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We prove the non-degeneracy of the extremals of the Sobolev inequality
Np
/ |VulP de >Sp/ |u|¥=7 dz, u € DLPRY)
RN RN

when 1 < p < N, as solutions of a critical quasilinear equation involving the
p-Laplacian.
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1. Introduction and statement of the main result

In this paper we establish the linear non-degeneracy of the extremals of the optimal
classical Sobolev inequality

Spllull o @y < 1Vl ogary for any u € DUP(RY), (1)

where p* := NN—% and 1 <p < N.
Aubin [1] and Talenti [22] found the optimal constant and the extremals for

inequality (1.1). Indeed, equality is achieved precisely by the functions

Use(x) := U (x g 5) where § > 0, £ € RY (1.2)
where
N—p po1
QN.p . . 1 N—p) P
Ulx)=| ————— with apy , ;= N7» , 1.3
(=) <1+|x—§|ppl> e (p—l (13)
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which solve the critical equation
—Apu=u? TinRY, u>0inRY, ucDWPRY). (1.4)

All the solutions to the equation (1.4) are indeed the only ones of (1.2). Caffarelli,
Gidas and Spruck proved the claim when p = 2. The case p # 2 has been firstly
solved by Guedda and Véron [14] in the radial case, where the authors classified
all the positive radial solutions and successively by Damascelli, Merchan, Montoro
and Sciunzi [6] when % < p < 2, by Vetéis [24] and Damascelli and Ramaswamy
[7] when 1 < p < 2 and finally by Sciunzi [21] in the remaining cases, namely when
2 < p < N. We would also mention that Farina, Mercuri and Willem in the recent
paper [11] proved that the classical Aubin-Talenti functions represent the full set
of radial optimizers to the Sobolev inequality (1.1).

Here we are interested in the linear non-degeneracy of the solutions (1.2) to
equation (1.4). Let us point out that equation (1.4) is invariant by scaling and by
translations. Therefore, if we differentiate the equation

~AUse =UP " in RY

with respect to the parameters § and &1,...,&y at 6 = 1 and £ = 0 we see that the
functions

Z() (;C) = —(%Ug,g

N —
b=1£=0 = — PUtz.-vU (1.5)

and
ZZ(:B) = 651.U5’§|5:1,§:0 = —(3in, 1= 1, ey N (1.6)

annihilate the linearized operator around the function U defined in (1.3), namely
they solve the linear equation

— div (|VU|p*2V¢) — (p — 2)div (|VU|7”*4 (VU,V¢) VU)
= (p* —1)U” "2p in RV, (1.7)
We say that U is non-degenerate if the kernel of the associated linearized operator
(1.7) is spanned only by the functions Z;’s defined in (1.5) and (1.6). This property
is true when p = 2 as it was established by Rey in [20]. Our main result extends

the non-degeneracy of the solution U to any p € (1, N) in the weighted Sobolev
space Dy?(RYN), which is defined as the completion of C!(RN) with respect to

the norm
1/2
6] = ( / |VU|p—2|v¢|2dx) .
RN
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THEOREM 1.1. The solution

N-—p p—1

AN,p ! . 1 (N—p\ "
Ulx)=|—% with an, = Nv [ ———
1+ |z|7oT p—1

of equation (1.4) is non-degenerate in the sense that all the solutions of the equation
(1.7) in the space Dr*(RN) are linear combination of the functions

_N-p

Zo(x) U+x-VU, Zi(x)=0,U(x),...,Zn(x)=0:,U(x).

The structure of the linearized equation (1.7) strongly suggests to introduce the
space DL (RM). A similar weighted Sobolev space approach has been extensively
used since the paper by Damascelli and Sciunzi [8], where the authors introduced
it to study a linearized operator on a bounded domain. Here the situation is much
more delicate due to the unboundness of the domain. Section 2 is devoted to prove
some properties of Di’Q(RN ) which are essential to get theorem 1.1 whose proof is
carried out in §3.

