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Abstract. We present new examples of finite-dimensional Nichols algebras over
fields of characteristic 2 from braided vector spaces that are not of diagonal type,
admit realizations as Yetter–Drinfeld modules over finite abelian groups, and are analo-
gous to Nichols algebras of finite Gelfand–Kirillov dimension in characteristic 0. New
finite-dimensional pointed Hopf algebras over fields of characteristic 2 are obtained by
bosonization with group algebras of suitable finite abelian groups.
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1. Introduction. The goal of this paper is to present new examples of finite-
dimensional Hopf algebras in characteristic 2, which are pointed, non-commutative, and
non-cocommutative. Following the usual guidelines of the lifting method, we focus on
finite-dimensional Nichols algebras, then the Hopf algebras are obtained routinely by
bosonization. The main result of [2] (in characteristic 0) is the classification of the Nichols
algebras with finite Gelfand–Kirillov dimension arising from braided vector spaces (V , c)
that decompose as:

V = V1 ⊕ · · · ⊕ Vt ⊕ Vt+1 ⊕ · · · ⊕ Vθ , c(Vi ⊗ Vj) = Vj ⊗ Vi, i, j ∈ Iθ ,

where V1, . . . , Vt are blocks (see Section 2.2); Vt+1, . . . , Vθ are points (i.e. have dimen-
sion 1); and the braidings have a specific form, see for example, (3.2), (5.2). This result
relies on the classification in [7] and assumes a Conjecture treated partially in [3],
both about Nichols algebras of diagonal type. However in positive characteristic, the
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Table 1. Finite-dimensional Nichols algebra in characteristic 2.
V B(V) dim K dim B(V)

L℘(1, 1) Proposition 3.6 23 27

L℘(1, a), a �= 1 Proposition 3.7 24 28

P(q, a), a ∈ (k×)t Proposition 5.4 2|A| 24t+|A|

E℘(1) Proposition 6.2 22 24

E℘(ω), ω ∈ G′
3 Proposition 6.3 33 2233

classification of finite-dimensional Nichols algebras of diagonal type is known only in
rank ≤ 4 [9, 10, 11]. Inspired by [6] and by familiar phenomena in Lie theory in positive
characteristic, examples of finite-dimensional Nichols algebras in odd characteristic were
constructed in [4] by analogy with the Nichols algebras in [2] that have infinite dimension.
Here we extend these constructions assuming that the base field k is algebraically closed
of characteristic 2. There are new features as 1 = −1 now. For instance in characteristic
0, two main actors are the Jordan and the super Jordan planes. Their restricted versions
in characteristic p > 2 have dimensions p2 [6] and 4p2 [4], respectively. When char k= 2,
they merge in the restricted Jordan plane that has dimension 16 = 4 × 22 [6]. Other fami-
lies of [2] also merge. Finally, the fact that x2

i = 0 for suitable xi in the braided vector space
brings on more examples with finite dimension. Let us present the main result of this paper.

THEOREM. If V is a braided vector space as in Table 1, then the dimension of the
Nichols algebra B(V) is finite.

See Section 2.3.2 for the meaning of K. The braided vector spaces L℘(1, 1) appear
to be close to L(−1, G ) and L−1(−1, G ) in [4, Table 1], but B(L℘(1, a)), a �= 1 has no
finite-dimensional analog in char k= p > 2. Similarly, the algebras B(P(q, a)) are finite-
dimensional in odd characteristic only when the entries of a belong to the prime field,
in contrast with characteristic 2. Also E℘(ω) does not appear in the loc. cit. Albeit no
classification is envisageable yet as the knowledge of diagonal type is still incomplete, we
present partial results in Theorems 3.1, 4.1, and 6.1.

After spelling out some preliminaries in Section 2, we devote Sections 3, 4, 5, and
6 to Nichols algebras of one block and one point, one block and several points, several
blocks and one point, and one pale block and one point, respectively. Our proofs rely on the
splitting technique Section 2.3.2 and the classifications in [9, 10, 11]. Explicit examples of
finite-dimensional pointed Hopf algebras are discussed in Sections 3.2, 5.2, and 6.2. More
examples by lifting will be presented in a future work.

2. Preliminaries.

2.1. Notations and conventions. We denote the natural numbers by N, N0 = N ∪
{0}. We set Ik,� = {n ∈ N0 : k ≤ n ≤ �}, I� = I1,� and N≥� = N \ I�−1, for k < � ∈ N0. We
work over an algebraically closed field k of characteristic 2. The group of N-th roots of
unity in k is denoted by GN ; G′

N is the subset of the primitive roots of order N and G∞ =⋃
N∈N GN .

Throughout H is a Hopf algebra with bijective antipode S . We use the notations
G(H) = the group of grouplikes in H , P(H) = the space of primitive elements, Ĥ =
Homalg(H, k), H

HYD = the category of Yetter–Drinfeld modules over H ; see for example
[12, 11.6].
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2.2. Yetter–Drinfeld modules.

