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We consider shot-noise and max-shot-noise processes driven by spatial stationary
Cox(doubly stochastic PoisspprocessesdNe derive their upper and lower bounds

in terms of the increasing convex ordarhich is known as the order relation to
compare the variability of random variabléaurthermorgunder some regularity
assumption of the random intensity fields of Cox procesaesshow the mono-
tonicity result which implies that more variable shot patterns lead to more variable
shot noisesThese are direct applications of the results obtained for so-called Ross-
type conjectures in queuing theory

1. INTRODUCTION
Let {(Xn, Zn)}nen denote a marked point process Bfi X K, d € N, defined on a

probability spacé(, F,P), where(K, K) is some measurable mark space &hd
{1,2,...}. We consider shot-noise procef84s)}.cr« defined by

V(s) = > h(s—X,,Z,), se R (1)

neN

and max-shot-noise procefs(s)}.cr« defined by
U(s) = maxih(s — X, Zo)},  S€ RY, 2
ne
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whereh: RY X K — R is called a response function and is measurable and finite
almost everywherésee e.q., [7]). The mark proces§Z,} <y is a family of inde-
pendent and identically distributddi.d.) random elements and also independent
of the point proces$X,}hen. The stability condition forV(s)| < oo, P-as., for
eachs € RY, is investigated in Westcdil 6, Thm. 1] (see als$4,6]), and we assume
that such a condition is fulfilled as far &%) is concerned

The random fields likg1) and (2) are often used as basic models in optics
meteorologyastronomyand other field§see e.g., [2,15] and references thergin
For exampleif K is the set of compact subsetskff andh(s, z) = Lisey, the indi-
cator of even{s € z}, then(2) gives the indicator function if the positiais in a
germ-grain modeU.en{X, + Y:y € Z,}. However it should be noted that their
characteristics are explicitly evaluated only in exceptional cases such as when
{Xnthen is Poissor{seee.g., [15]). In this article we consider the case whep§, },en
is a stationary CoxXdoubly stochastic Poisspiprocess andh is nonnegative on
RY X K and semicontinuous in the first variabkend we investigate bounds and
monotonicity of(1) and(2) in terms of some stochastic ord&he stochastic order
considered here is called increasing conviex) order and is known as the order
relation to compare the variability of random variablesee e.g., 10]). Our result
shows that the upper bound is realized wk¥p} < is @ mixed Poisson process
with the same marginal distribution of random intensity and,thiatier some pos-
itive dependence assumption of the random intensity ftbkel lower bound is real-
ized when{X,}en is @ homogeneous Poisson process with the same mean intensity
Furthermorethe monotonicity result states that under some regularity assumption
of the random intensity fieldmore variable shot patterns lead to more variable
noises These are direct applications of the results obtained for so-called Ross-type
conjectures in queuing theokgee e.g., [1,3,8,11-13) and provide an example
that queuing theory applies into other fields

This article is organized as followAs a preliminaryin the next sectionwe
give the definitions and some properties of the stochastic orderslnsgdction 3
we derive the upper and lower bounds(df and(2) in terms of increasing convex
order The bounds of their Palm versions are also presented in a similarlway
Section 4 we consider the shot-noise procesggsand (2) where the Cox point
process has the random intensity fields.(S)}scre, € > O, defined by (s) =
A(cs) for s € RY. We show that under some regularity assumptiodX(®s)} s,
(1) and(2) and their Palm versions are decreasing in terms of the increasing
convex orderlt is also noted that the bounds in Section 3 are given as two extremal
cases of the monotonicity result

2. PRELIMINARIES

In this sectionwe give the definitions and useful properties of some stochastic
orders used in the articlé& good reference for this section is a recent monograph
by Miller and Stoyah10]. First, we give the definitions of some classes of func-
tions related to the stochastic ordeféiroughout this articlewe use “increasing”
and “decreasing” in the nonstrict sense
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DEFINITION 1:
(i) A function f R — R is said to be supermodular if for all x andeg R,
f(x)+f(y) =f(xOy) +f(xOy),

where xOy and xOy denote componentwise minimum and maximum,
respectively.

(i) A function f R — R is said to be directionally convex (dcx) if for alf,x
X, Y € R with x; = x, and y= 0,

f(xg+y) —f(x) =f(xa+y) —f(xp).