Quasilinear equations with critical growth involving the p-Laplace operator have
been widely studied in recent years using a variational framework, starting from
the quasilinear version of the classical Brezis—Nirenberg problem (see [2]) studied
by Guedda and Véron in [15]. In particular, we would like to focus on the problem
of the existence of sign-changing solutions to the critical equation

— Apu = |u|P 2w in Q, (1.8)

where  is either the whole space RY or a bounded smooth domain in RY in
which case we assume homogeneous Dirichlet boundary conditions. As far as we
know the only result concerning existence of sign-changing solutions to (1.8) in the
whole space is due to Clapp and Lopez Rios in [4], where they prove that (1.8)
has a certain finite number (depending on the dimension N) of non-radial sign-
changing solutions. On the other hand if p = 2 del Pino, Musso, Pacard and Pistoia
in [9,10] used the Lyapunov—Schmidt procedure to build infinitely many sign-
changing solutions which look like a positive bubble crowned by an arbitrary large
number of negative bubbles arranged on a regular polygon. It would be interesting
to check if it is possible to build this kind of solutions in the quasilinear case. When
) is a bounded domain, the existence of solutions is a more delicate issue. Indeed
if Q is starshaped the problem does not have any solutions because of a Pohozaev
identity obtained by Guedda and Véron in [15]. The existence of a positive solution
has been proved by Mercuri, Sciunzi and Squassina in [17] when the domain has a
small hole, in the same spirit of Coron’s result [5] when p = 2. The existence of a
sign-changing solution has been obtained by Mercuri and Pacella in [16] when the
domain €2 has either a small hole and little symmetry or a hole of any size and more
symmetry. On the other hand, if p = 2 and 2 has a small hole, Musso and Pistoia in
[18] (see also [12,13]) used the Lyapunov—Schmidt procedure to built sign-changing
solutions which look like the superposition of bubbles with alternating sign whose
number becomes arbitrary large as the size of the hole approaches zero. It is natural
to ask if this kind of solutions do exist also in the quasilinear case.
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In both cases the understanding of the linear non-degeneracy of the bubble is the
first step in the application of the Lyapunov—Schmidt procedure.

Finally, to give a larger perspective to p-Laplacian problems, we would also quote
the monograph by Véron [23].

2. A suitable weighted Sobolev space

First of all, let us point out the following fact.

LEMMA 2.1. (i) Ifp € (1,2) there exists C > 0 such that

</ |¢1\§Vppdx) ’ SC(/ VU“’2|V<;52dsr3)2 for any ¢ € CH(RY).
RN RN

(ii) If p € (2, N) for any R > 0 there exists C(R) > 0 such that

1
2
/ | T ) d
RN\BRr(0)

< C(R) (/RN |VU|p2|V¢|2dz> ’ for any ¢ € CHRN).

Proof. To get (i) it is useful to recall the Caffarelli-Kohn—Nirenberg inequality (see
B]):ifr,g=>1, 1+ 2% :%+O‘T_l > 0 then for any ¢ € C}(RY)

Izl bl Lrmry < elll]* VOl Loy - (2.1)
Then we apply (2.1) with v =0, r = NN—E), g=2and a = %p_p)

(N—p)

N(2—p) 9 1/2
<e / 2“5 g
RN

<c ( / |VU|P—2|V¢|2) |
RN

and the claim follows since if p < 2 there exists a constant ¢ such that

([, 10%%)

p—2

N(2-p) || P=T
|$| r X C N(p—2)

(14 7)) "

for any = € R. (2.2)

To get (ii) it is useful to recall the weighted Hardy—Sobolev inequality (see for
example Lemma 2.3 in [7]):
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ifg>1,s>qg— N and R > 0 then

/ 2l l? < (N, g, ) / 2l*|Vgl7de for any ¢ € C(RV).
RN\ B (0) RN\ B (0)
(2.3)

Then we apply (2.3) with s = 7(1\/7191)# and ¢ =2 (note that s —g > —N
because p < N)

