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ABSTRACT

Variable annuities are products offered by pension funds and life offices
that provide periodic future payments to the investor and often have ancil-
lary benefits that guarantee survival benefits or sums insured on death. This
paper extends the benchmark approach to value and hedge long-dated vari-
able annuities using a combination of cash, bonds and equities under a variety
of market models, allowing for dependence between financial and insurance
markets. Under a simplified case of independence, the results show that when
the discounted index is modelled as a time-transformed squared Bessel process,
less-expensive valuation and reserving is achieved regardless of the short rate
model or the mortality model.
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1. INTRODUCTION

Wealth management companies, pension funds and insurers offer long-term
savings products such as variable annuities (VAs) to individuals planning for
retirement. Such institutions are interested in managing their risk exposure
either through reinsurance, derivative markets or in-house hedging or reserving
programmes. Most of the principles for valuation and computing risk sen-
sitivities are closely related to the classical risk-neutral valuation approach.
In the low interest rate environment that has been prevailing in recent years,
VA products appear to be rather expensive and questions arise whether some
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insurers can in future match assets with liabilities when valuing and managing
VAs in a traditional manner.

The benchmark approach (BA) of Platen and Heath (2006) allows less-
expensive valuation and hedging of long-dated products without requiring the
existence of an equivalent risk-neutral probability measure. Within the current
paper, we demonstrate how to apply this approach to less-expensive valuation
and hedging VAs when compared to the classical approach.

The literature on valuation and hedging VAs is vast and includes, for exam-
ple, Milevsky and Posner (2001), Boyle and Hardy (2003), Ulm (2008), Bauer
et al. (2008), Marquardt et al. (2008), van Haastrecht et al. (2009) and Bacinello
et al. (2011). Typically, a VA issued by an insurance company has various
product features such as death benefit protection options, living benefit pro-
tection options and lifetime income options. In this article, we demonstrate
the application of the BA with VAs having living benefit and death benefit
protections, that is, the benefit is guaranteed if the investor survives and dies,
respectively. This guarantee is akin to a long-dated equity put option with a
survival or death condition, and therefore, we must employ models for the
mortality, equity index and interest rate associated with the VA.

Some work that has been published on valuation and hedging of long-dated
equity derivatives includes, for example, Hulley and Platen (2008) who con-
sider equity index options on the S&P500 total return index for the case of
deterministic interest rates. Hedging of long-dated equity index options, when
interest rates are stochastic, has been studied in Fergusson and Platen (2015a)
and, more recently, in Zhu et al. (2018). The focus of the article of Zhu et al.
(2018) is on interest rate risk inherent in crediting rates for cash balance pension
plans, employing the single-factor and two-factor Hull–White models. The sig-
nificant contribution of this paper is the application of the BA to valuing VAs
and the incorporation of a dependence structure for the stock market, interest
rates and mortality rates. While closed-form solutions are difficult to obtain in
general for dependent components, our model of dependence is tractable, per-
mitting explicit closed-form formulae for integral transforms of values of VAs
and enabling backtests of hedging and reserving strategies to be performed.

In this article, we demonstrate less-expensive valuation and hedging of
long-dated VAs under various market models specified by stochastic differ-
ential equations (SDEs) of the short rate, the discounted stock index and the
mortality rate. In Section 2, the VA product having death, surrender and
accumulation benefits is described. In Section 3, we give general SDEs of the
short rate, the discounted stock index and the force of mortality, allowing
for dependence. The parameter values of each model are fitted. In Section
4.1, the surrender benefit is valued, this being a version of the basic mortality
security, the survivor zero-coupon bond or pure endowment. In Section 4.2,
valuation formulae for the death benefits and accumulation benefit, each hav-
ing embedded guarantees, are supplied. These two sections provide the basis
for the valuation formulae for VAs, having guaranteed accumulation benefits
and guaranteed death benefits, in Section 4.3. In Section 5, the reserving and
hedging method is described, and in the particular instances where each of the
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short rate, discounted growth optimal portfolio (GOP) and mortality rate is
driven by independent Wiener processes, backtests of reserving for a VA are
supplied. Also, in respect of a put option, whose strike price is an exponential
function of timemultiplied by the spot price, which is the type of option embed-
ded in the VA, the 99th percentile costs of hedging are graphically shown over
varying times to expiry and over each of the considered models. In Section 6,
we conclude. For the interested reader, Appendix A gives some background to
the valuation of contingent claims under the BA. Appendix B provides graphs
of simulations under the fitted models versus actual behaviours of correspond-
ing variables. Appendix C provides graphs of simulated reserves and policy
values when the assumptions implicit in the VA product are varied.

2. DESCRIPTION OF THE VA PRODUCT

We consider a VA product, having as policy riders a guaranteed death benefit,
a surrender value and a guaranteed accumulation benefit that is also capped.
We let t0 denote the time at which the policy is purchased for one dollar and let
t1 < t2 < . . . < tn denote the n anniversary times at which either death, surrender
or accumulation benefits are paid. A unit premium paid for the policy at time t0
is invested immediately in an investment account, which is used to pay benefits,
and from which a management fee is continuously deducted at the rate ξ per
annum. We assume ξ = 0.03 in this paper, which is consistent with the level of
management fees quoted in Haithcock (2013), for example. Simulations of the
VA reserves and policy values over the life of the policy portfolio for alternative
values of ξ are given in Appendix C.

2.1. Death benefit

In respect of the death benefit, the guarantee at the end of year of death is a roll-
up of the initial premium, continuously compounded at a rate g per annum,
which we set to 0.03. This choice of g is selected as being commensurate with
the average historical US cash deposit rate. Simulations of the VA reserves and
policy values over the life of the policy portfolio for alternative values of g are
given in Appendix C. Therefore, for a policyholder aged x+ t at time t and
who dies at time τx+t(t)> t, where τx+t(t) ∈ [ti−1, ti), the payoff on death will be

H (D)
ti = Fti +

(
Kti − Fti

)+
, (2.1)

where Kti = exp
{
g(ti − t0)

}
denotes the strike price, or guaranteed death bene-

fit, of the VA at time ti, and the net fund value Fti is

Fti =
Sti
St0

exp
{− ξ (ti − t0)

}
, (2.2)

and St denotes the value at time t of the equity market index, inclusive of
dividends, as described in Section 3.
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2.2. Surrender value

To accommodate lapses in the policy, we specify a surrender value equal to
a roll-up of the initial premium, continuously compounded at a rate g/2 per
annum. Other than being less than the roll-up rate g for the guarantee, this
choice of g/2 is arbitrary. Simulations of the VA reserves and policy values
over the life of the policy portfolio for alternative values of multiplicative factor
1/2 applied to the roll-up rate in respect of the surrender value are given in
Appendix C.

Therefore, for a policyholder aged x+ t at time t and who lapses at time
τ
(L)
x+t(t)> t, where τ

(L)
x+t(t) ∈ [ti−1, ti), the payoff of the VA will be

H (L)
ti = √

Kti . (2.3)

The lapse rate is defined as the proportion of policies which are surrendered in
a given year. We assume, for simplicity, an annual lapse rate of ρ = 0.03 among
those lives who do not die during the year. In Marquardt et al. (2008), a more
realistic lapse rate schedule is assumed. In practice, insurers model the lapse
behaviour of policyholders with reference to the moneyness of the embedded
guarantees (see Escobar et al., 2016 and Hartman, 2018). While there is scope
to enhance the lapse rate assumption in this paper, we maintain our constant
lapse rate assumption with the aim of illustrating the advantages of the BA in
Section 5.4.

2.3. Accumulation benefit

In respect of the accumulation benefit, the guarantee at the maturity of the pol-
icy is a roll-up of the initial premium, continuously compounded at the same
annual rate g used for the death benefit guarantee. Additionally, the accu-
mulation benefit at maturity is capped at the roll-up of the initial premium
continuously compounded at the rate 3g per annum.

Therefore, for a policyholder aged x+ t at time t and who survives to time
tn, the payoff of the guaranteed accumulation benefit with cap is

H (A)
tn = Ftn + (Ktn − Ftn)IFtn<Ktn − (

Ftn −K3
tn

)
IFtn>K3

tn
, (2.4)

which can be rewritten as

H (A)
tn =

⎧⎪⎪⎨
⎪⎪⎩
Ktn , Ftn <Ktn

Ftn , Ktn < Ftn <K3
tn

K3
tn , Ftn >K3

tn

Remark 1. Certainly by taking ξ = g= ρ = 0.03, we have fees of 0.03 p.a.
deducted from the investment account, the guarantee accumulating at a rate of
0.03 p.a. and the in-force policies decumulating from lapses at a rate of 0.03 p.a.,
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and in the hypothetical case of all non-lapsed policyholders dying in the nth year,
the aggregate of minimum death benefits guaranteed by the insurer at the end of
the nth year is the multiple exp (0.03n)× 0.97n of the total of initial premiums
received. This multiple is not much smaller than one, for example, it is 0.9773 for
n= 50 years, so the effect of the guarantee remains an important consideration
for the insurer. Bearing in mind that management fees ξ = 0.03 are deducted from
the wealth accounts, this guarantee means that the insurer needs to manage the
policyholders’ wealth accounts by achieving gross returns in excess of ξ = 0.03
p.a. to avoid the insurer’s liabilities exceeding the assets. Simulations of the VA
reserves and policy values over the life of the policy portfolio for alternative values
of ξ , g and ρ are given in Appendix C.

In a complete market, where there exist traded mortality derivatives such
as mortality forwards, survivor forwards and longevity swaps, it would be pos-
sible to hedge the mortality risk inherent in the VA, barring any basis risk.
However, we assume that such derivatives are not available for hedging and
therefore resort to accepting the longevity risk of our mortality model and
diversifying away the stochastic mortality risk.

