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Abstract

The signature of a coherent system is a useful tool in the study and comparison of lifetimes
of engineered systems. In order to compare two systems of different sizes with respect
to their signatures, the smaller system needs to be represented by an equivalent system
of the same size as the larger system. In the paper we show how to construct equivalent
systems by adding irrelevant components to the smaller system. This leads to simpler
proofs of some current key results, and throws new light on the interpretation of mixed
systems. We also present a sufficient condition for equivalence of systems of different
sizes when restricting to coherent systems. In cases where for a given system there is no
equivalent system of smaller size, we characterize the class of lower-sized systems with a
signature vector which stochastically dominates the signature of the larger system. This
setup is applied to an optimization problem in reliability economics.
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1. Introduction

Consider a coherent system with n components, as defined in the classical monograph of
Barlow and Proschan [1]. (We shall in the following say, for short, that a system with n

components is an n-system.) Suppose that the component lifetimes are independent and
identically distributed (i.i.d.) with continuous survival function F̄ and let X1:n < X2:n <

· · · < Xn:n be the ordered lifetimes of the n components. Samaniego [8] introduced the
signature vector, s = (s1, . . . , sn), of the system, defined by sk = P(T = Xk:n); k = 1, . . . , n.
The signature of a system depends only on the system’s design and does not depend on the
distribution of the component lifetimes. A key result is Samaniego [9, Theorem 3.1], stating
that the survival function of the lifetime T of the system can be represented in terms of the
signature vector as

F̄T (t) = P(T > t) =
n∑

i=1

si

i−1∑
j=0

(
n

j

)
(1 − F̄ (t))j (F̄ (t))n−j = h(F̄ (t)), (1)

Received 11 September 2014; revision received 25 February 2015.
∗ Postal address: Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7491
Trondheim, Norway. Email address: bo.lindqvist@math.ntnu.no
∗∗ Postal address: Department of Statistics, Mathematical Sciences Building, One Shields Avenue, University of
California, Davis, CA 95616, USA.
∗∗∗ Postal address: Department of Mathematics, University of Oslo, PO Box 1053 Blindern, N-0316 Oslo, Norway.

332

https://doi.org/10.1017/apr.2016.3 Published online by Cambridge University Press

http://www.appliedprobability.org
mailto:bo.lindqvist@math.ntnu.no?subject=Adv. Appl. Prob.%20paper%2015488
https://doi.org/10.1017/apr.2016.3


Equivalence of systems 333

Figure 1: Two equivalent systems, with common reliability polynomial h(p) = 3p2 − 2p3, but with
different signature vectors, (0, 1, 0) (a), (0, 1

2 , 1
2 , 0) (b).

where

h(p) =
n∑

i=1

si

i−1∑
j=0

(
n

j

)
(1 − p)jpn−j , 0 ≤ p ≤ 1, (2)

is the so-called reliability polynomial corresponding to the system; see also [1].
As argued in [9, pp. 28–31] it may be convenient to extend the class of n-systems to include

so-called mixed n-systems, which are stochastic mixtures of coherent n-systems. It is easy
to see that (1) continues to hold for mixed systems. Note that while, for a given n, there are
finitely many coherent n-systems and therefore also finitely many possible signature vectors
corresponding to coherent n-systems, any probability vector (s1, . . . , sn) can serve as the
signature vector of a mixed system. One possible representation of such a mixed system is
the one which assigns, for k = 1, . . . , n, probability sk to a k-out-of-n system, i.e. an n-system
which fails upon the kth component failure.

Following Navarro et al. [5, Section 2.1], we shall say that two mixed systems with i.i.d.
component lifetimes with distributionF are equivalent if the lifetime distributions of the systems
are identical, given any component distribution F . In view of (1) and (2) we state the following
alternative definition.

Definition 1. Two mixed systems are said to be equivalent if their reliability polynomials (2)
are equal as functions of p, 0 ≤ p ≤ 1.

It is important to note that two systems may be equivalent even if they do not have the same
number of components. An example is given by the two systems in Figure 1. These systems
have the same reliability polynomial,

h(p) = 3p2 − 2p3,

and are hence equivalent according to Definition 1. Their signature vectors are necessarily
different, however, since their dimensions differ.

Thus it would appear that signatures are not well suited for the comparison of lifetime
distributions of systems of different sizes. Samaniego [9, p. 32] therefore suggested ‘converting’
the smaller of two systems into an equivalent system of the same size as the larger one, allowing
a meaningful comparison of the systems in terms of their signature vectors. Samaniego [9,
Theorem 3.2] shows how to compute the signature vector of a mixed (n+1)-system equivalent
to a given mixed n-system. A more general result, giving the signature vector of an (n + r)-
system equivalent to a given n-system, was derived in [5].

The main motivation for this paper is to investigate, from different angles, the property
of equivalence between systems. While the proofs of the above cited results on equivalent
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signatures are rather cumbersome, essentially based on the fact that a mixed system is a mixture
of k-out-of-n systems, in this paper we suggest a more transparent approach based on the fact
that addition of irrelevant components to a system always results in an equivalent system. This
idea, which appears to be new, is in this paper applied to various settings involving equivalent
systems of different sizes.

Recall that an irrelevant component by definition is a component that does not contribute
to the functioning of a system [1]. Further, defining a monotone system as a system with
structure function which is monotone as a function of the component states, it is well known
that a monotone system may always be reduced to a coherent system by removing all irrelevant
components. We will in this paper demonstrate how one may go the opposite way, by adding
irrelevant components, and thereby constructing equivalent systems of arbitrary size larger than
the size of the original system.

In Section 2 we use this approach in a constructive manner to give a new and more elementary
derivation of the result in [5] on the signature vector of an (n + r)-system equivalent to a given
n-system. Using the derived formulae, we then discuss briefly in Section 3 the possibility of
having equivalent mixed systems of smaller size.

The addition of irrelevant components to make equivalent systems is also the key idea
behind the proof of the main result of Section 4. Since system reliability has traditionally
been concerned with coherent systems, we will in this section have a closer look at the possible
existence of equivalent coherent systems of different sizes. To the best of the authors’knowledge
such an investigation seems to be new in the literature. While adding an irrelevant component to
a coherent system makes it noncoherent, we show that under certain conditions we can modify
the minimal cut sets of the new system to make it coherent. As a special case we show that any
k-out-of-n system with 1 < k < n and n ≥ 3 has an equivalent coherent system of size n + 1.

