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Abstract: Tropical montane cloud forests (TMCF) are characterized by short trees, often twisted with multiple stems,
with many stems per ground area, a large stem diameter to height ratio, and small, often thick leaves. These forests
exhibit high root to shoot ratio, with a moderate leaf area index, low above-ground production, low leaf nutrient
concentrations and often with luxuriant epiphytic growth. These traits of TMCF are caused by climatic conditions not
geological substrate, and are particularly associated with frequent or persistent fog and low cloud. There are several
reasons why fog might result in these features. Firstly, the fog and clouds reduce the amount of light received per
unit area of ground and as closed-canopy forests absorb most of the light that reaches them the reduction in the total
amount of light reduces growth. Secondly, the rate of photosynthesis per leaf area declines in comparison with that in
the lowlands, which leads to less carbon fixation. Nitrogen supply limits growth in several of the few TMCFs where it
has been investigated experimentally. High root : shoot biomass and production ratios are common in TMCF, and soils
are often wet which may contribute to N limitation. Further study is needed to clarify the causes of several key features

of TMCF ecosystems including high tree diameter : height ratio.
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INTRODUCTION

Distinctive forest vegetation on tropical mountains that
are frequently or persistently immersed in ground-level
clouds often is described as tropical montane cloud
forest (TMCF). These forests often exhibit a variety of
ecological features that distinguish them from tropical
forests that are more rarely exposed to ground-level
clouds, especially a stunted and gnarled canopy with high
cover of epiphytes (especially bryophytes and filmy ferns,
Hietz 2010). The overriding role of cloud immersion in
shaping this vegetation’s physiognomy is emphasized by
its recurrence across sites for which other environmental
factors (e.g. temperature, precipitation, altitude, wind,
slope, soils) exhibit wide variation; and in tropical regions
with different biogeographic affinities. The mechanisms
contributing to distinctive TMCF physiognomy and
ecology have received long and detailed study, beginning
with Shreve (1914) and Brown (1919), and including
a recent synthesis volume detailing current advances
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(Bruijnzeel et al. 2010). The objectives of this paper are
to provide a concise overview of ecological interactions
that characterize these distinctive forests and to suggest
directions for future study. We define TMCF primarily
on the basis of frequent cloud immersion, distinguishing
these tropical montane forests from other tropical forests
in drier and warmer environments.

A variety of schemes for classifying tropical montane
forest vegetation zones has been devised, and the
designation of TMCF generally coincides with tropical
montane rain forest (Grubb 1971) or upper montane
rain forest and subalpine forest; this includes forests
affected by frequent and/or persistent ground-level
cloud (Grubb 1977). Greater cloud immersion typically
accompanies decreased temperatures with increasing
altitude (Bruijnzeel & Hamilton 2000). We emphasize
at the outset that the designation of a discrete TMCF
type can be misleading because most commonly the
composition and structure of tropical montane vegetation
exhibits more or less continuous variation across
complex environmental gradients (Lieberman et al.
1996). Moreover, precise delineation of the distribution
of TMCF is problematic because direct observations of
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Table 1. Key characteristics of tropical montane cloud forests.

Reference

Weaver et al. 1986
Bellingham & Sparrow 2009
Moser et al. 2007

See Figure 2

Weaver et al. 1986
Asner et al. 2014
Lieberman et al. 1996
Tanner & Kapos 1982
Hietz 2010

Grieve et al. 1990
Silver et al. 1999
Leuschner et al. 2007
Tanner et al. 1998

Ecological feature

Low canopy height and twisted stems
Multi-stemmed and leaning trees
Low leaf area index

High ratio of diameter:height

High stem density

Many canopy gaps

High tree fern abundance

Small, thick leaves

High epiphyte abundance, bryophytes
Deep surface organic horizon
Persistently wet soil

High root : shoot ratio

Nitrogen limitation of ANPP

ground-level clouds are not available on an extensive
basis. Mulligan (2010) demonstrated that limits of
TMCF-classified vegetation coincide best with forested
landscapes where greater than 70% of the time satellite-
visible clouds and/or ground-level condensing conditions
(modelled) occur. Also, strictly speaking tropical cloud
forests are not restricted to mountains (Gradstein et al.
2010), but they are most commonly observed between
about 1000 m and 2500 m asl; they are found in sites
with a range of temperatures. Jarvis & Mulligan (2010)
demonstrated that the climate of TMCFs is significantly
different from other tropical montane forests, especially in
terms of lower T . and T yean, mostly because they occur
at higher altitude. TMCFs tend to be much closer to coasts,
as the oceans provide a continuous source of atmospheric
moisture to supply cloud formation. Also, cloud forests
tend to occur more frequently on topographically exposed
landscapes, ridges or peaks, than other montane forests.
The geological settings of TMCFs are not distinctive and
their soils exhibit a wide range of properties. A particularly
distinctive feature of TMCF distribution is the so-called
Massenerhebung (or mass-elevation) effect: the elevation
of TMCF is much lower on smaller than on larger moun-
tain massifs (Grubb 1971); the smaller mountains tend to
be closer to the sea. The tropical Massenerhebung effect
reflects greater cloud immersion on smaller mountains
resulting from lower temperatures and a steeper adiabatic
lapse rate owing to proximity to the sea; hence, this effect
further emphasizes the key role played by climate and
cloud immersion in defining TMCF distribution.