3. THE MODELLING FRAMEWORK

Our structure of the market in which VAs are valued is an investible sav-
ings account, an investible 10-year coupon bond and an investible diversified
stock index, which allows interest rate and equity market risks to be hedged,
but which leaves mortality risk unhedgeable and, therefore, the market for
VAs incomplete. The 10-year bond is one of the primary assets, as stated in
Appendix A.

Typically, valuation of financial contracts employs the no-arbitrage prin-
ciple, and it is important to clarify the types of arbitrage opportunities that
are prohibited. In the classical sense, arbitrage, as espoused by Delbaen and
Schachermayer (1994), refers to the ability to extract profits with vanishing
risk, and the authors show that a unique no-arbitrage price for a contingent
claim exists when the market is complete and an equivalent risk-neutral prob-
ability measure exists. On the other hand, strong arbitrage, as espoused by
Platen andHeath (2006), refers to the ability to generate, under limited liability,
strictly positive wealth from zero initial capital. The BA makes use of the GOP
as the numeraire or benchmark, which renders the benchmarked price process
of any positively valued portfolio as a supermartingale, thereby prohibiting
strong arbitrage, but which may allow classical arbitrage. As a result, in many
considered models, risk-neutral valuation cannot be applied, and therefore,
valuation of a contract is performed via the real-world valuation formula (A1),
which, for a hedgeable security, gives the minimal value of a replicating port-
folio, while for a security having nonhedgeable risk, gives the actuarial value
or expected present value of claims under the contract. The existence of an
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equivalent risk-neutral probability measure is not required for the real-world
valuation, but agreement is obtained with the risk-neutral valuation when this
probability measure exists and the market is complete.

Let (�,A,A,P) denote the filtered probability space in which we work,
where the filtration A= (At)t≥0 satisfies the usual conditions, as described in
Karatzas and Shreve (1991). We denote the short rate process by r= {rt : t≥ 0},
of which the overnight cash rate is considered a realistic proxy. The savings
account is then denoted by Bt = exp (

∫ t
0 rsds), for every t≥ 0.

The central building block of the BA is the GOP, denoted by St at time
t≥ 0. For the equity market, the GOP is well approximated by well-diversified
total return equity indices such as the S&P 500 total return index, as demon-
strated by Platen and Rendek (2012). In particular, in Platen (2005) and Platen
andRendek (2012), it is proven that appropriately defined diversified portfolios
represent approximate GOPs, and therefore, a number of commonly used well-
diversified stockmarket indices can be used to approximate the GOP, including
but not limited to the following: Standard and Poor’s 500 Index and Russell
2000 Index for the US market and the Morgan Stanley Capital International
Growth World Index for global modelling. These indices are listed, and their
construction is based on the published numbers of shares of their component
stocks. The explicit construction of well-diversified portfolios based on naive
diversification is explained in Platen and Rendek (2012). The discounted GOP
is denoted by S̄t, being equal to the value of the GOP denominated in units of
the savings account.

As demonstrated in Platen (2001) and summarised in Appendix A, the SDE
satisfied by the GOP is

dSt = St(rt + θ 2
t ) dt+ Stθt dWt, (3.1)

where θ = {θt : t≥ 0} denotes the market price of risk of the GOP, and there-
fore, the SDE satisfied by the discounted GOP is

dS̄t = S̄tθ 2
t dt+ S̄tθt dWt. (3.2)

Here,W = {Wt : t≥ 0} is a Wiener process adapted to the filtration A.

3.1. Discounted GOP models

The models of the discounted GOP that are considered are the Black–Scholes
model, see Black and Scholes (1973), with constant volatility θ > 0, where

dS̄t = S̄tθ 2dt+ S̄tθdWt, (3.3)

and the minimal market model (MMM) described by Platen (2001)

dS̄t = ᾱtdt+
√

ᾱtS̄tdWt, (3.4)
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where ᾱt is specifically chosen as ᾱt = ᾱ0 exp (ηt), with constant net growth rate
η > 0. Here θ , ᾱ0 and η are constants in the respective models.

Connected with the modelling of the discounted GOP is the normalised
GOP, defined as

Yt = η S̄t
ᾱt

. (3.5)

For the Black–Scholes model, the SDE for Y is

dYt = (θ 2 − η)Yt dt+ θ Yt dWt, (3.6)

which is geometric Brownian motion, whereas for the MMM, the SDE for
Y is

dYt = η (1−Yt) dt+
√

ηYt dWt, (3.7)

which is a square root process having a mean reverting level of one. In what
follows, the normalised GOP is used to incorporate dependence of the short
rate and mortality rate on the GOP.

3.2. Short rate models

We model the short rate r as a linear combination of a function of the
normalised GOP Y and, what we term, the primitive short rate R, via

rt = αrf r(Yt)+Rt, (3.8)

where f r is a function, being either f r(x)= x, f r(x)= log x or f r(x)= 1/x, and
αr is a constant. Here, the process R is independent of the process Y .

The primitive short rate is the contribution to the short rate which is
not explained by the contribution from the normalised GOP. The economic
intuition behind the primitive short rate is that monetary policy in many cases
will be influenced by the growth of the economy and the stock market. For
example, in boom periods of the stock market, which are typically fuelled
by low interest rates, monetary policy may be tightened to temper the mar-
ket excesses and allow the economy to travel more smoothly. Also, in market
lulls, which reflect low economic growth, monetary policy may be loosened to
invigorate the economy. Viewed in this way, the primitive short rate avoids the
effects of the stock market which influence the short rate.

The primitive short rate models we consider are the deterministic short rate
model, where the short rate is assumed to be known as a function of time,

Rt =R(t), (3.9)

the Vasicek short rate model described by Vasicek (1977),

dRt = κ(R̄−Rt)dt+ σdZt, (3.10)
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where R̄, κ and σ are positive constants, the Cox–Ingersoll–Ross (CIR) short
rate model described by Cox et al. (1985),

dRt = κ(R̄−Rt)dt+ σ
√
RtdZt, (3.11)

where R̄, κ and σ are positive constants such that 2R̄κ/σ 2 > 1, and the 3/2
short rate model first theorised by Platen (1999), and described by Ahn and
Gao (1999),

dRt = (pRt + qR2
t )dt+ σR3/2

t dZt, (3.12)

where p> 0, q and σ > 0 are constants such that q< σ 2/2, and where models
are driven by a Wiener process Z= {Zt : t≥ 0} adapted to the filtration A and
independent of the Wiener processW .

3.3. Mortality models

Wemodel the mortality rate μx+t(t), in respect of a life aged x+ t at time t, as a
linear combination of a function of the normalised GOP Y , the primitive short
rate R and, what we term, the primitive mortality rateMx+t(t), via

μx+t(t)= αμf μ(Yt)+ βμRt +Mx+t(t), (3.13)

where f μ is either of the functions potentially assumed by f r earlier, and αμ and
βμ are constants.

To capture mortality, let �x denote the average number of lives alive at age
x among a cohort of �0 lives, as done in actuarial life tables. An actuarial life
table is typically constructed by observing the mortality rates of a population
of lives over an investigation period, centred at some specific time t. Because
mortality rates at all ages change over time, it is necessary to conduct regular
mortality investigations to produce new actuarial life tables. Assuming static
mortality rates, Gompertz (1825) modelled �x as

�x = �0 exp
(

−b
∫ x

0
exp(cs)ds

)
,

for constant parameters b and c. This model was enriched by Makeham
(1860) by

�x = �0 exp
(

−ax− b
∫ x

0
exp(cs)ds

)
,

through adding an extra growth rate a. In Thiele (1871), the Gompertz–
Makeham model was even further enhanced by the addition of terms to fit
infant mortality and adolescent mortality, where �x is modelled as

�x = �0 exp
(

−b
∫ x

0
exp (cs)ds− f0

∫ x

0
exp (− f1(s− f2)2)ds− g

∫ x

0
exp (hs)ds

)
,

(3.14)

https://doi.org/10.1017/asb.2020.7 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.7


LESS-EXPENSIVE RESERVING OF VARIABLE ANNUITIES 389

TABLE 1

FORMULAE FOR MORTALITY RATES OF VARIOUS MODELS.

Model Mortality rate formula

Gompertz μx = b exp (cx)
Makeham μx = a+ b exp (cx)
Thiele μx = b exp (cx)+ f0 exp (− f1(x− f2)2)+ g exp (hx)
Siler μx = a+ b exp (cx)+ g exp (hx)

with constant parameters f0, f1, f2, g and h. Also, in Siler (1979) and (1983),
a simpler enhancement to the Gompertz–Makeham model involved only the
addition of a term to fit infant mortality where �x is modelled as

�x = �0 exp
(

−ax− b
∫ x

0
exp (cs)ds− g

∫ x

0
exp (hs)ds

)
, (3.15)

with constant parameters g and h.
The logarithmic mortality rate at age x can then be denoted by μx =

− d
dx log �x, the formulae of which are shown for the previous mortality models

in Table 1. To allow for changes in mortality rates over time, in Lee and Carter
(1992), the model

logmx(t)= ax + bxkt + εx,t (3.16)

was proposed, where t ∈ {1, 2, . . . ,T}, mx(t) is the central mortality rate of a
life aged x at time t, εx,t is the residual, ax = 1