Lo Rl [ S
RN\ Br(0) RN\Br(0)
<o) [ IvUPEver
RN
and the claim follows since if p > 2 for any R > 0 there exists ¢(R) such that
N-—1
VU (x)| = c|z|?»=T if || > R
O
Lemma 2.1 allows us to define the Hilbert space D2 (R™), which is defined as the

completion of C}(RY) with respect to the norm ||¢|| := ([un |[VUP72|V|? dz)/?
induced by the scalar product

001 [ IVUP(90.90) da

Now, we can look for a weak solution ¢ € Di*(RN) to the linear equation (1.7),
namely

/ VUP~2(V, Vo), d + (p — 2) / VU (YU, V) (YU, V) da
RN RN

_ Np—N-+p

/ Ut ¢y da for any ¢ € DL*(RN). (2.4)
N — P RN

All the integrals involved in (2.4) are finite. Indeed, the integrals in the L.H.S. can
be easily estimated using Holder inequality and Cauchy—Schwarz inequality. The
finiteness of the integral in the R.H.S. is more delicate and follows by the continuous
embedding of the weighted space DL? (R™) into the weighted space

L2RY) = {¢ : / U gt da < +oo} (2.5)
RN
which is stated in the following result.

PROPOSITION 2.2. There exists C > 0 such that

/ |VU[P2|Vo|? dz > 0/ U~
RN RN

p*dx  for any ¢ € DL2(RY). (2.6)
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Proof. We will prove (2.6) for any ¢ € C}(RY). The statement will follow by a den-
sity argument. Throughout the proof ¢ will denote a constant (possibly depending
on the parameters) which may change from line to line. Although we will not esti-
mate the constants explicitly, it will be clear from the arguments that our claims
hold.
It is useful to remind that
p=2
p—1
U(x)=c ! ooy and \VU(m)\p_Q =c 2] FITER

(1+|m|r’pj> ’ (1+|x\p%)

We distinguish three cases.

2N
e The case iz <P <2
2N

We remark that since N1z <P Holder’s inequality implies

1
~/]RN , N(p—2)+2p |¢‘2
(1 + |x|m) ’

N(p—2)+2p
Np 2(N—p)

L. (IN (L)

1+ |o]77)

Now, we apply Caffarelli-Kohn-Nirenberg’s inequality (2.1) (with v =0, r =
%,quandazW) and we get
P P

Np N(2—p) 1/2
(/ |¢|NP> <c</ lz| 7 |v¢|2> .
RN RN

The claim follows because of (2.2).

(N=p)

2N
e The case 1<p§N—+2.

In this case W < 0 and so

_N(p=2)+2p N(p—2)+2p

(1+|x|vpj> ! <c<1+|x|7w).

Then

1 _N®-2)+2p
/ 07 <o [ 1o +e [ jal 5 o
RN RN RN

(1+|z|%) ’

Now, we apply Caffarelli-Kohn—Nirenberg’s inequality and we get (with v = 0,
r=qg=2and a=2)

1/2 1/2
2 2 2
(/RN|¢>|) <c(/RN|m| V¢|) |
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and also (Wlth 7:_%7 T:q:2 and a:l—%:
—2—Np+2N
)

1/2 1/2
Ne-2)+2p o —2-Npt+2N 9
(/ o~ 2 |¢|) <(/ o] T |v¢>) .
RN RN
Then

1
/ e 0P < [ (ol + o T v
RN 2\ s RN
(1 n |1'|P*1)
The claim follows because if p <
constant ¢ such that

m it is easy to check that there exists a

p=2
—2-N N -1
|lz)? + || RTEE <c [ for any = € R.

b N(p=2)
(14 J2/77)

P

e The case p > 2.
The proof in this case is much more delicate because the weight [VU|P~2 has
different decay as || — 0 or |z| — co. Let m > 1 be a fixed integer. We can
write

/ UP —2¢? dz:/ UP 22 dx+/ UP" 202 da.,
RN RN\ Bym (0) Baym (0)

(1 (1)

where Bam (0) is the ball centred at the origin with radius 2.