Sections 5 and 6 are devoted to applications formulated in a reliability economics framework.
In Section 5 we give a characterization of the class of mixed n-systems with signature vectors
which stochastically dominate the signature vector of a given coherent or mixed (n+1)-system.
It is argued that this class is a natural one in the case where there are no smaller-sized equivalent
systems to a given one. In Section 6 we consider the problem of optimizing the performance-
per-cost function (9) within this set of n-systems, for a given (n + 1)-system.

Some concluding remarks are given in Section 7.

2. The signature vector of equivalent systems of larger sizes

The purpose of this section is to give a new proof of Theorem 1 below, which is a slight
reformulation of the result of [5] cited in the introduction for computation of signature vectors
for equivalent systems.

Theorem 1. Let s be the signature vector of a mixed or coherent system of order n. Then for
any positive integer r there is an equivalent system of order n+ r with signature vector s∗ with
entries

s∗
k = n

n + r

1(
n+r−1
k−1

) min(k,n)∑
i=max(1,k−r)

(
n − 1

i − 1

)(
r

k − i

)
si for k = 1, 2, . . . , n + r.

Proof. Let X1, . . . , Xn be the lifetimes of the components of the n-system, assumed to
be i.i.d. with distribution F . Let Y1, . . . , Yr be an independent set of i.i.d. variables from F

(representing r irrelevant components).
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First, place all the n + r variables X1, . . . , Xn, Y1, . . . , Yr in increasing order as follows:

X∗
1 : n+r < X∗

2 : n+r < · · · < X∗
n+r : n+r .

Then for j = 1, 2, . . . , n + r , define

Uj =
{

1 if X∗
j : n+r originates from an X,

0 if X∗
j : n+r originates from a Y .

Let T be the lifetime of the n-system defined above, and let this also be the lifetime of the
(n + r)-system obtained by adding the r irrelevant components with lifetimes Yi .

Then, since T = X∗
k : n+r is impossible when Uk = 0, we may write

s∗
k ≡ P(T = X∗

k : n+r )

=
k∑

i=1

P

(
T = X∗

k : n+r

∣∣∣∣ Uk = 1,

k−1∑
m=1

Um = i − 1

)
P

(
Uk = 1,

k−1∑
m=1

Um = i − 1

)

=
k∑

i=1

P(T = Xi : n)P

(k−1∑
m=1

Um = i − 1

)
P

(
Uk = 1

∣∣∣∣
k−1∑
m=1

Um = i − 1

)
.

Here we have used the independence of the event {T = Xi : n} and the {U1, . . . , Un+r}. This
holds since the former event depends on the permutation of the indices 1, . . . , n in the ordering
of the Xi , while the latter set depends on the values of the Xi and Yi that are actually observed.
This is similar to Randles and Wolfe [7, Lemma 8.3.11].

We then continue, noting that {U1, . . . , Un+r} are distributed as independent draws without
replacement from an urn containing n X and r Y , giving result 1 to an X and 0 to a Y . Thus,
in particular,

∑k−1
m=1 Um is hypergeometrically distributed. From this, we obtain

s∗
k =

k∑
i=1

si

(
n

i−1

)(
r

k−i

)
(
n+r
k−1

) n − i + 1

n + r − k + 1
= n

n + r

1(
n+r−1
k−1

) k∑
i=1

(
n − 1

i − 1

)(
r

k − i

)
si .

Finally, noting that
(

r
k−i

)
is 0 if i < k − r and that si is defined for i ≤ n, we can redefine the

limits of the summing variable as in the statement of the theorem. �
Example 1. Let n = 3 and r = 2. Then the theorem gives that a 3-system with signature
vector s = (s1, s2, s3) is equivalent to a 5-system with signature vector

s∗ =
(

3s1

5
,

3s1 + 3s2

10
,
s1 + 4s2 + s3

10
,

3s2 + 3s3

10
,

3s3

5

)
.

We now present a corollary toTheorem 1 which is formulated in terms of cumulative signature
vectors. More precisely, for an n-system and an equivalent (n + 1)-system, with signatures s

and s∗, respectively, we introduce the cumulative signature vectors, respectively, b and b∗ given
by entries bj = ∑j

i=1 si for j = 1, . . . , n and b∗
j = ∑j

i=1 s∗
i for j = 1, . . . , n + 1. The proof

is straightforward using r = 1 in the theorem.

Corollary 1. Let s be the signature vector of an n-system and let b be the corresponding cu-
mulative signature vector. Then an equivalent coherent or mixed system with n+1 components
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has the cumulative signature vector b∗ given by

b∗
j =

⎧⎨
⎩bj−1 + n − j + 1

n + 1
sj for j = 1, . . . , n,

1 for j = n + 1,

where b0 = 0.

3. When is there an equivalent system of lower order?

In this section we shall consider the problem of whether there exists a smaller sized system
that is equivalent to a given system. This question is of evident practical importance, as
the smaller system, consisting of components with identical lifetime distributions, may be
constructed at a lower cost.

Thus, consider a coherent or mixed (n+1)-system with signature vector s∗ = (s∗
1 , . . . , s∗

n+1).
The question we pose is whether there is an equivalent n-system, and if so, what is its signature
vector s = (s1, . . . , sn).

By Definition 1, it may be natural to start by computing the reliability polynomial h∗(p)

corresponding to s∗. If h∗ has degree n + 1, i.e. the coefficient of the term pn+1 is nonzero,
then it is clear that there cannot be an equivalent system of lower size.

In [9, Chapter 6] an explicit recipe for computation of the coefficients of the reliability
polynomial from the signature vector is given. Considering the coefficient of pn+1, we hence
obtain the necessary criterion for existence of an equivalent n-system,

n+1∑
j=1

(−1)j−1
(

n + 1

j

)
b∗
j = 0, (3)

where b∗ = (b∗
1, . . . , b∗

n+1) is the cumulative signature vector as defined in the previous
section. The following example shows, however, that (3) is not sufficient for the existence
of an equivalent n-system.

Example 2. Suppose that n = 5 and let a mixed 6-system have cumulative signature vector

b∗ = (
0, 4

10 , 5
10 , 6

10 , 1, 1
)
.

A computation shows that (3) holds, while it will be seen below that there is no equivalent
5-system.