T

∑
t mx(t), bx is a rate of mortality

improvement at age x such that
∑

x bx = 1 and kt is the mortality trend which
satisfies

∑
t kt = 0. The least squares solution to (3.16) can be found using sin-

gular value decomposition on the matrix M = (mx(t)− ax)x,t. We can modify
(3.16), allowing logμx(t) to be modelled as the random process

logμx(t)= ax + bx(t+ γXt), (3.17)

where X = {Xt : t≥ 0} is a Brownian motion and ax = a0 + a1x and bx = b0 +
b1x are linear functions of x, for constants a0, a1, b0 and b1. Without any
time dependence, (3.17) becomes Gompertz’ model. Applying Itô’s Lemma to
(3.17), the SDE for μx(t) is

dμx(t)= μx(t)
(
bx + 1

2
γ 2b2x

)
dt+ γμx(t)bxdXt, (3.18)

which is a lognormal model forμx(t). In Pintoux and Privault (2011), a formula
for E(exp (− ∫ T

t μx(s) ds)) under the lognormal model is supplied. However,
we are interested in the mortality rate μx+s(s) in which the age subscript x+ s
increases with time s. Employing the “affine matching principle” described in
Duffie and Kan (1996), we can deduce a formula for E(exp (− ∫ T

t μx+s(s) ds)).
The “affine matching principle” involves solving the Feynman–Kac partial
differential equation associated to an affine stochastic process Y by trialling
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a solution of the form exp{γ (x, t,T)−Ytδ(x, t,T)} and subsequently solving
a system of ordinary differential equations in γ and δ. In Schrager (2006),
this principle is applied to modelling the mortality intensity as a linear com-
bination of affine stochastic processes, allowing tractability in the survivor
functions. Maintaining tractability in our modelling, we model the primitive
mortality rate M in the current paper as a random process, employing a
single-factor Gaussian affine model with Gompertz–Makeham–Siler expected
mortality growth rate satisfying the random walk SDE

dMx+t(t)=
(
a2 exp (a0 + a1x+ a2t)+ b2 exp (b0 + b1x+ b2t)

)
dt+ βdXt, (3.19)

or with mean reverting growth rate, as given by the extended Ornstein–
Uhlenbeck SDE,

dMx+t(t)=
(
a2 exp (a0 + a1x+ a2t)+ b2 exp (b0 + b1x+ b2t)

− γMx+t(t)
)
dt+ βdXt. (3.20)

Here, X is a Wiener process, as in (3.17), adapted to the filtrationA and which
is independent of Z andW , and a0, a1, a2, b0, b1, b2, β and γ are constants. We
note that the first model in (3.19) is a particular case of the extended Ornstein–
Uhlenbeck model in (3.20) with γ = 0. In Dahl and Moller (2006), a similar
model is suggested.

3.4. Data and parameter estimation

Using standard maximum likelihood estimation, each of the considered models
is fitted to market data composed of US 1-year cash rates and S&P Composite
Index values, obtained from Shiller (1989), and US life tables for males 1933–
2015, sourced from the data set specified by subheadings USA, Period Data,
Life tables, Males and Age interval × year interval 1 × 1 in the human mortal-
ity database (see http://www.mortality.org/hmd/USA/STATS/mltper_1x1.txt),
with the additional simplifying assumption that no life survives to age 110.

Because the mortality models are Gaussian, maximum likelihood estima-
tion of their parameters involves the normal probability density function,
whose mean and variance are given in the following theorems. We abbreviate
the expectation E( · |At) and variance VAR( · |At) conditional on information
up to time t as Et( · ) and VARt( · ), respectively.

Theorem 1. For the random walk model in (3.19), we have the statistics, for s> t,

Et

(
Mx+s(s)

)
(3.21)

=Mx+t(t)+ exp (a0 + a1x+ a2t){exp (a2(s− t))− 1}
+ exp (b0 + b1x+ b2t){exp (b2(s− t))− 1},

VARt

(
Mx+s(s)

)
= β2(s− t).
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Proof. Integrating both sides of (3.19) between times t and s gives

Mx+s(s)=Mx+t(t)+
∫ s

t

{
a2 exp (a0 + a1x+ a2u)+ b2 exp (b0 + b1x+ b2u)

}
du

+ β

∫ s

t
dXu, (3.22)

from which the result follows immediately. �

Theorem 2. For the extended Ornstein–Uhlenbeck model in (3.20), we have the
sufficient statistics, for s> t,

Et

(
Mx+s(s)

)
=Mx+t(t) exp (− γ (s− t))

+ a2
a2 + γ

exp (a0 + a1x+ a2t)
{
exp (a2(s− t))− exp

(− γ (s− t)
)}

+ b2
b2 + γ

exp (b0 + b1x+ b2t)
{
exp (b2(s− t))− exp

(− γ (s− t)
)}

,

VARt

(
Mx+s(s)

)
= β2

(
1− exp{−2γ (s− t)})/(2γ ). (3.23)

Proof. Writing νt = exp (γ t)Mx+t(t), we have, from (3.20) and Ito’s
Lemma,

dνt = exp (γ t) dMx+t(t)+ γ exp (γ t)Mx+t(t) dt

= exp (γ t)
(
a2 exp (a0 + a1x+ a2t)+ b2 exp (b0 + b1x+ b2t)

)
dt (3.24)

+ β exp (γ t)dXt.

Integrating both sides of the equation for dνt between times t and s gives

νs = νt + a2
a2 + γ

exp (a0 + a1x+ a2t){exp (a2(s− t)) exp (γ s)− exp (γ t)}

+ b2
b2 + γ

exp (b0 + b1x+ b2t){exp (b2(s− t)) exp (γ s)− exp (γ t)}

+
∫ s

t
β exp (γ u) dXu. (3.25)
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TABLE 2

PARAMETER VALUES OF DISCOUNTED GOP MODELS FITTED TO MONTHLY SERIES OF DISCOUNTED
US S&P COMPOSITE INDEX 1871–2018. ALSO SHOWN ARE THE STANDARD ERRORS IN BRACKETS,

THE LOG-LIKELIHOOD �, THE AKAIKE INFORMATION CRITERION AIC AND BAYESIAN
INFORMATION CRITERION BIC.

Black–Scholes MMM

θ = 0.140592 (0.002363) ᾱ0 = 0.006910 (0.000475)
η = 0.045290 (0.000814)

� = −1115.07 � = −996.30
AIC = 2232.14 AIC = 1996.60
BIC = 2237.61 BIC = 2007.56

TABLE 3

PARAMETER VALUES OF SHORT RATE MODELS FITTED TO MONTHLY SERIES OF US 1-YEAR CASH
RATES 1871–2018. ALSO SHOWN ARE THE STANDARD ERRORS IN BRACKETS, THE LOG-LIKELIHOOD �,

AIC AND BIC.

Vasicek CIR 3/2

r̄= 0.043591 (0.008539) r̄= 0.042567 (0.011230) p= 0.109747 (0.038977)
κ = 0.149683 (0.045449) κ = 0.094675 (0.034991) q= −0.009232 (1.219036)
σ = 0.015479 (0.000262) σ = 0.064411 (0.001089) σ = 2.256888 (0.038186)

� = 7064.49 � = 7510.57 � = 7164.35
AIC = −14122.98 AIC = −15015.14 AIC = −14322.70
BIC = −14106.55 BIC = −14998.70 BIC = −14306.27

Dividing both sides of the equation for νs by exp (γ s) gives

Mx+s(s)=Mx+t(t) exp (− γ (s− t))

+ a2
a2 + γ

exp (a0 + a1x+ a2t)
{
exp (a2(s− t))− exp

(− γ (s− t)
)}

+ b2
b2 + γ

exp (b0 + b1x+ b2t)
{
exp (b2(s− t))− exp

(− γ (s− t)
)}

+
∫ s

t
β exp

(− γ (s− u)
)
dXu, (3.26)

from which the result follows. �
The obtained parameter values, together with log-likelihood values and

standard errors, are shown in Tables 2, 3 and 4, under the assumption of
independence and, under the general model with f r(x)= f μ(x)= gμ(x)= x, in
Tables 5 and 6, with αr ≈ αμ ≈ βμ ≈ 0 suggesting little dependence.

The fitting of the short rate models is described in Fergusson and Platen
(2015b), and the fitting of the discounted stock index models is described
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TABLE 4

PARAMETER VALUES OF MORTALITY MODELS FITTED TO US LIFE TABLES OF MALES 1933–2015.
ALSO SHOWN ARE THE STANDARD ERRORS IN BRACKETS, THE LOG-LIKELIHOOD �, AIC AND BIC.

Gompertz–Makeham–Siler RW Gompertz–Makeham–Siler OU

a0 = −8.111622 (0.004669) a0 = −6.050464 (0.003458)
a1 = 0.067995 (0.000068) a1 = 0.052635 (0.000053)
a2 = 0.068574 (0.000076) a2 = 0.053671 (0.000052)
b0 = −11.917990 (0.000000) b0 = −2.906129 (0.065398)
b1 = −0.097077 (0.000000) b1 = −0.858624 (0.106140)
b2 = −0.436887 (0.000000) b2 = −17.334363 (0.000000)

γ = 0.013902 (0.000218)
β = 0.008119 (0.000030) β = 0.007818 (0.000029)

� = 30644.38 � = 31022.86
AIC = −61274.76 AIC = −62029.71
BIC = −61225.01 BIC = −61972.86

RW = random walk; OU = Ornstein-Uhlenbeck.

TABLE 5

PARAMETER VALUES OF SHORT RATE MODELS WITH f r(x)= x FITTED TO MONTHLY SERIES OF US
1-YEAR CASH RATES 1871–2018. ALSO SHOWN ARE THE STANDARD ERRORS IN BRACKETS, THE

LOG-LIKELIHOOD �, AIC AND BIC.

Vasicek CIR 3/2

r̄= 0.046275 (0.008727) r̄= 0.045268 (0.015002) p= 0.095320 (0.030828)
κ = 0.147341 (0.045759) κ = 0.096647 (0.044971) q= −0.508337 (0.966814)
σ = 0.015474 (0.000262) σ = 0.062509 (0.001011) σ = 1.785932 (0.021922)
αr = −0.000976 (0.000995) αr = −0.000976 (0.000445) αr = −0.000976 (0.000102)

� = 7064.91 � = 7478.72 � = 7322.32
AIC = −14121.82 AIC = −14949.43 AIC = −14636.65
BIC = −14099.92 BIC = −14927.53 BIC = −14614.74

in Fergusson (2017b). The fitting of the mortality models is achieved by
maximising the log-likelihood function

�(a0, a1, a2, . . . , β)=
109∑
x=0

2014∑
t=1933

log fμx+t+1(t+1)|At

(
μ̂x+t+1(t+ 1)

)
(3.27)

with the Newton–Raphson iterative method, using initial estimates of the
nascent and senescent parameters derived by regressing the young age mor-
tality rates (ages 0–18) and older age mortality rates (ages 18–110) on
corresponding values of x and t.

