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We consider shot-noise and max-shot-noise processes driven by spatial stationary
Cox~doubly stochastic Poisson! processes+We derive their upper and lower bounds
in terms of the increasing convex order, which is known as the order relation to
compare the variability of random variables+ Furthermore, under some regularity
assumption of the random intensity fields of Cox processes, we show the mono-
tonicity result which implies that more variable shot patterns lead to more variable
shot noises+ These are direct applications of the results obtained for so-called Ross-
type conjectures in queuing theory+

1. INTRODUCTION

Let $~Xn,Zn!%n[N denote a marked point process onRd 3 K, d [ N, defined on a
probability space~V,F,P!, where~K,K! is some measurable mark space andN 5
$1,2, + + + % +We consider shot-noise process$V~s!%s[Rd defined by

V~s! 5 (
n[N

h~s2 Xn,Zn!, s [ Rd (1)

and max-shot-noise process$U~s!%s[Rd defined by

U~s! 5 max
n[N

$h~s2 Xn,Zn!%, s [ Rd, (2)

Probability in the Engineering and Informational Sciences, 18, 2004, 561–571+ Printed in the U+S+A+

© 2004 Cambridge University Press 0269-9648004 $16+00 561

https://doi.org/10.1017/S026996480418409X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480418409X


whereh: Rd 3 K r R is called a response function and is measurable and finite
almost everywhere~see, e+g+, @7#!+ The mark process$Zn%n[N is a family of inde-
pendent and identically distributed~i+i+d+! random elements and also independent
of the point process$Xn%n[N+ The stability condition for6V~s!6 , `, P-a+s+, for
eachs[ Rd, is investigated in Westcott@16, Thm+ 1# ~see also@4,6# !, and we assume
that such a condition is fulfilled as far as~1! is concerned+

The random fields like~1! and ~2! are often used as basic models in optics,
meteorology, astronomy, and other fields~see, e+g+, @2,15# and references therein!+
For example, if K is the set of compact subsets ofRd andh~s, z! 5 1$s[z%, the indi-
cator of event$s [ z% , then~2! gives the indicator function if the positions is in a
germ-grain modelUn[N$Xn 1 y : y [ Zn%+ However, it should be noted that their
characteristics are explicitly evaluated only in exceptional cases such as when
$Xn%n[N is Poisson~see, e+g+, @15#!+ In this article,we consider the case where$Xn%n[N
is a stationary Cox~doubly stochastic Poisson! process andh is nonnegative on
Rd 3 K and semicontinuous in the first variable, and we investigate bounds and
monotonicity of~1! and~2! in terms of some stochastic order+ The stochastic order
considered here is called increasing convex~icx! order and is known as the order
relation to compare the variability of random variables~see, e+g+, 10# !+ Our result
shows that the upper bound is realized when$Xn%n[N is a mixed Poisson process
with the same marginal distribution of random intensity and that, under some pos-
itive dependence assumption of the random intensity field, the lower bound is real-
ized when$Xn%n[N is a homogeneous Poisson process with the same mean intensity+
Furthermore, the monotonicity result states that under some regularity assumption
of the random intensity field, more variable shot patterns lead to more variable
noises+ These are direct applications of the results obtained for so-called Ross-type
conjectures in queuing theory~see, e+g+, @1,3,8,11–13# ! and provide an example
that queuing theory applies into other fields+

This article is organized as follows+ As a preliminary, in the next section, we
give the definitions and some properties of the stochastic orders used+ In Section 3,
we derive the upper and lower bounds of~1! and~2! in terms of increasing convex
order+ The bounds of their Palm versions are also presented in a similar way+ In
Section 4, we consider the shot-noise processes~1! and ~2! where the Cox point
process has the random intensity fields$lc~s!%s[Rd , c . 0, defined bylc~s! 5
l~cs! for s [ Rd+ We show that under some regularity assumption of$l~s!%s[Rd ,
~1! and ~2! and their Palm versions are decreasing inc in terms of the increasing
convex order+ It is also noted that the bounds in Section 3 are given as two extremal
cases of the monotonicity result+

2. PRELIMINARIES

In this section, we give the definitions and useful properties of some stochastic
orders used in the article+ A good reference for this section is a recent monograph
by Müller and Stoyan@10# + First, we give the definitions of some classes of func-
tions related to the stochastic orders+ Throughout this article, we use “increasing”
and “decreasing” in the nonstrict sense+
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Definition 1:

(i) A function f: Rk r R is said to be supermodular if for all x and y[ Rk,

f ~x! 1 f ~ y! # f ~x ∧ y! 1 f ~x ∨ y!,

where x∧ y and x∨ y denote componentwise minimum and maximum,
respectively.