Note that a function is dcx if and only if it is supermodular and componentwise
convex and note also that usual convexity neither implies nor is implied by direc-
tional convexity(see e.g., [13]). Useful properties of increasing and d@rcx)
functions which often appear in stochastic modedse as followdqsee[7,11]):

LEMMmA 1:

() Let{S{"}.en, i=1,...,k, denote k independent sequences of i.i.d. nonneg-
ative random variables. If:fRX — R is idcx, theng: ZX — R, defined by

d(Ny,...,Ny) = Ef(i s{”,...,}k) s“‘)>,
j=1 j=1

is idcx, whereEjO:l(-) = 0 conventionally, ands: ZX — R, defined by

P(Ng,...,n) = Ef(_ nax s, max {S(k)}>,
=1, ny j=1..., ng

is also idcx, where we tak@axcy(-) = 0 since each S) is nonnegative.

(i) LetN;;i=1,...,k, denote k mutually independent Poisson random vari-
ables, where the mean of 8 A;, i =1,...,k. If ¢: ZX — R is idcx, then
g: RX — R, defined by

g(Al""’/\k) = Ed)(Nl,...,Nk)

I
N
—~~~
>S5
g
>
x
p—

(ng,...,n)EZK 1 e
is also idcx.

Proor: The proof of the first part ofi) and that of(ii) are found i 11, Lemmas 4
and 3 and[8, Lemmas 217 and 218]. The second part ofi) seems new but
is proved similar to the first part by replacing the sums with the maxima since
X, + -++ + X, and maxxy, ..., X,} are both increasing and convexingi=1,...,n.
[ ]
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Note that in Lemma (), {S{"},cy and{S{"}cn, | # j, are mutually indepen-
dent but they are not necessarily identical
The following are the important stochastic orders used throughout this article

DEFINITION 2:

(i) For two R-valued random variables X and Y, we say that X is smaller
than Y in the increasing convex (icx) order and writes, Y if Ef(X) =
Ef(Y) for all increasing and convex functions R — R such that the
expectations exist.

(i) Fortwo R*-valued random vectors X and Y, we say that X is smaller than
Y in the supermodular order and write Xg,, Y if

Ef(X) = Ef(Y), ©)

for all supermodular functions fR* — R such that the expectations exist.
(iii) For two R*-valued random vectors X and Y, we say that X is smaller than

Y in the increasing directionally convex (idcx) order and writes)., Y if

(3) holds for all idex functions:fR* — R such that the expectations exist.
(iv) For two R-valued random field$X(s)}scre and{Y(s)}scrd, We say that

{X(8)}scre is smaller than{Y(s)}scr« in the supermodular [idcx resp.]

order and write

{X(S)}SE]Rd Ssm [Sidcx reSp] {Y(S)}seRd,

ifforanyk€ Nandall s, ..., € RY, (X(sy),..., X(S)) =sm[ =igex F€SPJ
(Y(s1),...,Y(s)).

Because each idcx function is supermodwae have thaiX =g, Y implies
X =iqex Y- Both supermodular and idcx orders are known as the order relations to
compare the strength of positive dependence in random ve(deese.g., [10,
Chap 3]). One of the most famous resultalled Lorentz’s inequalitys as follows
(seeeg., [10, Thm. 3.9.8]):

LemmMa 2 (Lorentz’s Inequality: Let Xy, ..., X, beR-valued random variables and
let F; denote the marginal distribution of;Xi = 1,...,k. Then, for a random vari-
able U uniformly distributed of0,1),

(Xlw-'vxk) Ssm(F:I._l(U )w--’ Fk_l(U ))’
where F1(u) =inf{xER:F(x)=u},ue[0,1),i=1,...,k

In Lemma 2 the right-hand side is known as the random veatdrich has the
strongest positive dependence among ones with marginal distribégens. , Fy).
The next lemmawhich is given by[8, Lemma 33] (see alsd9, Lemma 3) for
stochastic processes on the real Jiiseoften used in the following sections
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LemMmA 3: Suppose that tw@-valued random field$X(s)}sere and {Y(S)}scrd
are a.s. Riemann integrable. {K(S)}scrd <igex {Y(S)}serd, then

(f x(s>ds...,flx(s)ds> sidcxulv(s)ds...,flv(s)ds),

for any k€ N and any disjoint and bounded, .., 1, € B(RY).

