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In this paper we study the perturbations produced in the boundary layer by an impinging
oblique shock wave or Prandtl–Meyer expansion fan. The flow outside the boundary layer
is assumed supersonic, and we also assume that the point, where the shock wave/expansion
fan impinges on the boundary layer, moves downstream. To study the flow, it is convenient
to use the coordinate frame moving with the shock; in this frame, the body surface moves
upstream. We first study numerically the case when the shock velocity Vsh = O(Re−1/8).
In this case the interaction of the boundary layer with the shock can be described by
the classical equations of the triple-deck theory. We find that, as Vsh increases, the
boundary layer proves to be more prone to separation when exposed to the expansion
fan, not the compression shock. Then we assume Vsh to be in the range 1 � Vsh � Re−1/8.
Under these conditions, the process of the interaction between the boundary layer and
the shock/expansion fan can be treated as inviscid and quasi-steady if considered in the
reference frame moving with the shock/expansion fan. The inviscid analysis allows us to
determine the pressure distribution in the interaction region. We then turn our attention
to a thin viscous sublayer that lies closer to the body surface. In this sublayer the flow
is described by classical Prandtl’s equations. The solution to these equations develops a
singularity provided that the expansion fan is strong enough. The flow analysis in a small
vicinity of the singular point shows an accelerated ‘expansion’ of the flow similar to the
one reported by Neiland (Izv. Akad. Nauk SSSR, Mech. Zhidk. Gaza, vol. 5, 1969a, pp.
53–60) in his analysis of supersonic flow separation from a convex corner.

Key words: boundary layer separation, high-speed flow

1. Introduction

The boundary-layer separation from a body surface leads to a significant alteration of
the flow field and of the forces experienced by the body. Therefore, it is not surprising
that the separation phenomenon has been a focus of attention in fluid dynamics for many
years. The first theoretical model of a separated flow was suggested by Kirchhoff (1869)
who studied the flow past a flat plate perpendicular to the free-stream velocity with the
separation taking place at the plate edges. Later, the Kirchhoff model was applied to other
body shapes. In particular, Levi-Civita (1907) used it to study the separated flow past a
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circular cylinder. An important conclusion of this work was that the Euler equations admit
a family of solutions with the position of the separation point on the cylinder surface
playing the role of a free parameter. However, Kirchhoff’s theory failed to reveal the
physical processes leading to the separation, and provided no clues on how to choose
the separation point.

Now we know that to find the location of the separation point, one needs to take into
consideration the boundary layer that forms on the cylinder surface. According to Prandtl
(1904), this is due to a specific behaviour of the flow in the boundary layer that separation
takes place. Prandtl described the separation process as follows. Since the flow in the
boundary layer has to satisfy the no-slip condition on the body surface, the fluid velocity
decreases from the value dictated by the inviscid theory at the outer edge of the boundary
layer to zero on the body surface. The slow moving fluid near the body surface is very
sensitive to the pressure variations. On the front part of the body the pressure normally
decreases in the downstream direction which makes the pressure gradient negative. It is
referred to as the favourable pressure gradient because it acts to accelerate the flow keeping
the boundary layer attached to the body surface. However, further downstream the pressure
starts to rise, and the boundary layer finds itself under the action of a positive (adverse)
pressure gradient. In these conditions the boundary layer tends to separate from the body
surface. The reason for separation may be explained as follows. Since the velocity in the
boundary layer decreases towards the wall, the kinetic energy of fluid particles inside the
boundary layer appears to be less than that at the outer edge of the boundary layer. In
fact, the closer a fluid particle is to the wall, the smaller its kinetic energy appears to
be. This means that while the pressure rise in the outer flow may be quite significant,
the fluid particles inside the boundary layer may not be able to get over it. Even a rather
small increase of the pressure may cause the fluid particles near the wall to stop and then
turn back to form a reverse flow region characteristic of separated flows. According to
Prandtl, the separation point is identified as a point on the body surface where the skin
friction τw = μ(∂u/∂y)|y=0 becomes zero. Here we denote the longitudinal velocity by u,
the distance from the body surface by y and μ is the viscosity coefficient. Indeed, with τw
being positive upstream of the separation point, the longitudinal velocity u stays positive
which means that the fluid particles in the boundary layer move downstream along the wall
and the flow appears to be attached to the body surface. However, once the skin friction
turns negative, a layer of reversed flow (u < 0) forms near the wall, giving rise to a region
of recirculation.

The above arguments relied on the kinematics of the flow, and seemed to be self-evident,
but it was soon discovered that the flow reversal does not necessarily imply that the
boundary layer breaks away from the body surface. The first example of such a situation
was presented by Blasius (1908) who considered a circular cylinder that is initially kept
motionless in a stagnant fluid. At time t = 0, the cylinder is brought to motion with a
constant velocity, which leads to a formation of the boundary layer on the cylinder surface.
The solution of the boundary-layer equations showed that when the non-dimensional
time reaches t = 0.644, the skin friction turned zero at the rear stagnation point, and
then two symmetric recirculation regions formed inside the boundary layer, expanding
upstream from the rear stagnation point. The appearance of the recirculation regions does
not signify the boundary-layer separation. Indeed, experimental observations (see, for
example, Nakayama 1988) clearly show that the eruption of eddies from the boundary layer
starts at t ≈ 3.0. Before that the boundary layer remains thin, and does not influence the
external inviscid part of the flow. The eddy eruption was found to start when a singularity
forms in the solution of the boundary-layer equations. This behaviour is not restricted
to an impulsively started cylinder, but is observed in various other flows. In particular,
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Walker (1978) studied the finite-time singularity in the boundary layer exposed to a
rectilinear vortex. Soon after a detailed description of the finite-time singularity was
given by van Dommelen & Shen (1980). These results were re-examined with the help
of numerical and analytical methods by various authors, including van Dommelen &
Shen (1982), Cowley (1983), Elliott, Smith & Cowley (1983), Ingham (1984), Peridier,
Smith & Walker (1991), Christov & Tsankov (1993), Cassel, Smith & Walker (1996).
They confirmed that in the case of a circular cylinder the flow reversal in the boundary
layer is observed starting at t = 0.644, but the solution remains smooth, which means
that the eddies are still confined to a thin O(Re−1/2) region near the cylinder surface. This
continues until t = 3.0 when the solution develops a singularity at a position θ = 111◦