(ii) A function f: Rk r R is said to be directionally convex (dcx) if for all x1,
x2, y [ Rk with x1 # x2 and y$ 0,

f ~x1 1 y! 2 f ~x1! # f ~x2 1 y! 2 f ~x2!+

Note that a function is dcx if and only if it is supermodular and componentwise
convex and note also that usual convexity neither implies nor is implied by direc-
tional convexity~see, e+g+, @13# !+ Useful properties of increasing and dcx~idcx!
functions, which often appear in stochastic models, are as follows~see@7,11# !:

Lemma 1:

(i) Let $Sn
~i ! %n[N, i 51, + + + , k, denote k independent sequences of i.i.d. nonneg-

ative random variables. If f: Rk r R is idcx, thenf: Z1
k r R, defined by

f~n1, + + + , nk! 5 E fS(
j51

n1

Sj
~1! , + + + ,(

j51

nk

Sj
~k!D,

is idcx, where(j51
0 ~{! 5 0 conventionally, andc: Z1

k r R, defined by

c~n1, + + + , nk! 5 E f S max
j51, + + + , n1

$Sj
~1! %, + + + , max

j51, + + + , nk

$Sj
~k! %D,

is also idcx, where we takemaxj[B~{! 5 0 since each Sj
~i ! is nonnegative.

(ii) Let Ni ; i 5 1, + + + , k, denote k mutually independent Poisson random vari-
ables, where the mean of Ni is l i , i 5 1, + + + , k. If f: Z1

k r R is idcx, then
g: R1

k r R, defined by

g~l1, + + + ,lk! 5 E f~N1, + + + ,Nk!

5 (
~n1, + + + , nk![Z1

k

f~n1, + + + , nk!
l1

n1 + + +lk
nk

n1! + + +nk!
e2~l11{{{1lk!,

is also idcx.

Proof: The proof of the first part of~i! and that of~ii ! are found in@11, Lemmas 4
and 3# and @8, Lemmas 2+17 and 2+18# + The second part of~i! seems new but
is proved similar to the first part by replacing the sums with the maxima since
x1 1 {{{ 1 xn and max$x1, + + + , xn% are both increasing and convex inxi , i 51, + + + , n+

n
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Note that in Lemma 1~i!, $Sn
~i ! %n[N and$Sn

~ j ! %n[N , i Þ j, are mutually indepen-
dent, but they are not necessarily identical+

The following are the important stochastic orders used throughout this article:

Definition 2:

(i) For two R-valued random variables X and Y, we say that X is smaller
than Y in the increasing convex (icx) order and write X#icx Y if E f ~X ! #
E f ~Y! for all increasing and convex functions f: R r R such that the
expectations exist.

(ii) For two Rk-valued random vectors X and Y, we say that X is smaller than
Y in the supermodular order and write X#sm Y if

E f ~X ! # E f ~Y!, (3)

for all supermodular functions f: Rk r R such that the expectations exist.
(iii) For two Rk-valued random vectors X and Y, we say that X is smaller than

Y in the increasing directionally convex (idcx) order and write X#idcx Y if
(3) holds for all idcx functions f: Rk r R such that the expectations exist.

(iv) For two R-valued random fields$X~s!%s[Rd and $Y~s!%s[Rd, we say that
$X~s!%s[Rd is smaller than$Y~s!%s[Rd in the supermodular [idcx resp.]
order and write

$X~s!%s[Rd #sm @#idcx resp+# $Y~s!%s[Rd ,

if for any k[ N and all s1, + + + ,sk [ Rd, ~X~s1!, + + + ,X~sk!! #sm @#idcx resp.#
~Y~s1!, + + + ,Y~sk!!.