Before concluding this section we give the definition of a notion describing the
positive dependence of random vectors and random figdes[10, Def. 3.10.9]
and[8, Def. 3.7]):

DEFINITION 3:

(i) AnRX-valued random vectdiX,..., X,) is said to be conditionally increas-
ing if E[ f(X)|X; = x;,] € J]isincreasing in x j € J, for all increasing
function f, any i€ {1,...,k}, and any subset @ {1,...,k}.

(i) An R-valued random field X(s)}.cre is said to be conditionally increas-
ing ifforanyke Nand all s,...,s € RY, (X(sy),..., X(s,)) is condition-
ally increasing

Combining Theorems.8 and 38 in [8], we have the following

LEMMA 4: Let X= (X4,..., Xi) be conditionally increasing and let* (Yy,...,Y,)
be mutually independent random variables with=Y,, X; for alli =1,...,k. Then,
Y =igex X.

3. BOUNDS

In this sectionwe derive the upper and lower bounds(bf and(2) and also those
of their Palm versionsn terms of the increasing convex ordeor notational con-
veniencewe takes= 0 in (1) and(2) due to the stationarifguppress the symbo) 0
and change the sign ¢K, }.cn; that is we consider

V= h(X,Z,), 4)
U = max{h(X,, Z,)}. (5)

We consideK X,},en @ stationary Cox process and {et(s)}.cre denote the sta-
tionary random intensity field ofX,},en. The corresponding random measures
given by A(ds) = A(s)ds Then lettting N denote the random counting measure
which counts the pointgX, },ey onRY we have thatfor any bounded € B(RY),

PN(I) = n) = E[%e"‘“)}, N=012...
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We assume thafA(s)}scge has positive and finite meaan = EA(0) and that
{A(S)}sere is as. Riemann integrable

Two special cases 4, },er are the homogeneous Poisson process with con-
stant intensityA and the mixed Poisson process with rangdnt constant oY,
intensityA =¢ A(0), where “=¢" denotes equivalence in distributiowe compare
(4) and(5) with the ones that have these special cases of Cox point processes and
the identical mark proced¥,,}nen-

THEOREM 1: Let Vi, and U, denote respectively (4) and (5) where the point pro-
cess{ X, hnen is the mixed Poisson process with random intensity A(0). Then,

\ Sicx Vmix, (6)
u Si(:x Umix- (7)

Furthermore, let W, and U, denote respectively (4) and (5) where {6 }nen
is the homogeneous Poisson process with intensitf {A(S)}scgre is condition-
ally increasing, then

Vhom Sin:x V, (8)
Uhom Sicx u. (9)

Proor: First, we show(6) and (8). For a positive integek, let I, = {l, j;] =
1,...,(k2*"1)9} denote a partition of—k, k] such that each, ; is a cube of side
length ¥2* with U; I ; = [~k k]? andl,; N Iy; = O, j # i. The first step is to
show that for any increasing and conviexhere exists a family of idcx functions
{g®:R%® — R, }en such that

Ef(V) = ||<I_T>o Eg(k)(AUk,l),---,A(|k,y(k))), (10)
wherev (k) = (k2*1)9. Now, for any subset € B(RY), we defineh,: K — R, by
h,(2z) = infh(t, 2), ze K.

tel

Note thath, is measurable ofK, K) for any fixedl € B(RY). Thus definingh®:
RY X K — R, by

v (k)
h9(s2)= 3 h, (21,5 (2 €RXK, (11)
-1

we haveh® (s, z) T h(s, z) ask — oo ae. onR X K. Thereforethe random sequence
{V®}en, given by

VE = 3 h(X,2Z,),

neN
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satisfiesv ® TV as. ask — oo. Sincef is continuously increasingy the monotone
convergence theorem we havé(® ) = lim,_,.. Ef(V®). Now, for | € B(RY), let
M(l) =X en N (Z,)1,(X,). Then V® is expressed by

V(k) = M(Ik,l) + ..o+ M(Ik,u(k))'

Clearly g(Xq,..., %) = f(x, + --- + x,) is idcx for any increasing and convéx
Therefore since{h, (Z,)}nen is a sequence ofiid. variables for fixed € B(RY),
by applying the first part of Lemma(i (conditioning onN(ly1),..., N(lx ,a))
and then by Lemmaii) (conditioning onA(ly4),..., A(lx ,k)), we have the form
of (10).