from the front stagnation point, signifying the start of the eddy eruption process.
For steady flows, a link between the separation and singular behaviour of the solution of

the boundary-layer equations was first discovered by Howarth (1938) and Hartree (1939).
They considered a flow where the velocity Ue(x) at the outer edge of the boundary layer
was a linearly decreasing function of the coordinate x measured along the body contour.
Under these conditions the boundary layer is exposed to the adverse pressure gradient that
causes the skin friction to decrease with x . Howarth and Hartree found that the solution of
the boundary-layer equations becomes singular at the point x = xs where the skin friction
is zero. The form of the singularity was later uncovered by Landau & Lifshitz (1944).
Making use of heuristic arguments they arrived at a conclusion that the skin friction
decreases on approach to the separation point as τw ∼ √

xs − x . They also found that
the velocity component normal to the body surface experiences unbounded growth being
proportional to 1/

√
xs − x . The latter appeared to explain the eruption of eddies from the

boundary layer. Later Goldstein (1948) confirmed this result on a more rigorous basis, and
(which is even more important) proved that the singularity at the separation precludes the
solution to be continued beyond the point of zero skin friction.

Thus, it became clear that the boundary-layer theory in its classical form, as formulated
by Prandtl (1904), could not be used in a vicinity of the separation point. A key element
of the separation process that was not fully appreciated in Prandtl’s description, was an
interaction between the boundary layer and external inviscid flow, now referred to as
the viscous–inviscid interaction. Asymptotic theory of the viscous–inviscid interaction,
also known as the triple-deck theory, was formulated simultaneously by Neiland (1969b)
and Stewartson & Williams (1969) in their study of the ‘self-induced separation’ in a
supersonic flow and by Stewartson (1969) and Messiter (1970) for incompressible fluid
flow near the trailing edge of a flat plate. The solution of the classical problem of the
boundary-layer separation from a smooth body surface (like a circular cylinder) in a
steady incompressible flow was presented by Sychev (1972). Later, many researchers were
involved in the development of the theory, and it became clear that the viscous–inviscid
interaction plays a key role in a wide variety of fluid-dynamic phenomena. An exposition
of applications of the theory to different forms of the boundary-layer separation may be
found, for example, in Sychev et al. (1998), Neiland et al. (2007) and Ruban (2018).

Returning to the unsteady separation, it should be noted that an additional independent
variable, time, makes the boundary-layer separation a rather complicated phenomenon that
may assume various forms. Until now, the theoreticians have concentrated on two of these.
The first one may be called the ‘incipient separation’, which emerges at a finite time at a
particular point on the body surface in an otherwise attached boundary layer. The classical
example of such a situation is an impulsive motion of a circular cylinder discussed above.
This form of separation is observed in many other physical situations, most notably, at the
leading edge of pitching up aerofoil (see, for example, Degani, Li & Walker 1996) where
the erupting vortex leads to the phenomenon of dynamic stall.
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FIGURE 1. Boundary-layer separation on a downstream moving wall.

In the second category are flows with ‘developed separation’. A typical example is the
flow past a circular cylinder with the Kármán vortex street in its wake. In this flow each
individual vortex forms near the cylinder surface through accumulation of vorticity in the
boundary layer. Once the circulation around the vortex reaches a critical value, it is shed
downstream, and another one starts to form in its place. During this cycle, the separation
point moves up and down the cylinder surface.

Even before calculating the boundary-layer equations for this flow, one can predict that
the solution will develop a singularity at the separation point. Indeed, if the solution
remained regular, then the separation eddies could stay within the boundary layer, which
is not what happens in reality. Once the fact of a singular behaviour of the boundary
layer is accepted, an analogy between the unsteady separation over a fixed wall and a
steady separation on a moving wall can be established (this analogy was mentioned for
the first time by Sears (1956) and Moore (1958)). Indeed, on approach to the separation
point, ∂u/∂x is expected to become infinitely large, making the convective acceleration
of the fluid u∂u/∂x much larger than the local acceleration ∂u/∂t, provided that the latter
is calculated in the coordinate frame moving with the separation point. Of course, the
fact that the flow near the separation point is governed by the steady equations does
not yet mean that the theory of steady separation becomes applicable. Indeed, in the
frame moving with the separation point, the body surface no longer remains motionless.
Figure 1 shows what happens when the separation point moves upstream along the cylinder
surface and, correspondingly, for an ‘observer’ in the moving frame, the cylinder surface
moves downstream. Due to the action of viscous forces, the fluid particles adjacent to
the wall will be involved in the downstream motion, which precludes the recirculation
region to start from a point on the body surface, as it happens in the case of steady flow
separation. Instead, the separation now takes place from a point that lies in the middle of
the boundary layer, as was first suggested by Rott (1956), Sears (1956) and Moore (1958).
To explain how it happens, let us consider a sequence of cross-sections of the boundary
layer corresponding to progressively larger values of the longitudinal coordinate x . In
each cross-section the fluid velocity u is a function of the normal coordinate y. If the
boundary layer is exposed to an adverse pressure gradient then the fluid will experience a
deceleration. As a result the velocity profile will have a minimum that lies some distance
ymin(x) from the wall. If the pressure gradient is strong enough then the minimal velocity
will continue to decrease with x , leading to the separation point (xs, ymin(xs)), where u is
zero. At this point the so-called Moore–Rott–Sears condition u = ∂u/∂y = 0 holds.