In view of this counter example, we will instead seek to ‘invert’ Theorem 1 by looking
for solutions for s = (s1, . . . , sn) of the equations given there for r = 1, given the signature
vector s∗ of the (n + 1)-system.

Using Corollary 1, we will hence seek to solve the equations

n

n + 1
s1 = b∗

1,

s1 + n − 1

n + 1
s2 = b∗

2,

s1 + s2 + n − 2

n + 1
s3 = b∗

3,

...
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Figure 2: The bridge system.

s1 + s2 + · · · + sn−1 + 1

n + 1
sn = b∗

n,

s1 + s2 + · · · + sn = 1. (4)

The first n equations of (4) clearly have a unique solution for s1, . . . , sn. However, it may
happen that these si do not sum to 1, in which case the (n + 1)th equation will not be satisfied.
Further, even if

∑n
i=1 si = 1, it may happen that there are some negative si in the solution, again

leading to the conclusion that there is no equivalent system. Examples of these possibilities are
given in [3].

Somewhat unexpectedly, we are able to show (Proposition 1) that (3) holds if and only if∑n
i=1 si = 1 when (s1, . . . , sn) is the solution of the first n equations of (4). A proof is provided

in [3].

Proposition 1. For an (n + 1)-system, the reliability polynomial h∗(p) is of degree n if and
only if the solutions (s1, . . . , sn) to the first n equations of (4) sum to 1.

Example 2. (Continued.) By solving the first n(= 5) equations of (4), we obtain the solution

s = (
0, 3

5 , − 1
5 , 3

5 , 0
)′
,

This is not a legitimate signature vector, and hence there is no 5-system equivalent to the given
6-system. Still, the solution sums to 1, as it should by Proposition 1.

Example 3. (The bridge system.) The bridge system (see Figure 2) is a standard example in
textbooks of system reliability. This is a 5-system with signature vector s∗ = (0, 1

5 , 3
5 , 1

5 , 0);
see [9, Example 4.1]. The solution (s1, s2, s3, s4) of (4) is (0, 1

3 , 7
6 , − 5

2 ), which neither sums
to 1 nor is nonnegative. Thus, there is no 4-system equivalent to the bridge system, which
would also be clear from computation of the reliability polynomial which is of degree 5. The
result is hence consistent with Proposition 1. (We shall, however, see in the next section that
there is a coherent 6-system which is equivalent to the bridge system).

4. Equivalence of coherent systems of different sizes

In this section we restrict our attention to coherent systems. The question we pose is, for a
given coherent n-system, does there exist an equivalent coherent (n + 1)-system?
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It is clear that for any coherent n-system, an equivalent (n + 1)-system can be obtained by
addition of an irrelevant component, with a lifetime which is independent of the lifetimes of
the other components, and having the same distribution. While such a derived system is not
coherent, we shall see that under certain conditions it may be modified to become a coherent
(n + 1)-system equivalent to the original coherent n-system.

As a simple example, consider the 2-out-of-3-system shown in Figure 1(a). This system
has minimal path sets {1, 2}, {1, 3}, {2, 3}. We have already noted that this 2-out-of-3 system
is equivalent to the 4-system shown in Figure 1(b). The 4-system is here simply obtained by
replacing component 3 in the minimal path set {2, 3} by a new component 4. Alternatively, the
system in Figure 1(b) could be obtained by replacing the minimal cut set {1, 3} of the 2-out-of-3
system by the set {1, 4}.

In a similar way, we may, by direct inspection, obtain coherent 5-systems which are equiva-
lent to, respectively, 2-out-of-4 and 3-out-of-4-systems, simply by modifying one of the minimal
path or minimal cut sets of the respective 4-system. These findings suggest the general result
for k-out-of-n systems given below. The proof is based on the following lemma which is
essentially given in Boland [2], by noting that Boland’s proof still holds for monotone systems
which may contain irrelevant components. Recall that a cut set is a subset of the component
set {1, 2, . . . , n} such that the system fails if all components in the set have failed. Thus, a cut
set necessarily contains at least one minimal cut set, but need not itself be minimal.

Lemma 1. (Boland [2].) Consider a monotone n-system with cumulative signature vector
b = (b1, . . . , bn). Then for i = 1, . . . , n,

bi = # cut sets of size i for the system(
n
i

) .

Theorem 2. For any k-out-of-n system, where n ≥ 3 and 1 < k < n, there exists an equivalent
coherent (n + 1)-system.

Proof. The cut sets of a k-out-of-n system are all subsets of {1, 2, . . . , n} of size k or larger.
Consider now the equivalent (n+1)-system obtained by adding an irrelevant component, n+1,
to the n components. The new system constructed this way has the following cut sets.

Size k. All the
(
n
k

)
subsets of {1, 2, . . . , n} of size k.

Size k + 1. All the
(
n
k

)
subsets of {1, 2, . . . , n} of size k, with the component n + 1 added to

them, plus all the
(

n
k+1

)
subsets of {1, 2, . . . , n} of size k + 1.

Size r ∈ {k + 2, . . . , n + 1}. All the
(
n+1

r

)
subsets of {1, 2, . . . , n, n + 1} of size r .

The minimal cut sets of this new system are exactly the cut sets of size k as given above.
Hence the system is not coherent, since the union of the minimal cut sets is a strict subset of
{1, 2, . . . , n, n + 1}; see [1, Exercise 5(a), p. 15]. The modification where the minimal cut set
{n − k + 1, n − k + 2, . . . , n − 1, n} is replaced by {n − k + 1, n − k + 2, . . . , n − 1, n + 1},
and the other minimal cut sets are unchanged, will however be coherent. The assumption that
1 < k < n is crucial here (the result of the theorem does in fact not hold if k = 1 or k = n).
We are done if we can prove that this system is equivalent to the incoherent (n + 1)-system
constructed above. To see this, consider the cut sets of the constructed coherent (n+1)-system.
One can readily verify that these are as follows.

Size k. The
(
n
k

) − 1 unmodified subsets of {1, 2, . . . , n} plus the modified cut set {n − k +
1, n − k + 2, . . . , n − 1, n + 1}.
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Size k +1. All the
(
n
k

) − 1 unmodified subsets of {1, 2, . . . , n} of size k, with the component
n + 1 added to them, plus the modified set {n − k + 1, n − k + 2, . . . , n − 1, n + 1} with the
component n added to it. In addition, all the

(
n

k+1

)
subsets of {1, 2, . . . , n} of size k + 1.