2.2.1. Braided vector spaces
A braided vector space V is a pair (V , c) where V is a vector space and c ∈ GL(V⊗2)

is a solution of the braid equation:

(c ⊗ id)(id ⊗c)(c ⊗ id) = (id ⊗c)(c ⊗ id)(id ⊗c).

We are interested in two classes of braided vector spaces. First, (V , c) or simply V is of
diagonal type if there exist a basis (xi)i∈Iθ of V and a matrix q = (qij)i,j∈Iθ such that qij ∈ k

×
and c(xi ⊗ xj) = qijxj ⊗ xi for all i, j ∈ Iθ . We denote in T(V), or any quotient braided Hopf
algebra:

xij = (adc xi) xj, xi1i2...iM = (adc xi1) xi2...iM , i, j, i1, . . . , iM ∈ I, M ≥ 2.

Second, let ε ∈ k
× and � ∈ N≥2. A block V(ε, �) is a braided vector space with a basis

(xi)i∈I� such that for i, j ∈ I�, j > 1:

c(xi ⊗ x1) = εx1 ⊗ xi, c(xi ⊗ xj) = (εxj + xj−1) ⊗ xi. (2.1)

For simplicity, a block V(ε, 2) of dimension 2 is called an ε-block.

2.2.2. Realizations
Any Yetter–Drinfeld module V bears a structure of braided vector space by c(v ⊗ w) =

v(−1) · w ⊗ v(0), v, w ∈ V where δ(v) = v(−1) ⊗ v(0). The braided vector spaces above appear
as Yetter–Drinfeld modules in different ways called realizations. Let � be an abelian group
and let �̂ be the group of characters of �. The Yetter–Drinfeld modules over the group
algebra k� are the �-graded �-modules, the �-grading being denoted by V = ⊕g∈�Vg;
thus h · Vg = Vg for g, h ∈ �. If g ∈ � and χ ∈ �̂, then the one-dimensional vector space
k

χ
g , with action and coaction given by g and χ , is in k�

k�YD. Given V ∈ k�
k�YD with a basis

(vi)i∈I where vi is homogeneous of degree gi, there are skew derivations ∂i, i ∈ I , of T(V)

such that:

∂i(vj) = δij, i, j ∈ I, ∂i(xy) = ∂i(x)(gi · y) + x∂i(y), x, y ∈ T(V). (2.2)

More generally, a YD-pair for H is a pair (g, χ) ∈ G(H) × Ĥ such that:

χ(h) g = χ(h(2))h(1) g S(h(3)), h ∈ H . (2.3)

Let kχ
g be a one-dimensional vector space with H-action and H-coaction given by χ and g,

respectively; then (2.3) says that kχ
g ∈ H

HYD. Thus, a realization of V of diagonal type with
matrix q = (qij)i,j∈Iθ is just a collection (g1, χ1), . . . , (gθ , χθ ) such that qij = χj(gi) for all
i, j ∈ Iθ .

2.2.3. Realizations of ε-blocks
For χ ∈ Ĥ , the space of (χ, χ)-derivations is

Derχ,χ (H, k) = {η ∈ H∗ : η(h�) = χ(h)η(�) + χ(�)η(h) ∀h, � ∈ H}.
The realizations of ε-blocks are given by the notion of YD-triple for H [4]; this

is a collection (g, χ, η) where (g, χ), is a YD-pair for H , η ∈ Derχ,χ (H, k), χ(g) = ε,
η(g) = 1 and
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η(h)g = η(h(2))h(1)gS(h(3)), h ∈ H . (2.4)

Given a YD-triple (g, χ, η), we define Vg(χ, η) ∈ H
HYD as the vector space with a basis

(xi)i∈I2 , whose H-action and H-coaction are given by:

h · x1 = χ(h)x1, h · x2 = χ(h)x2 + η(h)x1, δ(xi) = g ⊗ xi, h ∈ H, i ∈ I2.

Then, Vg(χ, η) � V(ε, 2) as braided vector spaces.

EXAMPLE 2.1. Let ε = 1 and � = 〈g〉 be a cyclic group of order N . Let V be the vector

space with a basis (xi)i∈I2 with grading deg xi = g, i ∈ I2. Then the assignment g �−→
(

1 1
0 1

)
defines a representation of � (hence, a structure of Yetter–Drinfeld module over k�) if and
only if N is even. Thus if dim H < ∞ and H admits a YD-triple (for ε = 1), then dim H is
even.

2.3. Nichols algebras. Let V ∈ H
HYD. The Nichols algebra of V is the unique graded

connected Hopf algebra B(V) = ⊕n≥0Bn(V) in H
HYD such that V � B1(V) =P(B(V))

generates B(V) as algebra. See [1] for an exposition. The algebra and coalgebra underlying
B(V) depend only on the braiding. If V ∈ k�

k�YD is as in Section 2.2, then the ∂i’s induce
skew-derivations on B(V). Then, w ∈ Bk(V), k ≥ 1, is 0 if and only if ∂i(w) = 0 in B(V)

for all i ∈ I .