First, we estimate (I). We remark that there exists constants ¢i, ..., ¢4 such that
C C C Cq .
+— <U(z) < ; and —— < |VU| < —a— if |z =27 (2.7)
B || x| 71 || 7=
Therefore

/ UP 242 dx
RN\ Bym (0)

(we use (2.7))

1
< C/ W¢2 dx
RN\ By (0) |z|7=1 P"~2)

* N—
(WGSQtS—*i(p 2)>2-Nand f=(p*-2),—F +5-2>0)

= C/ 7|x|s_2¢2 dz
RN\ Bym (0) |z

(we use (2.3) with ¢ =2 and R = 2™)
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<cf ]| Vo dr
]RN\anz (0)
(we use (2.7))
< c/ VUP2Ve|? de
RN\ Bym (0)
and so

/ UP 242 da < c/ |VU[P~2|V¢|? da (2.8)
RN\Bgm(g) RN

Now, we estimate (II). Firstly, given A :={z € RN : 1 < |z| < 2}, it is useful to
recall the standard interpolation inequality (see for example [19])

/ lu—ua|™ de <c </ |Vu|" dx) r (2.9)
A A

1 1 1 1
fzf——>0andu,4:=f/ud$-
|Al Ja

where

m r N

Therefore, if r =2, m = % > (0 by Holder inequality we immediately deduce

/|u—u,4|2 dz < </ lmm—2dx> " (/ |u—uAmdx)m <c|A|%/ |Vu|? da.
A A A A

Moreover, if A > 0 and AA := {\z : © € A}, a simply scaling gives
/ lu —uyal*dz < c|A|%/\2/ |Vul|* dz (2.10)
AA AA

Now, let us introduce a sequence of disjoint annuli A, := {z € RV : 2F < || <
2F+11 which covers the ball Bym (0), namely A N Ay = 0 for h # k and

m—1
By (0) = ] A,

k=—o0
so that
/ Ur etde = Y / UP 242 da. (2.11)
Bgm(o) k—— oo Apg

We are going to estimate each term in the sum of R.H.S. of (2.11), taking into
account that

—2
2k p=t

(14 2855) 7 @=2)°

inf [VUP~2 > ¢ (2.12)
Ay
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We have
/ UP 2% dx
Ay
(since p > 2, sup,cpn lz|7oTUP "2 = L)
L/ P31¢2 dx
Ap
c/ = 1|¢ ¢Ak|2dx+c/ \x|_%|¢Ak|2dx
Ak Ak
C/ ST — pa, P+ 2 TN g 2 (2.13)
A
and

[ el o - o e <2 [ oo de
Ak Ak
(we use (2.10) with A\ = 2F)
gcﬂ—%“)/ V|2 dz
Ay

(we use (2.12) )

» 14 28357) % (=2
At IS ind / IVU[P2|V|* da
Ay

kp=2

— (1 +2k%)%@*2>/ VUP2VRdr.  (2.14)
Ak
Combining (2.13) and (2.14) we get

/ U 292 da < o1+ 28771 7 (072 / VU2V o) da + M7 N) g, )2
Ay s
and summing upon k

UP —2¢%dx
Bom

Z / UP 2% dx
A

k=—o0

> [1+2’“P1 (H)/ VUP-2|Ve[? de
Ay

k=—o00

m—1
+e Y TN g, 2

k=—o00
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m—1

<c Y, / |VU|P~2|Ve|? dz + ¢ Z {2’“/ |VU|P~2|Ve|* dz
k=—o00 k=—oc0 Ay,
Ye Z 2k f—JrN |¢Ak‘2
k=—o0
m—1
<c/ IVUP2|VgPda+c kN =% IVU[P~2|Vo|? dz+
Bom k——o0 Bom
<400
m—1
+e Yo TN g
k=—oc0
m—1
gc/ IVUP2Voda+c »  2° (52 N) |0, |2 (2.15)
k=—oc0