Let {A(S)}scre be such thatA(s) = A =¢ A(0) for all s € RY. Then by
Lemma 2(Lorentz’s inequality, we have{A(s)}scrs =sm {A(S)}scrd, and there-
fore by Lemma 3(A(lx1),.. -, Allk,a0)) Sigex (A/2%4...,1/2%), where we use
that the Lebesgue measure Igf; is given as|ly ;| = 1/2% for j = 1,...,v (k).
Hence from (10),

Ef(V) = lim EgY(X/2...,X/2) = Ef (Viy,

which completes the proof dB). On the other handet {A(S)}scre be such that
A(s) = A =EX(0) for all s € RY. SinceX =i, A(0) clearly by Jensen’s inequaljty
we have by Lemma 4 th@i (S)}scrd Sigex tA(S)}sera if {A(S)}sere is conditionally
increasingHence similar to the above

Ef(V)= I1im g®(a/24...,A/2%) = Ef (Vhom)s

which completes the proof @B).
Next, we show(7) and (9). Using h®® in (11), we define the sequence
{U®}en by

U® = max{h®(X,, Z,)}
neN

Then U ® T U as. ask— oo and thereforeEf(U) =lim,._,., Ef(U ®) by the mono-
tone convergence theore@inceh, is nonnegative and, 1(s) takes value one at
most ong € {1,...,v(k)} for a givens € RY, we can rewrlte(ll) ash®(s,z) =

..... v (Z)1|K (s)}. Thus defining L(1) = maxen{h (Z,)1(X,)} for

| € B(Rd), we have

U 0 = maX{L(lKl), ey L(Ik,y(k))}-
Finally, sinceg(X4,..., Xc) = f(max{x4,..., X.}) is idcx for any increasing and con-

vex f, we can show7) and(9) similar to the above argument but using the second
part of Lemma 1) instead of the first part u
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In the remainder of this sectipwe consider the Palm versions @) and(5),
which are interpreted as those according to the conditional distribution given a point
at the origin Recall that the Palm version of a stationary Cox process driven by
stationary random measureis given by the Cox process driven by the random
measure\” plus a point added at the origiwhereA® is also the Palm version of
(see eg., [5, Thm. 2 in Sect 2.4]). Since the Palm probability Pwith respect to
the stationary random measukesatisfies R(A) = E[A(0)14]/A, A € F, we can
define the Palm versiofX’(s)}sera Of the stationary process\(s)tscra by the
finite-dimensional distributions

1
P(X’(s) € Cy,...,A°(s) EC) = 3 E[A0) 1s)ec,,... aspecy ] (12)

.....

foranyk €N, sy,...,5 € RY, andC,,...,C € B(R., ). The Palm version\® of the
random measurg is then given by\’(ds) = A°(s) ds Thereforethe Palm versions
of Vin (4) andU in (5) are respectively given by

Vo = h(o’ ZO) + 2 h(xrohzn)y (13)
neN
u° = max{h(O, Zo), maxh(x;,zn)}, (14)
neN

where{X;},en denotes the Cox process with driving random measiyrandZ,
denotes a random element @g, ) with the same distribution a&,, n=1,2,...,
whereasZ, is independent of(X;, Z,)}.en. Note that these Palm versions are not
stationary in probability measure P but are so in the respective Palm probability
measures

We compare the Palm versio(ik3) and(14) with their special caseslote that
the Palm version of a homogeneous Poisson process is the same homogeneous Pois-
son process plus a point added at the origilso, the Palm version of the mixed
Poisson process with random intensitis the mixed Poisson process with random
intensity A° plus a point at the origirwhere RA° € C) = E[A1;3¢;]/A. To obtain
the Palm version of Theorem We use the following lemmahe case ofi = 1,
which is implicitly used in[9].

LemmMma 5: If two R-valued random field$X(s)}sere and{Y(s)}.cre are a.s. Rie-
mann integrable andX(s)}scrd <igex {Y(9)}sere, then for any idex fR* — R,

E[X(O)f(f X(s) ds...,f X(s) ds)] = E[Y(O)f(f Y(s) ds...,f Y(s) ds)],

for any disjoint and bounded,)l..., I, € B(RY), provided that the expectations
exist.
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Proor: The proof is similar to that of Lemma 3 because we can easily check that if
f: R » Ris idcx, theng: R — R defined byg(Xo, X1, ..., Xk) = Xof (X4, ..., Xy)
is also idcx(se€[8, Lemma 33] and[9, Lemma 3). |

CororLARY 1. Let V;, and Uy, denote respectivgly (13) and (14) whé¥}, cn
is the mixed Poisson process with random intensity=s; A°(0). Then,

\% Si(:>< Vmix,
u Sicx Umix-

Furthermore, let \,,and Us,,denote respectively (13) and (14) whé¥ }, <y is
the homogeneous Poisson process with intensity {A(S)}scra iS conditionally
increasing, then

Vhom Sit:x \ )
Uhom Sicx u .