A significant breakthrough in this field was made in late 70s and 80s when the
ideas of triple-deck theory were applied to the analysis of steady boundary-layer
separation on a downstream moving wall. Firstly, Sychev (1980) confirmed that the
solution of the classical boundary-layer equations does develop a singularity at the
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Moore–Rott–Sears point. Assuming that the pressure gradient remains regular on
approach to this point, Sychev found that the minimum velocity decreases as umin ∼√

xs − x . He also proved that the singularity precludes the solution to be continued
downstream of the separation, which implies that the boundary-layer theory (in its classical
formulation) is insufficient for describing the separation process.

A new theory was developed by Sychev (1979, 1984, 1987) with help from van
Dommelen & Shen (1983) based on the asymptotic analysis of the Navier–Stokes
equations at large values of the Reynolds number. It was shown that, similar to the case of
a motionless wall (see Sychev 1972), a key element of the separation process is the mutual
interaction of the boundary layer and the external inviscid part of the flow. However,
unlike in the conventional triple-deck theory (Sychev 1972) the boundary layer on the
downstream moving wall finds itself under the action of an extreme adverse pressure
gradient even before the interaction region. As a consequence, the flow in the boundary
layer experiences a sharp deceleration, leading to formation of a relatively thick region
of retarded fluid near the point of minimal velocity. It modifies completely the process
of the interaction between the boundary layer and external flow, making it predominantly
inviscid. For these and other details of the theory, the reader is referred to Chapter 5 of the
monograph by Sychev et al. (1998).

An analogue of this theory for supersonic flows was presented by Ruban et al. (2011).
They considered the boundary layer exposed to a shock wave that moves upstream. Initially
it was assumed that the pressure jump across the shock Δp̂ is an order ρ̂∞V̂2

∞Re−1/4

quantity and the shock speed is V̂sh ∼ V̂∞Re−1/8, where ρ̂∞ and V̂∞ are the free-stream
density and velocity, respectively, and Re is the Reynolds number assumed large. Under
these conditions the viscous–inviscid interaction is described by the equations of the
classical triple-deck theory. These were first studied numerically. Then an analytic solution
of the viscous–inviscid interaction problem was constructed under the assumption of
a relatively large wall speed: V̂sh/V̂∞ � Re−1/8. It was found that, while there are
mathematical differences, the physical processes leading to the separation are in essence
the same as in the corresponding subsonic flow.

This study and the works listed above are restricted to the case of a downstream moving
wall. The problem of boundary-layer separation on an upstream moving wall proved to
be more difficult. The reason for this lies, at least partially, in an unclear topology of the
flow. Both for the motionless wall and for the wall moving downstream, the separation
may be identified by the onset of the flow reversal in the boundary layer. Contrary to
that, for the upstream moving wall, a link between the flow reversal and boundary-layer
separation does not appear to exist. This is illustrated in figure 2, where the classical
Blasius boundary layer is considered. Figure 2(a) displays the velocity profile across
the boundary layer in a conventional coordinate system attached to the body surface. Of
course, this is the only coordinate system in which the flow is steady. For unsteady flows,
such a ‘privileged’ coordinate system does not exist, and the velocity profile proves to be
dependent on a particular coordinate system used. In figure 2(b) we consider the same
flow in the coordinate frame that moves downstream along the plate surface. In this frame
a ‘reverse flow’ region is observed near the plate surface. Of course, this does not mean
that now the boundary layer develops a separation. Keeping this in mind, our aim in this
paper will be to identify situations when a singularity develops in the boundary layer.
Indeed, if the flow is free of singularities then no separation can be expected.

In the present study, we use the same formulation as in Ruban et al. (2011), namely,
we consider the boundary layer in the supersonic flow exposed to a shock or expansion
fan. The triple-deck theory for such flows is easily generalized for the case of an upstream
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(b)(a)

FIGURE 2. Blasius boundary layer in stationary and moving coordinates. (a) Velocity profile
in a stationary coordinate frame. (b) Velocity profile in a downstream moving coordinate frame.

moving flow. Zhuk (1982) was the first to present a numerical solution of the triple-deck
equations for the upstream moving wall. More recently the calculations were repeated by
Yapalparvi & van Dommelen (2012). The results of these works suggest that increasing
wall speed suppresses the separation. In the present paper we show that the behaviour of
the flow changes drastically when instead of the impinging shock the boundary layer is
exposed to an expansion fan. With a large enough wall speed, the singularity develops
in the boundary layer of the type first described by Neiland (1969a) in his analysis of
supersonic flow separation from a convex corner.

2. Problem formulation

In this paper we consider, as an example, the boundary layer on the surface of a flat plate
that is aligned with the oncoming supersonic flow. Our interest is in the incipience of the
separation caused by an impinging shock or expansion wave. The latter can be produced
by an expansion ramp situated above the plate as shown in figure 3. We assume that the
ramp and, hence, the shock/expansion fan are moving downstream with respect to the
plate with velocity V̂sh. If one assumes that V̂sh/V̂∞ ∼ Re−1/8, where V̂∞ is the free-stream
velocity and Re is the Reynolds number, then the triple-deck theory is applicable. In § 4
we will present the results of the numerical solution of the triple-deck equations. To make
an analytic progress in the flow analysis we shall assume that

1 � V̂sh/V̂∞ � Re−1/8. (2.1)

The condition V̂sh/V̂∞ � 1 ensures that the pressure stays unchanged across the boundary
layer in the leading-order approximation.