It remains to estimate the last term of (2.15), namely Y ="' 271+ V|g, |2,
Now

2
[t bnum s
AkUAk+1

1 / 2 2
= ¢ — da,uALL | d$+/ | — da,ua,,. | de
[Ak| + |Ak41] ( Ak‘ S Apsr S

> / 16— daruar, | de
Ay

2

> /A (6 — Garvaes,) da
| A | Ak |
de — —m——— de — —m——— dx
Ay, ¢ |Ags1| + |Ak] Ja, ¢ | Aga| + [Ak| Ja,,, ¢
1 2
- / dz— |A / dz
|Ak|+|Ak+l| | k?+1‘ Akqb | k?| Ak(b
_|Ak[ Ak B 2
= Al + [Aes] |pa, — da, .l
and so

| Akl + Ak |
‘AkHAkJrﬂ ApUAR 41
(taking into account that [Ay| = 28V (2N — 1) )

|¢Ak - ¢Ak+1 ‘2 <c |¢ - ¢AkUAk+1 |2 dz

—kN 2
<2 F / “é - ¢AkUAk+1‘ dx
AkUAk+1
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(we use (2.10) with A\ = 2F)

< 021“(27]\])/ Vo[ dz
AkUAk,+1

(we use (2.12) )

N(p—2)
N2 g2

< RN (1 | 9k3tT) */ VUP2V 6|2 do
AkUAk+1

<c (g’f”’ff’f Ty okT ) / IVU[P~2|V |2 da. (2.16)
AkUAk+1

Now, we use the simple fact that for any n > 0 the following inequality holds

1
(a+0)* < (1+n)a®+ (W"‘) b? for any a,b € R.
n
Then, if we choose 7 > 0 so that 1 +7n = 7]02_17%1“\] where 7y = —r— <1,
1+2 »p-1

(this is possible because N — p’%l > 0, since p > 2), we get

__p_ n+1
|¢Ak|2 = |¢Ak - ¢Ak:+l + ¢A1«+1 |2 < o2 p71+N|¢Ak+1|2 + T|¢Ak - ¢Ak+l|2‘
and using (2.16) we deduce
k(=7 +N) |6, |2

<AV 2T N D6, P2

+ M TN (PFISES 2’“?;7)/ VU [P~2|V|* da
AkUAk+1

— 2<k+1>(—rfl+N)n0\¢AM|2 +c (1 + 2’“N$%f> / |VU|P~2|V¢|? da.
AkUAk+1

We sum upon k and we get
m—1
3 k(=721 +N) |5, |2
k=—oc0

m—1

<mo Y 2T EN) g, P2

k=—o00

m—1
+ Y (1+2kNZ%?)/ IVUP~2|V 4] dz

k=—o00 AkUAk+1

m m—1
<m Yo ACFElgu P 14 3 | [ wopesfas,
R

k=—oc0 k=—o0

<400
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which implies

m—1

L=m) > 521N 164, 2 < clda, |2+c/N IVU[P~2|Vp>dz.  (2.17)

k=—oc0
On the other hand, we have

|pa,. |?  (we use Holder’s inequality)

EREEHIES I N
<c || ¢~ dx  (the annulus A,,, C RY \ Bam(g))
A

m

(N=1)(p=2)
c/ ||~ #*dx  (we use (2.8))
RN\ Bam (o)
<c/ |VU[P~2|Vo|? da. (2.18)
RN
Finally, combining (2.15) with (2.17) (remember that 1y < 1) and (2.18) we get
/ UP*—2¢? dr < c/ |VU[P~2|V¢|? da. (2.19)
ngn([)) RN

|

3. Proof of Theorem 1.1

3.1. A wave decomposition

First of all, let us rewrite the linear equation (1.7) as

(p—2)N o] 7
P ) P =0
+ |z|7oT (Voo )+7N’p(1+|x|p71)2¢

[z[2A¢ + (p — 2) ZN: 0% i ]
v (3.1)
where vy, = N %. Indeed a straightforward computation shows that
div (|VU[P72V¢) + (p — 2)div (|[VU[P~* (VU, V¢) VU)
= |VU[P2A¢ + (VIVU P72, V)
+ (p—2)|VU|P~* (VU,V¢) AU
+(p—2) (VU,V9) (VIVU|P~*,VU)
+(p—2)|VU|P~*(V (VU,V¢),VU).