2.3.1. The restricted Jordan plane
This is the Nichols algebra of a 1-block.

THEOREM 2.2 ([6]). The algebra B(V(1, 2)) is presented by generators x1, x2 and
relations:

x2
1, x4

2, x2
2x1 + x1x2

2 + x1x2x1, x1x2x1x2 + x2x1x2x1. (2.5)

Let x21 := x1x2 + x2x1. Then, dim B(V(1, 2)) = 16 since B(V) has a basis:

{xm1
1 xm2

21 xn
2 : m1, m2 ∈ I0,1, n ∈ I0,3}.

2.3.2. The splitting technique
Let V = V1 ⊕ V2 be a direct sum of objects in k�

k�YD. Then, B(V) � K#B(V1) where
K = B(V)co B(V1). By [8, Proposition 8.6], K is the Nichols algebra of

K1 = adc B(V1)(V2). (2.6)

Here, K1 ∈ B(V1)#k�

B(V1)#k�YD with the adjoint action and the coaction given by

δ = (πB(V1)#k� ⊗ id)B(V)#k�. (2.7)

3. One block and one point. Let (qij)i,j∈I2 , qij ∈ k
×, a ∈ k. In this section, we assume

that

q11 = 1, q12q21 = 1. (3.1)
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Sometimes, we use ℘ = q12 = q−1
21 . Let L℘(q22, a) be the braided vector space with basis

(xi)i∈I3 and braiding given by

(c(xi ⊗ xj))i,j∈I3 =

⎛⎜⎜⎜⎝
x1 ⊗ x1 (x2 + x1) ⊗ x1 q12x3 ⊗ x1

x1 ⊗ x2 (x2 + x1) ⊗ x2 q12x3 ⊗ x2

q21x1 ⊗ x3 q21(x2 + ax1) ⊗ x3 q22x3 ⊗ x3

⎞⎟⎟⎟⎠ . (3.2)

Let V1 = 〈x1, x2〉 � V(1, 2) (the block) and V2 = 〈x3〉 (the point); then L℘(q22, a) = V1 ⊕
V2. For simplicity, V =L℘(q22, a). Let � = Z2 with canonical basis g1, g2. Observe that
(V , c) can be realized in k�

k�YD via:

g1 · x1 = x1, g1 · x2 = x1 + x2, g1 · x3 = q12x3,

g2 · x1 = q21x1, g2 · x2 = q21(x2 + ax1), g2 · x3 = q22x3,

deg x1 = g1, deg x2 = g1, deg x3 = g2.

(3.3)

If a = 0, then B(L℘(q22, 0)) � B(V1)⊗B(V2), where ⊗ is the braided tensor product.
Since dim B(V1) = 24, dim B(L℘(q22, 0)) < ∞ ⇐⇒ dim B(kx3) < ∞ ⇐⇒ q22 ∈ G∞.
Thus, we can assume that a ∈ k

×.

Our main goal in this section is to prove the following result.

THEOREM 3.1. Assume (3.1) and that a �= 0. Then, dim B(L℘(q22, a)) < ∞ if and only

if q22 = 1. Precisely, dim B(L℘(1, a)) =
{

27 if a = 1,

28 if a ∈ k \ {0, 1}.
We shall apply the splitting technique cf. Section 2.3.2. To describe K1, we set

zn := (adc x2)
nx3, n ∈ N0. (3.4)

We establish first a series of useful formulae.

LEMMA 3.2. The following formulae hold in B(V) for all n ∈ N0:

g1 · zn = q12zn, x1zn = q12znx1, x21zn = q2
12znx21, (3.5)

g2 · zn = qn
21q22zn, x2zn = q12znx2 + zn+1. (3.6)

Proof. Note that (3.5) holds for n = 0. Indeed, g1 · z0 = g1 · x3 = q12z0 and using deriva-
tions is easy to check that x1z0 = q12z0x1 and x21z0 = q2

12z0x21. Now suppose that (3.5) holds
for n. Then, zn+1 = (adc x2)

n+1x3 = (adc x2)zn = x2zn + (g1 · zn)x2 = x2zn + q12znx2. So we
compute

g1 · zn+1 = g1 · (x2zn + q12znx2) = q12(x1 + x2)zn + q2
12zn(x1 + x2)

= q12[(x2zn + q12znx2) + (x1zn + q12znx1)] = q12zn+1.

Similarly,

x1zn+1 = x1(x2zn + q12znx2) = (x21 + x2x1)zn + q2
12znx1x2

= q2
12znx21 + q12x2znx1 + q2

12zn(x21 + x2x1)

= q12(x2zn + q12znx2)x1 = q12zn+1x1.
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Also, since x21x2 = x2x21 + x21x1 we have that

x21zn+1 = x21(x2zn + q12znx2) = x21x2zn + q3
12znx21x2

= x2x21zn + x21x1zn + q3
12znx21x2

= q2
12x2znx21 + q12x21znx1 + q3

12zn(x2x21 + x21x1)

= q2
12x2znx21 + q3

12znx21x1 + q3
12znx2x21 + q3

12znx21x1

= q2
12(x2zn + q12znx2)x21

= q2
12zn+1x21.