A suite of biotic features characterizes TMCF in contrast
to other tropical forests (Table 1). These features vary
among TMCFs as a result of differences in environments
and floras; for example, not all TMCFs are stunted, and
stunting and twisting are not confined to wet TMCF. Also,
most research relating environment and vegetation in
TMCF has been conducted in the neotropics and a few
otherlocations (e.g. Hawaii), and wider study is needed to
better characterize global relationships. Nevertheless, we
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would argue that certain ecological features comprise a
useful, unifying set that defines and aids in analysing the
TMCF phenomenon. The low height, or stunting, of the
canopy is common in most TMCF. Although decreased
forest canopy height accompanies declining temperature
athigh elevation in most of Earth’s mountains, stunting in
the TMCF can be extreme (Weaver etal. 1986). Moreover,
the TMCF stems are often gnarled and twisted or leaning,
and multi-stemmed trees are common (Bellingham &
Sparrow 2009). The leaf area index (LAI) in most TMCFs
is lower than for lowland forests (Moser et al. 2007,
Unger et al. 2012). The ratio of stem diameter to tree
heightincreases with altitude on most tropical mountains
(Girardin et al. 2014a), and stem density is usually higher
in TMCF than in lower montane forests. Canopy openings
are often more frequent in TMCF (Asneretal. 2014) which
together with the humid climate and low LAIfavours high
abundance of tree ferns (Lieberman et al. 1996), and other
ferns (Salazar et al. 2013). Leaves of many TMCF species
are classified as microphylls (Sugden 1985, Tanner & Ka-
pos 1982), and leaf thickness is often high. A final canopy
feature that is particularly distinctive in most TMCF is
the high abundance of epiphytes, especially liverworts,
mosses and filmy ferns (Hietz 2010); at the extreme all
stem surfaces can be clothed in a thick layer of epiphytes,
and epiphyte-derived canopy soil (decaying organic mat-
ter) accumulates (Bohlmanetal. 1995, Golleyetal. 1971).

Although soils of TMCF exhibit a wide range of
physical and chemical properties, certain below-ground
features appear to be common (Roman et al. 2010).
Root biomass and the root:shoot ratio of TMCF are
higher than in most other closed-canopy forests, and
some evidence suggests distinctively high below-ground
production (Girardin et al. 2010, Moser et al. 2011).
Most TMCF soils exhibit high soil organic matter content
and many have a deep organic horizon developed over
the mineral soil; this organic horizon may be peat (due
to waterlogging) or mor humus (due to acidity and
phenolics) or intermediate (Roman et al. 2010). Perhaps
most importantly TMCF soils are often wet because of the
combination of high precipitation and low evaporative
demand (cool and humid), and as a result of persistent
saturation many TMCF soils are low in oxygen, exhibiting
reducing conditions (Silver et al. 1999). Together with
slow nutrient recycling through dead organic matter,
these reducing conditions can contribute to chronic
nutrient limitation of plant production, especially N
limitation (Tanner et al. 1998).

HYPOTHETICAL FRAMEWORK

The environmental and biotic factors that characterize
the ecological interactions in TMCF are summarized in
a conceptual diagram (Figure 1). Because the distinctive
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Figure 1. Hypothesized causal diagram for the effects of environmental factors (in red) shaping cloud forest ecosystem properties (blue) and cloud
forest structure (green). Features in bold have been observed in all studies to date whereas other features occur only in some cases.

features of TMCF (Table 1) are expressed over a widerange
of environments and to differing degrees among TMCFs,
the contribution of various driving factors undoubtedly
differs among TMCFs; indeed, this variation provides
insights for understanding the causes of the TMCF
phenomenon.

Following on early work of Shreve (1914), Brown
(1919) and many others, we hypothesize that the
primary factor shaping the TMCF is the climatic driver:
the combination of relatively low temperatures, high
humidity and cloud immersion. This primary driver
either directly influences, interacts with, or is augmented
by a suite of secondary factors to limit the above-
ground productivity of TMCF and contribute to their
distinctive structure. Here we provide a briefsummary of a
hypothetical causal framework for the ecosystem features
of TMCF followed by a detailed overview of current
evidence. We again emphasize that TMCF actually
exhibits a broad range of ecosystem features.

The key role played by cloud immersion in shaping
the TMCF ecosystem seems clear, but the mechanisms
by which cloud immersion leads to the distinctive
physiognomy and functions of TMCF are not entirely
obvious. Light availability undoubtedly limits net
photosynthesis in TMCFs (Figure 1) compared with
forestsin less cloudy climates. For example, TMCF at 1550
m asl in Jamaica received 19% less shortwave radiation
than a site in the drier lowlands near sea level (Aylett
1985). The low air temperature in high-elevation TMCF
limits C assimilation (Wittich et al. 2012) and net primary
productivity (Figure 1) in much the same way as noted
for temperate alpine tree-line environments (Tranquillini
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1979). Moreover, in the cloudy conditions of TMCF leaf
temperatures are typically lower than for sunlit leaves,
further constraining photosynthesis.