Size r ∈ {k + 2, . . . , n + 1}. All the
(
n+1

r

)
subsets of {1, 2, . . . , n, n + 1} of size r .

It is seen that the number of cut sets of each size are unchanged when we modify the system.
Hence, by Lemma 1, the cumulative signature vector b is not changed and hence the systems
are equivalent. �

We shall next see that Theorem 2 can be extended to more general classes of coherent
n-systems for which equivalent coherent (n + 1)-systems can be constructed. For example,
consider the bridge system shown in Figure 2. The minimal path sets of this system are {1, 4},
{2, 5}, {1, 3, 5}, and {2, 3, 4}. Consider the system as a network where the source node is to
the left and the target node is to the right in the figure. Component 3 is then the ‘bridge’ in the
network and it turns out to have a role as a twoway-relevant component. More precisely, in the
minimal path set {1, 3, 5}, component 3 is relevant ‘downwards’, while in the minimal path set
{2, 3, 4}, it is relevant ‘upwards’. Thus, if we replace component 3 with a directed component,
then this component will be relevant both if directed upwards and if directed downwards. All
the other components have just one relevant direction. If we, for example, replace one of the
components 1, 2, 4, 5 with a directed component, it will be relevant only if the direction is from
the source node to the target node.

The above suggests that, based on the undirected bridge system, we can construct a 6-
system where we replace component 3 by two components, 3′ and 3′′, say, where 3′ is directed
downwards and 3′′ is directed upwards. In this case, 3′ and 3′′ are said to be connected in anti-
parallel. It is easy to check that the new 6-system is equivalent to the original bridge system
with five components. Furthermore, the new system is also coherent.

This type of construction turns out to be generally valid for undirected two-terminal network
systems containing at least one twoway-relevant component. An equivalent coherent (n + 1)-
system can then be constructed by replacing a twoway-relevant component by two directed
components connected in anti-parallel. This is the motivating idea behind Theorem 3 below.

We find it convenient below to represent coherent systems in terms of their minimal cut sets.
Since the minimal cut sets of a coherent system are exactly the minimal path sets of the dual
system (see [1, p. 12]), all stated assumptions and results that involve minimal cut sets have
equivalent versions for path sets.

In order to simplify the exposition we let, without loss of generality, the two components of
special interest be the ones numbered as n and n + 1.

Theorem 3. Let � be a coherent n-system for which component n is contained in at least two
minimal cut sets. Let �∗ be the (n + 1)-system obtained from � by replacing component n by
n+1 in at least one, but not all, of these minimal cut sets of �. Then the system �∗ is coherent.
Further, � and �∗ are equivalent provided any cut set K of �∗ is of one of the following three
types, where we define K ′ = K \{n, n+1} (the set of elements of K different from n and n+1).

Type A: K ′ is not a cut set; K ′ ∪ {n} is a cut set; K ′ ∪ {n + 1} is not a cut set.

Type B: K ′ is not a cut set; K ′ ∪ {n} is not a cut set; K ′ ∪ {n + 1} is a cut set.

Type C: K ′ is a cut set.
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Proof. It is clear that �∗ is coherent, since � is coherent and any component 1, 2, . . . , n+1
is a member of at least one minimal cut set of �∗. We next construct a noncoherent (n + 1)-
system equivalent to � by adding an irrelevant component, named n+1, to �. In the following
this system is denoted by �. The cut sets of � are all cut sets of � plus the sets obtained by
adding component n + 1 to each of these sets. We shall prove that the systems �∗ and � are
equivalent by showing that they have the same number of cut sets of each size. The equivalence
will then follow from Lemma 1. It is clearly enough to show that each cut set of �∗ can be
mapped to a cut set of � of the same size, in a way such that no two cut sets of system �∗ are
mapped to the same cut set of system �, and that the map is onto.

Thus, consider a cut set K of system �∗. We distinguish between the following disjoint
cases.

Case 1: n /∈ K , n + 1 /∈ K . The set K is then of type C and is clearly also a cut set for
system �. Thus, K is mapped to itself.

Case 2: n ∈ K , n + 1 /∈ K . Now K is either of type A or type C, but is in any case a cut set
of �. Thus, again K is mapped to itself.

Case 3: n /∈ K , n + 1 ∈ K . Here K is either of type B or type C. If it is of type C then it is
clearly also a cut set of � and K is mapped to itself.

If K is of type B then it is not a cut set of �. This is because by the definition of type B,
K must contain at least one minimal cut set of �∗ which includes n + 1, and K contains no
other minimal cut set. Then K will be a cut set of �, however, if component n + 1 is replaced
by component n in K , thereby changing K to K ′′ = K ′ ∪ {n}. To see that K ′′ is indeed a cut
set of �, recall that K contains at least one minimal cut set of �∗ which includes n + 1. By
changing n + 1 to n, this minimal cut set becomes instead a minimal cut set of the system �,
and hence K ′′ must be a cut set of �. We hence map K to K ′′. To ensure that our mapping of
cut sets is 1-1, we then need to check that K ′′ is not one of the sets that is obtained in case 2
above. This is however not so since, by the definition of type B, K ′′ is not a cut set of �∗.

Case 4: n ∈ K , n+ 1 ∈ K . Now K can be any of the types A, B or C. If it is of type C then K ′
is a cut set of �∗ and it is clear that K then is also a cut set of system �. Thus, K is mapped
to itself.

If K is of type A then it is also a cut set of �, so again K is mapped to itself. To see this,
note that by the definition of type A, K must contain at least one minimal cut set of �∗ which
includes n. But this set is also a minimal cut set of �, and hence K is a cut set of � as well.

Finally, if K is of type B then K contains at least one minimal cut set of �∗ which includes
n + 1. But then K is also a cut set for system �, since the present K contains n, and by our
construction of �∗, n replaces n + 1 when going from minimal cut sets of �∗ to minimal cut
sets of �. Thus, K is again mapped to itself.

We have thus shown that the cut sets K of �∗ are mapped in a 1-1 fashion to the cut sets
of �. It remains to prove that the mapping is onto the collection of cut sets of �. Thus, suppose
for contradiction that there is a cut set L of � which is not mapped from a cut set of �∗ in the
way considered above.

Assume first that L is a cut set of �∗. Then, by the proof of the 1-1 property, it would be
mapped to itself, which is impossible, unless n + 1 ∈ L, n /∈ L, and L is of type B. But as
stated in case 3 of the proof, L is not a cut set of �, which gives a contradiction.