Finally, the first equation in (3.6) follows by induction. For n = 0, g2 · z0 = q22z0.
Suppose that g2 · zn = qn

21q22zn. Then,

g2 · zn+1 = g2 · (x2zn + q12znx2)

= q21(x2 + ax1)(q
n
21q22zn) + q12(q

n
21q22zn)q21(x2 + ax1)

= qn+1
21 q22(x2zn + q12znx2) + aqn+1

21 q22(x1zn + q12znx1)

= qn+1
21 q22zn+1.

We define

μ0 = 1, μ1 = a, μ2 = a, μ3 = a(a + 1),

y0 = 1, y1 = x1, y2 = x21, y3 = x1x21.

LEMMA 3.3. For all k ∈ N0, ∂1(zk) = ∂2(zk) = 0, and

∂3(zk) = μkyk, k ∈ I0,3, ∂3(zk) = 0, k ≥ 4.

Proof. Clearly, ∂1(z0) = ∂2(z0) = 0, ∂3(z0) = 1. Recursively, ∂1(zk) = 0 for all k. If

∂2(zk) = 0, then ∂2(zk+1) = ∂2(x2zk + q12zkx2) = g1 · zk + q12zk
(3.5)= 0. Next,

∂3(z1) = ∂3(x2x3 + q12x3x2) = x2 + q12(q21(x2 + ax1)) = ax1 = μ1y1,

∂3(z2) = ∂3(x2z1 + q12z1x2) = ax2x1 + q12ax1q21(x2 + ax1) = ax21 = μ2y2,

∂3(z3) = ∂3(x2z2 + q12z2x2) = ax2x21 + q12ax21q21(x2 + ax1)

= ax2(x2x1 + x1x2) + a(x2x1 + x1x2)(x2 + ax1)

= ax2
2x1 + ax1x2

2 + a2x1x2x1
(2.5)= (a + a2)x1x2x1

= (a + a2)x1x21 = μ3y3,

∂3(z4) = ∂3(x2z3 + q12z3x2)

= (a + a2)x2x1x2x1 + q12(a + a2)x1x2x1(g2 · x2)

= (a + a2)x2x1x2x1 + q12(a + a2)x1x2x1(q21(x2 + ax1))

= (a + a2)(x2x1x2x1 + x1x2x1x2)
(2.5)= 0.
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LEMMA 3.4. Let B1 := {zi : i ∈ I0,2} and B2 := {zi : i ∈ I0,3}. If a = 1 (resp. a �= 1), then
B1 (resp. B2) is a basis of K1.

Proof. Notice that (adc x1)zn = 0 and (adc x21)zn = 0. By Theorem 2.2 and Lemma 3.3,
if a = 1 (resp. a �= 1), then B1 (resp. B2) generates K1. Since the elements of Bi (i ∈ I0,2) are
homogeneous of distinct degrees and are nonzero, it follows that Bi (i ∈ I0,2) is a linearly
independent set.

Let i ∈ N0. We define recursively the scalars νi,j, for j > i, by

νi,i = 1, νi,j = (a + ( j − 1)) νi,j−1.

LEMMA 3.5. The coaction (2.7) on zi, i ∈ I0,3, is given, ( for n = 0, 1) by

δ(z2n) =
n∑

k=1

νk,nx1xn−k
21 g2k−1

1 g2 ⊗ z2k−1 +
n∑

k=0

νk,nxn−k
21 g2k

1 g2 ⊗ z2k,

δ(z2n+1) =
n∑

k=0

νk,n+1x1xn−k
21 g2k

1 g2 ⊗ z2k +
n∑

k=0

νk+1,n+1xn−k
21 g2k+1

1 g2 ⊗ z2k+1.

Proof. Similar to the proof of [2, Lemma 4.2.5].

Lemma 3.5 implies that K1 is of diagonal type with braiding given by

c(zi ⊗ zj) = qj−i
21 q22zj ⊗ zi, ∀ i, j. (3.7)

Now we are ready for to prove the main result of this Section.

Proof of Theorem 3.1. If q22 = 1, then the Dynkin diagram of K1 is totally disconnected
with vertices labeled with 1. Thus, if a = 1, then dim B(K1) = 23 and dim B(L℘(1, 1)) =
27; if a �= 1, then dim B(K1) = 24 and dim B(L℘(1, a)) = 28. If q22 �= 1, then the Dynkin
diagram of K1 is

a = 1 : ◦q22

q2
22

��
��

��
��

◦q22

q2
22

�������� q2
22 ◦q22;

a �= 1 : ◦q22

q2
22

��
��
��
�� q2

22

��
��

��
��

◦q22

q2
22

q2
22 ◦q22

q2
22

q2
22 ◦q22 .

By inspection of the lists in [10, 11], we conclude that dim B(K1) = ∞.

3.1. The presentation by generators and relations. Let c be the braiding of K1 as
in (3.7). Then q22 = 1 if and only if c2 = id. Hence, for a = 1 (resp. a �= 1), B(K1) is the
algebra generated by z0, z1, z2 (resp. z0, z1, z2, z3) with relations:

z2
i = 0, zizj = qj−i

21 zjzi, i �= j.