Nutrient limitation of above-ground production is
suggested by the high root:shoot production ratio
observed in TMCF (Moser et al. 2011), and current
evidence points to low nitrogen availability as the
most common cause of nutrient limitation in TMCFs
(Cleveland et al. 2011, Fisher et al. 2013), though there
is good evidence that both P and N are limiting in
some TMCF (Homeier et al. 2012). Chronic N limitation
of above-ground productivity (Figure 1) results from
some combination of low input, high losses and delayed
recycling owing to suppressed microbial activity in the
usually cool and wet TMCF environment.

High annual precipitation in TMCF, including the
contribution of wind-driven rain or cloud drip, assures
that most TMCFs are not much affected by soil drought.
Quite the contrary, high rainfall and low evaporative
demand associated with cool, humid atmospheric
conditions result in soils that, in many sites, are often at
or near saturation (Figure 1). The mechanisms whereby
saturated soils contribute to TMCF dynamics are complex.
First, the direct effect of low oxygen on root function
probably plays a varying role, depending upon plant
species and the frequency and extent of anaerobic
conditions in soil. In some situations root penetration
of soil may be restricted leading to shallow rooting
and low resistance to uprooting during windstorms
(Soethe et al. 2006). Also, nutrient uptake by roots
may be further curtailed by low-oxygen conditions.
Together these influences contribute further to chronic
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N limitation and low canopy C assimilation. Moreover,
a higher proportion of assimilated C is allocated below
ground to acquire soil nutrients and maintain wind-
firmness, feeding back to lower above-ground net primary
productivity (ANPP, Figure 1).

Another striking feature of TMCF ecosystems is the
frequently high accumulation of epiphytes, especially
bryophytes, made possible by the high atmospheric
moisture (Figure 1). The effect of high epiphyte loads
on the other features of TMCF ecosystems has received
limited attention. It is possible that the high mass
loading of water-saturated bryophytes might lead to
structural stability problems in some TMCFs, thereby
contributing to observed canopy stunting, high tree
diameter : height ratios and greater allocation to root
systems. The role of wind in shaping TMCFs (Figure 1) has
been suggested (Lawton 1982)and high winds can induce
some of the canopy traits of cloud-forest trees (Cordero
1999), but TMCF stunting is also expressed in low-wind
environments (Martin et al. 2007). The high frequency
of canopy openings in some TMCFs has been ascribed to
low ANPP and slow closure of forest openings, thereby
favouring high density of understorey stems (Asner et al.
2014).

A final consideration in the structure and function of
TMCF is the contribution of phylogenetic vs phenotypic
factors. Stunting of TMCF trees is seen in species that grow
much taller at lower altitudes; for example, in Jamaica
one of the most common species in the most stunted
(mor ridge) forest, Clethra occidentalis, also grows to nearly
30 m tall in lowland wet limestone forest. Other species
common in the most stunted TMCF in Jamaica are found
only as epiphytes at lower altitude (e.g. Clusia havetioides)
or absent at lower altitudes (e.g. Lyonia jamaicensis).
Conversely, some TMCF, which show extreme stunting,
are dominated by species which are rare or absent at
lower altitudes, for example the trees dominating the elfin
forest on Pico del Este in Puerto Rico (Howard 1968).
Thus, TMCF structure can result from inflexible species
characteristics but also from flexible responses to the
extreme environment in plastic species.

MECHANISMS AND EVIDENCE
Cloudiness and effects of cloud immersion

Persistent cloudiness and cloud immersion reduce
insolation relative to clear sky in TMCFs (19% in Jamaican
TMCF, Aylett 1985, Hafkenscheid 2000; 40% in Puerto
Rican TMCF, Baynton 1968; 62% in Bolivia, Schawe et al.
2010), but surprisingly little research has been conducted
to quantify the effects of reduced photosynthetic photon
flux density (PPFD) on photosynthetic C gain in TMCF
vegetation. In a subtropical montane cloud forest, eddy
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flux measurements demonstrated that whole-canopy CO,
uptake was reduced by 21% under foggy conditions that
reduced insolation by 64% in comparison to non-foggy
conditions (Mildenberger et al. 2009; Figure 1). Moreover,
the light climate in TMCF is one of very low PPFD in
fog potentially followed by very high PPFD in bright
sunlight; the switch between high and low light in TMCF
could be deleterious. However, evidence to date does
not suggest that TMCF species exhibit highly distinctive
photosynthetic physiology in comparison with lowland
trees. For example, an investigation of the photosynthetic
characteristics of leaves from TMCF at 3025 m asl
in the Peruvian Andes concluded that the maximum
carboxylation capacity and the maximum rate of electron
transport were not different from values for lowland rain
forest leaves (on a leaf area basis, when calculated for a
standard temperature of 25°C), but dark respiration was
higher (van de Weg et al. 2012). Moreover, van de Weg
et al. (2009) observed that leaf optical properties of cloud-
forest species were similar to those of rain-forest trees,
with typical ranges of plasticity in leaf mass per area with
depth in the canopy. In a pantropical survey, Wittich et al.
(2012) concluded that light-saturated photosynthesis
may decline slightly with increasing altitude in tropical
mountains, but the explanation of this observation was
not clear and possibly is related to inorganic nutrition
and low temperature; they suggested that low N and
P availability might limit compensatory responses of
enzyme activity that could otherwise balance effects of
low temperature. In sum, the combination of low total
PPFD and low temperatures appears to constrain net C
gain in TMCF (Figure 1), but further research is needed
to clarify the exact mechanisms. An additional influence
of cloud immersion on photosynthesis may result from
leaf wetness: water films on the abaxial leaf surface could
constrain diffusion of CO, into the leaf mesophyll and limit
photosynthesis (Letts & Mulligan 2005). However, data
on leaf wetness in cloud-forest trees is needed to confirm
the importance of this mechanism.