Because each idcx function is supermodular, we have thatX #sm Y implies
X #idcx Y+ Both supermodular and idcx orders are known as the order relations to
compare the strength of positive dependence in random vectors~see, e+g+, @10,
Chap+ 3# !+One of the most famous results, called Lorentz’s inequality, is as follows
~see, e+g+, @10, Thm+ 3+9+8# !:

Lemma 2 ~Lorentz’s Inequality!: Let X1, + + + ,Xk beR-valued random variables and
let Fi denote the marginal distribution of Xi, i 5 1, + + + , k. Then, for a random vari-
able U uniformly distributed on@0,1!,

~X1, + + + ,Xk! #sm ~F1
21~U !, + + + ,Fk

21~U !!,

where Fi
21~u! 5 inf $x [ R : Fi ~x! $ u%, u [ @0,1!, i 5 1, + + + , k.

In Lemma 2, the right-hand side is known as the random vector, which has the
strongest positive dependence among ones with marginal distributions~F1, + + + ,Fk!+
The next lemma, which is given by@8, Lemma 3+3# ~see also@9, Lemma 3# ! for
stochastic processes on the real line, is often used in the following sections+
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Lemma 3: Suppose that twoR-valued random fields$X~s!%s[Rd and $Y~s!%s[Rd

are a.s. Riemann integrable. If$X~s!%s[Rd #idcx $Y~s!%s[Rd, then

SE
I1

X~s! ds, + + + ,E
Ik

X~s! dsD #idcx SE
I1

Y~s! ds, + + + ,E
Ik

Y~s! dsD,
for any k[ N and any disjoint and bounded I1, + + + , Ik [ B~Rd!.

Before concluding this section we give the definition of a notion describing the
positive dependence of random vectors and random fields~see@10, Def+ 3+10+9#
and@8, Def+ 3+7# !:

Definition 3:

(i) AnRk-valued random vector~X1, + + + ,Xk! is said to be conditionally increas-
ing if E@ f ~Xi !6Xj 5 xj , j [ J# is increasing in xj, j [ J, for all increasing
function f, any i[ $1, + + + , k%, and any subset J, $1, + + + , k%.

(ii) An R-valued random field$X~s!%s[Rd is said to be conditionally increas-
ing if for any k[ N and all s1, + + + ,sk [ Rd, ~X~s1!, + + + ,X~sk!! is condition-
ally increasing.

Combining Theorems 3+6 and 3+8 in @8# , we have the following:

Lemma 4: Let X5 ~X1, + + + ,Xk! be conditionally increasing and let Y5 ~Y1, + + + ,Yk!
be mutually independent random variables with Yi #icx Xi for all i 51, + + + , k. Then,
Y #idcx X.

3. BOUNDS

In this section, we derive the upper and lower bounds of~1! and~2! and also those
of their Palm versions, in terms of the increasing convex order+ For notational con-
venience, we takes5 0 in ~1! and~2! due to the stationarity, suppress the symbol 0,
and change the sign of$Xn%n[N; that is, we consider

V 5 (
n[N

h~Xn,Zn!, (4)

U 5 max
n[N

$h~Xn,Zn!%+ (5)

We consider$Xn%n[N a stationary Cox process and let$l~s!%s[Rd denote the sta-
tionary random intensity field of$Xn%n[N+ The corresponding random measureL is
given byL~ds! 5 l~s! ds+ Then, lettting N denote the random counting measure
which counts the points$Xn%n[N onRd, we have that, for any boundedI [ B~Rd!,

P~N~I ! 5 n! 5 EFL~I !n

n!
e2L~I !G , n 5 0,1,2, + + + +
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We assume that$l~s!%s[Rd has positive and finite meanNl 5 E l~0! and that
$l~s!%s[Rd is a+s+ Riemann integrable+

Two special cases of$Xn%n[N are the homogeneous Poisson process with con-
stant intensity Nl and the mixed Poisson process with random, but constant onRd,
intensity Dl 5st l~0!, where “5st” denotes equivalence in distribution+We compare
~4! and~5! with the ones that have these special cases of Cox point processes and
the identical mark process$Zn%n[N+

Theorem 1: Let Vmix and Umix denote respectively (4) and (5) where the point pro-
cess$Xn%n[N is the mixed Poisson process with random intensityDl 5st l~0!. Then,

V #icx Vmix , (6)

U #icx Umix + (7)

Furthermore, let Vhom and Uhom denote respectively (4) and (5) where the$Xn%n[N
is the homogeneous Poisson process with intensityNl. If $l~s!%s[Rd is condition-
ally increasing, then

Vhom #icx V, (8)

Uhom #icx U+ (9)

