position θ11(t), velocity θ̇11(t) and acceleration θ̈11(t), for the WG and β = 50%.

Fig. 7. Leg 1 hip joint torque terms: inertial τ11I (t), centrifugal/Coriolis τ11CC(t) and gravitational τ11G(t), for the WG and β = 50%.

coordinates in the joint space, for the case of the WG, are
presented in Figure 6.

Once established the trajectory planning and the
kinematics the simulation requires the dynamics and the
control algorithms. We consider, for example, that the robot
leg joints are controlled through the FO algorithm with the
parameters presented in Table IV. The resulting robot model
joint torques are analysed for the above two locomotion
examples. Figures 7 and 8 depict the corresponding inertial,
centrifugal/Coriolis and gravitational torque terms at the
hip joint of leg 1. Comparing the robot locomotion on
both situations, it is possible to observe that the inertial
component of the torque is higher for the case of the WG
with β = 50%. This reflects the fact that the feet trajec-
tory must be accomplished in a shorter time interval, as

previously mentioned, leading to higher accelerations and,
therefore, to a larger inertial torque component. Moreover,
in this case we have higher velocities leading also to higher
centrifugal/Coriolis torque components as can be observed
by comparing Figures 7 and 8. Finally, and since the robot
planned feet trajectory is equal on both cases, the gravita-
tional component of the joint torque is similar for the two
situations under evaluation.

It is worth notice the large amplitude spikes observed in the
charts of the inertial component of the torque, and of smaller
amplitude in the centrifugal/Coriolis torque component,
around t = 0.9 s. These are due to the large forces that
originate during the feet impact with the ground, giving rise
to torques that propagate through the leg mechanical structure
up to the joints.
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Fig. 8. Leg 1 hip joint torque terms: inertial τ11I (t), centrifugal/Coriolis τ11CC(t) and gravitational τ11G(t), for the EPFCG and β = 35%.

Fig. 9. Ground reaction force f1xF (t) when adopting the cycloidal (left) and sinusoidal (right) function for the feet reference trajectory and
a robot with ideal joint transmissions.

Fig. 10. Foot coordinate y1F (t) and ground reaction force f1yF (t) when adopting the linear foot-ground interaction model and a robot with
ideal joint transmission.

The next step is the comparison of the robot locomotion
while adopting the cycloidal (1a) and the sinusoidal function
(1b) for the feet transfer phase trajectory. For this purpose, an
analysis of the ground reaction forces, at the instants of feet
touch-down and lift-off, is presented. We start by simulating
the robot walking with the WG and β = 50%, while adopting
a cycloidal feet trajectory and, in a second experiment we
consider the case of a sinusoidal feet trajectory.

Figure 9 presents the charts of the ground reaction force
f1xF for both feet trajectories. It is noticeable that the
sinusoidal feet trajectories impose higher values for the feet
reaction forces, particularly at the instants of feet landing
and take-off, in agreement with the conclusions presented in
section II.2.

We can also analyse the foot-ground interaction and
compare the linear versus the non-linear spring-dashpot

models. Figures 10 and 11 present charts of the foot
coordinate y1F (t) and the ground reaction force f1yF (t)
for both cases. We conclude that y1F (t) is similar for the
two models but the charts of f1yF (t) present significant
differences. We observe that in case of the linear model
f1yF (t) presents negative values for this force, meaning
that the ground is pulling the feet which, in general, is not
reasonable. Although not visible on these plots, for the linear
foot-ground interaction model the force f1yF (t) presents an
instantaneous discontinuity to the maximum value, when the
foot contacts the ground. Both these situations disappear if
we adopt the non-linear model, as previously referred in
section IV.

The above experiments where performed assuming ideal
robot joint transmissions and high performance joint
actuators with a maximum actuator torque in (7) of
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Fig. 11. Foot coordinate y1F (t) and ground reaction force f1yF (t) when adopting the non-linear foot-ground interaction model and a robot
with ideal joint transmission.