Cloud immersion strongly affects the ecosystem
water balance both by reducing evapotranspiration and
through the enhanced precipitation inputs associated
with wind-driven fog collected on canopy surfaces.
Both potential and actual evapotranspiration rates are
considerably lower in TMCF than for adjacent lower
montane forests (McJannet et al. 2010, Santiago et al.
2000, Schawe et al. 2010), but the magnitude of this
difference varies with climatic features both among
(Mulligan 2010) and within (Lawton et al. 2010)
montaneregions. Recent advances in the measurement of
fog interception have clarified the role of cloud immersion
in augmenting precipitation in TMCF. Holwerda et al.
(2010) concluded that cloud-water interception exceeded
1 mm d~! in a Puerto Rican elfin forest, and Higer
& Dohrenbusch (2011) reported that throughfall was
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800 mm y~! higher than rainfall in north-western Costa
Rica. Giambelluca et al. (2010) estimated over 1000
mm y~! in a wet cloud forest in Hawaii; however, they
concluded that most of the intercepted water was re-
evaporated rather thanreaching the ground as cloud drip.
The combined effect of reduced evapotranspiration and
enhanced precipitation associated with cloud immersion
might increase the frequency and duration of soil
saturation in TMCFs (Schawe et al. 2010; Figure 1).

A final direct effect of cloud immersion contributing to
the TMCF ecosystem is associated with the composition
and abundance of epiphytic plants. The diversity and
biomass of both vascular and non-vascular epiphytes is
high in most TMCFs, and cloud immersion undoubtedly
contributes to this pattern (Figure 1). The most distinctive
feature of the epiphyte vegetation in many TMCFs is
the high abundance of non-vascular species and filmy
ferns (Hymenophyllum spp.) that often cover nearly all
stem surfaces (Hietz 2010, Horwath 2011). The epiphytic
bryophytes of TMCF are predominantly leafy liverworts
(Jungermanniales) in contrast to lowland rain forest
where true mosses can be equally common (Horwath
2011). Among ferns, the genera Hymenophyllum and
Elaphoglossum and the family Grammitidaceae are
characteristic of TMCF (Hietz 2010, Kessler et al
2001, Krémer et al. 2005). High atmospheric moisture
particularly favours these taxa, and absorption of cloud
water probably contributes to their water supply (Shreve
1911, Tobén et al. 2010). The possible role of cloud-
water in supplying growth-limiting mineral nutrients to
epiphytic vegetation, or favouring epiphytic N,-fixing
taxa also is notable (Hietz et al. 2002). Conversely,
epiphyte vegetation including epiphylls could restrict tree
photosynthesis by growing over leaves and reducing
light availability (Grubb 1977). To our knowledge, no
measurements of this effect have been made for TMCEF.

Nutrient limitation

The role of mineral nutrient limitation in contributing
to TMCF ecosystem dynamics has been an enduring
theme of TMCF studies. An early idea that reduced
convective transport associated with low transpirational
water flux limits nutrient acquisition (Odum 1970)
has been largely discounted (Bruijnzeel & Veneklaas
1998, Grubb 1977), but relatively low foliar nutrient
concentrations (on a mass basis) clearly pointed to the
likelihood of nutrient limitation (Grubb 1977). Tanner
et al. (1998) summarized experimental evidence for
nutrient limitation of TMCF productivity and noted that
most, but not all, studies indicated nutrient limitation.
Moreover, they concluded that N was usually the
principal limiting nutrient (Figure 1), a conclusion that
has been borne out in more recent fertilization studies
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(Cleveland et al. 2011, Fisher et al. 2013). These
results agree with some observations of decreasing
foliar N:P ratios with increasing altitude in tropical
mountains (Soethe et al. 2008, van de Weg et al. 2009).
Photosynthetic parameters of TMCF trees also support N
rather than P limitation of C assimilation (van de Weg
et al. 2012). However, colimitation by N and P may
occur in some TMCF (Homeier et al. 2012), depending
upon local soil properties (Wittich et al. 2012). Moreover,
recent measurements of nitrate leaching from a TMCF
in Costa Rica (Brookshire et al. 2012) call into question
the universal role of soil N availability in limiting TMCF
productivity. A resolution to this apparent paradox — that
tree growth is limited by N in soils from which water with
low concentrations of nitrate is draining — may simply be
a question of relative amounts, as nitrate is very soluble
and it may be impossible for tree mycorrhizas to take
it all up. Early studies in Puerto Rico reported nitrate in
stream water (McDowell & Asbury 1994)in an area where
fertilization of forest recovering from a hurricane resulted
in about a doubling of leaf-litter production (Zimmerman
etal. 1995).