Proof: First, we show~6! and ~8!+ For a positive integerk, let Ik 5 $Ik, j ; j 5
1, + + + , ~k2k11!d% denote a partition of@2k, k# d such that eachIk, j is a cube of side
length 102k with øj Ik, j 5 @2k, k# d and Ik, j ù Ik, i 5 B, j Þ i + The first step is to
show that for any increasing and convexf, there exists a family of idcx functions
$g~k! :R1

n~k! r R1%k[N such that

E f ~V ! 5 lim
kr`

E g~k! ~L~Ik,1!, + + + ,L~Ik,n~k! !!, (10)

wheren~k! 5 ~k2k11!d+ Now, for any subsetI [ B~Rd!, we define thI : K r R1 by

thI ~z! 5 inf
t[I

h~t, z!, z [ K+

Note that thI is measurable on~K,K! for any fixedI [ B~Rd!+ Thus, definingh ~k!:
Rd 3 K r R1 by

h ~k! ~s, z! 5 (
j51

n~k!

thIk, j ~z!1Ik, j ~s!, ~s, z! [ Rd 3 K, (11)

we haveh ~k!~s, z! F h~s, z! askr` a+e+ onR3 K+ Therefore, the random sequence
$V ~k! %k[N, given by

V ~k! 5 (
n[N

h ~k! ~Xn,Zn!,
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satisfiesV ~k! F V a+s+ askr`+ Sincef is continuously increasing, by the monotone
convergence theorem we have Ef ~V ! 5 limkr`E f ~V ~k! !+ Now, for I [ B~Rd!, let
M~I ! 5 (n[N thI ~Zn!1I ~Xn!+ Then, V ~k! is expressed by

V ~k! 5 M~Ik,1! 1 {{{ 1 M~Ik,n~k! !+

Clearly, g~x1, + + + , xk! 5 f ~x1 1 {{{ 1 xk! is idcx for any increasing and convexf+
Therefore, since$ thI ~Zn!%n[N is a sequence of i+i+d+ variables for fixedI [ B~Rd!,
by applying the first part of Lemma 1~i! ~conditioning onN~Ik,1!, + + + ,N~Ik,n~k!!!
and then by Lemma 1~ii ! ~conditioning onL~Ik,1!, + + + ,L~Ik,n~k!!!, we have the form
of ~10!+

Let $ Dl~s!%s[Rd be such that Dl~s! 5 Dl 5st l~0! for all s [ Rd+ Then, by
Lemma 2~Lorentz’s inequality!, we have$l~s!%s[Rd #sm $ Dl~s!%s[Rd , and there-
fore by Lemma 3, ~L~Ik,1!, + + + ,L~Ik,n~k!!! #idcx ~ Dl02kd, + + + , Dl02kd!, where we use
that the Lebesgue measure ofIk, j is given as6 Ik, j 6 5 102kd for j 5 1, + + + ,n~k!+
Hence, from ~10!,

E f ~V ! # lim
kr`

E g~k! ~ Dl02kd, + + + , Dl02kd! 5 E f ~Vmix!,

which completes the proof of~6!+ On the other hand, let $ Nl~s!%s[Rd be such that
Nl~s! 5 Nl 5 E l~0! for all s [ Rd+ Since Nl #icx l~0! clearly by Jensen’s inequality,

we have by Lemma 4 that$ Nl~s!%s[Rd #idcx $l~s!%s[Rd if $l~s!%s[Rd is conditionally
increasing+ Hence, similar to the above,

E f ~V ! $ lim
kr`

g~k! ~ Nl02kd, + + + , Nl02kd! 5 E f ~Vhom!,

which completes the proof of~8!+
Next, we show ~7! and ~9!+ Using h ~k! in ~11!, we define the sequence

$U ~k! %k[N by

U ~k! 5 max
n[N

$h ~k! ~Xn,Zn!%+

Then,U ~k! FU a+s+ askr` and, therefore,E f ~U !5 limkr`E f ~U ~k! ! by the mono-
tone convergence theorem+ Since thI is nonnegative and 1Ik, j ~s! takes value one at
most onej [ $1, + + + , n~k!% for a givens [ Rd, we can rewrite~11! ash ~k!~s, z! 5
maxj51, + + + ,n~k! $ thIk, j ~z!1Ik, j ~s!% + Thus, defining L~I ! 5 maxn[N$ thI ~Zn!1I ~Xn!% for
I [ B~Rd!, we have