and
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VU~ = Cp_ == N
(1 )T
_ p—4 |:r|_z)2f1
(V|VUP~*,VU) = ~&72 —
P11 4 i) TS
aop—4 || =T
+ P 3N oD
o —1<1+|x|%>*% R
(VU Ve) = & (540
P+ a7
3 1 N %
(V(VU, V), VU) = — N0 (v, a) | L fepizt - NIl
(14 |z|7-1) 7 p— p—11+4 |27t
+ 2 |1’|27 Za ¢
N,p ( N ‘J;|7)2N 7 mlx]
Cp72
VORIV, VAU = |$|,,jv)’&<p4>+w (V9,2)
X (p+N> ‘x|_p—1 _L 1
1 p—11+4 |27
Cp—2
(VIVU[P~2,V¢) = 2 (Vo)

N—p N
where cnp 1= ay, T

Now, since U is radial we can make a partial wave decomposition of (3.1), namely
we can write

=3 6u()Yi(0), where () = / o OVi(0)dd,  (3.2)
k=0 SN*I

where r = |z|, § = T € SN=1 and Y, (#) denotes the k-th spherical harmonic
satisfying (Agn-1 stands for the Laplace—Beltrami operator)

— ASN—IYk = M Ys. (33)
It is known that this equation has a sequence of eigenvalues

Me=k(N+k—2), k=01,2,..., (3.4)
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whose multiplicity is finite. In particular A\g = 0 has multiplicity 1 and \y = N — 1
has multiplicity N.

Let us write the equations satisfied by the radial functions . It is known that
(hereafter ' stands for )

N —

A(wk(T)Yk(g)) Yk(G) ( e+ ’l/Jk) + %Zﬁk(T)AstlYk(e). (35)

Now, we have to compute the other terms in (3.1). It is easy to see that

Y ﬂ %80h
a@wd) - wk(r) r Yk(a) + ¢k(r) aeh axl
and
L ) (2 - T /() &1 O3 06
020,60 = L) V0 + ) (2 - ) o) + vl 2 G O
&%89;1 8 Yk 89@ 89h % 829h
+ by (r) r 00, O, +k(r )89h895 dxj Ox; +n(r) 0y, Ox;0x;
Hence
Y <A 96
(V6,0) = 3" 0:00,6 = Yo ¥el0) + N8, 2 g, = Y IE) (39)
=1
and
a Y, 90
2 o 2 k h
”221 030, PTiT; = Y (r)r?Yy(0) + 24, (r Z 0, &m
N 9%y, e 06
Fonlr Z 90,00, 9z, 0z,
N
l a oh o 2
+ Y (r z:: 50 78%6% irj =y (r)reYy(0). (3.7)
because it holds true that
N N
89h 9? Gh B B

Putting together (3.3), (3.5), (3.6) and (3.7) into (3.1) we get the following equations
for any ¢y, k=0,1,2,...,

- ~9N 1
k+wk( +(p ) _
17 p-1 1yt

Ak re=1-
- — — U =0, (3.8
) T2wk+’7N,p(1+rﬁ)2wk ) ( )
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which can be rewritten in a weak form as
Li(Yr) =0, k=0,1,2,..., (3.9)
where the operator £y, is defined by
Lu(@) = (PN @ P) 4 = DV O T = AN U ()2,