Evidence about the mechanisms contributing to
apparent N limitation of TMCF productivity is not entirely
conclusive; any or all of low N inputs, delayed recycling
or high N losses could contribute to chronic N limitation.
Benner et al. (2010) concluded that the generally low
nutrient status of TMCF compared with other tropical
forests probably is not associated with chronically low
nutrient inputs but rather with differences in the rates
of nutrient cycling or losses. However, low temperatures
have been linked to limitation of N, fixation in Earth’s
terrestrial biomes (Houlton et al. 2008), and although
they are common in lowland tropical forests, symbiotic
N,-fixing tree taxa are uncommon in TMCF. Nitrogen
fixation by lichens (Forman 1975) and other canopy
epiphytes clearly occurs as indicated both by direct
measurements (Benner et al. 2007) and by isotopic
evidence (Hietz et al. 2002). Free-living N, fixation
also occurs in forest floor and canopy soils, but the
quantities remain highly uncertain and more research
is needed (Matson et al. 2015). Intriguingly, Benner &
Vitousek (2007) observed that the abundance of N,-fixing
canopy epiphytes was stimulated by soil P fertilization
in a Hawaiian TMCF, suggesting a possible interaction
between P and N supply. The high accumulation of soil
organic matter in TMCF is indicative of delayed recycling
of nutrients and could contribute to chronic N, limitation
of NPP (Tanner et al. 1998, Unger et al. 2012). Declining
temperature appears to be the principal rate-limiting
factor for declining litter decay with increasing altitude
in tropical mountains (Salinas et al. 2011, Schuur 2001),
but a possible role of excess water and low O, is described
below; this factor also could contribute to increased losses
of N (Figure 1).
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Mycorrhizal associations undoubtedly play a key
role in mediating nutrient relations in TMCF, but
they have received limited attention to date. Although
arbuscular mycorrhizas are associated with most
TMCF tree genera (Brundrett 2009), many species of
Ericaceae, with their distinctive ericoid mycorrhizal
associations, are common as TMCF epiphytes (Rains
et al. 2003) and at environmental extremes in tropical
mountains (Gentry et al. 1995). Moreover, in some
tropical regions, tree species supporting ectomycorrhizal
associates from the families Fagaceae and Pinaceae
are common in TMCF. These mycorrhizal associations
exhibit some systematic differences in nutrient acquisition
mechanisms (Marschner & Dell 1994); studies of their
efficacy across TMCF ectones where taxa with the different
associations are present or absent might be particularly
informative for understanding nutrient relations of TMCEF.

Nutrient limitation could contribute to TMCF
ecosystem dynamics either directly by constraining
photosynthetic activity or indirectly by diverting C
from above-ground growth to below-ground resource
acquisition (Figure 1). Fisher et al. (2013) concluded that
N fertilization of TMCF promoted higher stem growth not
by increasing C assimilation but through effects on below-
ground allocation. Some studies have demonstrated that
root:shoot ratios increase with altitude on tropical
mountains (Kitayama & Aiba 2002, Leuschner et al.
2007), and Girardin et al. (2013) provided evidence for
a step increase in the cloud immersion zone. Moreover,
some evidence suggests that below-ground production
is especially high in TMCF (Girardin et al. 2010, Moser
et al. 2011), although measurement of below-ground
production is notoriously difficult and uncertain. Taken
together, these observations suggest that the low stature
and low ANPP of TMCF results in part from relatively
high below-ground C allocation associated with chronic
N (and sometimes P) limitation (Figure 1).

Excess soil water and reducing conditions

Although not all TMCFs exhibit frequent and persistent
soil saturation (Roman et al. 2010), this is clearly
a common feature in many TMCFs (Schawe et al.
2010). Chronically high water content of soils leads to
the depletion of oxygen. Indeed, field studies indicate
that anaerobic conditions increase along some tropical
montane elevation gradients (Silver et al. 1999). Low
soil oxygen has been suggested as a factor limiting the
LAI of some TMCF (Santiago et al. 2010). However,
it seems likely that the tolerance of low soil oxygen
varies considerably among TMCF species so that the
contribution of reducing conditions will vary with the
phylogenetic history ofthe extantfloras. Rappetal. (2012)
attributed the low ANPP of TMCF in part to such species
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effects. Notably, some tall, highly productive forests are
found in low oxygen floodplain soils and swamps (Grubb
1977) including TMCF (e.g. at Monteverde, Costa Rica;
R. Lawton, pers. comm.).