In this study we are interested in nonlinear perturbations in the boundary layer. We
therefore assume that the pressure jump across the shock/expansion fan is proportional to
(V̂sh/V̂∞)2 which, according to (2.1), is small. This means that while the perturbations in
the boundary layer are nonlinear, the perturbations outside the boundary layer are weak
and can be described in framework of the Ackeret theory. In this theory both the shock
wave and expansion fan degenerate into a characteristic, such as the fan shown in figure 3
becomes, in fact, infinitely narrow fan.

To study the flow we introduce a Cartesian coordinate frame (x̂, ŷ) that moves along
the plate with the shock/expansion fan; x̂ is measured along the plate surface and ŷ in
the perpendicular direction. The velocity components in these coordinates are denoted by
(û, v̂) and the streamfunction by ψ̂ . As usual, we denote the gas density by ρ̂, pressure by
p̂, enthalpy by ĥ and dynamic viscosity coefficient by μ̂. Here ˆ is used for dimensional
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V̂∞

L̂

x̂

ŷ

V̂sh

FIGURE 3. The flow layout.

variables. The non-dimensional variables are introduced as

û = V̂∞u, v̂ = V̂∞v, ψ̂ = ρ̂∞V̂∞L̂ψ,
ρ̂ = ρ̂∞ρ, ĥ = V̂2

∞h, p̂ = p̂∞ + ρ̂∞V̂2
∞p,

μ̂ = μ̂∞μ, x̂ = L̂x, ŷ = L̂y,

where ρ̂∞, p̂∞ and μ̂∞ are the values of density, pressure and viscosity coefficient in the
oncoming flow; L̂ denotes the distance between the leading edge of the plate and current
position of the point of interaction of the boundary layer with the shock/expansion fan. We
calculate the Reynolds number as

Re = ρ̂∞V̂∞L̂
μ̂∞

,

and assume that the free-stream Mach number

M∞ = V̂∞√
γ p̂∞/ρ̂∞

has a finite value larger than one; γ denotes the specific heat ratio of the gas considered.
The mathematical analysis of the flow may be conducted by applying the limit Re → ∞

to the Navier–Stokes equations. Alternately one can start with the triple-deck theory.
We shall choose the latter approach. Remember that the interaction of the shock wave
or expansion fan with the boundary layer leads to a formation of the three-tiered
viscous–inviscid interaction region; see figure 4. The nonlinear processes, characteristic
of the flow separation are confined to the near-wall layer (region 1).

The asymptotic solution of the Navier–Stokes equations in this layer is sought in the
form (for details the reader is referred to § 2 in the textbook by Ruban 2018):

x = 1 + Re−3/8μ
−1/4
w ρ−1/2

w

λ5/4β3/4
X, y = Re−5/8μ

1/4
w ρ−1/2

w

λ3/4β1/4
Y,

u = Re−1/8μ
1/4
w ρ−1/2

w

λ−1/4β1/4
U + · · · , v = Re−3/8 μ

3/4
w ρ−1/2

w

λ−3/4β−1/4
V + · · · ,

p = Re−1/4 μ1/2
w

λ−1/2β1/2
P + · · · , ψ = Re−3/4 μ1/2

w

λ1/2β1/2
Ψ + · · · ,

ρ = ρw + · · · , μ = μw + · · · .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.2)
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R
e−1

/2 R
e−5

/8

R
e−3

/8

Re−3/8

1

2

3

FIGURE 4. Three-tiered structure of the interaction region.

Here, in addition to conventional scaling with respect to the small parameter Re−1/8, we
use affine transformations with ρw and μw being the dimensionless density and dynamic
viscosity on the body surface immediately before the interaction region, and λ denoting
the dimensionless skin friction produced by a conventional boundary layer before the
triple-deck region. It is given by the compressible version of the Blasius solution (see
§ 1.10 in Ruban 2018). The dependence of the solution in the triple-deck region on the
free-stream Mach number, M∞, is expressed through parameter β = √

M2∞ − 1. These
transformations allow us to exclude ρw, μw, λ and β from the equations for the interaction
region.

The flow in region 1 is described by the boundary-layer equations

U
∂U
∂X

+ V
∂U
∂Y

= −dP
dX

+ ∂2U
∂Y2

, (2.3a)

∂U
∂X

+ ∂V
∂Y

= 0, (2.3b)

with the pressure P being a function of X only.
The no-slip conditions on the plate surface are written as

U = −Uw, V = 0 at Y = 0. (2.3c)

Notice that in the coordinate frame moving with the expansion fan (see figure 3), the plate
surface moves upstream. We denote its speed, scaled with Re−1/8, as Uw. Equations (2.3a)
and (2.3b) also require the far-field attenuation conditions

U = Y − Uw at X = ±∞, (2.3d)

which follows from matching with the solution in the unperturbed boundary layer upstream
and downstream of the interaction region. The matching condition with the solution in the
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main part of the boundary layer (region 2 in figure 4) is expressed as

U = Y + A(X)+ · · · as Y → ∞. (2.3e)

Here A(X) denotes the so called displacement function. It is used in the interaction law

P = PsH(X)− dA
dX
, (2.3f )

which is deduced from the flow analysis in region 3 (see figure 4). The first term on the
right-hand side of (2.3f ) stands for the impinging shock/expansion fan, with H being the
Heaviside function:

H(X) =
{

0 if X < 0,

1 if X ≥ 0.