The suitability of these processes for describing the real world has been sup-
ported by statistical analyses of Chan et al. (1992), Aït-Sahalia (1996) in respect
of short rates, Fergusson (2017a) in respect of discounted indices and Schrager
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TABLE 6

PARAMETER VALUES OF MORTALITY MODELS WITH f r(x)= x, f μ(x)= x AND gμ(x)= x, FITTED TO US
LIFE TABLES OF MALES 1933–2015. ALSO SHOWN ARE THE STANDARD ERRORS IN BRACKETS, THE

LOG-LIKELIHOOD �, AIC AND BIC.

Gompertz–Makeham–Siler RW Gompertz–Makeham–Siler OU

a0 = −8.089649 (0.004644) a0 = −6.043137 (0.003471)
a1 = 0.067251 (0.000069) a1 = 0.052535 (0.000053)
a2 = 0.068941 (0.000074) a2 = 0.053586 (0.000052)
b0 = −11.632368 (1.406302) b0 = −2.891557 (0.012378)
b1 = −0.074116 (0.000000) b1 = −0.823818 (0.094591)
b2 = −0.310243 (0.000000) b2 = −17.372233 (0.000000)

γ = 0.014008 (0.000218)
β = 0.008059 (0.000030) β = 0.007796 (0.000029)
αμ = 0.002063 (0.000086) αμ = 0.002063 (0.000014)
βμ = −0.016400 (0.000033) βμ = −0.016400 (0.000014)

� = 30700.65 � = 31023.17
AIC = −61383.30 AIC = −62030.34
BIC = −61319.34 BIC = −61973.48

RW = random walk; OU = Ornstein-Uhlenbeck.

(2006) in respect of mortality. For the 3/2 model, simulations using the fitted
parameters in Table 3 give rise to large, yet short-lived, values. However, it is
included here to highlight the variety of short rate models accommodated in
the general framework and to accomodate the documented r3/2t behaviour in
the short rate diffusion.

4. DETERMINING THE VALUATION FORMULAE

Prior to giving the valuation formulae for the VA and its components described
in Section 2, we first clarify the notation and provide some propositions which
are used in deriving the valuation formulae. Then, in the following three sub-
sections, namely, Subsections 4.1, 4.2 and 4.3, valuation formulae for our
previously mentioned VA and its component benefits are determined.

Let us denote by τx+t(t) the time of death of a life aged x+ t at time t. In
respect of a life aged x, the standard actuarial notations for the 1-year survival
probability, the n-year survival probability, the 1-year death probability and
the n-year death probability are px, npx, qx and nqx, respectively. Typically,
these probabilities are tabulated in a static life table. In keeping with this
notation, and allowing for dynamic life tables, we employ the corresponding
time-dependent notation px(t), npx(t), qx(t) and nqx(t), in respect of a life aged
x at time t. Further, when our probabilities are estimated using a mortality
model, we use the corresponding notations p̂x(t), np̂x(t), q̂x(t) and nq̂x(t).

Also, let us denote by τ
(D)
x+t(t) the time of death of a policyholder, who has

not previously lapsed, aged x+ t at time t, so that for t ∈ [tj, tj+1) and i ∈ {j+
1, . . . , n}, P(τ (D)

x+t(t)> ti)=P(τx+t(t)> ti) (1− ρ)i−j.
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Lastly, we define the expectation, in respect of a stochastic processU = {Ut :
t≥ 0}, with U0 = x,

E(t, x,U , α,μ, ν, ξ )=E
(
U−α
t exp

{
− μ

∫ t

0
Us ds− ν

∫ t

0

1
Us

ds

− ξ

∫ t

0
log (Us) ds

})
. (4.1)

We now state three propositions which give closed-form formulae for this
expectation for relevant stochastic processes, where the proofs of the first two
are straightforward and the third proof is given in Craddock and Lennox
(2009).

Proposition 1. Assume that U is given by dUt = a Ut dt+ σ Ut dWt, where
U0 = x. Define m= (α + ξ t) log x+ (αt+ 1

2ξ t
2)(a− 1

2σ
2) and k= σ 2t(α2 +

αξ t+ 1
3ξ

2t2). Then,

E(t, x,U , α, 0, 0, ξ )= exp
{
−m+ 1

2
k
}
. (4.2)

Proposition 2. Assume that U is given by dUt = (a− b Ut) dt+ σ dWt, where
U0 = x. Define β = {1− exp (− b t)}/b, m= xβ + a t/b− a β/b and k= σ 2(t−
β + b β/2)/b2. Then,

E(t, x,U , 0,μ, 0, 0)≡E
(
exp

{
− μ

∫ t

0
Us ds

})
= exp

{
−m+ 1

2
k
}
. (4.3)

Finally, we make use of Proposition 7.3.9 presented in Baldeaux and Platen
(2013), concerning benchmarked Laplace transforms, and restated as follows.

Proposition 3. Assume that U = {Ut : t≥ 0} is given by dUt = (a− bUt)dt+√
σUtdWt, where U0 = x, and that 2a/σ ≥ 2.
Define A= b2 + 4μσ , m= 1

σ

√
(a− σ )2 + 4σν, β = √

Ax/{σ sinh (
√
A t/2)}

and k= {√A+ b tanh (
√
A t/2)}/{2σ tanh (

√
A t/2)}.

Then if a> (2α − 3)σ , for μ > 0, ν ≥ 0,

E
(
U−α
t exp

{
− ν

∫ t

0

ds
Us

− μ

∫ t

0
Us ds

})
=

√
A x1/2− a/(2σ )

2σ sinh (
√
A t/2)

(β/2)m

× exp
{
b (x+ at)− √

A x coth (
√
A t/2)

2σ

}
k−(1−α+ a

2σ + 1
2+m

2 )

× �(1− α + a
2σ + 1

2 + m
2 )

�(1+m) 1F1

(
1− α + a

2σ
+ 1

2
+ m

2
, 1+m,

β2

4k

)
. (4.4)
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4.1. Valuation formulae for the surrender benefit

Under our considered market models, the real-world valuation formula (A1)
applied to the valuation of a contingent claim having payoff given in (2.3) at
time ti involves the evaluation of the expectation

V (L)
t,ti = 1

τ
(L)
x+t(t)>t

Et

(
St
Sti

H (L)
ti 1

τ
(L)
x+t(t)∈[ti−1,ti)

)
, (4.5)

which can be rewritten as

V (L)
t,ti =Et

(
exp

{
−

∫ ti

t
μx+s(s) ds−

∫ ti

t
rs ds

}
ᾱt Yt

ᾱti Yti

) √
Kti (1− ρ)i−1−jρ (4.6)

=Px+t(t, ti)
√
Kti (1− ρ)i−1−jρ,

where Px+t(t,T) denotes the time-t value of a T-maturity survivor ZCB in
respect of a life aged x+ t at time t, where a payment of $1 is paid if the life
survives to maturity.

Theorem 3. For t ∈ [tj, tj+1), the real-world value of the surrender benefit paid at
time ti is

V (L)
t,ti =Vt,ti (Y )×Vt,ti (R)×Vt,ti ,x(M)× √

Kti (1− ρ)i−j−1ρ, (4.7)

where

Vt,ti (Y )=Et

(
exp

{
−

∫ ti

t
αrf r(Ys)+ αμf μ(Ys) ds

}
ᾱt Yt

ᾱti Yti

)
(4.8)

≡ ᾱt Yt

ᾱti
E(ti − t,Yt,Y )

Vt,ti (R)=Et

(
exp

{
−

∫ ti

t
(βμgμ(Rs)+Rs) ds

})
= E(ti − t,Rt,R)

Vt,ti ,x(M)=Et

(
exp

{
−

∫ ti

t
Mx+s(s) ds

})
,

where the omitted final four arguments in E are to be understood from the context.

Proof. We can decompose V (L)
t,ti into a product of independent stochastic

exponentials

V (L)
t,ti =Vt,ti (Y )×Vt,ti (R)×Vt,ti ,x(M)× (1− ρ)i−j−1ρ, (4.9)

where Vt,ti (Y ), Vt,ti (R) and Vt,ti ,x(M) are as in (4.8). �
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We callVt,ti (Y ),Vt,ti (R) andVt,ti ,x(M) the contributions to the survivor ZCB
from the discounted GOP, primitive short rate and primitive mortality rate,
respectively.

As an immediate corollary, when αr = αμ = βμ = 0, under our considered
market models, where the driving Brownian motions are assumed to be inde-
pendent, the real-world valuation formula (A1) gives the value of a survivor
ZCB as

Px+t(t,T)=Et

(
exp (−

∫ T

t
μx+s(s) ds)

)
Et

(
Bt

BT

)
Et

(
S̄t
S̄T

)
= T−tp̂x+t(t)P(t,T),

(4.10)

where P(t,T) is the time-t value of a T-maturity ZCB.
The contribution to the survivor ZCB from the discounted GOP when

S̄ obeys the Black–Scholes model in (3.3) and f r(x)= f μ(x)= log x can be
deduced from Proposition 1, to be

Vt,ti (Y )= exp
{
− (ti − t)(αr + αμ)

(
log x− 1

2
(ti − t)η − 1

6
θ 2(ti − t)2(αr + αμ)

)}
,

(4.11)

simplifying to unity when αr = αμ = 0.
The contribution to the survivor ZCB from the discounted GOP, when S̄

obeys the MMM in (3.4) and each of the functions f r(x) and f μ(x) is either of x
or 1/x, can be obtained using Proposition 3. In the particular case αr = αμ = 0,
we obtain, in agreement with Platen and Heath (2006),

Vt,ti (Y )=Et

(
S̄t
S̄ti

)
= 1− exp

(
− 1

2
S̄t/(ϕti − ϕt)

)
(4.12)

where ϕt = 1
4 ᾱ0(exp (ηt)− 1)/η. In this case,

(
S̄t

)−1
is a strict local martin-

gale that reflects much more realistically the long-term dynamics of the
benchmarked savings account than given by a Black–Scholes model.