Under anaerobic conditions organic matter decompos-
ition is slow and incomplete, contributing to the high
accumulation of soil organic matter in TMCF. Schuur
(2001) demonstrated that lower tissue quality of leaflitter
in wetter sites also can contribute to reduced decay rates,
high SOM accumulation and delayed nutrient recycling.
Such a mechanism appears not to be universally
important in TMCF, however, as Silver et al. (2010)
indicated, net N mineralization rates are not consistently
different between TMCF and low-elevation tropical forest
in Puerto Rico. Moreover, TMCF in their study exhibited
higher gross N mineralization rates than low-elevation
soils and no effect of anaerobic conditions was observed.
Clearly, further study of the interactions between soil N
dynamics and soil saturation in TMCF is warranted.

Other mechanisms associated with excess soil water
could contribute to nutrient limitation in TMCF. For
example, anaerobic conditions can limit root growth and
physiological activity in many species. Indeed, aerial and
canopy roots are a common feature of wet TMCF (Gill
1969, Nadkarni 1981, Santiago et al. 2000). Low-oxygen
conditions also may favour losses of N by denitrification,
and high losses of soil nutrients may accompany the
greater hydrological outputs in wetter tropical soils.
Although losses of mineral N forms should be constrained
onN-limited sites (but see Brookshire etal. 2012), leaching
of organic N may be favoured by the accumulation
of recalcitrant organic matter under cool or anaerobic
conditions (Perakis & Hedin 2002). Also, by restricting the
depth distribution of tree roots, anaerobic conditions may
either restrict access to available nutrients or promote
their losses. It is also possible that shallow rooting in some
TMCEF reflects ease of access to soil water and superficial
nutrient supply; however, as noted previously, shallow
rooting also may reduce the wind-firmness of trees and
increase the frequency of disturbance with possible long-
term effects on nutrient losses.

Topographic effects

Variation of topography in tropical montane landscapes
clearly plays a role in regulating TMCF structure,
and provides further indications about the contributing
mechanisms. Most TMCFs occur under highly variable
topography including steeper slopes (Asner et al. 2014)
and more landslides (Larsen & Torres-Sanchez 1998,
Shreve 1914) than lower montane landscapes. Tanner
(1977) demonstrated that systematic variation in forest
structure of TMCF was related to landscape position
and subsequent studies have confirmed this relationship


https://doi.org/10.1017/S0266467415000176

Cloud-forest environment

361

3.5 - B Ecuador
¢ Ecuador-2

3.0 1 A Borneo
o 25 O Borneo-1
g @ Borneo-2
E 2.0 A < Malaysia
-
=) 15 O Costa Rica
w® =] M Peru
(=4 .
= 1.0 - A Hawaii
a ODR

0.5 1 O Columbia

0.0 T T 1

0 1000 2000 3000 4000

Altitude (m asl)

Figure 2. Tree diameter to canopy height ratio (cm m~!) for forests along 11 altitudinal transects on tropical mountains. Mean diameter for trees
>10 cm dbh except for Ecuador (>5 cm dbh). References as follows: Ecuador (Leuschner et al. 2007); Ecuador-2 (Homeier et al. 2012); Borneo
(Kitayama 1992); Borneo-1 (Aiba & Kitayama 1999 non-ultrabasic soils); Borneo-2 (Aiba & Kitayama 1999 ultrabasic soils); Malaysia (Proctor
etal. 1988); Costa Rica (Lieberman et al. 1996); Hawaii (Raich et al. 1997); Dominican Republic (DR, Sherman et al. 2005); Peru (Andes Biodiversity
and Ecosystem Research Group [ABERG] 2014). Long-term plot inventory data. Unpublished data at http://www.andesconservation.org.

(Wardle et al. 2015). For example, several studies report
that canopy height in TMCF is lower on steep slopes
(Roman et al. 2010), an observation that would also
question the universal role of poor soil drainage in shaping
TMCEF ecosystems. This pattern might be explained in part
by disturbance history associated with landslides or more
generally by soil stability and tree rooting (Soethe et al.
2006). Werner & Homeier (2015) proposed a nutrient
feedback mechanism to explain striking contrasts in
forest structure and composition between slope positions
in tropical montane landscapes: downslope nutrient
transport could result in spatial contrasts in soil nutrient
availability, reinforced by differences in organic recycling
owing to litter quality responses to soil fertility. However,
in some situations TMCF stunting is most strongly
expressed in saddles where soils are enriched and moisture
may accumulate (Wilcke et al. 2010). Girardin et al.
(2014b) associated the strong expression of the TMCF
structural features with local topography that favoured
cloud convergence and formation. At Monteverde,
Costa Rica, maximum TMCF stunting also has been
associated with topographic effects on wind exposure
and cloud formation (Lawton 1982, Lawton et al.
2010). Conversely, Schwarzkopf et al. (2011) noted that
extreme differences in TMCF structure were unrelated to
topographic variables in an Andean landscape.