The strength of the shock/expansion fan is defined by factor Ps. It is positive for the
shock and negative for the expansion wave. The second term in (2.3f ) represents the
displacement effect of the boundary layer.

The above formulation is applicable for a perfect gas flow, and remains valid both for an
adiabatic wall and for the case when the wall temperature is kept constant at least locally in
the triple-deck region. It involves two parameters that may be thought of as the similarity
parameters of the flow: the shock strength Ps and the wall speed Uw. These are related to
the pressure jump Δp̂sh across the shock and the shock speed V̂sh as follows:

Ps = Δp̂shRe1/4

ρ̂∞V̂2∞

μ−1/2
w

λ1/2β−1/2
, Uw = V̂shRe1/8

V̂∞

μ−1/4
w ρ1/2

w

λ1/4β−1/4
.

In what follows we shall use the ‘Cartesian formulation’ (2.3) of the interaction problem
for numerical analysis of the flow. For theoretical analysis, it is more convenient to express
the problem in von Mises variables (see, for example, Ruban 2018) where the momentum
(2.3a) and continuity (2.3b) equations assume the forms

U
∂U
∂X

= −dP
dX

+ U
∂

∂Ψ

(
U
∂U
∂Ψ

)
, (2.4a)

∂

∂Ψ

(
V
U

)
= ∂

∂X

(
1
U

)
. (2.4b)

These should be solved with the interaction law (2.3f ), now written as

P = PsH(X)+ lim
Ψ→∞

V
U
, (2.4c)

subject to the no-slip conditions (2.3c)

U = −Uw, V = 0 at Ψ = 0, (2.4d)

the far-field attenuation conditions (2.3d)

U|X=±∞ =
{−√2Ψ + U2

w if Ψ ∈ [0,− 1
2 U2

w

]
,√

2Ψ + U2
w if Ψ > − 1

2 U2
w,

(2.4e)
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�X ~ Uω
–1

1b
1a

2

3

FIGURE 5. Splitting of region 1.

and the condition (2.3e) at the outer edge of the viscous sublayer (region 1 in figure 4):

U =
√

2Ψ + · · · as Ψ → ∞. (2.4f )

The formulation of the interaction problem (2.3) is similar to the one in Ruban
et al. (2011). The main difference is that Ruban et al. (2011) considered the case of a
downstream moving wall. It was shown that for the flow to separate, the boundary layer
on a downstream moving wall had to be exposed to a shock wave. The mathematical
description of the separation process is somewhat different from that presented by Sychev
(1979, 1983, 1984, 1987) for the incompressible flow. However, the physical processes
leading to the separation are rather similar. In the present paper we consider the case of
an upstream moving flow. We shall see that in this case the shock wave does not cause
separation. Surprisingly enough, the boundary layer has to be exposed to an expansion fan
for the separation to take place.

To start the theoretical analysis of the flow, we note that when formulating the equations
of the triple-deck theory, it is assumed that the wall speed is an order O(Re−1/8) quantity.
Therefore, to satisfy condition (2.1) we have to assume that

Uw → ∞. (2.5)

In this limit the near-wall region 1 splits into two regions: the nonlinear inviscid region 1a
and a thinner viscous region 1b adjacent to the plate surface; see figure 5. We start our
analysis with region 1a.

3. Flow analysis in region 1a

The form of the asymptotic solution of the interaction problem (2.4) in region 1a may
be determined using the principle of least degeneration. We start with the initial condition
(2.4e). In order to avoid degeneration in (2.4e) we have to assume that

Ψ ∼ U2
w and U ∼ Uw.

Since the separation is a nonlinear process, we have to ensure that the two terms on the
left-hand side of the momentum equation (2.4a) remain in balance with one another.
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This is only possible if
P ∼ U2 ∼ U2

w.

An estimate for the lateral velocity component V is obtained, as usual, from the continuity
equation (2.4b). The two sides of this equation remain in balance with each other provided
that

V ∼ U2
w

ΔX
. (3.1)

Here ΔX is the longitudinal scale of the interaction region. It may be found using the
interaction law (2.4c). Balancing the pressure on the left-hand side of (2.4c) with the
second term on the right-hand side, it is easily found that

ΔX ∼ 1
Uw
. (3.2)

Substituting (3.2) back into (3.1), we find that

V ∼ U3
w.

This suggests that the asymptotic solution of (2.4) in region 1a may be sought in the form

U = UwU∗ + · · · , V = U3
wV∗ + · · · , P = U2

wP∗ + · · · , (3.3a–c)

with the arguments X∗, Ψ∗ of functions U∗, V∗ and P∗ defined by

X = 1
Uw

X∗, Ψ = U2
wΨ∗. (3.4a,b)

Substitution of (3.3a–c), (3.4a,b) into (2.4) shows that, in the leading-order
approximation, the flow in region 1a is governed by the equations

U∗
∂U∗
∂X∗

= −dP∗
dX∗

, (3.5a)

∂

∂Ψ∗

(
V∗
U∗

)
= ∂

∂X∗

(
1

U∗

)
, (3.5b)

P∗ = P̄sH(X∗)+ lim
Ψ∗→∞

V∗
U∗
, (3.5c)

that should be solved with the boundary conditions

V∗ = 0 at Ψ∗ = 0, (3.5d)

U∗ =
{−√

2Ψ∗ + 1 if Ψ∗ ∈ [0,− 1
2

]
,

√
2Ψ∗ + 1 if Ψ∗ > − 1

2

at X∗ = ∞, (3.5e)

U∗ =
√

2Ψ∗ + · · · as Ψ∗ → ∞, (3.5f )

P∗ = P̄s at X∗ = ∞, (3.5g)

