
Crystallography of craniid brachiopods by
electron backscatter diffraction (EBSD)
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ABSTRACT: Electron backscatter diffraction (EBSD) is used to determine the detailed crystallo-
graphic orientation of calcite crystals of craniid brachiopods in the context of shell ultrastructure.
Sections of shells of two Recent species, Novocrania anomala and Novocrania huttoni, are analysed to
provide 3D crystallographic patterns at high spatial resolution. The c-axis of semi-nacre calcite
crystals is oriented parallel to the laminae that define the ultrastructure of the secondary layer. This
orientation differs from that of rhynchonelliform calcitic brachiopods where the c-axis is perpen-
dicular to the length of morphological fibres and to the shell exterior.
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Williams & Wright (1970) conducted the most comprehensive
study in understanding the shell ultrastructure of craniid
brachiopods. Since the publication of this pioneering work, a
few studies have dealt with this topic in the analysis of Recent
species (e.g., Bassett 2000; Logan & Long 2001; Robinson &
Lee 2007) and of fossil ones (e.g., Smirnova 1997; Halamski
2004). However, most of the research has been directed
towards the knowledge of the chemico-structure of shells (e.g.
Brown 1998; Williams et al. 1999; Cusack & Williams 2001).
These studies have revealed the influence of organic matter in
the process of biomineralisation and the control exerted by
protein sheets in the arrangement of the shell fabric (Williams
& Wright 1970; Williams et al. 1999; Cusack & Williams 2001).
Yet, limited knowledge is available about how the biomineral
crystallography can be related to the shell ultrastructure in
craniid brachiopods. The main reason may be related to
problems in acquiring in situ crystallographic information at
high spatial resolution. X-ray diffraction, transmission electron
microscopy (TEM) and the measurement of interfacial angles
have been the principal methods for such purpose (e.g., Taylor
& Weedon 2000; Cusack & Williams 2001; Hall et al. 2002),
but mostly provide partial and indirect information. Electron
backscatter diffraction (EBSD) is currently available to over-
come these problems and its potential as a powerful analytical
tool has been demonstrated for brachiopod shells (e.g.,
Schmahl et al. 2004; Cusack et al. 2008).

The aim of this present paper is to provide detailed crystal-
lographic information of craniid brachiopod shells using
EBSD. Data from sections of shells of two Recent species,
Novocrania anomala and N. huttoni, are presented in this study.
This information is used to correlate crystallographic orienta-
tion of calcite crystals and shell ultrastructure to obtain a
better understanding of crystal nucleation and growth.

1. Brachiopod ultrastructure

Brachiopods are marine bivalved organisms that emerged in
the Cambrian and are cosmopolitan in distribution and habitat
in marine environments (Williams et al. 1997). They have been
divided into three major subphyla based on shell mineralogy
and ultrastructure (Williams et al. 1996). Two of these main

groups, Craniiformea and Rhynchonelliformea, comprise taxa
with calcite shells, but different ultrastructures that may reflect
dissimilar specific biomineralisation processes. In Craniifor-
mea, craniid brachiopods consist of shells with an outer
organic periostracum, a primary layer with acicular calcite and
an innermost non-fibrous secondary layer of calcite semi-nacre
(Williams & Wright 1970). The secondary layer is composed of
laminae bearing rhombohedral tablets that grow spirally from
single or double screw dislocations (Williams & Wright 1970)
(Fig. 1). The shell fabric of the secondary layer, which consti-
tutes most of the shell, is regulated by the emplacement of
proteins (Williams & Wright 1970; Cusack & Williams 2001).
Besides the structure, craniid brachiopods grow their dorsal
valves in a characteristic way from the location of the prote-
gulum, which is the first-formed shell of periostracum and
mineralised lining secreted by the mantle (Williams et al. 1997).
Craniids grow by holoperipheral increase, all around the
margins of the valve, from the centre of growth, coincident
with the location of the protegulum (Fig. 1).

2. Material and methods

2.1. Samples
Specimens of Novocrania anomala (Müller, 1776) and N.
huttoni (Thomson, 1916) were collected from the Fifth of Lorn
(Oban), NW Scotland (56(24#N/5(38.4#W) and off the coast
of Three Kings Islands in the South Pacific/Tasman Sea
(34(13#S/172(11.5#W), respectively. Only dorsal valves of all
taxa are used herein because ventral valves are more weakly
developed and differentially mineralised (e.g. Williams &
Wright 1970; Schumann 1970; Cusack & Williams 2001). Also,
ventral valves of most craniid brachiopods only display pri-
mary layer fabric within the shell (Williams & Wright 1970;
Schumann 1970).