The only possibility is hence that L is not a cut set of �∗. Since it is a cut set of �, it must
hence contain at least one minimal cut set of the original �, where n was changed to n + 1
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in the creation of �∗, and contain no other minimal cut set. Further, L cannot contain n + 1.
But then if n was changed to n + 1 in L, the set would be a cut set of �∗, or more precisely,
L \ {n} ∪ {n + 1} is a cut set of �∗ of type B. But then it is seen from case 3 in the proof that L

was already obtained by the mapping.
Thus the proof is complete. �

Remark 1. To see that the conditions in Theorem 3 are not always met, consider the 3-system
� with minimal cut sets {1, 3}, {2, 3}. Then change the second minimal cut set to {2, 4}, thus
defining the system �∗ with minimal cut sets {1, 3}, {2, 4}, and 3 and 4 playing the roles of n

and n+1, respectively. Now K = {1, 2, 3, 4} is a cut set of �∗, while K ′ = K \{3, 4} = {1, 2}
is not. But since both K ′ ∪ {3} and K ′ ∪ {4} are cut sets, K is not of any of the types A, B, C
in Theorem 3.

Remark 2. Conditions for the equivalence of the systems � and �∗ which are equivalent to
the conditions of Theorem 3 can be given in terms of the structure function of the system �∗.
Thus, let the structure function be given by �∗(y1, . . . , yn+1), which equals 1 if the system
functions when the component states are (y1, . . . , yn+1), and equals 0 if it is failed. Here yi

equals 1 if component i is working and 0 otherwise.
Define the following sets:

A = {(y1, . . . , yn−1) | �∗(y1, . . . , yn−1, 1, 0) > �∗(y1, . . . , yn−1, 0, 1)},
B = {(y1, . . . , yn−1) | �∗(y1, . . . , yn−1, 0, 1) > �∗(y1, . . . , yn−1, 1, 0)},
C = {(y1, . . . , yn−1) | �∗(y1, . . . , yn−1, 1, 1) = �∗(y1, . . . , yn−1, 0, 0)}.

Now if A ∪ B ∪ C = {0, 1}n−1, the conditions of Theorem 3 will be satisfied, and vice versa.
A proof is given in [3].

By the definition of a critical path vector in Barlow and Proschan [1, pp. 13–14], it follows
that A is the set of (y1, . . . , yn−1) such that (y1, . . . , yn−1, 1, yn+1) is a critical path vector for
component n (i.e. if the 1 in place n is changed to 0, then �∗ changes from 1 to 0), for whatever
yn+1, and such that (y1, . . . , yn−1, yn, 1) is not a critical path vector for component n + 1, for
any yn.

A similar interpretation can be given for the set B, if components n and n+1 are interchanged
in the above explanation for A.

Finally, C is the set of (y1, . . . , yn−1) such that the state of the system is not influenced by
the states of components n and n + 1. Hence, no critical path vectors for n or n + 1 can be
formed from a vector (y1, . . . , yn−1) in C.

Remark 3. It is easy to verify that Theorem 2 is a consequence of Theorem 3. In fact, if �

is a k-out-of-n system, we can define �∗ by changing component n to n + 1 in exactly one
minimal cut set of the k-out-of-n system, for example the set {n − k + 1, . . . , n − 1, n} (as we
also did in the proof of Theorem 2). It is then straightforward to verify that the assumptions of
Theorem 3 are satisfied.

Example 4. Let us reconsider the bridge system (Figure 2), which we used as a motivation
for Theorem 3. The minimal cut sets are {1, 2}, {4, 5}, {1, 3, 5}, and {2, 3, 4}. Introduce a
new component, 6, which replaces component 3 in the last minimal cut set. We claim that
the conditions of Remark 2 are satisfied when respectively 3 and 6 play the roles of n and
n + 1 in the theorem. To see this, note that in the modified system, called �∗ in the theorem,
the vector (0, 1, 1, 1, 0, y6) is the only critical path vector for state 3, for any value of y6, so
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Figure 3: Directed network system with source node S and terminal nodes T1, T2, T3.

that A = {(0, 1, 1, 0)} gives the set of states for components 1, 2, 4, and 5 under this condition.
By symmetry in the problem, B = {(1, 0, 0, 1)} gives the states of components 1, 2, 4, and 5
for which component 6 is critical, which happens independently of the state of component 3.
Finally, the set C contains the remaining 14 state vectors of components 1, 2, 4, and 5, and
it is seen that the system state is not influenced by the states of components 3 and 6 for these
state vectors. For example, for the state vector (1, 1, 1, 0), components 1, 2, and 4 are working
while 5 is failed. In this case the system is working whatever the state of components 3 and 6.

We close the section by giving an example where there is given a coherent (n + 1)-system,
and we ask whether there exists an equivalent coherent n-system. In Section 3 we considered
this question for general mixed systems. We are, however, not able to give a complete answer
to the question when restricting to coherent systems.

The example shows, in particular, that the conditions of Theorem 3 for a coherent (n + 1)-
system are not necessary for the existence of an equivalent coherent n-system. Somewhat
surprisingly, however, we are in this example able to find an equivalent coherent (n+1)-system
for which the conditions of Theorem 3 hold. A natural question is whether this is a general
fact, i.e. that any coherent (n + 1)-system which has an equivalent coherent n-system, also has
an equivalent coherent (n + 1)-system for which the conditions of Theorem 3 hold. Again, we
do not have a general answer to this.

Example 5. Consider the 6-system �∗ with the following seven minimal path sets: {1, 2, 3},
{1, 2, 4}, {1, 3, 5}, {2, 3, 6}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6}. This system can be represented as
the directed network system depicted in Figure 3, with one source node, S, and three terminal
nodes, T1, T2, T3, where the system is said to be working if the source S can send signals
through the network to all three terminal nodes.