P∗ = 0 at X∗ = −∞. (3.5h)
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Here it has been assumed that the strength of the shock/expansion fan is given by

Ps = U2
wP̄s, (3.6)

with P̄s being an order one parameter. Notice that the viscous term disappears from
the momentum equation (3.5a), signifying that the flow in region 1a may be treated
as inviscid. For this reason, we can only impose the impermeability condition (3.5d)
on the body surface, leaving the task of satisfying the no-slip condition to the flow
analysis in region 1b. It should be also noticed that for an inviscid flow the far-field
attenuation condition (2.3d), (2.4e) cannot be satisfied both upstream and downstream
of the interaction region. When solving the inviscid interaction problem (3.5), we assume
the velocity profile to be undisturbed downstream of the interaction region as stated in
(3.5e). This is to ensure the existence of the solution in region 1b; for a detailed discussion
of this issue, the reader is referred to Kirsten (2018).

The boundary-value problem (3.5) is solved as follows. Integrating the momentum
equation (3.5a) with respect to X∗ we have

1
2

U2
∗ + P∗ = H∗(Ψ∗). (3.7)

To find the Bernoulli function H∗(Ψ∗), we set X∗ = ∞ in (3.7) and use conditions (3.5e)
and (3.5g):

H∗(Ψ∗) = Ψ∗ + (
1
2 + P̄s

)
. (3.8)

Now we can substitute (3.8) back into (3.7) and solve the resulting equation for U∗:

U∗ =

⎧⎪⎨⎪⎩
−
√

2Ψ∗ − 2P∗ + 2
(

1
2 + P̄s

)
if Ψ∗ ∈ [0,P∗ − (

1
2 + P̄s

)]
,√

2Ψ∗ − 2P∗ + 2
(

1
2 + P̄s

)
if Ψ∗ > P∗ − (

1
2 + P̄s

)
.

(3.9)

In order to find the pressure P∗(X∗) we turn our attention to the continuity equation
(3.5b). Integration of (3.5b) with respect to Ψ∗ with initial condition (3.5d) allows us to
write

V∗
U∗

= ∂

∂X∗

Ψ∗∫
0

dΨ ′
∗

U∗(X∗, Ψ ′∗)
. (3.10)

We first consider the region near the plate surface where U∗ is negative and is given by the
first equation in (3.9). We have

Ψ∗∫
0

dΨ ′
∗

U∗(X∗, Ψ ′∗)
=
√

2
(

1
2 + P̄s

)− 2P∗ −
√

2Ψ∗ − 2P∗ + 2
(

1
2 + P̄s

)
. (3.11)

At the position of flow reversal, where U∗ = 0, the second term on the right-hand side of
(3.11) vanishes, leading to

P∗−( 1
2 +P̄s)∫

0

dΨ ′
∗

U∗(X∗, Ψ ′∗)
=
√

2
(

1
2 + P̄s

)− 2P∗.
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Above this point, we have to use the second equation in (3.9). We have

Ψ∗∫
0

dΨ ′
∗

U∗(X∗, Ψ ′∗)
=
√

2
(

1
2 + P̄s

)− 2P∗ +
Ψ∗∫

P∗−( 1
2 +P̄s)

dΨ ′
∗√

2Ψ ′∗ − 2P∗ + 2
(

1
2 + P̄s

)
=
√

2
(

1
2 + P̄s

)− 2P∗ +
√

2Ψ∗ − 2P∗ + 2
(

1
2 + P̄s

)
. (3.12)

It remains to substitute (3.12) into (3.10) and then into the interaction law (3.5c), and we
will have the following equation for P∗(X∗):

P∗ = P̄sH(X∗)− 1√
2
(

1
2 + P̄s

)− 2P∗

dP∗
dX∗

. (3.13)

The solution to (3.13) is written as

P∗ =
⎧⎨⎩

0 if X∗ < 0,
1
2

+ P̄s − 1
2

(
1 − C e−X∗

1 + C e−X∗

)2

if X∗ > 0.
(3.14)

It satisfies conditions (3.5g), (3.5h) and is continuous at X∗ = 0 provided that constant C
is chosen to be

C = 1 −
√

1 + 2P̄s

1 +
√

1 + 2P̄s

. (3.15)

3.1. Impinging shock or expansion fan
In the flow with impinging shock, P̄s > 0, and it follows from (3.14), (3.15) that the
pressure displays a monotonic growth as X∗ increases from 0 to ∞. Consequently, the
fluid in the viscous layer (region 1b in figure 5), that moves in the direction opposite to
the X∗-axis, finds itself under the action of a favourable pressure gradient. No
boundary-layer separation can be expected under these conditions. Contrary to that, in
the case of an expansion fan, the pressure is decaying in the positive X∗-direction, which
means that the flow in region 1b appears to be under an adverse pressure gradient. Similar
to the downstream moving wall (see Ruban et al. 2011) we expect a singularity to form in
region 1b when the velocity Ue at the outer edge of this region turns zero.

To find Ue(X∗), one needs to set Ψ∗ = 0 in the first equation in (3.9), and use (3.14) for
P∗. This gives

Ue = −1 − C e−X∗

1 + C e−X∗
. (3.16)

It is easily seen that Ue first turns zero at X∗ = 0 when the strength P̄s of the expansion fan
assumes the value

P̄s = −1
2
. (3.17)

In this case, (3.16) turns into

Ue =
⎧⎨⎩0 if X∗ < 0,

−1 − e−X∗

1 + e−X∗
if X∗ > 0,

(3.18)
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and the pressure P∗ can be found from

P∗ = −1
2

U2
e , (3.19)

that is deduced by setting Ψ∗ = 0 in (3.8) and combining it with (3.7).