Fig. 12. Leg 1 hip joint torque terms: inertial τ11I (t), centrifugal/Coriolis τ11CC(t) and gravitational τ11G(t), for the WG and β = 50%.
Robot with joint transmissions having friction and flexibility.

Fig. 13. Resulting joint coordinates: position θ11(t), velocity θ̇11(t) and acceleration θ̈11(t), for the WG and β = 50%. Robot with joint
transmissions having friction and flexibility.

τijMax = 400 Nm. In the next experiments we verify the
effect of joint transmissions having friction, flexibility
and backlash, while maintaining the actuators saturation
characteristics and a robot walking with the WG and
β = 50%.

Figure 12 presents the charts of the inertial, centrifugal/
Coriolis and gravitational torque terms applied at the hip joint
of leg 1, for the case of joint transmissions having friction
and flexibility. Comparing the charts of Figures 12 and 13
with those of Figures 7 and 6, respectively, we conclude that
they are almost similar. As previously observed the charts of
the inertial and centrifugal/Coriolis terms of the torques and
of the real velocity and acceleration, present large amplitude
spikes at the instants of feet landing.

The corresponding foot trajectory in the cartesian space is
presented in Figure 14. It is clearly seen that this trajectory is
quite smooth. It is also possible to observe a small rebounce
on the y1F (t) foot trajectory that occurs after the feet touch
the ground, at t ≈ 0.95 s.

The last experiment considers that the robot joint
transmissions have not only friction and flexibility but also
backlash. The effect of joint transmissions having backlash
is clearly seen in some of the charts of Figures 15 and
16, namely in the inertial torque terms and in the joint
acceleration, respectively. These charts present a visible
chattering, due to the multiple impacts that occur at the gear.
The corresponding cartesian foot trajectory is presented in
Figure 17. Comparing the charts of Figure 17 and Figure 14,
it is clear a degradation of the foot trajectory following and
the occurrence of several rebounces.

From the result analysis of the previous experiments,
we conclude that the robot simulation model, described in
this paper, implements correctly the planning, kinematic,
dynamic and control schemes, for the locomotion of the
hexapod, allowing the simulation of different walking
gaits. Moreover, the behaviour observed while the feet
contact the ground seems to represent faithfully the real
system.
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Fig. 14. Cartesian foot position x1F (t) and y1F (t), for the WG and β = 50%. Robot with joint transmissions having friction and flexibility.

Fig. 15. Leg 1 hip joint torque terms: inertial τ11I (t), centrifugal/Coriolis τ11CC(t) and gravitational τ11G(t), for the WG and β = 50%.
Robot with joint transmissions having friction, flexibility and backlash.

Fig. 16. Resulting joint coordinates: position θ11(t), velocity θ̇11(t) and acceleration θ̈11(t), for the WG and β = 50%. Robot with joint
transmissions having friction, flexibility and backlash.

Fig. 17. Cartesian foot position x1F (t) and y1F (t), for the WG and β = 50%. Robot with joint transmissions having friction, flexibility and
backlash.
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VI. CONCLUSIONS
In this paper we have presented a simulation model for multi-
legged locomotion systems with segmented body. This tool
is the basis for the study of the best system configuration
and the type of movements that lead to a better mechani-
cal implementation and for joint leg control algorithm
testing.

The walking robot model includes the trajectory planning,
for several different periodic walking gaits, the kinematics
and the dynamics. Furthermore, the robot foot-ground
interactions are also considered.

By implementing joint leg actuators and transmission
models that incorporate dynamical phenomena, such as
a non-ideal saturation, viscous friction, backlash and
flexibility, we are able to estimate how the robot controllers
responds to a degradation of the actuators characteristics. In
this paper, for the simulation evaluation it was adopted a FO
joint controller algorithm.

The results are compatible with the engineering practice
and experimental knowledge demonstrating the correctness
of the algorithms and parameters adopted in the modelling
and simulation.
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Planaire Sans Pieds,” Proc. Conférence Int.e Francophone
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