U ~k! 5 max$L~Ik,1!, + + + , L~Ik,n~k! !%+

Finally, sinceg~x1, + + + , xk! 5 f ~max$x1, + + + , xk%! is idcx for any increasing and con-
vex f, we can show~7! and~9! similar to the above argument but using the second
part of Lemma 1~i! instead of the first part+ n
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In the remainder of this section, we consider the Palm versions of~4! and~5!,
which are interpreted as those according to the conditional distribution given a point
at the origin+ Recall that the Palm version of a stationary Cox process driven by
stationary random measureL is given by the Cox process driven by the random
measureL+ plus a point added at the origin, whereL+ is also the Palm version ofL
~see, e+g+, @5, Thm+ 2 in Sect+ 2+4# !+ Since the Palm probability PL0 with respect to
the stationary random measureL satisfies PL0 ~A! 5 E@l~0!1A#0 Nl, A [ F, we can
define the Palm version$l+~s!%s[Rd of the stationary process$l~s!%s[Rd by the
finite-dimensional distributions:

P~l+~s1! [ C1, + + + ,l+~sk! [ Ck! 5
1

Nl
E@l~0!1$l~s1![C1, + + + ,l~sk![Ck% # , (12)

for anyk [ N, s1, + + + ,sk [ Rd, andC1, + + + ,Ck [ B~R1!+ The Palm versionL+ of the
random measureL is then given byL+~ds! 5 l+~s! ds+ Therefore, the Palm versions
of V in ~4! andU in ~5! are respectively given by

V + 5 h~0,Z0! 1 (
n[N

h~Xn
+ ,Zn!, (13)

U + 5 maxHh~0,Z0!, max
n[N

h~Xn
+ ,Zn!J, (14)

where$Xn
+ %n[N denotes the Cox process with driving random measureL+ , andZ0

denotes a random element on~K,K! with the same distribution asZn, n 5 1,2, + + + ,
whereasZ0 is independent of$~Xn

+ ,Zn!%n[N + Note that these Palm versions are not
stationary in probability measure P but are so in the respective Palm probability
measures+

We compare the Palm versions~13! and~14! with their special cases+ Note that
the Palm version of a homogeneous Poisson process is the same homogeneous Pois-
son process plus a point added at the origin+ Also, the Palm version of the mixed
Poisson process with random intensityDl is the mixed Poisson process with random
intensity Dl+ plus a point at the origin, where P~ Dl+ [ C! 5 E@ Dl1$ Dl[C%#0 Nl+ To obtain
the Palm version of Theorem 1, we use the following lemma, the case ofd 5 1,
which is implicitly used in@9# +

Lemma 5: If two R-valued random fields$X~s!%s[Rd and $Y~s!%s[Rd are a.s. Rie-
mann integrable and$X~s!%s[Rd #idcx $Y~s!%s[Rd, then for any idcx f: Rk r R,

EFX~0! fSE
I1

X~s! ds, + + + ,E
Ik

X~s! dsDG # EFY~0! fSE
I1

Y~s! ds, + + + ,E
Ik

Y~s! dsDG,
for any disjoint and bounded I1, + + + , Ik [ B~Rd!, provided that the expectations
exist.
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Proof: The proof is similar to that of Lemma 3 because we can easily check that if
f : Rk r R is idcx, theng: Rk11 r R defined byg~x0, x1, + + + , xk! 5 x0 f ~x1, + + + , xk!
is also idcx~see@8, Lemma 3+3# and@9, Lemma 3# !+ n

Corollary 1: Let Vmix
+ and Umix

+ denote respectively (13) and (14) where$Xn
+ %n[N

is the mixed Poisson process with random intensityDl+ 5st l+~0!. Then,

V + #icx Vmix
+ ,

U + #icx Umix
+ +

Furthermore, let Vhom
+ and Uhom

+ denote respectively (13) and (14) where$Xn
+ %n[N is

the homogeneous Poisson process with intensityNl. If $l~s!%s[Rd is conditionally
increasing, then

Vhom
+ #icx V +,

Uhom
+ #icx U ++

Proof: In a method similar to the proof of Theorem 1 and using~12!, we have

E f ~V + ! 5 lim
kr`

E g~k! ~L+~Ik,1!, + + + ,L+~Ik,n~k! !!