The contributions from the primitive short rate R when βμ = 0 for the
Vasicek, CIR and 3/2 models are given in Vasicek (1977), Cox et al. (1985)
and Ahn and Gao (1999), respectively. For βμ �= 0, when R is either a CIR or
3/2 process and gμ(x) is either x or 1/x, the contribution to the survivor ZCB
follows directly from Proposition 3, and when R obeys the Vasicek model and
gμ(x)= x, the contribution is deduced from Proposition 2.

We now give formulae for the contributions Vt,ti ,x(M) to the survivor ZCB
from the primitive mortality rate under each of the mortality models in the fol-
lowing two theorems. By way of notation, we write for the survival probability
to time T , in respect of a life aged x+ t at time t,

T−tp̂x+t(t)≡Et

(
exp

{
−

∫ T

t
μx+s(s) ds

})
, (4.13)
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and for the survival probability due to the primitive mortality rate only,

T−tp̂
(M)
x+t(t)≡Vt,T ,x(M)≡Et

(
exp

{
−

∫ T

t
Mx+s(s) ds

})
, (4.14)

where agreement between the two is obtained when αμ = βμ = 0.

Theorem 4. For the random walk model in (3.19), we have the survival probability

T−tp̂
(M)
x+t(t)=Et

(
exp (−

∫ T

t
Mx+s(s) ds)

)
(4.15)

= exp
{
− {

Mx+t(t)− exp (a0 + a1x+ a2t)− exp (b0 + b1x+ b2t)
}
(T − t)

− 1
a2

exp (a0 + a1x+ a2t)
(
exp{a2(T − t)} − 1

)

− 1
b2

exp (b0 + b1x+ b2t)
(
exp{b2(T − t)} − 1

) + 1
6
β2(T − t)3

}
.

Proof. Integrating both sides of (3.22), we see that
∫ T
t Mx+s(s)ds is a

normally distributed random variable having mean and variance

Et

( ∫ T

t
Mx+s(s)ds

)
= {

Mx+t(t)− exp (a0 + a1x+ a2t) (4.16)

− exp (b0 + b1x+ b2t)
}
(T − t)

+ 1
a2

exp (a0 + a1x+ a2t)
(
exp{a2(T − t)} − 1

)

+ 1
b2

exp (b0 + b1x+ b2t)
(
exp{b2(T − t)} − 1

)
,

VARt

( ∫ T

t
Mx+s(s)ds

)
=VARt

( ∫ T

t

( ∫ s

t
βdXu

)
ds

)
(4.17)

=VARt

(
β

∫ T

t

( ∫ T

u
ds

)
dXu

)
=VARt

(
β

∫ T

t
(T − u)dXu

)

= β2

∫ T

t
(T − u)2du= 1

3
β2(T − t)3.

The result follows straightforwardly from the formula for the mean of a
lognormal random variable. �

Theorem 5. For the extended Ornstein–Uhlenbeck model in (3.20), we have the
survival probability
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T−tp̂
(M)
x+t(t)≡Et

(
exp (−

∫ T

t
Mx+s(s) ds))

)
(4.18)

= exp
(
−Mx+t(t)B(t,T)− a2

a2 + γ

{
1
a2

(
exp (a2(T− t))− 1

) −B(t,T)
}

− b2
b2 + γ

{
1
b2

(
exp (b2(T − t))− 1

) −B(t,T)
}

+ 1
2
β2 1

γ 2

(
T − t−B(t,T)− γ

2
B(t,T)2

))
,

where

B(t,T)= 1
γ
(1− exp (− γ (T − t))). (4.19)

Proof. Integrating both sides of (3.26) from s= t to s=T , we see that the
integral

∫ T
t Mx+s(s)ds is normally distributed with mean and variance

Et

( ∫ T

t
Mx+s(s)ds

)
=Mx+t(t)

1
γ

(
1− exp (− γ (T − t))

)
(4.20)

+ a2
a2 + γ

{
1
a2

(
exp (a2(T − t))− 1

) −B(t,T)
}

+ b2
b2 + γ

{
1
b2

(
exp (b2(T − t))− 1

) −B(t,T)
}
,

VARt

( ∫ T

t
Mx+s(s)ds

)
= β2

∫ T

t
B(u,T)2du (4.21)

= β2 1
γ 2

∫ T

t
1− 2 exp (− γ (T − u))+ exp (− 2γ (T − u))du

= β2 1
γ 2

(
T − t− 2

1
γ

(
1− exp (− γ (T − t))

) + 1
2γ

(
1− exp (− 2γ (T − t))

))

= β2 1
γ 2

(
T − t−B(t,T)− γ

2
B(t,T)2

)
.

Using the formula for the mean of the lognormal distribution, the result
follows. �

The formulae for the expectation of the exponential integrals of mortal-
ity rates correspond to the survival probability functions whose graphs are
shown in Figures 1 and 2 for the parameter values in Table 4. The graphed
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FIGURE 1: Graph of survival probability functions for a US male life aged 40 in 1933 and hypothetical lives
under the random walk model and extended Ornstein–Uhlenbeck model.

survival probability functions exhibit the stylised property of being monotone
decreasing and finally asymptotically approaching zero. Because we are using
at most eight parameters in our mortality models, the fitted survival probabili-
ties are by no means as precise as would be the case using a Lee–Carter model.
However, this illustrates the trend risk, the systematic shift in mortality rates, to
which insurers are exposed. Also, the imprecise fitting of survival probabilities
highlights the problem faced by insurers, whereby money invested in actuar-
ial assets needs to accommodate deviations of mortality experienced from that
which is modelled and, therefore, the actuarial assets may be different from
those prescribed by the model.

4.2. Valuation of death benefits and accumulation benefit

Application of the real-world valuation formula (A1) to the payoff (2.1) at time
ti involves the evaluation of the expectation

V (D)
t,ti = 1

τ
(D)
x+t(t)>t

Et

(
St
Sti
H (D)

ti 1
τ
(D)
x+t(t)∈[ti−1,ti)

)
. (4.22)

We decompose the payoff in (2.1) into two parts, H (D,1)
ti and H (D,2)

ti , given by

H (D,1)
ti = Sti

St0
exp

{− ξ (ti − t0)
}≡ Fti (4.23)
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FIGURE 2: Graph of survival probability functions for a US male life aged 65 in 1971 and hypothetical lives
under the random walk model and extended Ornstein–Uhlenbeck model.

and

H (D,2)
ti =

(
Kti −

Sti
St0

exp
{− ξ (ti − t0)

})+
≡ (Kti − Fti )

+, (4.24)

and we denote by V (D,1)
t,ti and V (D,2)

t,ti the corresponding values, so that V (D)
t,ti =

V (D,1)
t,ti +V (D,2)

t,ti . Also, application of the real-world valuation formula (A1) to
the payoff (2.4) at time tn involves the evaluation of the expectation

V (A)
t,tn = 1

τ
(D)
x+t(t)>t

Et

(
St
Stn

H (A)
tn 1

τ
(D)
x+t(t)∈[tn,∞)

)
, (4.25)

which can be rewritten as

(1− ρ)n−j Et

(
exp

{
−

∫ tn

t
μx+s(s) ds−

∫ tn

t
rs ds

}
αt Yt

αtn Ytn

H (A)
tn

)
. (4.26)

As for the death payoff, we decompose the payoff in (2.4) into three parts,
H (A,1)

tn , H (A,2)
tn and H (A,3)

tn , where H (A,1)
tn =H (D,1)

tn , H (A,2)
tn =H (D,2)

tn and

H (A,3)
tn =

{
Stn
St0

exp
{− ξ (ti − t0)

} − (Ktn)
3

}+
≡ (

Ftn − (Ktn)
3
)+
, (4.27)

and we denote by V (A,1)
t,tn , V (A,2)

t,tn and V (A,3)
t,tn the corresponding values, so that

V (A)
t,tn =V (A,1)

t,tn +V (A,2)
t,tn −V (A,3)

t,tn .
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The following lemma from Filipović (2009) will be employed in determining
the values V (D,k)

t,ti , V (A,�)
t,tn for k ∈ {1, 2} and � ∈ {1, 2, 3}.

Lemma 1. Let K > 0. For any y ∈R, the following identities hold:

1
2π

∫
R

exp
{
(w+ ιλ) y

} K−(w−1+ιλ)

(w+ ιλ)(w− 1+ ιλ)
dλ (4.28)

=

⎧⎪⎨
⎪⎩
(K − ey)+, ifw< 0;
(ey −K)+ − ey, if 0<w< 1;
(ey −K)+, ifw> 1.