The special feature of this system is that there is no pair of components that satisfies the
condition in Theorem 3, i.e. can play the roles of n and n + 1. To check this, one can start
by looking for pairs of components included in at least one common minimal path set. (As
explained earlier, Theorem 3 can be reformulated to involve path sets instead of cut sets). Such
component pairs will obviously not satisfy the condition on �∗ in the theorem, and it is seen that
almost all component pairs can be excluded precisely for this reason. The only pairs we are left
with as possible candidates are (1, 6), (2, 5), and (3, 4). Critical path vectors for component 6
depend, however, on the condition of component 1, so the pair (1, 6) is not usable. The same
applies to the two remaining pairs.
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We then calculate the reliability polynomial of the system, h(p) = 7p3 − 9p4 + 3p5. This
polynomial is of degree 5 (which is a direct consequence of the fact that this is a directed cyclic
network system), giving hope that there is an equivalent 5-system. It turns out, in fact, that
there are four different coherent 5-systems equivalent to this system, namely systems 50–53
from the complete list of coherent 5-systems in Navarro and Rubio [4].

Finally, performing a search among 6-systems with reliability polynomials of order 5, using
the file containing all 16,145 coherent 6-systems, referred to by Navarro and Rubio [4], we
find that the 6-system with minimal path sets {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},
{1, 4, 5}, and {2, 3, 6} is equivalent to �∗, and furthermore satisfies the conditions of Theorem 3
with n and n + 1 given as, respectively, components 4 and 6.

5. The set of n-systems that stochastically dominate a given (n + 1)-system

We have seen that, for coherent systems as well as for mixed systems, it is not always possible
to find equivalent systems of lower sizes. Still, for a given system, there may be reasons to
look for interesting lower sized systems, for example due to the possible lower cost of building
a smaller system. If there are no equivalent systems of lower size, one may instead look for
smaller systems which in some sense perform approximately as well as the given one. In
this section we study the class of mixed n-systems with signature vectors which stochastically
dominate the signature of a given coherent or mixed (n + 1)-system.

Let an (n+1)-system with signature vector s∗ and corresponding cumulative signature vector
b∗ be given. Suppose there is an n-system with signature s = (s1, . . . , sn) that stochastically
dominates the given (n + 1)-system in the sense that the extension s̃ of s to dimension (n + 1),
as described by Theorem 1, stochastically dominates s∗ in the sense that the corresponding
cumulative signature vectors satisfy

b̃j ≤ b∗
j for j = 1, . . . , n. (5)

(It should be noted that, by [9, Theorem 4.2], stochastic domination of signature vectors implies
stochastic domination of the corresponding system lifetimes under i.i.d. component lifetimes).

The following theorem characterizes the signatures of the n-systems that dominate a given
(n + 1)-system in this way.

Theorem 4. Let there be given an (n + 1)-system with signature vector s∗ and cumulative
signature vector b∗, satisfying s∗

n+1 ≤ n/(n + 1). Then there is a nonempty convex set of
signature vectors s of n-systems which stochastically dominate the given (n+1)-system, where
each such vector satisfies the n inequalities

n

n + 1
s1 ≤ b∗

1,

s1 + n − 1

n + 1
s2 ≤ b∗

2,

s1 + s2 + n − 2

n + 1
s3 ≤ b∗

3,

...

s1 + s2 + · · · + sn−2 + 2

n + 1
sn−1 ≤ b∗

n−1,

s1 + s2 + · · · + sn−1 ≤ n + 1

n
b∗
n − 1

n
. (6)
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Proof. The n − 1 first inequalities are the corresponding ones from (5), where we use
Corollary 1 to represent the b̃j . The nth inequality in (5) can be written as

s1 + s2 + · · · + sn−1 + 1

n + 1
sn ≤ b∗

n

so that substitution of sn = 1−s1 −s2 −· · ·−sn−1 gives the last inequality in (6). Furthermore,
since a nonnegative solution for s can only exist if all the right-hand sides of the inequalities are
nonnegative, the last inequality of (6) implies that an n-system that stochastically dominates
an (n + 1)-system with signature vector s∗ can only exist if b∗

n ≥ 1/(n + 1) or, equivalently,
s∗
n+1 ≤ n/(n + 1). (Informally this can be stated, ‘unless the (n+1)-system is a parallel system,

or close to being so, we can find a better n-system’.) This completes the proof. �
As a first application, suppose we would like to build an n-system which is at least as good

as a given (n + 1)-system, at minimum cost. (‘At least as good’ here means with respect to
stochastic ordering of signature vectors.) Let the expected cost of a system with signature
vector s be

∑n
i=1 cisi , where 0 ≤ c1 ≤ c2 ≤ · · · ≤ cn. (A discussion and motivation for this

cost function is given in Section 6.) Then write

n∑
i=1

cisi =
n−1∑
i=1

cisi + cn(1 − s1 − · · · − sn−1) = cn −
n−1∑
i=1

(cn − ci)si .

Thus, the problem of minimizing the cost of the n-system over the convex set of signature
vectors satisfying (6) is equivalent to maximizing the linear combination

∑n−1
i=1 (cn − ci)si . By

the theory of linear programming (see, e.g. Nering and Tucker [6]) this maximum will occur at
an extreme point of the convex set defined in Theorem 4, where we need to add the conditions
s1 ≥ 0, . . . , sn−1 ≥ 0.

Example 6. Let n = 3 and let a coherent (n + 1)-system have minimal cut sets {1}, {2, 3, 4}.
The signature vector is then s∗ = ( 1

4 , 1
4 , 1

2 , 0), while b∗ = ( 1
4 , 1

2 , 1, 1). Putting n = 3 in
Theorem 4, we obtain the inequalities

3
4 s1 ≤ 1

4 , s1 + 2
4 s2 ≤ 1

2 , s1 + s2 ≤ 4
3 − 1

3 = 1.

Adding the conditions s1 ≥ 0, s2 ≥ 0, it can be seen that the extreme points of the resulting
convex set of (s1, s2) are

(0, 0),
( 1

3 , 0
)
,
( 1

3 , 1
3

)
, (0, 1). (7)

so that the extreme points of the set of stochastically dominating signature vectors of size 3
are (0, 0, 1), ( 1

3 , 0, 2
3 ), ( 1

3 , 1
3 , 1

3 ), (0, 1, 0). The first and last of these are signatures of coherent
systems, while the other two are not. The signature ( 1

3 , 1
3 , 1

3 ) is, on the other hand, the signature
of a 3-system equivalent to a single component, i.e. a 1-system. It is intuitively clear that this
system is stochastically better than the given system, since the latter has a minimal cut set in
addition to the set {1}, which makes it more frail. Which of these systems might be considered
best if system costs were taken into account remains undetermined at this stage. We examine
such questions in the next section.