Proor: In a method similar to the proof of Theorem 1 and usihg), we have

Ef(V°) = liirgoEg<k>(A°(IK1),...,A°(|Kv(k)))
1 (k)
= il_rf; i E[A(0)g (A(Ik,l)’-~~,A(Ik,u(k)))]~ (15)
Hence the result follows using Lemma 5 instead of Lemma 3 |

4. MONOTONICITY

In this sectionwe introduce a regularity property for stationary and isotrdpe,
motion-invarianiseg e.g., [15]) random fieldswhich serves as the assumption for
the monotonicity resultgésee[9] for the version of stationary stochastic processes
on the line.

DEFINITION 4: A stationary and isotropic random fielX(s)}scre is said to be
= rregular [Sigecregular resp.] if forany k€ Nands,...,Sq ty, ..., t € R such
that|s — s = [t — t;] foralli,j=1,...,k,

(X(tl)v [RRE) X(tk)) Ssm [Sidcx reSP] (X(Sl)a LR} X(Sk))

Note that if a random fieldX(s)}.cre IS =g rregular it is also=,4-regular The
above-described regularity properties define the strength of positive dependence in
random fieldsThe relation between the regularity property here and the condition-
ally increasing property in Section 2 needs further resedrbbl regularity prop-

erty in this section seems to require more than the conditionally increasing since
the influence of the distance on the dependence is not concerned in theHatter

ever in the case wherd = 1, the one-dimensional casand{X(s)}scr is Marko-

vian, the conditionally increasing property reduces to doubly stochastic monotonicity
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defined in[9] (see alsd1]), and it is shown i 9] that stationary and doubly sto-
chastic monotone Markov processes agrregular

Example 1: Consider a stationary and isotropic Gaussian f{¢s)}.cr4. Due to
stationarity and isotropythe covariance function is just a function of the distance
and not of the directianthat is Cov[X(s), X(s)] = C(|ls — qH) fors,s € RY,
Therefore by Theorem 3L3.5 of [10], we have tha{X(s)}.cge is =snrregular if
and only if the covariance functio@ is decreasing

LemMma 6: Let a stationary and isotropic random fie{X(s)}.cre be =¢,rregular
[ =igecregular resp.]. Then, the random fielX.(S)}.cre defined by X(s) =
X(cs), s € RY, is =g +decreasing Eiq-decreasing resp.] in ¢ 0.

In Lemma 6 {X.(s)}scre fluctuates more actively as increases while the
mean value remains the same because of the statianasitgn example of the
=iec-regular random intensity field of Cox processe can choosgA(S)}sepe
defined byA(s) = max{X(s),0}, s € RY, for a stationary and isotropic Gaussian
field {X(s)}sere With decreasing covariance function sinteg;(-),...,g¢(-)) is
idex for idex f: RK — R and increasing and convey, ..., g R — R.

THEOREM 2: Given a stationary and isotropic random fieJd (S)}.cre With mean

A, we defing A¢(S)}sera, € > 0, by As(S) = A(cs) for all s € RY. Let \, U, Vi, and

U¢ denote respectively shot noise (4), max shot noise (5), and their Palm versions
(13) and (14) where the point proce§X,}.cx is the Cox process driven by the
random intensity fieldA.(S)}eere. If {A(S)}serd iS <igex-regular, then Y, U, V¢,

and U; are all =;,-decreasing in ¢$0).

Proor: The proof is immediate from the proof of Theoremapplying Lemmas 3
and 6 For the Palm versionsve use(15) and Lemma 5 instead of Lemma 3H

The bounds obtained in the previous section are considered the extremal cases
of Theorem 2 in the sense that the limit@as»> 0 reduces to the case of the mixed

Poisson process and the limit as»> oo reduces to the case of the homogeneous
Poisson processhat is for any bounded subséte B(RY),

IimOAC(I) = IimofA(cs) ds= A(0)|1], as,
c— c— |

and if {A(S)}scre is ergodic

I -
lim A (l) = lim f)\(cs)ds— lim % A(s)ds=A|l]|, as,

whereA.(ds) = A(s) dsandcl = {cs€ R%:se |}, c > 0.
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