Theorem 6. The real-world values of the components of the death and accumula-
tion benefits are

V (D,1)
t,ti = (1− ρ)i−1−j St

St0
exp{−ξ (ti − t0)}

(
i−j−1p̂x+tj (tj)− i−j p̂x+tj (tj)

)
(4.29)

V (D,2)
t,ti =V (D,2a)

t,ti −V (D,2b)
t,ti (4.30)

V (D,2a)
t,ti = (1− ρ)i−1−j Kti

1
2π

∫
R

E (D)
t,ti

K̃−(w−1+ιλ)
ti

(w+ ιλ)(w− 1+ ιλ)
dλ (4.31)

V (D,2b)
t,ti = (1− ρ)i−1−j Kti

1
2π

∫
R

E (A)
t,ti

K̃−(w−1+ιλ)
ti

(w+ ιλ)(w− 1+ ιλ)
dλ (4.32)

V (A,1)
t,tn = (1− ρ)n−j exp{−ξ (tn − t0)} n−j p̂x+tj (tj) (4.33)

V (A,2)
t,tn = (1− ρ)n−j Ktn

1
2π

∫
R

E (A)
t,tn

K̃−(w−1+ιλ)
tn

(w+ ιλ)(w− 1+ ιλ)
dλ (4.34)

V (A,3)
t,tn = (1− ρ)n−j Ktn

1
2π

∫
R

E (A)
t,tn

( ˜̃Ktn)
−(w−1+ιλ)

(w+ ιλ)(w− 1+ ιλ)
dλ, (4.35)

where E (D)
t,ti and E (A)

t,ti are given by

E (D)
t,ti =Et

[
exp

{
−

∫ ti−1

t
μx+s(s) ds

}
exp

{
(w+ ιλ) log (St/Sti )

}]
, (4.36)

E (A)
t,ti =Et

[
exp

{
−

∫ ti

t
μx+s(s) ds

}
exp

{
(w+ ιλ) log (St/Sti )

}]

and

K̃ti =
St

Kti St0
exp

{− ξ (ti − t0)
}
, ˜̃Ktn = St

(Ktn)3 St0
exp

{− ξ (tn − t0)
}
. (4.37)

Proof. We apply the real-world valuation formula in (A1) to each of the
payoffs H (D,·)

ti , H (A,·)
tn . Noting that

Et(1τ
(D)
x+t(t)∈[ti−1,ti)

)= (1− ρ)i−j−1Et(1τx+t(t)∈[ti−1,ti)), (4.38)
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we have for the first death payoff,

V (D,1)
t,ti = (1− ρ)i−1−j Et

(
St
Sti

H (D,1)
ti

(
exp

{
−

∫ ti−1

t
μx+s(s) ds

}
(4.39)

− exp
{
−

∫ ti

t
μx+s(s) ds

}))

= (1− ρ)i−1−j St
St0

exp{−ξ (ti − t0)}
(
ti−1−tj p̂x+tj (tj)− ti−tj p̂x+tj (tj)

)
.

For the second death payoff,

V (D,2)
t,ti = (1− ρ)i−1−j Et

(
exp

{
−

∫ ti−1

t
μx+s(s) ds

}
St
Sti
H (D,2)

ti

)
(4.40)

− (1− ρ)i−1−j Et

(
exp

{
−

∫ ti

t
μx+s(s) ds

}
St
Sti
H (D,2)

ti

)
≡V (D,2a)

t,ti −V (D,2b)
t,ti .

We note that

St
Sti
H (D,2)

ti =Kti

(
exp (y)− K̃ti

)+
, (4.41)

where K̃ti is as in (4.37) and y= log (St/Sti ). Applying Lemma 1, with w> 1,
and making use of Fubini’s theorem, the second part of (4.40) is

V (D,2b)
t,ti = (1− ρ)i−1−j Kti

1
2π

∫
R

E (A)
t,ti

K̃−(w−1+ιλ)
ti

(w+ ιλ)(w− 1+ ιλ)
dλ, (4.42)

and the expectation inside the integral can be evaluated using Proposition 3.
Similarly, the first part of (4.40) is

V (D,2a)
t,ti = (1− ρ)i−1−j Kti

1
2π

∫
R

E (D)
t,ti

K̃−(w−1+ιλ)
ti

(w+ ιλ)(w− 1+ ιλ)
dλ. (4.43)

We note that V (A,1)
t,tn and V (A,2)

t,tn are evaluated in similar ways to those done for
V (D,1)
t,ti and V (D,2)

t,ti , respectively. Finally, noting that

St
Stn

H (A,3)
tn = (Ktn)

3

( ˜̃Ktn − exp (y)
)+

, (4.44)

where ˜̃Ktn is as in (4.37) and y= log (St/Stn), we have, upon applying Lemma 1,
with w< 0,

V (A,3)
t,tn = (1− ρ)n−j (Ktn)

3 1
2π

∫
R

E (A)
t,tn

( ˜̃Ktn)
−(w−1+ιλ)

(w+ ιλ)(w− 1+ ιλ)
dλ, (4.45)

and the expectation inside the integral can be evaluated using Theorem 3. �
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Remark 2. We note that the expression for V (D,1) equals the investment account
today, diminished by the lapses and management fees incurred up to the pay-
ment time ti. Also, the expressions for V (D,2a) and V (D,2b) combine to give the put
option component of the death benefit. The expression for V (A,1) equals the sur-
vival probability, diminished by lapses and management fees incurred up to the
maturity time tn. Finally, the expressions for V (A,2) and V (A,3) correspond to the
integral transforms of the put option and call option payoffs, respectively.

We have the following corollary, when r, S̄ andμ are driven by independent
Wiener processes, that is, αr = αμ = βμ = 0.

Corollary 1. The real-world values of the components of the death and accumu-
lation benefits are

V (D,1)
t,ti = (1− ρ)i−1−j St

St0
exp{−ξ (ti − t0)}

(
i−j−1p̂x+tj (tj)− i−j p̂x+tj (tj)

)
(4.46)

V (D,2)
t,ti = (1− ρ)i−1−j

i−j−1p̂x+tj (tj) q̂x+ti−1 (tj)
1
St0

exp{−ξ (ti − t0)} pti ,K ′
ti
(t, St)

(4.47)

V (A,1)
t,tn = (1− ρ)n−j n−j p̂x+tj (tj)

St
St0

exp{−ξ (tn − t0)} (4.48)

V (A,2)
t,tn = (1− ρ)n−j n−j p̂x+tj (tj)

1
St0

exp{−ξ (tn − t0)} pti ,K ′
tn
(t, St) (4.49)

V (A,3)
t,tn = (1− ρ)n−j n−j p̂x+tj (tj)

1
St0

exp{−ξ (tn − t0)} cti ,K ′′
tn
(t, St), (4.50)

where K ′
ti and K

′′
tn are as in (4.57) and where we define the put and call option

values

pT ,K(t, St)=Et

(
St
ST

(
K − ST

)+
)
, cT ,K(t, St)=Et

(
St
ST

(
ST −K

)+
)
. (4.51)

Thus, we have demonstrated how the death and accumulation benefits
with guarantees can be evaluated using Theorem 6, Corollary 1 and the two
aggregation equations V (D)

t,ti =V (D,1)
t,ti +V (D,2)

t,ti and V (A)
t,tn =V (A,1)

t,tn +V (A,2)
t,tn −V (A,3)

t,tn .

4.3. Valuation formulae for VAs

We are in a position to provide a valuation formula for the VA specified earlier
in Section 2, whose payoffs are given in (2.1), (2.3) and (2.4). We recall from
Section 2 the notation ρ for the lapse rate and ξ for the management fee, and
from Section 4 the notation q̂x(t) for the realised 1-year death rate of a life aged
x at time t and p̂x(t) for the realised 1-year survival rate of a life aged x at time
t. In the light of Theorems 3 and 6, the value of our VA product specified in
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Section 2 is computed as

VRW
t =

{ n∑
i=j+1

(V (D)
t,ti +V (L)

t,ti )
}

+V (A)
t,tn , (4.52)

and, in the instance when αr = αμ = βμ = 0 and therefore when r, S̄ and μ are
independent processes, the formula for the real-world VA policy value, based
on policies in force at the start of the year,

VRW
t =

n∑
i=j+1

i−(j+1)p̂x+j(tj)(1− ρ)i−j−1
{
q̂x+i−1(tj)VRW

t,ti + ρ(1− q̂x+i−1(tj))SVRW
t,ti

}

(4.53)

+ n−j p̂x+j(tj)(1− ρ)n−jAVRW
t,tn ,

where t ∈ [tj, tj+1), the death benefit value VRW
t,ti is

VRW
t,ti = St

St0
exp{−ξ (ti − t0)} + 1

St0
exp{−ξ (ti − t0)}pti ,K ′

ti
(t, St), (4.54)

the surrender benefit value SVRW
t,ti is

SVRW
t,ti = √

Kti P(t, ti) (4.55)

and the survival benefit value AVRW
t,ti is

AVRW
t,tn = St

St0
exp{−ξ (tn − t0)} (4.56)

+ 1
St0

exp{−ξ (tn − t0)}ptn,K ′
tn
(t, St)

− 1
St0

exp{−ξ (tn − t0)}ctn,K ′′
tn
(t, St),

with

K ′
ti = St0 exp{ξ (ti − t0)}Kti (4.57)

K ′′
tn = St0 exp{ξ (tn − t0)}(Ktn)

3.

Here pT ,K(t, St) and cT ,K(t, St) denote the real-world values of a put option
and call option, respectively, given in (4.51).

Analogous formulae are straightforwardly obtained for the corresponding
risk-neutral valuations.
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5. DESCRIPTION OF HEDGING METHODOLOGY

In addition to the valuation of long-dated VAs, our aim is to demonstrate less-
expensive hedging such policies. In respect of the VA, a hedging strategy is a
trading strategy involving a portfolio of hedge securities whose value at each
of the prescribed payoff dates is intended to replicate the value of the VA.

5.1. Hedge portfolio

Because the models considered in this paper are composed of a stochastic short
rate, a stochastic discounted GOP and a stochastic mortality rate and because
our universe of securities consists of cash, bonds, stock index and the VA, we
have two hedgeable random factors which can be hedged using a managed self-
financing portfolio of cash Bt, the GOP index St and a 10-year coupon bond
Ft. The value at time t≥ 0 of the hedge portfolio π can be written as

V (π )
t = δBt Bt + δSt St + δFt Ft, (5.1)

where δB, δS and δF are the numbers of units of the savings account, GOP index
and 10-year coupon bond, respectively, as specified in (5.4).

5.2. Cost and benchmarked cost of hedging

The cost Ct at time t of hedging a derivative since initial time 0 is equal to the
cost of the derivative at time t less any gains from trading the hedge portfolio.
We write

Ct =VH
t −

∫ t

0
δBu dBu −

∫ t

0
δSu dSu −

∫ t

0
δFu dFu =VH

t −
∫ t

0
dV (π )

u , (5.2)

where VH
t is the value of the derivative at time t and V (π )

t is the value of the
hedge portfolio at time t.