4. Numerical solution of the triple-deck problem

Here we return to the original triple-deck problem (2.3), and discuss the behaviour of
the flow based on the numerical solution of (2.3) for Uw = O(1). The calculations were
conducted with the help of the numerical technique developed by Kravtsova, Zametaev
& Ruban (2005). The interested reader is referred to this original paper for details of the
method. Here we shall give a brief description of the method. To perform the calculations,
we introduce a discrete mesh {xi}, where i = 1, . . . ,N, and denote the vector composed
of the values of the displacement function A at the mesh point by A. We also consider the
vector dP/dx whose elements are the values of the pressure gradient at the mesh points.
Then finite-difference representation of the inviscid equation (2.3f ) can be expressed in
the form

dP
dx

∣∣∣∣
inv

= NA. (4.1)

Also, for a given displacement function A, (2.3a), (2.3b) allow us to calculate the
velocity field and the pressure gradient in the viscous sublayer

dP
dx

∣∣∣∣
visc

= MA + R, (4.2)

where the term R corresponds to the boundary-layer solution with A = 0. The requirement
that the pressure gradient should be the same in the viscous sublayer and at the ‘bottom’
of the upper deck leads to the following set of equations:

(M − N)A = R. (4.3)

These are solved by means of Newtonian iterations. As usual the Newtonian iterations
prove to be rather sensitive to the initial guess. Keeping this in mind, we started with a
small value of Uw and, after convergence was achieved, the obtained distribution of the
fluid dynamic functions was used to initiate the calculations for the next value of Uw. For
each Uw, the strength of the expansion fan was chosen according to (3.17) which, being
combined with (3.6), gives

Ps = −1
2

U2
w.

Figure 6 displays the streamlines in the boundary layer on the wall moving upstream
with velocities Uw = 2.0 and Uw = 3.0. The pressure distribution in the interaction region
is shown in figure 7. We see that two eddies are forming in the flow: one lies downstream
of the impinging expansion fan and the other upstream of the fan. We shall call them the
primary eddy and the secondary eddy, respectively. The primary eddy grows with Uw,
while the secondary eddy becomes relatively smaller. The formation of the primary eddy
is explained as follows. If we consider a fluid particle situated near the wall downstream of
the impinging expansion fan then initially this particle moves in the negative X-direction.
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(a)

FIGURE 6. The streamline pattern in the boundary layer exposed to an impinging expansion
fan. (a) Uw = 2.0. The streamlines shown in black correspond to the following values of the
streamfunction: 0.001; 1; 3; 6; 10; 15; 20. For the coloured lines, these are: −0.4; −0.8; −1.2;
−1.6. (b) Uw = 3.0. The streamlines shown in black correspond to the following values of the
streamfunction: 0.001; 1; 3; 6; 10; 15; 20. For the coloured lines, these are: −0.4; −0.8; −1.2;
−1.6; −2; −2.4.

It encounters a growing pressure and, therefore, experiences a deceleration. If the fluid
particle is sufficiently close to the wall then its kinetic energy is large enough to overcome
the growing pressure, and it continues to move along the wall in the original direction.
However, one can see from (2.3d) that there are always fluid particles with a smaller initial
velocity. These are stopped by the growing pressure, and are forced to turn back. The
smaller the initial velocity, the earlier this happens.

The situation with the secondary eddy is more complicated. We observe in figure 6
that the fluid particles away from the wall continue travelling in the positive X-direction.
However, those that are closer to the wall, decelerate before the impinging expansion fan
and turn back despite being exposed to a favourable pressure. This can only be explained
by action of viscous forces. Our computations indeed show that the viscous forces prove
to be strong in the secondary eddy before it ‘collides’ with the primary vortex. Of course,
the theory presented in the previous section shows that the fluid motion should become
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P

FIGURE 7. Pressure variation in the interaction region. The dashed line shows the theoretical
solution (3.18), (3.19).

effectively inviscid as Uw → ∞. We expect that in this limit the secondary vortex will
disappear, as shown in figure 10.

5. Viscous region 1b

Here we continue the theoretical analysis of the flow we started in § 3. Now we turn our
attention to a thin viscous near-wall layer shown as region 1b in figure 5. In this region the
asymptotic solution of the interaction problem (2.4) is sought in the form

U = Uw Ũ(X∗, Ψ )+ · · · , V = UwṼ(X∗, Ψ )+ · · · as Uw → ∞. (5.1)

Here, it is taken into account that region 1b has the same longitudinal extent as region 1a.
The scaling for U is dictated by the necessity to perform the matching with the solution in
region 1a. We also need to satisfy the no-slip condition on the body surface. The latter is
only possible if the convective terms in the momentum equation (2.4a) remain in balance
with the viscous term, that is,

U
∂U
∂X

∼ U
∂

∂Ψ

(
U
∂U
∂Ψ

)
. (5.2)

The above equation expresses in the von Mises variable standard Prandtl’s requirement
that is used to determine the thickness of the boundary layer. Since X ∼ U−1

w and U ∼ Uw,
it follows from (5.2) that Ψ = O(1). Using further the continuity equation (2.4b), one can
deduce that V ∼ Uw. Finally, the pressure P does not change across region 1b and stays
the same as in region 1a:

P = U2
wP∗(X∗)+ · · · . (5.3)

To find the velocity components Ũ and Ṽ , one needs to solve the equations of classical
boundary-layer theory:

Ũ
∂Ũ
∂X∗

− Ue
dUe

dX∗
= Ũ

∂

∂Ψ

(
Ũ
∂Ũ
∂Ψ

)
, (5.4a)
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∂

∂Ψ

(
Ṽ
Ũ

)
= ∂

∂X∗

(
1
Ũ

)
. (5.4b)