5 lim
kr`

1

Nl
E@l~0!g~k! ~L~Ik,1!, + + + ,L~Ik,n~k! !!# + (15)

Hence, the result follows using Lemma 5 instead of Lemma 3+ n

4. MONOTONICITY

In this section, we introduce a regularity property for stationary and isotropic~i+e+,
motion-invariant; see, e+g+, @15# ! random fields, which serves as the assumption for
the monotonicity results~see@9# for the version of stationary stochastic processes
on the line!+

Definition 4: A stationary and isotropic random field$X~s!%s[Rd is said to be
#sm-regular [#idcx-regular resp.] if for any k[ N and s1, + + + ,sk, t1, + + + , tk [ Rd such
that 7si 2 sj7 # 7ti 2 tj7 for all i , j 5 1, + + + , k,

~X~t1!, + + + ,X~tk!! #sm @#idcx resp+# ~X~s1!, + + + ,X~sk!!+

Note that if a random field$X~s!%s[Rd is #sm-regular, it is also#idcx-regular+ The
above-described regularity properties define the strength of positive dependence in
random fields+ The relation between the regularity property here and the condition-
ally increasing property in Section 2 needs further research+ The regularity prop-
erty in this section seems to require more than the conditionally increasing since
the influence of the distance on the dependence is not concerned in the latter+ How-
ever, in the case whered 5 1, the one-dimensional case, and$X~s!%s[R is Marko-
vian, the conditionally increasing property reduces to doubly stochastic monotonicity,
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defined in@9# ~see also@1# !, and it is shown in@9# that stationary and doubly sto-
chastic monotone Markov processes are#sm-regular+

Example 1:Consider a stationary and isotropic Gaussian field$X~s!%s[Rd + Due to
stationarity and isotropy, the covariance function is just a function of the distance
and not of the direction; that is, Cov@X~si !,X~sj !# 5 C~7si 2 sj7! for si ,sj [ Rd+
Therefore, by Theorem 3+13+5 of @10#, we have that$X~s!%s[Rd is #sm-regular if
and only if the covariance functionC is decreasing+

Lemma 6: Let a stationary and isotropic random field$X~s!%s[Rd be#sm-regular
[ #idcx-regular resp.]. Then, the random field$Xc~s!%s[Rd defined by Xc~s! 5
X~cs!, s [ Rd, is #sm-decreasing [#idcx-decreasing resp.] in c. 0.

In Lemma 6, $Xc~s!%s[Rd fluctuates more actively asc increases while the
mean value remains the same because of the stationarity+ As an example of the
#idcx-regular random intensity field of Cox process, we can choose$l~s!%s[Rd

defined byl~s! 5 max$X~s!,0% , s [ Rd, for a stationary and isotropic Gaussian
field $X~s!%s[Rd with decreasing covariance function sincef ~g1~{!, + + + , gk~{!! is
idcx for idcx f : Rk r R and increasing and convexg1, + + + , gk: R r R+

Theorem 2: Given a stationary and isotropic random field$l~s!%s[Rd with mean
Nl, we define$lc~s!%s[Rd, c . 0, bylc~s! 5 l~cs! for all s [ Rd. Let Vc, Uc, Vc

+ , and
Uc

+ denote respectively shot noise (4), max shot noise (5), and their Palm versions
(13) and (14) where the point process$Xn%n[N is the Cox process driven by the
random intensity field$lc~s!%s[Rd. If $l~s!%s[Rd is #idcx-regular, then Vc, Uc, Vc

+ ,
and Uc

+ are all #icx-decreasing in c (.0).

Proof: The proof is immediate from the proof of Theorem 1, applying Lemmas 3
and 6+ For the Palm versions, we use~15! and Lemma 5 instead of Lemma 3+ n

The bounds obtained in the previous section are considered the extremal cases
of Theorem 2 in the sense that the limit asc r 0 reduces to the case of the mixed
Poisson process and the limit asc r ` reduces to the case of the homogeneous
Poisson process; that is, for any bounded subsetI [ B~Rd!,

lim
cr0

Lc~I ! 5 lim
cr0

E
I

l~cs! ds5 l~0!6 I 6, a+s+,

and if $l~s!%s[Rd is ergodic,

lim
cr`

Lc~I ! 5 lim
cr`

E
I

l~cs! ds5 lim
cr`

6 I 6

c6 I 6
E

cI

l~s! ds5 Nl 6 I 6, a+s+,

whereLc~ds! 5 lc~s! dsandcI 5 $cs[ Rd : s [ I % , c . 0+
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