6. Application to reliability economics

Samaniego [9, Chapter 7] considered the problem of optimizing the performance of a system
under given cost constraints. Here the performance of a system with signature vector s =
(s1, . . . , sn) is represented as a linear function of the signatures,

∑n
i=1 hisi . A motivation

for this choice of performance measure is that both the expected lifetime of the system and
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its reliability function can be written in this way. More precisely, ET = ∑n
i=1 siEXi : n and

P(T > t0) = ∑n
i=1 siP(Xi : n > t0). An important property of these measures is that their

values are invariant among equivalent systems.
Similarly, in [9, Chapter 7] it was assumed that the expected cost of building a system with

signature vector s is
∑n

i=1 cisi , where ci is interpreted as the cost of building an i-out-of-n
system, i = 1, . . . , n. In order to determine the values of ci , Samaniego [9, p. 95] suggested
the so-called salvage model. Here, it is assumed that the cost ci of an i-out-of-n system can be
written as

ci = C + nA − (n − i)B for i = 1, . . . , n, (8)

where C is the initial fixed cost of manufacturing the system, A is the cost of an individual
component, and B is the salvage value of a used but working component which is removed
after system failure.

In our subsequent application it is of interest to compare costs of systems of different sizes.
The following Proposition, based on the salvage model, is useful.

Proposition 2. Suppose that the costs of n-systems and (n + 1)-systems are given by the
salvage model (8) with the same constants A and B, but with possibly different constants C,
respectively C and C∗ for the n-systems and (n+ 1)-systems. Then the cost reduction by using
an i-out-of-n system compared to the equivalent (n + 1)-system is

C∗ − C + (A − B) + iB

n + 1
.

Proof. Consider an i-out-of-n-system with expected cost given by (8). To obtain an equiv-
alent (n + 1)-system, add an irrelevant component to the original n-system, with a lifetime
independent of the components of the n-system and with the same lifetime distribution. The
cost of this extra component is A units, but the component can be salvaged for B units if
it does not fail before the i-out-of-n system fails. The probability of the latter event equals
the probability that in the simultaneous ordering of the lifetimes X1, . . . , Xn of the original
components and the lifetime Y of the irrelevant component, Y is not among the i smallest. This
probability is 1 − i/(n + 1). Thus, using the equivalent (n + 1)-system obtained this way adds
a cost A − B(1 − i/(n + 1)) = A − B + i/(n + 1)B to the original system. Adding C∗ − C,
which is the difference in fixed costs, proves the proposition. �

Thus, there are reasons to assume that the expected cost of equivalent systems is reduced
when reducing the number of components. The salvage model (8) provides an explicit way of
expressing this reduction, if we assume that the fixed costs A, B are independent of n. Since,
naturally, A > B > 0, the n-system hence has lower expected cost, unless C is too large in
comparison with C∗ (normally one would assume that C = C∗ for the fixed costs).

For a given performance vector (h1, . . . , hn) and a cost vector (c1, . . . , cn), [9, Chapter 7]
defined the following measure of the relative value of performance versus cost for a mixed
n-system with signature vector s:

mr(s, h, c) =
∑n

i=1 hisi

(
∑n

i=1 cisi)r
. (9)

As explained in [9, p. 97], the power parameter r > 0 serves as a calibration parameter,
determining the weight to be put on cost relative to performance in the criterion function (9).
Thus, r = 1 is the natural choice if equal weight is put on performance and cost.
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The optimality problem considered in [9, Chapter 7] is the problem of maximizing the
performance-per-cost criterion (9) with respect to the signature vector s among all mixed
systems of the given size.

In the following we consider a different problem, namely whether one may increase perform-
ance-per-cost by building smaller systems, i.e. systems with fewer components. The motivation
is that a smaller system, equivalent to a larger one, is expected to have a lower cost than the
larger system, while performing exactly as well as the larger system. However, as there may
not be equivalent systems of smaller size, we will instead search for smaller systems in the class
of systems dominating the given one, as characterized in Theorem 4.

Consider the following situation. Suppose that there is given an (n+1)-system with signature
vector s∗. Let there also be given a cost vector c∗ = (c∗

1, . . . , c∗
n+1), where c∗

i defines the
expected cost of an i-out-of-(n + 1)-systems for i = 1, . . . , n + 1. Suppose similarly that
there is given a performance vector h∗ = (h∗

1, . . . , h
∗
n+1). For the given system, the value

corresponding to the criterion function (9) is, hence,

A∗ = mr(s
∗, h∗, c∗) =

∑n+1
i=1 h∗

i s
∗
i

(
∑n+1

i=1 c∗
i s

∗
i )r

. (10)

Now, if the given (n + 1)-system has an equivalent n-system with criterion function (9), then
their criterion functions will have the same numerator, and hence the criterion function for the
n-system will be the smaller of the two if and only if the n-system has a lower expected cost.

Suppose next that we start with an (n+1)-system for which there is no equivalent n-system.
There may be reasons to search among the class of n-systems that stochastically dominate the
given (n+ 1)-system. One motivation is that these systems may still have a lower cost than the
(n + 1)-system, and they will also have a better performance.

Theorem 4 defines the convex set of signature vectors of all n-systems that stochastically
dominate the given (n+1)-system. We assume below that the required condition on s∗

n+1 given
in the theorem is satisfied, and we let R denote the convex set of (s1, . . . , sn−1) defined by
Theorem 4. We now seek to maximize the criterion function mr from (9) over this set. Since
sn = 1 − s1 − · · · − sn−1 we may write (9) as

mr(s, h, c) = hn − ∑n−1
i=1 (hn − hi)si

(cn − ∑n−1
i=1 (cn − ci)si)r

≡ hn − ∑n−1
i=1 h̃isi

(cn − ∑n−1
i=1 c̃i si)r

, (11)

where c̃i = cn − ci and h̃i = hn − hi for i = 1, . . . , n − 1.
We claim that the maximum of (11) occurs on the boundary of the convex set R. To see this,

assume for contradiction that the maximum occurs at an interior point ŝ of R. At this point,
consider the two hyperplanes of (s1, . . . , sn−1) for which, respectively, the linear functions∑n−1

i=1 h̃isi and
∑n−1

i=1 c̃i si have the same value as in the optimum point ŝ. Let N be an open
neighborhood of ŝ which is included in R, and consider the intersection N0 of N and the above
hyperplane defined by the c̃i . On this set, the denominator of (11) is constant. The set N0
will, however, contain points on both sides of the hyperplane defined by the h̃i , meaning that∑n−1

i=1 h̃isi on N0 will have values both larger and smaller than its value at ŝ. But then (11) will
in N0 take values larger than the value at ŝ, which gives a contradiction since the maximum is
assumed to be at ŝ. Thus the maximum point of (11) is a boundary point of R.