Thus, we have the following results.
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PROPOSITION 3.6. The algebra B(L℘(1, 1)) is presented by generators x1, x2, x3 with
defining relations (2.5) and

x1zj = q12 zjx1, zj+1 = x2zj + q12zjx2, j ∈ N0, (3.8)

zizj = qj−i
21 zjzi, z2

j = 0, zk = 0, i, j ∈ I0,2, k ≥ 3. (3.9)

The dimension of B(L℘(1, 1)) is 27, since it has a PBW-basis:

{xm1
1 xm2

21 xm3
2 zn2

2 zn1
1 zn0

0 : m1, m2, ni ∈ I0,1, m3 ∈ I0,3}.

PROPOSITION 3.7. The algebra B(L℘(1, a)), a �= 1, is presented by generators
x1, x2, x3 with defining relations (2.5) and

x1zj = ℘ zjx1, zj+1 = x2zj + ℘zjx2, j ∈ N0, (3.10)

zizj = ℘ i−jzjzi, z2
j = 0, zk = 0, i, j ∈ I0,3, k ≥ 4. (3.11)

The dimension of B(L℘(1, a)) is 28, since it has a PBW-basis:

{xm1
1 xm2

21 xm3
2 zn3

3 zn2
2 zn1

1 zn0
0 : m1, m2, ni ∈ I0,1, m3 ∈ I0,3}.

3.2. Realizations. Let (g1, χ1, η) be a YD-triple and (g2, χ2) a YD-pair for H , see
Section 2.2.3. Let (V , c) be a braided vector space with braiding (3.2). Then Vg1(χ1, η) ⊕
k

χ2
g2

∈ H
HYD is a principal realization of (V , c) over H if

qij = χj(gi), i, j ∈ I2; a = q−1
21 η(g2).

Thus, (V , c) � Vg1(χ1, η) ⊕ k
χ2
g2

as braided vector space. Hence, if H is finite-dimensional

and (V , c) �L℘(1, a), a �= 0, then B
(Vg1(χ1, η) ⊕ k

χ2
g2

)
#H is a finite-dimensional Hopf

algebra. Observe that the existence of a YD-triple for H finite-dimensional is not granted,
for instance, ℘ = q12 should be a root of 1, otherwise there is no such triple. Suppose that
ord ℘ = M ∈ N. Notice that M is odd because char k= 2. Here are some explicit examples
of finite-dimensional pointed Hopf algebras like this: take � = 〈g1〉 × 〈g2〉 where both g1

and g2 have order 2M . Then, (V , c) is realized in k�
k�YD with structure as in (3.3) and

dim B(V)#k� = 29M2 (if a = 1) or 210M2 (if a �= 1).

4. One block and several points. Let θ ∈ N≥3, I
†
θ = Iθ ∪ {3

2 }; as usual �x� is the inte-
gral part of x ∈ R. We fix a matrix q = (qij)i,j∈Iθ with entries in k

× and a = (1, a2, . . . , aθ ) ∈
k

θ . We assume that

q11 = 1, q1jqj1 = 1, for all j ∈ I2,θ , a �= (1, 0, . . . , 0). (4.1)

Let (V , c) be the braided vector space of dimension θ + 1, with a basis (xi)i∈I
†
θ

and braiding
given by

c(xi ⊗ xj) =
{

q�i�jxj ⊗ xi, i ∈ I
†
θ , j ∈ Iθ ;

q�i�1(x3
2
+ a�i�x1) ⊗ xi, i ∈ I

†
θ , j = 3

2 .
(4.2)

Then, V = V1 ⊕ V2 where V1 = 〈x1, x3
2
〉 � V(1, 2) (the block) and V2 = 〈x2, . . . , xθ 〉 (the

points). If � = Zθ with basis (gh)h∈Iθ , then V can be realized in k�
k�YD as in (3.3). Here is

the main result of this section.
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THEOREM 4.1. Assume (4.1). Then dim B(V) = ∞.

We shall use the material from the previous section with 3
2 replacing 2 for instance

x3
2 1 = x3

2
x1 + x1x3

2
. We shall apply the splitting technique cf. Section 2.3.2. To describe K1,

we introduce the elements:

zi,n :=
(

adcx3
2

)n
xi, i ∈ I2,θ , n ∈ N0. (4.3)

Let i ∈ I2,θ , n ∈ N0. By Lemma 3.2, we have that

g1 · zi,n = q1izi,n, zi,n+1 = x3
2
zi,n + q1izi,nx3

2
, x1zi,n = q1,izi,nx1. (4.4)

Consequently,

gh · zi,n = qn
h1qhizi,n, h ∈ I2,θ . (4.5)

In fact, gh · zi,0 = gh · xi = qhixi. Suppose that gh · zi,n = qn
h1qhizi,n. Thus,

gh · zi,n+1 = gh ·
(

x3
2
zi,n + q1izi,nx3

2

)
= qh1

(
x3

2
+ ahx1

)
qn

h1qhizi,n + q1iq
n+1
h1 qhizi,n

(
x3

2
+ ahx1

)
= qn+1

h1 qhi

(
x3

2
zi,n + q1izi,nx3

2

)
= qn+1

h1 qhizi,n+1.