Since we are concerned with solutions 1) € Di?(RYN) to the linear equation (1.7), we
will look for solutions ¢y, to (3.8) or (3.9) in the space D}, which is the completion
of C} ([0, +00)) with respect to the norm

1
2

— o N-—1|r7/ =21,/ 2 e N-=3|77/ p—2 2
[Pllk = o U7 (r) P21 (r) |7 dr + A o U (r) [P (r) " dr

3.2. Solving the equations Ly (1) =0

o The case k = 0.
We know that the function Zy defined in (1.5) as

N-—p e p—1-—|gfsT

Zol) = LV (

2

p

14 Ja]77)
~————
=vo(|z])

solves the equation (3.1). We claim that all the solutions in Dy to Lo(¢)) = 0 are
given by ¥ = ct)g, ¢ € R. Indeed, for k£ = 0 we have that Ay = 0 and a straight-
forward computation shows that 1y € Dy and Lo(1g) = 0.

We look for a second linearly independent solution of the form

w(r) = e(r)n(r).
Then we get

(i) + <) 2040y + 2 (=3 BB

and hence

'(r) _ _yo(r) 1 (N-1 Np-2 1
d(r) %(r) T(p—1+ p—1 1+,,p';1>’

A direct computation shows that

p_ N®-=2)
(I+rr1) »
N—1+N(p—2)

(o (r))2r—»=1

dry=A for some A € R\ {0}.

Therefore
e(r) ~ Bryt and w(r) = c(r)yo(r) ~ B as r — +oo with B # 0.

However w ¢ Dy because of Lemma 2.1.
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o The case k = 1.

We know that the function Z; defined in (1.6) as

1
N_ N-p i p—1 .
Zi(w) = — Lo I i L i=1,...,N (3.10)
p_l P ‘Jj| (1+‘ |L);
|1
| —
=1 (|a])

solve the equation (3.1). We claim that all the solutions in D; to £4(¢p) =0
are given by 1 = ¢y, ¢ € R. Indeed, for k = 1 we have that Ay = N — 1 and a
straightforward computation shows that ¢; € Dy and £4(¢1) = 0.

As above, we look for a second linearly independent solution of the form

w(r) = c(r)(r).

Then we get

¢ () (r) +¢(r) [wi(r) y oo (Z__ T+ e )} =0

and a direct computation shows that

p_ N(p@-2)
(14+r77)" 5
N—1+N(p—2)

(r(r))2r 7=

dry=A4 for some A € R\ {0}.

Therefore
e(r) ~ Brr 1t and w(r) = c(r)1(r) ~ Br as r — +oo with B # 0.

However w ¢ D; because of Lemma 2.1.

e The case k > 2.

We claim that all the solutions in Dy of L;(1)) =0 are identically zero if
k > 2. Assume there exists a function v such that Lx(¢r) =0, ie. for any
r>=0

(PO PR+ N T U ) T = AN U ()2 = 0.
(3.11)
We claim that 1, =0 if k£ > 2. We argue by contradiction. Without the loss
of generality, we can suppose that there exists 7, > 0 (possibly +00) such that

Yr(r) > 0 for any r € (0,r) and ¢ (r) = 0. In particular, ¢} (ry) < 0.
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Now, let 91 (r) = U'(r) (see (3.10)) be the solution of £1 (1) = 0, i.e. for any
r>=0
Np—2N+2p
(PN E)P) N U)o g = AV RO ()P = 0.
(3.12)
We multiply (3.11) by 1, (3.12) by %, we integrate between 0 and rg, we

subtract the two expressions and we get

(A = )‘1)/ N U ) P2 dr
0

Tk Tk
= / (U () P24 o dr / (PO () P204) e dr
0 0
(we integrate by part and we use that i (ry) = 0)
=y U () P2 () () (3.13)

and a contradiction arises when Ap > Ai, (that is k > 2), since ¢}, (ry) <0,
P1(r) <0 for any 7 > 0 and [ rN=3|U’(r)[P~24y1p1 dr < 0.
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