We demonstrate the efficacy of reserving for a large number of policies
under each of our considered models, by performing a backtest of the reserv-
ing strategy, where we forecast the mortality rates using either (3.19) or (3.20)
assume that the realised mortality rates of policyholders are those of the popu-
lation. In practice, insurers underwrite their policies to classify the risks being
insured, and this means that, in general, the mortality of the policyholders will
differ from that of the population. This difference in mortality is termed level
mortality risk, and in this paper, we are assuming this is zero. Furthermore,
insurers will only have a finite number of policies, which means that even if
the insurer knows the mortality rates of policyholders, their realised rates will
differ. This difference in mortality is termed stochastic mortality risk, and in
this paper, we are assuming this is zero, although insurers will write sufficiently
many policies to diversify away this risk.

https://doi.org/10.1017/asb.2020.7 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.7


LESS-EXPENSIVE RESERVING OF VARIABLE ANNUITIES 407

Denoting the initial reserves held in respect of all policies in force at time t0
by RRW ,π

t0 , we set

RRW ,π
t0

=VRW
t0

,

implicitly assuming a notional premium amount equal to one unit for the
entirety of policyholders. Employing delta hedging at discrete times in the set
G′ = {t0, t0 + �, . . . , t1, . . . , tn}, we apportion the reserves among the savings
account, GOP and 10-year bond as

RRW ,π
t0

= δBt0Bt0 + δSt0St0 + δFt0Ft0 , (5.3)

where, for t ∈G′,

δFt = ∂RRW
t

∂rt

/
∂FRW

t

∂rt
, (5.4)

δSt = ∂RRW
t

∂St
− δFt

∂FRW
t

∂St
,

δBt = {
RRW ,π
t − δSt St − δFt Ft

}
/Bt,

and RRW
t denotes the value of in-force policies at time t, given by

RRW
t = jpx(t0) (1− ρ)j VRW

t , (5.5)

for t ∈ [tj, tj+1).

5.3. Reserves at subsequent times

Bearing in mind that we are reserving for the portfolio of VA policies, and
that at subsequent times some of the policyholders will have either died or
lapsed, we value the in-force policy portfolio at time t ∈ [tj, tj+1) as per (5.5).
Also, the sensitivity of the in-force policy portfolio value with respect to St,
and by analogy for the sensitivity with respect to rt, is computed as

∂RRW
t

∂St
= jpx(t0) (1− ρ)j

n∑
i=j+1

[
i−(j+1)p̂x+j(tj)(1− ρ)i−j−1 (5.6)

×
{
q̂x+i−1(tj)

∂VRW
t,ti

∂St
+ ρ(1− q̂x+i−1(tj))

∂ SVRW
t,ti

∂St

}]

+ n−j p̂x+j(tj)(1− ρ)n−j
∂AVRW

t,tn

∂St
,

where, for i ∈ {j+ 1, . . . , n}, the deltas
∂VRW

t,ti

∂St
,

∂ SVRW
t,ti

∂St
,

∂AVRW
t,ti

∂St
,

∂VRW
t,ti

∂rt
,

∂ SVRW
t,ti

∂rt
,

∂AVRW
t,ti

∂rt
(5.7)
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TABLE 7

INITIAL POLICY VALUES UNDER EACH OF THE MODELS.

SR model Mortality model BS value MMM value

Vasicek RW 0.8589 0.8445
Vasicek OU 0.8220 0.8026
CIR RW 0.8589 0.8444
CIR OU 0.8238 0.8038
3/2 RW 0.8688 0.8275
3/2 OU 0.8335 0.7877

RW = random walk; OU = Ornstein-Uhlenbeck; SR = short rate.

are computed using numerical approximations.
At the next hedging time t0 + �, our reserves become

RRW ,π
t0+� = δBt0Bt0+� + δSt0St0+� + δFt0Ft0+�, (5.8)

and we rebalance our portfolio with δBt , δ
S
t and δFt computed according to (5.4).

We proceed in this manner until we arrive at a payment date ti ∈
{t1, t2, . . . , tn}, where we deduct from the accumulated reserves the realised
probability-weighted payoffs due to death and lapsation, giving

RRW ,π
ti = δBti−�Bti + δSti−�Sti + δFti−�Fti (5.9)

− i−1px(t0)(1− ρ)i−1
{
qx+i−1(ti−1)H

(D)
ti + px+i−1(ti−1)ρH

(L)
ti

}
.

At time tn, we also deduct the payoff in respect of the accumulation benefit.

5.4. Hedging results for VA

In this subsection, we provide the results of hedging our VA, for the case of
policies issued to lives aged 65 in 1971 with term 45 years, namely, the case
t0 = 1971, x= 65 and n= 45. Using the data sets and parameter values men-
tioned earlier, we have the initial policy values under each of the models given
in Table 7. It is evident that MMM models of the discounted GOP lead to
lower initial policy values.

Figure 3 illustrates the policy values and reserving strategies under the BS
andMMMmodels, with random walk mortality and Vasicek short rate, where
the surplus levels of reserves attained by the strategy in respect of the MMM
are evident in the latter years of the policy, despite having lower initial reserves.
These surpluses generated via the MMM strategy are helpful when actual mor-
tality and lapse rates vary from those assumed in our models and demonstrate
the less-expensive reserving method proposed. Figures C.1, C.2 and C.3 in
Appendix C illustrate these phenomena when the assumptions for the man-
agement fee, roll-up rate of the guarantee, lapse rate and the factor applied to
the roll-up rate for the surrender benefit are varied.
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FIGURE 3: Reserves and policy values under the MMM and the Black–Scholes model, with random walk
mortality and Vasicek short rate, of the VA with guaranteed minimum death benefit over the period from

1971 until 2016, which provides annual payments from 1972 until 2016.

The less-expensive reserving strategy of the MMM can be attributed par-
ticularly to less-expensive values of zero-coupon bonds and less-expensive
values of put options. The less-expensive values of zero-coupon bonds under
the MMM are evident from a comparison of (4.11) with (4.12). The less-
expensive values of put options under the MMM are not so clear from the
formulae supplied earlier, and we therefore demonstrate this in the following
subsection.

5.5. Hedging results for put option

In this subsection, we focus on hedging a long-dated put option expiring at
time T whose strike price K keeps pace with the level of the equity index by
way of the formula

K = St0 exp
(
(η +mr)(T − t0)

)
, (5.10)

where t0 is the time at which the put option is written and η = 0.046841 is the
net market growth rate and mr = 1

141

∑
s r(s)= 0.045726 is the average of the 1-

year continuously compounded cash rates over the 140-year period of the data.
As per the real-world valuation formula (A1), the time-t value of the put option
is

Vt = St Et

(
1
ST

{
ST − St exp

(
(η +mr)(T − t0)

)}+)
. (5.11)
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TABLE 8

99TH PERCENTILE COSTS OF HEDGING PUT OPTIONS OF VARYING TERMS TO EXPIRY FOR EACH
COMBINATION OF SHORT RATE AND DISCOUNTED GOP MODELS.

Term Vasicek and Vasicek and CIR and CIR and 3/2 and 3/2 and
(Years) BS MMM BS MMM BS MMM

1 0.26 0.27 0.26 0.39 0.27 0.27
2 0.39 0.35 0.38 0.52 0.38 0.35
3 0.42 0.47 0.43 0.65 0.44 0.48
4 0.57 0.60 0.58 0.82 0.61 0.60
5 0.74 0.70 0.74 0.85 0.75 0.75
7 0.92 0.93 0.92 1.18 0.89 1.71
10 1.10 1.31 1.17 1.54 1.32 2.17
15 1.77 1.82 1.97 2.06 2.47 2.47
20 2.65 2.42 3.05 2.63 4.19 3.10
25 3.77 3.20 4.45 3.43 6.72 4.07
30 5.25 4.56 6.31 4.92 10.28 5.08
40 9.73 7.74 12.21 8.63 22.82 9.12
50 17.24 10.54 22.83 12.39 51.44 13.84
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FIGURE 4: Graph showing the 99th percentile cost of hedging put options of varying terms to expiry and
corresponding strike prices given in (5.10).

We attempt to replicate the terminal value of the put option using delta
hedging and, using (5.2), compute the benchmarked costs of hedging a put
option at expiry over all possible periods within the data set. From this, the
99th percentile of the set of benchmarked costs is computed, shown in Table 8
and Figure 4. We determine the best market model to be the one for which
there corresponds the minimum percentile benchmarked cost of hedging.

Each model for which the discounted GOP is modelled by the MMM has
significantly lower costs of hedging long-dated put options and thus lower costs
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of hedging the guaranteed accumulation benefit embedded in the VA. In partic-
ular, we find that among the models having a stochastic short rate, the Vasicek
short rate and MMM, the discounted GOP model provides the best hedging
strategy for long-dated GOP put options.

6. CONCLUSION

The paper illustrates the application of the real-world valuation methodology
under the BA, which is more general than what is given under the classical
risk-neutral approach, and using a modelling framework that has dependence
between the stock market, interest rates and mortality rates. The presented
approach is more general than the risk-neutral approach because the require-
ment that an equivalent martingale probability measure exists is not needed,
allowing, for example, the discounted GOP to be modelled as in the MMM.

Under the assumption of independence of mortality, the equity index and
short-term interest rates, the backtesting of valuations and reserving strategies
under various models has been performed, allowing a comparison under both
real-world and classical valuation approaches.