As in Lemma 3.3, we define for i ∈ I2,θ ,

μ
(i)
0 = 1, μ

(i)
1 = ai, μ

(i)
2 = ai, μ

(i)
3 = ai(ai + 1),

y0 = 1, y1 = x1, y2 = x3
2 1, y3 = x1x3

2 1.

Hence, ∂h(zi,n) = 0 for i ∈ I2,θ , n ∈ N0, i �= h ∈ I
†
θ and

∂i(zi,n) = μ(i)
n yn, n ∈ I0,3, ∂i(zi,n) = 0, n ≥ 4.

For i ∈ I2,θ , we define

Ji =

⎧⎪⎪⎨⎪⎪⎩
{(i, 0)}, ai = 0,

{(i, 0), (i, 1), (i, 2)}, ai = 1,

{(i, 0), (i, 1), (i, 2), (i, 3)}, ai /∈ {0, 1},
J =

⋃
i∈I2,θ

Ji.

LEMMA 4.2. The family B = (zi,n)(i,n)∈J is a basis of the braided vector space K1, which
is of diagonal type with braiding:

c(zi,m ⊗ zj,n) = qn
i1qm

1jqijzj,n ⊗ zi,m, (i, m), ( j, n) ∈ J . (4.6)

Proof. Arguing as in Lemma 3.4, we see that B is a basis. We compute the coaction
(2.7) on zj,n as in Lemma 3.5 and then (4.6) follows.

Proof of Theorem 4.1. It is enough to show that dim B(K1) = ∞. By (4.6), we may
assume that the Dynkin diagram of the matrix (qij)i,j∈I2,θ

is connected. We then may assume
that θ = 3 by taking a suitable subdiagram; thus q̃23 := q23q32 �= 0. We distinguish then
three cases. First assume a = (1, a, 0) with a �= 0. By Theorem 3.1 applied to V1 ⊕ 〈x2〉,
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q22 = 1. By Lemma 4.2, K1 is of diagonal type. If a = 1, then its Dynkin diagram is

◦1

◦1 q̃23 ◦q33

q̃23
������� q̃23 ◦1

which does not appear in the list in [11]. If a �= 1, then the diagram above appears a subdi-
agram. The case a = (1, 0, b) with b �= 0 is similar. As well, if a = (1, a, b) with a, b �= 0,
then the diagram above also appears a subdiagram of that of K1.

5. Several blocks and one point. Let t ≥ 2 and θ = t + 1. As in [2, 4] we use the
notation:

I
‡
k =

{
k, k + 1

2

}
, k ∈ It; I‡ = I

‡
1 ∪ · · · ∪ I

‡
t ∪ {θ}.

We fix a matrix q = (qij)i,j∈Iθ with entries in k
× and a = (a1, . . . , at) ∈ k

t. We assume that

qii = 1, qijqji = 1, for all i �= j ∈ Iθ ; aj �= 0, j ∈ It. (5.1)

Let P(q, a) be the braided vector space with basis (xi)i∈I‡ and braiding:

c(xi ⊗ xj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q�i��j� xj ⊗ xi, �i� ≤ t, �i� �= �j�,
xj ⊗ xi, �i� = j ≤ t,

( xj + x�j�) ⊗ xi, �i� ≤ t, j = �i� + 1
2 ,

qθ j xj ⊗ xθ , i = θ, j ∈ Iθ ,

qθ�j� (xj + a�j�x�j�) ⊗ xθ , i = θ, j /∈ Iθ .

(5.2)

Let V1 = W1 ⊕ . . . ⊕ Wt where Wk = 〈xk, xk+ 1
2
〉 � V(1, 2) (the blocks); and let V2 = 〈xθ 〉

(the point). Then, P(q, a) = V1 ⊕ V2. If � = Zθ with basis (gi)i∈Iθ , then there is an action
of � on V determined by

c(xi ⊗ xj) = gi · xj ⊗ xi, i ∈ Iθ , j ∈ I‡. (5.3)

Thus, V is realized in k�
k�YD with the grading deg(xi) = g�i�, i ∈ I‡.

Here is the main result of this section; see (5.9) for the explicit formula of the
dimension.

THEOREM 5.1. Assume (5.1). Then dim B(P(q, a)) < ∞.

Let j ∈ It. We set xj+ 1
2 j = xj+ 1

2
xj + xjxj+ 1

2
and define

μ
( j)
0 = 1, μ

( j)
1 = aj, μ

( j)
2 = aj, μ

( j)
3 = aj(aj + 1), μ( j)

n = 0 if n ≥ 4,

yj,0 = 1, yj,1 = xj, yj,2 = xj+ 1
2 j, yj,3 = xjxj+ 1

2 j, yj,n = 0 if n ≥ 4.

To apply the splitting technique, see Section 2.3.2, we introduce the elements:

щn :=
(

adc x3
2

)n1

. . .
(

adc xt+ 1
2

)nt

xθ , n = (n1, . . . , nt) ∈ Nt
0. (5.4)
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We start establishing some useful formulas.