Forest structure in TMCF

Stunting of trees and low canopy height are commonly
observed in TMCF (Grubb 1977). Because trees in closed-
canopy forest compete intensely for the light resource,
height growth is important to individual tree success.
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Thus, unless there are other advantages of being stunted,
trees would be expected to attain the maximum height
thatresource limitations permit; however, greaterrelative
competition for soil resources than light in TMCF might
contribute to lower investment in height growth. In any
case, all the environmental factors that constrain plant
production (low insolation, cold temperatures, nutrient
limitation) undoubtedly contribute to tree stunting in
TMCEF (Figure 1).Lessclearisthe explanation forincreases
in the ratio of tree diameter to height with increasing
elevation on tropical mountains (Grubb 1977, Lieberman
et al. 1996). The consistency of this relationship is
indicated by a summary for 11 altitudinal transects in
different regions of the world (Figure 2).

The factors influencing D : H relationships in trees have
been analysed and debated, and include mechanical
constraints (King et al. 2009, McMahon 1973); drought
and hydraulic constraints (Niklas & Spatz 2004, Sperry
et al. 2008); influences of neighbouring trees on both
access to light and exposure to wind (King 1996);
and phylogenetic constraints. Because canopy height is
low in TMCF the advantage of monopodial growth to
limit light competition is reduced and multi-stemmed
architecture can have selective value (Givnish 1984).
Such architecture is common in many TMCFs (Figure 1;
Bellingham & Sparrow 2009, Culmsee et al. 2010).

In addition, trees would be expected to maintain a
safety factor against mechanical buckling to reduce
risks associated with storm winds (de Gouvenain &
Silander 2003) although for multi-stemmed individuals
a sprouting trunk can compensate for failure of stems.
King et al. (2009) suggested trees in locations protected
from wind in lowland tropical forest approached the
theoretical buckling height, whereas most TMCF forests
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Table 2. Canopy height, estimated water-saturated biomass of canopy epiphytes and ratio of
actual canopy height (Hact) to buckling height (Hcyit) for six tropical montane forests. Epiphyte
biomass from Kohler et al. (2007), except for Peru (from Horwath 2011). Heie = C x (%) 1/3
x D23, where C = constant (0.79 for columnar tapering); E is elastic modulus; A is stem wood
density; and D is stem diameter; ( %) = 117.6 m for angiosperms (Niklas 1994; and pers. comm.).

Location Altitude (masl) ~ Canopy height (m)  Epiphyte mass (Mg ha™!)  Hae : Herit
Colombia 3000+ 12 12-44 0.23
Puerto Rico 1000 3-5 4.3-7.3 0.12
Costa Rica 1480 20 16.2-33.1 0.31
Peru 2500 7 45 0.25
Jamaica 1550 10 2.1 0.30
Costa Rica 1700 13 4.7 0.14

exhibit very low values (Table 2). Feldpauschetal. (2011)
summarized the factors related to D:H variation across
a large dataset for the world’s tropical forests. Among
the climatic influences was an effect of temperature, but
this effect was confined only to the influence of altitude,
reflecting the relationships in Figure 2. Recently, Asner
etal. (2014) observed that TMCF trees maintained crown
shapes in which a greater proportion of the foliage was
held low in the canopy than for trees at lower altitudes
which might contribute to mechanical stability.

Perhaps the single most likely cause of the increasing
D:H ratio with altitude is increasing windspeeds
(Woodward 1993). As noted above Lawton (1982)
attributed high D : H ratio in a cloud-forest tree species to
wind exposure, and King et al. (2009) observed a higher
mechanical safety factor for lowland rain-forest trees on
exposed ridges than protected coves. The possible role
of soil properties influencing tree stability has also been
suggested (Soethe et al. 2006) as shallow rooting in thin
or waterlogged soils could necessitate wide root crowns
for trees to remain wind-firm.

Another possible factor influencing the low canopy
height and high D: H ratio of TMCF is the extra canopy
loading associated with high epiphyte and canopy soil
biomass in the cloud immersion zone (Kohler et al. 2007).
Although the dry biomass of canopy epiphytes is typically
only a small fraction of the tree canopy mass, epiphytic
bryophytes can hold several times their dry mass in
water when they are immersed in clouds (Kohler et al.
2007), and canopy soil adds still more to the canopy
load (Bohlman et al. 1995). The water-saturated mass
of canopy epiphytes in several cloud forests ranges from
13 to 45 Mg ha~!, values which are substantial relative
to leaf and branch biomass. For example, the biomass of
wet epiphytes and canopy soil in the Monteverde cloud
forest in Costa Rica (33.1 Mg ha~'; Nadkarni 1984)
is about half of leaf and branch biomass (60 Mg ha™!;
Nadkarni et al. 2004), and comparable proportions are
likely in other cases (Horwath 2011). The theoretical
critical height (Hpitical) at which buckling would occur
can be calculated on the basis of tree architecture and
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wood properties (Niklas 1994), and notably, the ratio of
actual canopy height to buckling height (Hactual : Heritical s
the static mechanical safety factor) is particularly low for
some epiphyte-laden forests (0.25—0.31; Table 2); much
higher values are noted for lower montane forest (e.g.
0.7 at 750 m asl in Costa Rica; Lieberman et al. 1996).
However, some stunted cloud forests have much smaller
epiphyte loads; the Hctual : Heritical ratio of the stunted mor
forest in Jamaica is 0.30, yet the epiphyte massis only 2.1
Mg ha~!. Thus, although the possible role of mechanical
constraints associated with epiphyte loading in stunted
TMCF deserves further study, the evidence at present is
not conclusive.