The above argument clearly holds for all r . We now argue that for r = 1, the maximum
value of (11) must be at an extreme point of R. Suppose for contradiction that the maximum is
at a boundary point of R which is not an extreme point. Let the maximum value of (11) be A.
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Then (11) equals A in a hyperplane in the space of s1, . . . , sn−1 (the hyperplane will depend
on A). But since the hyperplane contains a point on the boundary of R which is not an extreme
point, the hyperplane will intersect the interior of R. Hence the interior of R will also contain
an optimum point of (11). But this is impossible by what we have already seen for general r , so
we have a contradiction. This shows that the maximum of (11) for r = 1 must be at an extreme
point.

While it is shown in [9, Chapter 7] that, for r 	= 1, the maximum of mr on the full simplex
of signature vectors s = (s1, . . . , sn) is attained for an s with at most two positive elements, it
will be seen in an example below that the maximum of (11) restricted to the set R may well
occur at boundary points with more than two positive entries.

Example 6. (Continued.) We consider the convex set of signatures for 3-systems which
stochastically dominate the given 4-system. Suppose that costs are given by a salvage model
where the constantsA, B, C are equal for 3- and 4-systems, with valuesC = 1

10 , A = 3
5 , B = 1

2 .
This gives the cost values for the 4-system and the 3-system given by, respectively, c∗ =
(1, 3

2 , 2, 5
2 ) and c = ( 9

10 , 7
5 , 19

10 ).
Let the component lifetimes Xi be exponential with expected value 1. It is well known

that EXi : n = 1/n + 1/(n − 1) + · · · + 1/(n − i + 1) for i = 1, . . . , n, so we have the
performance vectors for the 4-system and 3-system given by, respectively, h∗ = ( 1

4 , 7
12 , 13

12 , 25
12 )

and h = ( 1
3 , 5

6 , 11
6 ).

It follows that A∗ from (10) equals

A∗ = 6 · 8r−1

13r
.

Since we consider the set of 3-systems which stochastically dominate the given system, the
function to maximize is

mr(s1, s2) = 11/6 − (3/2)s1 − s2

(19/10 − s1 − (1/2)s2)r

on the convex set R with extreme points given in (7): (0, 0), ( 1
3 , 0), ( 1

3 , 1
3 ), (0, 1).

A computer search was used to find the optimal point in R for any r > 0. In accordance with
the above theoretical discussion, the optimal point was always found on the boundary of R.
More precisely, the result was that for, approximately, r ≤ 1.55, the maximum is obtained
at (s1, s2, s3) = (0, 0, 1), i.e. a parallel system of 3 components. For 1.55 ≤ r ≤ 1.77, the
optimum point changes continuously from (0, 0, 1) to ( 1

3 , 0, 2
3 ) along the path (p, 0, 1 − p)

for 0 ≤ p ≤ 1
3 . Next, for 1.77 ≤ r ≤ 2.35 the optimum is at the single point ( 1

3 , 0, 2
3 ).

When r increases further, 2.35 ≤ r ≤ 2.80, the optimum changes continuously from ( 1
3 , 0, 2

3 )

to ( 1
3 , 1

3 , 1
3 ) along the path ( 1

3 , p, 2
3 − p) for 0 ≤ p ≤ 1

3 , while for r ≥ 2.80 the optimum is
steady at ( 1

3 , 1
3 , 1

3 ). The optimum value of the criterion function is for each r > 0 larger than the
corresponding A∗ for the original (n+1)-system. We finally note as a curiosity that the optimal
3-system for large r , i.e. r ≥ 2.80, is the system which is equivalent to a system consisting of
one single component. Since large r favors low-cost systems, this should be reasonable. On the
other hand, small r is supposed to favor high-performance systems. This is seen in the present
example from the fact that the optimum for r ≤ 1.55 is attained for the parallel system with
three components.

7. Concluding remarks

This paper is concerned with the existence of equivalent systems of different sizes, where
equivalence means having the same system lifetime distribution under i.i.d. componentlifetimes.
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Within the class of mixed systems one can always find equivalent mixed systems of larger sizes,
but not necessarily if the size is decreased. An obvious necessary condition for an (n+1)-system
to have an equivalent n-system, is that the reliability polynomial of the former is of degree n.
This, however, is not sufficient in general for the existence of equivalent mixed systems of lower
size, as was shown by a counter example in Section 3. We have, however, not been able to find
a counterexample when restricting to coherent systems. In fact, a complete search among all
possible coherent 5-systems showed that to each system with reliability polynomials of order 4
corresponds an equivalent coherent system of order 4. Similarly, all 4-systems with reliability
polynomials of order 3 are equivalent to coherent 3-systems (while there is no 3-system with a
reliability polynomial of order 2). A corresponding search among the possible 6-systems has
not been performed, but we note that our Example 5 shows a case of a coherent 6-system with
reliability polynomial of order 5, and for which there is an equivalent coherent 5-system.

In this paper we have mostly studied the problem of finding pairs of equivalent systems
of sizes that differ by one component. Referring to our motivating example in Section 4
involving twoway-relevant components, it may be possible to derive equivalence results also
for coherent systems that differ in size by more than one component by considering directed
systems containing more than one twoway-relevant component. We have not pursued such
a task. It is notable, however, that the 2-out-of-3 system with minimal cut sets {1, 2}, {1, 3},
{2, 3} is equivalent to the coherent 5-system with minimal cut sets {1, 2}, {1, 3}, {1, 4}, {2, 3, 5}.
(This is in fact the only coherent 5-system which has reliability polynomial of order 3).

We have seen that, for coherent systems as well as for mixed systems, it is not always possible
to find equivalent systems of lower sizes. Still, for a given system, there may be reasons to
look for interesting lower sized systems, for example due to the possible lower cost of building
a smaller system. In Sections 5 and 6 we have studied the class of (mixed) n-systems with
signature vector which stochastically dominates the signature of a given coherent or mixed
(n + 1)-system, motivated by certain optimization problems in reliability economics.
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