When the discounted GOP is modelled as in the MMM, the BA permits
the better long-term performance of the equity market compared to that of
the fixed income market to be systematically exploited to produce payoffs in
respect of VAs in a less-expensive way than done by classical approaches.
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APPENDIX A. VALUATION OF CONTINGENT
CLAIMS UNDER THE BA

We provide here a summary of the BA to valuation. Consider a financial market driven
by d-dimensional Brownian motion W= {Wt : t≥ 0} defined on a filtered probability space
(�,A,A,P), where the filtration A is right continuous and complete. Assume that there are a
locally riskless savings account process S0, such that dS0t = rtS0t dt for an interest rate process r,
and m primary security accounts, corresponding to stocks, currencies, bonds and commodities
each denominated in the currency of the savings account, whose values at time t are St ∈R

m

such that dSjt = Sjt{(rt + μ
j
t) dt+ (bjt)

� dWt}, where μt = (μ1
t , . . . ,μ

m
t )

� is the drift vector,
bjt ∈R

d and Bt = (b1t , . . . , b
m
t )

� is the volatility matrix. The jth primary security account,
for j ∈ {0, 1, 2, . . . ,m}, represents the accumulation of all income, costs of carry plus capital
gains and losses achieved while holding the underlying primary security. We restrict ourselves
to the case m= d so that our financial market is complete. When m> d, we have redundant
securities which can be removed from the set of primary security accounts. Alternatively, if
m< d, then the financial market is incomplete. Let Sπ be a self-financing portfolio process
with weights π1

t , . . . , π
m
t in primary security accounts and the remaining weight 1− π�

t 1 in
the savings account, so that d log Sπ

t = {rt + π�
t μt − 1

2π t
�(BtBt�)π t}dt+ π t

�BtdWt. The
GOP is the unique portfolio Sπ∗ ≡ S that makes any benchmarked portfolio process Ŝπ ≡
Sπ/S a local martingale. It is this supermartingale property which is connected with the
absence of strong arbitrage in our financial market, namely, the inability to generate strictly
positive profits in finite time with zero initial wealth. Furthermore, the absence of strong arbi-
trage does not preclude the existence of classical arbitrage opportunities, but in instances
where classical arbitrage is precluded, agreement between the BA to valuation and risk-
neutral valuation is attained. Assuming for Lebesgue almost every t invertibility of BtBt�,
we have that π∗

t = (BtB�
t )

−1μt and letting θ t =B�
t π∗

t , we can write the SDE for the GOP
as dSt = St(rt + ||θ t||2)dt+ Stθ t�dWt. We remark that invertibility of the volatility matrix
BtB�

t ensures that the market price of risk vector θ t =B�
t (BtB

�
t )

−1μt is unique. Defining
the process W via dWt = θ�

t dWt/ ||θ t||, we have that W is a Brownian motion, and there-
fore, we can rewrite the SDE for S as dSt = St(rt + ||θ t||2)dt+ St||θ t|| dWt and the SDE for
the discounted GOP S̄= S/S0 as dS̄t = S̄t ||θ t||2 dt+ S̄t||θ t|| dWt. Another form of the SDE
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for the discounted GOP results, if we define αt = S̄t ||θ t||2, namely dS̄t = αt dt+
√

αtS̄t dWt.
For a given contingent claim HT payable at time T ∈ (0,∞), it has been shown in Platen and
Heath (2006) that the minimal possible value VH

t for a replicating hedge portfolio satisfies the
real-world valuation formula

VH
t =Et

(
St
ST

HT

)
, (A1)

where Et denotes the real-world conditional expectation under the real-world probability
measure. The GOP S is taken here as the numéraire or benchmark, and the benchmarked value

V̂H
t = VH

t

ST
(A2)

forms a martingale when assuming its value to be finite. When an equivalent risk-neutral prob-
ability measure exists, the candidate Radon–Nikodym derivative process � = {�t : t ∈ [0,T ]},
given by

�t = dQ
dP

∣∣At
= S0t
S00

S0
St

,

is a martingale, and we have

VH
t =Et

(
St
ST

HT

)
=Et

(
dQ
dP

∣∣AT

S0t
S0T

HT

)
=EQt

(
S0t
S0T

HT

)
,

which demonstrates agreement between the real-world and risk-neutral valuation formulae in
this case.

We now consider the valuation of contingent claims which are dependent upon stochastic
processes defined on our filtered probability space, independent ofW and which are not traded
in our financial market. In particular, when the mortality rate is independent of the GOP, the
real-world pricing formula values a mortality-linked payoff HT, which is independent of the
GOP and paid at future time T, as

Vt =Et

(
St
ST

HT

)
=Et

(
St
ST

)
Et(HT )=P(t,T)Et(HT ),

where P(t,T) is the real-world value at time t of a T-maturity zero-coupon bond. Here, the con-
nection with actuarial pricing or with the calculation of net present value is made, as described
in Section 10.4 of Platen and Heath (2006).

APPENDIX B. SIMULATIONS OFMODELS

We provide in Figures B.1, B.2, B.3 and B.4 graphs of some Monte Carlo simulations of the
stochastic processes for the discounted GOP S̄t, short rate rt and mortality rate μx+t(t), based
on the fitted parameters in Tables 2, 3 and 4. Alongside the simulations are shown the actual
behaviours of the market variables for comparison and to check the appropriateness of the
models. Although two simulations of each of the models do not provide a complete picture of
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FIGURE B.1: Comparison of the logarithm of the actual discounted stock index with two sets of simulations
of the logarithm of the discounted stock index over 150 years under each of the Black–Scholes and minimal

market models, commencing at January 1871 and using the parameters in Table 2.
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FIGURE B.2: Comparison of actual short rates with two sets of simulations of the short rate over 150 years
under each of the Vasicek, CIR and 3/2 models, commencing at January 1871 and using the parameters in

Table 3. (a) Vasicek model. (b) CIR model. (c) 3/2 model.

the multitudes of paths, they do allow for some comparison with actual behaviour and provide
at least some idea of the possible scenarios under the models.

In Figure B.1, we see that simulations of the BS model and MMM appear to generate dis-
counted GOP paths in line with actual market behaviour. In Figure B.2, we see that simulations
of the Vasicek and CIR models appear to generate paths of the short rate in line with actual
market behaviour. However, Plot (C) within Figure B.2 highlights the potentially explosive
behaviour of the short rate under the 3/2 model.

In Figures B.3 and B.4, the simulations of mortality rates deviate substantially from actual
rates, as mentioned earlier at the end of Subsection 4.1 and supported by graphs of survival
probabilities in Figures 1 and 2.

APPENDIX C. SIMULATED RESERVES AND
POLICY VALUES UNDER DIFFERENT

ASSUMPTIONS

Our assumptions for the management fee ξ , roll-up rate g for the guarantee, factor of f = 0.5
applied to g for the roll-up rate in respect of the surrender benefit and the lapse rate ρ are varied
in this section to illustrate how these affect the reserves and policy values throughout the life of
the policy portfolio.

In Figure C.1, we show the reserves and policy values under both the MMM and Black–
Scholes model and based on random walk mortality and Vasicek short rate, varying the
management fee ξ and roll-up rate g over values in the set {0.02, 0.03, 0.04}.
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FIGURE B.3: Comparison of the actual mortality rates with two sets of simulations of mortality rates in
respect of a male life aged 40 in 1933, under each of the GMSRW and GMSOU models, having the

parameters in Table 4. (a) GMSRW model. (b) GMSOU model. GMSRW = Gompertz-Makeham-Siler
random walk; GMSOU = Gompertz-Makeham-Siler Ornstein-Uhlenbeck.
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FIGURE B.4: Comparison of the actual mortality rates with two sets of simulations of mortality rates in
respect of a male life aged 65 in 1971, under each of the GMSRW and GMSOU models, having the

parameters in Table 4. (a) GMSRW model. (b) GMSOU model. GMSRW = Gompertz-Makeham-Siler
random walk; GMSOU = Gompertz-Makeham-Siler Ornstein-Uhlenbeck.

In Figure C.2, we show the reserves and policy values under both the MMM and Black–
Scholes model, based on random walk mortality and Vasicek short rate, varying the lapse rate
ρ over values in the set {0.02, 0.03, 0.04}.

In Figure C.3, we show the reserves and policy values under both the MMM and Black–
Scholes model, based on random walk mortality and Vasicek short rate, varying the factor f ,
which is applied to the roll-up rate g for computing the surrender benefit, over values in the set
{0.25, 0.5, 0.75}.

As also illustrated in Figure 3, Figures C.1, C.2 and C.3 illustrate the policy values and
reserving strategies under the Black-Scholes (BS) and MMMmodels, with random walk mor-
tality and Vasicek short rate, where the surplus levels of reserves attained by the strategy in
respect of the MMM are evident in the latter years of the policy, despite having lower ini-
tial reserves. Furthermore, these surpluses generated via the MMM strategy are helpful when
actual mortality and lapse rates vary from those assumed in our models, and demonstrate the
less-expensive reserving method proposed.
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FIGURE C.1: Comparison of reserves and policy values, under both the MMM and Black–Scholes model
and based on random walk mortality and Vasicek short rate, for various values of ξ and g, while maintaining

f = 0.5 and ρ = 0.03. (a) ξ = 0.02 and g= 0.02. (b) ξ = 0.02 and g= 0.03. (c) ξ = 0.02 and g= 0.04. (d)
ξ = 0.03 and g= 0.02. (e) ξ = 0.03 and g= 0.03. (f) ξ = 0.03 and g= 0.04. (g) ξ = 0.04 and g= 0.02. (h)

ξ = 0.04 and g= 0.03. (i) ξ = 0.04 and g= 0.04.
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(c)

FIGURE C.2: Comparison of reserves and policy values, under both the MMM and Black–Scholes model
and based on random walk mortality and Vasicek short rate, for various values of ρ, while maintaining

ξ = 0.03, g= 0.03 and f = 0.5. (a) ρ = 0.02. (b) ρ = 0.03. (c) ρ = 0.04.
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FIGURE C.3: Comparison of reserves and policy values, under both the MMM and Black–Scholes model
and based on random walk mortality and Vasicek short rate, for various values of f , while maintaining

ξ = 0.03, g= 0.03 and ρ = 0.03. (a) f = 0.25. (b) f = 0.5. (c) ρ = 0.75.
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