Therole of phylogenetic factors affecting canopy height
and forest structure also deserves attention. In some
notable cases particular species — e.g. from Pinaceae,
Fagaceae, Eucalyptus spp. — attain much greater heights
within the cloud zone than the species that form the main
canopy. In the Dominican Republic, the native Pinus
occidentalis grows along the entire elevation gradient,
attains heights much greater than the TMCF trees and is
also somewhat stunted in the main cloud immersion zone
(Martin et al. 2007). Plastic species such as this could lend
themselves to experimental investigations of the relative
importance of the potential causal factors. For example,
temperature and light can be varied independently in field
experiments with potted plants, though it will be more
difficult to manipulate direct contact of leaves with fog or
canopy epiphyte loading.

Feedbacks and non-linearity in TMCF

Early concepts and observations in tropical montane
forest ecology suggested the existence of spatial
discontinuities in the composition and structure of
vegetation along the altitudinal gradient (Holdridge
1967). Such a pattern might arise either as a result of
discontinuity in one or more key macro-environmental
drivers (e.g. geological substrates, topography or climatic
variables) or because of strong feedbacks between
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vegetation (or other biota) and micro-environmental
factors. Although some detailed studies have discounted
the existence of discontinuous variation in forest
composition across the altitudinal gradient in tropical
mountains (Lieberman et al. 1996), some cases of sharp
discontinuities involving the vegetation feedback switch
have been documented. For example, Martin et al. (2007)
demonstrated that a sharp ecotone between species-rich
TMCF and monodominant pine forest is maintained by
vegetation effects on natural fire disturbance, together
with the influence of frequent cloud immersion especially
during the dry season (Martin & Fahey 2014).

Distinctive TMCF structure, particularly in its most
extreme form, also may depend upon feedback
mechanisms in which vegetation traits and soil properties
reinforce the limitation on the productivity and stature of
the forest (Werner & Homeier 2015). Recent syntheses
conclude that nutrient limitation of TMCF productivity
results not from lower amounts of limiting soil nutrients
but by the inability of trees to access these nutrients
(Benner et al. 2010, Roman et al. 2010). Some evidence
supports a positive feedback mechanism whereby litter of
lower chemical quality is produced in TMCF, suppressing
efficientrecycling of nutrients by microbial decomposition
(Schuur et al. 2001, Werner & Homeier 2015). The role
of soil saturation on such a feedback also seems plausible:
inhibition of root function by anaerobic soil could reduce
water uptake (Weaver et al. 1973) reinforcing soil
saturation and contributing to low litter quality (Schuur
2001).

An additional vegetation-soil feedback that contributes
to TMCF structure and function is the apparently high
proportional allocation of C to root systems (Girardin et al.
2010, Kitayama & Aiba 2002, Moser et al. 2011), leaving
less C to support above-ground growth and LAI. Again,
a feedback involving soil saturation seems plausible. For
example, the higher below-ground allocation could limit
LAI, and thereby promote soil saturation by reducing
AET. Also, observations of Leuschner et al. (2007)
emphasize the much higher coarse-root biomass in high-
elevation TMCF with frequently saturated soils; high
allocation to coarse roots could contribute to overcoming
structural stability problems in saturated soils (Coutts
1983, Soethe et al. 2006).

In conclusion, recent research has contributed to
an improved understanding of tropical montane cloud
forest structure and function and its dependence on
unique climatic conditions in the altitudinal zone
where fog is persistent (Figure 1). However, additional
research is needed to clarify several features of TMCF
ecosystem dynamics: (1) The role of phylogeny vs.
phenotype in shaping the characteristic traits of TMCF
vegetation; (2) Photosynthetic physiology of TMCF foliage
in fog-shrouded environments; (3) Below-ground carbon
allocation and fine-root production and turnover in
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TMCF; (4) Factors leading to N vs. P limitation of
TMCF productivity, including the role of mycorrhizal
associations; (5) The role of saturated soils and low soil
oxygen in TMCF ecosystems; (6) Causes of contrasting
patterns of variation in TMCF structure in relation
to topographic position among different locations; (7)
Drivers of high diameter : height ratio of TMCF; (8) The
role of high epiphyte abundance in regulating TMCF
ecosystem dynamics.

Recognizing the great variation of vegetation structure
and dynamics among TMCF locations, comparative
research approaches across TMCF sites should help to
provide new insights into the causal factors driving the
behaviour of these remarkable forests.
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