LEMMA 5.2. Let j ∈ It and n = (n1, . . . , nt) ∈ Nt
0. Then

adc xj(щn) = adc xj+ 1
2 j(щn) = 0, (5.5)

adc xj+ 1
2
(щn) =

∏
i<j

qni
ji щn+ej

, (5.6)

gj · щn = qjθ

t∏
i=1

qni
ji , gθ · щn =

t∏
i=1

qni
θ iщn (5.7)

∂j(щn) = ∂j+1(щn) = 0, ∂θ (щn) =
t∏

i=1

μ(i)
ni

y1,n1 . . . yt,nt . (5.8)

Proof. Similar to the proof of [2, Lemma 7.2.3].

Let us set

bj := 2, if aj = 1, bj := 3, if aj �= 1, and b = (b1, . . . , bt) ∈ Nt.

Arguing as in [2, Section 7.2], we conclude from Lemma 5.2:

LEMMA 5.3. Let A= {n ∈ Nt
0 : n ≤ b} ordered lexicographically.

(i) The elements (щn)n∈A form a basis of K1.

(ii) The coaction (2.7) on щn is given by

δ(щn) =
∑

0≤k≤n

νn
k y1,n1−k1 . . . yt,nt−kt g

k1
1 . . . gkt

t gθ ⊗ щk

for some scalars νn
k , 0 ≤ k ≤ n, with νn

n = 1.

(iii) The braided vector space K1 is of diagonal type with respect to the basis (щn)n∈A
with matrix braiding (pm,n)m,n∈A, where

pm,n =
t∏

i,j=1

q
minj

ij qmi
iθ q

nj

θ j.

Hence, the corresponding generalized Dynkin diagram has labels:

pm,m = 1 pm,npn,m = 1, m �= n.

Proof of Theorem 5.1. By Lemma 5.3, dim B(K1) = 2|A|. Now the blocks
Wi and Wj, i �= j, commute in the braided sense by definition, therefore B(V1) �
B(W1)⊗B(W2) . . . ⊗B(W1). Hence,

dim B(P(q, a)) = 24t+|A|. (5.9)
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5.1. The presentation by generators and relations.

PROPOSITION 5.4. The algebra B(P(q, a)) is presented by generators xi, i ∈ I‡, and
relations:

x2
i = 0, x4

i+ 1
2
= 0, i ∈ It, (5.10)

x2
i+ 1

2
xi + xix

2
i+ 1

2
+ xixi+ 1

2
xi = 0, i ∈ It, (5.11)

xixi+ 1
2
xixi+ 1

2
+ xi+ 1

2
xixi+ 1

2
xi = 0, i ∈ It, (5.12)

xixj = q�i��j�xjxi, �i� �= �j� ∈ It, (5.13)

xixθ = qiθ xθxi, i ∈ It, (5.14)(
adc xi+ 1

2

)1+bi

(xθ ) = 0, i ∈ It, (5.15)

щmщn = pm,nщnщm, m �= n ∈A, (5.16)

щ2
n = 0, n ∈A. (5.17)

A basis of B(P(q, a)) is given by

B =
{

y1,m1 xm2
3
2

. . . yt,m2t−1 xm2t

t+ 1
2

∏
n∈A

щbn
n : 0 ≤ bn < 2, 0 ≤ mi < 4

}
.

Hence, dim B(P(q, a)) = 24t+|A|.

5.2. Realizations. Let H be a Hopf algebra, (gi, χi, ηi), i ∈ It, a family of YD-triples
and (gθ , χθ ) a YD-pair for H , see Section 2.2.3. Let (V , c) be a braided vector space with
braiding (5.2). Then,

V :=
(

⊕i∈It Vgi(χi, ηi)
)

⊕ k
χθ

gθ
∈ H

HYD (5.18)

is a principal realization of (V , c) over H if

qij = χj(gi), i, j ∈ Iθ ; aj = q−1
j1 ηj(gj), j ∈ It.

Consequently, if H is finite-dimensional, then so is B(V)#H . But the existence of such
H requires that all qij’s are roots of 1. In this case, let � = (Z/N)θ where N is even and
divisible by ord qij for all i, j. Then, (V , c) is realized in k�

k�YD with action (5.3). Thus,
B(P(q, a))#k� is a pointed Hopf algebra of dimension 24t+|A|N θ .

6. One pale block and one point. An indecomposable Yetter–Drinfeld module
which is decomposable as braided vector space is called a pale block [5]; the simplest
examples were studied in [2, 4]. We extend the analysis there to characteristic 2.