2.2. Electron Backscatter Diffraction (EBSD)
EBSD is a technique conducted in a scanning electron micro-
scope (SEM) that is used to determine the preferred crystallo-
graphic orientation of any crystalline or polycrystalline
material. Its application has been traditionally focused on
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highly conductive materials (e.g. metals) in the fields of ma-
terials science and engineering. Carbonates are natural insula-
tors and, therefore, a priori non suitable for the application of
this technique, but its expedience has been already shown for
biogenic calcite in molluscs (e.g., Checa et al. 2006; Dalbeck
et al. 2006), brachiopods (e.g., Schmahl et al. 2004; Cusack
et al. 2008) and avian eggshells (Dalbeck & Cusack 2006) after
a specific sample preparation. Three specimens of each bra-
chiopod species were analysed using EBSD. Shell sections
from the posterior to the anterior margin along the shell length
for each specimen (Fig. 1) and two sections polished down
from outer shell surface at the location of the protegulum of N.
anomala were used in this study. These sections were mounted
in araldite resin blocks, polished and then coated with a thin
layer of carbon (Cusack et al. 2008). Shell sections were
surrounded by silver paint to avoid electron charging and then
analysed in an SEM in high vacuum mode with an aperture
and spot size of 4. The stage was tilted 70( and the electron
beam diffracted by crystal planes in the shell sample. The
diffracted beam interacts with a phosphor screen producing a
series of Kikuchi bands that enable crystal identification and
orientation to be determined. Data were analysed using the
orientation imaging microscopy (OIM) software from EDAX
and all data points below a confidence index [CI] of 0·1 were
removed (Dalbeck et al. 2006).

3. Results

The brachiopod species Novocrania anomala is used here to
analyse general crystallographic patterns while Novocrania
huttoni is studied in greater detail to determine the specific
relationship between the crystallographic orientation of calcite
crystals and the laminae bearing tablets. In N. anomala,
sections along the main direction of growth (posterior-
anterior) (Fig. 1) have been indexed with EBSD to show the

orientation of crystals at the centre of growth and posterior
and anterior margins (Fig. 2), focusing on the secondary layer,
which accounts for the majority of the shell thickness. At the
location of the protegulal node, crystals of calcite nucleate with
the c-axis <0001> nearly 90( offset from the perpendicular
direction to the shell surface (normal to the plane of view) (Fig.
2b). However, calcite crystals rotate along the shell length and
their overall orientation is with the c-axis parallel to the shell
laminae at the posterior and anterior margins (Fig. 2a–c). Two
sections of N. anomala were also obtained by polishing parallel
to the shell surface at the location of the protegulal node in
order to determine the crystallographic orientation of calcite
crystals perpendicular to the posterior–anterior sections (Fig.
3). EBSD crystallographic maps of these parallel sections show
a crystallographic dominance of the {0101} and {1100} planes
in contrast to the dominance of the {0001} plane in the
longitudinal section (Fig. 2b). The inverse pole figure of the
{1014} plane, the cleavage plane of calcite, also shows no
preferential crystallographic orientation to prevent fracture by
cleavage (Fig. 3).

In N. huttoni, the c-axis of calcite crystals is oriented parallel
to the laminae that define the ultrastructure of the secondary
layer (Fig. 4). As for N. anomala, this orientation results from
the growth of individual calcite crystals by screw dislocation.
The spread of poles (Fig. 4d) is due to the c-axis following the
curvature of the laminae (Fig. 4c). There is also continuity in
the crystallographic orientation of individual tablets across
laminae (Figs. 4b, c) similar to that observed in aragonite nacre
(Feng et al. 2000; Hou & Feng 2003; Dalbeck et al. 2006).

4. Conclusions

In conclusion, the detailed crystallography of craniid brachio-
pod shells using electron backscatter diffraction (EBSD) has
been determined in 3D at high spatial resolution. Here, we

Figure 1 Diagrammatic illustration of Novocrania anomala, showing growth directions (arrows) from the
location of the protegulum (dark circle) and section along the dorsal valve length from posterior to anterior
regions (A–A#). Scanning electron micrographs (SEM) of N. anomala: (a) transition between the primary (Pl) and
secondary (Sl) layers. Scale bar=100 �m; (b) detail of the ultrastructure of the secondary layer, showing calcite
tablets with screw-dislocation. Scale bar=5 �m.
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show that electron backscatter diffraction (EBSD) is a power-
ful analytical tool to obtain crystallographic information in the
context of shell ultrastructure without having to isolate com-
ponents. The c-axis of calcite crystals in N. anomala and N.
huttoni is oriented parallel to the laminae that define the
ultrastructure of the secondary layer. This orientation differs
from that of other calcitic brachiopod shells, such as Mergelia
truncata and Terebratulina retusa, which belong to the subphy-
lum Rhynchonelliformea. In the anterior section of adult

specimens of these brachiopods, the c-axis of calcite crystals is
perpendicular to the length of each morphological fibre
(Schmahl et al. 2004; Cusack et al. 2008). It has been suggested
that this crystallographic orientation prevents fracture by
cleavage along the {1014} plane of calcite crystals (Schmahl
et al. 2004). In contrast, craniid brachiopods do not show a
preferential orientation within the {1014} ]plane (Fig. 4)
suggesting that fracture by cleavage would be confined to
localised crystals.

Figure 4 Detailed crystallography by electron backscatter diffraction (EBSD) of the secondary layer in
Novocrania huttoni: (a) index intensity map, showing detail of the laminae; (b) combination of the diffraction
intensity map and the crystallographic orientation maps; (c) crystallographic orientation map, showing the
change in orientation of calcite crystals (wire frames) with the laminae; (d) pole figure [in normal direction view
(ND) to the sample surface in a three axes reference system with indication of the reference (RD) and transverse
(TD) directions] indicating crystallographic orientation of calcite crystals in reference to the {0001} plane; (e)
crystallographic key indicating colour coding of crystallographic planes. Scale bars=30 �m.
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