Let (qij)i,j∈I2 be a matrix with nonzero entries; we assume that q11 = 1 and q12q21 = 1;
we set ℘ = q12 = q−1

21 . Let V =E℘(q22) be the braided vector space of dimension 3 with
basis (xi)i∈I3 and braiding given by
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(c(xi ⊗ xj))i,j∈I3 =

⎛⎜⎜⎜⎝
x1 ⊗ x1 x2 ⊗ x1 q12x3 ⊗ x1

x1 ⊗ x2 x2 ⊗ x2 q12x3 ⊗ x2

q21x1 ⊗ x3 q21(x2 + x1) ⊗ x3 q22x3 ⊗ x3

⎞⎟⎟⎟⎠ . (6.1)

Let V1 = 〈x1, x2〉 (the pale block), V2 = 〈x3〉 (the point), and � = Z2 with a basis g1, g2.
Notice that B(V1) is a truncated symmetric algebra of dimension 4. We realize V in k�

k�YD
by deg x1 = deg x2 = g1, deg x3 = g2:

g1 · x1 = x1, g1 · x2 = x2, g1 · x3 = q12x3,

g2 · x1 = q21x1, g2 · x2 = q21(x2 + x1), g2 · x3 = q22x3.
(6.2)

THEOREM 6.1. The Nichols algebra B(E℘(q22)) is finite-dimensional if and only if
q22 = 1 or q22 = ω, with ω ∈ G′

3.

To apply the splitting technique, see Section 2.3.2, we introduce the elements:

шm,n = (adc x1)
m(adc x2)

nx3, wm = шm,0, zn = ш0,n, m, n ∈ N0.

By direct computation,

g1 · шm,n = q12шm,n, g2 · wm = qm
21q22wm, (6.3)

zn+1 = x2zn + q12znx2, шm+1,n = x1шm,n + q12шm,nx1, (6.4)

∂1(шm,n) = ∂2(шm,n) = 0, ∂3(wm) = 0, for all m > 0. (6.5)

Since x1 and x2 commute, шm,n = (adc x2)
n(шm,0) = (adc x2)

n(wm). By (6.5) wm = 0
and thus шm,n = 0, for all m > 0. Hence, {zn : n ∈ N0} generates K1. It is easy to check that

g2 · zn = qn
21q22zn, ∂3(zn) = xn

1, n ∈ N0. (6.6)

As x2
1 = 0, we conclude that {z0, z1} is a basis of K1. The coaction is given by δ(z0) =

g2 ⊗ z0 and δ(z1) = x1g2 ⊗ z0 + g1g2 ⊗ z1. From (6.6) follows that K1 is a braided vector
space of diagonal type with braiding:

c(zi ⊗ zj) = qj−i
21 q22zj ⊗ zi, i, j ∈ I0,1.

Proof of Theorem 6.1. If q22 = 1, then the Dynkin diagram of K1 is totally discon-
nected with vertices labelled with q22. In this case, z2

0 = z2
1 = 0, dim B(K1) = 4 and so

dim B(E℘(1)) = 24. If q22 �= 1, the Dynkin diagram of K1 is

◦q22
q2

22 ◦q22 .

By inspection in the list of [9], dim B(K1) < ∞ if and only if q22 = ω, with ω ∈ G′
3. In this

case, dim B(K1) = 33 and so dim B(E℘(ω)) = 2233.

6.1. The presentation by generators and relations.

PROPOSITION 6.2. The algebra B(E℘(1)) is presented by generators x1, x2, x3 with
defining relations:

x2
1 = 0, x2

2 = 0, x1x2 = x2x1, (6.7)

x1x3 = ℘x3x1, z1 = x2x3 + ℘x3x2 (6.8)

x2
3 = 0, z2

1 = 0. (6.9)
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The dimension of B(E℘(1)) is 24, since it has a PBW-basis:{
xm1

1 xm2
2 zn1

1 xn0
3 : mi, ni ∈ I0,1

}
.

PROPOSITION 6.3. Let z01 := adc x3(z1). The algebra B(E℘(ω)) is presented by
generators x1, x2, x3 with defining relations:

x2
1 = 0, x2

2 = 0, x1x2 = x2x1, (6.10)

x1x3 = ℘x3x1, z1 = x2x3 + ℘x3x2 (6.11)

x3
3 = 0, z3

1 = 0. (6.12)

z3
01 = 0, (adc x3)

2(z1) = 0. (6.13)

The dimension of B(E℘(ω)) is 2233, since it has a PBW-basis:{
xm1

1 xm2
2 zn2

1 zn1
01xn0

3 : mi ∈ I0,1, ni ∈ I0,2
}

.

6.2. Realizations. Assume that ℘ is a root of 1 of odd order M . Take � = 〈g1〉 ×
〈g2〉 where g1 has order M and g2 has order 2M . We realize E℘(1) in k�

k�YD by deg x1 =
deg x2 = g1, deg x3 = g2 and action (6.2). Then, B

(
E℘(1)

)
#k� is a pointed Hopf algebra

of dimension 25M2.
Also, let ϒ = 〈h1〉 × 〈h2〉 where h1 has order M and h2 have order P := lcm(6, M). We

realize E℘(ω) in kϒ
kϒYD by deg x1 = deg x2 = h1, deg x3 = h2 and action as in (6.2) with hi’s

instead of the gi’s. Then, B
(
E℘(ω)

)
#kϒ is a pointed Hopf algebra of dimension 2333MP.
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