In (5.4a) we used the Bernoulli equation (3.19) to express the pressure gradient in terms
of the velocity Ue(X∗) at the outer edge of region 1b; the latter is given by (3.18). The
boundary conditions for (5.4) are

Ũ = −1, Ṽ = 0 at Ψ = 0, (5.4c)

Ũ = −1 at X∗ = ∞, (5.4d)

Ũ = Ue(X∗) at Ψ = −∞. (5.4e)

The limit Ψ → −∞ in (5.4e) corresponds to the outer edge of region 1b.
In what follows our task will be to determine the behaviour of the solution of (5.4) near

the outer edge of region 1b on approaching X∗ = 0, where Ue vanishes. To perform this
task we start with the asymptotic analysis of (5.4) in the limit X∗ → ∞. In this case, (3.18)
may be expanded as

Ue = −1 + 2 e−X∗ + · · · as X∗ → ∞. (5.5)

Corresponding to this, the longitudinal velocity Ũ inside region 1b is sought in the form

Ũ = −1 + f (Ψ ) e−X∗ + · · · as X∗ → ∞, Ψ = O(1), (5.6)

first suggested by Krapivskii & Neiland (1982). Substitution of (5.6) together with (5.5)
into (5.4a), (5.4c) and (5.4e) results in the following boundary-value problem for function
f (Ψ ):

f ′′ − f = −2, f (0) = 0, f (−∞) = 2.

Its solution is easily found to be

f (Ψ ) = 2 − 2 eΨ . (5.7)

Substitution of (5.7) back into (5.6) yields

Ũ = −1 + 2 e−X∗ − 2 e−X∗+Ψ + · · · . (5.8)

Let us now consider the limit

Ψ → −∞, X∗ = O(1).

At this stage it is convenient to introduce a modified Bernoulli function

H̃ = 1
2 Ũ2 − 1

2 U2
e , (5.9)

which allows us to write (5.4a) as

∂H̃
∂X∗

= Ũ
∂2H̃
∂Ψ 2

. (5.10)

Substitution of (5.8) together with (5.5) into (5.9) shows that

H̃ = 2 e−X∗+Ψ + · · · as X∗ → ∞, Ψ = O(1).
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This suggests that for all finite values of X∗ the solution of (5.10) should be sought near
the outer edge of region 1b in the form

H̃(X∗, Ψ ) = h(X∗) eΨ + · · · as Ψ → −∞, (5.11)

where function h(X∗) is such that

h(X∗) = 2 e−X∗ + · · · as X∗ → ∞. (5.12)

We substitute (5.11) into (5.10) and take into account that at large negative values of
Ψ the coefficient Ũ on the right-hand side of (5.10) is given by (3.18). This leads to the
following equation for function h(X∗):

h′

h
= −1 − e−X∗

1 + e−X∗
, X∗ ∈ [0,∞).

The solution of this equation, satisfying the initial condition (5.12), is written as

h(X∗) = 2
eX∗ + 2 + e−X∗

, X∗ ∈ [0,∞). (5.13a,b)

Now we can substitute (5.13a,b) back into (5.11) and use for H̃ its definition (5.9).
Solving the resulting equation for Ũ, we find that near the outer edge of region 1b

Ũ = −
√

U2
e + 4 eΨ

eX∗ + 2 + e−X∗
+ · · · as Ψ → −∞, X∗ ∈ [0,∞). (5.14)

In particular, if X∗ → 0+ then it follows from (3.18) that

Ue = − 1
2 X∗ + · · · , (5.15)

and (5.14) reduces to

Ũ = −
√

1
4 X2∗ + eΨ + · · · as Ψ → −∞, X∗ → 0+. (5.16)

The asymptotic formula (5.16) has been obtained using a double limit procedure. We
first assumed that Ψ tends to minus infinity, with X∗ remaining an order one quantity; this
led to (5.14). Then it was assumed that X∗ tends to zero. Therefore, strictly speaking, (5.16)
remains valid provided that the first term in the square root is much larger than the second
one, and a new region (let us call it region 1b′) should be introduced where eΨ /X2

∗ becomes
an order one quantity; see figure 8.

5.1. Region 1b′

In region 1b′ a characteristic independent variable η should satisfy the condition

eΨ

X2∗
= φ(η) = O(1) as Ψ → −∞, X∗ → 0+, (5.17)

where φ is an arbitrary function of η. It is convenient to choose φ(η) = eη (see Elliott
et al. 1983). Then we will have

η = Ψ − 2 ln X∗. (5.18)
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1a

1b
1b¢
1a¢

FIGURE 8. Formation of region 1a′.

Using (5.18) in (5.16), we find that on approaching region 1b′

Ũ = −X∗
√

1
4 + eη + · · · .

This suggests that the solution in region 1b′ should be sought in the form

Ũ = −X∗F(η)+ · · · as X∗ → 0+, (5.19)

where function F(η) is such that

F(η) =
√

1
4 + eη + · · · as η → −∞. (5.20)

To find the function F(η), we need to substitute (5.19), (5.18) and (5.15) into the
momentum equation (5.4a). The three terms in this equation are calculated as

Ũ
∂Ũ
∂X∗

= −X∗F
(
2F′ − F

)
, Ue

dUe

dX∗
= 1

4
X∗,

Ũ
∂

∂Ψ

(
Ũ
∂Ũ
∂Ψ

)
= −X3

∗F
(
FF′)′ .

We see that as X∗ → 0+, the viscous term can be disregarded, which means that the flow
in region 1b′ appears to be effectively inviscid. The equation for F(η) assumes the form

2FF′ − F2 = − 1
4 .

Its solution, satisfying the boundary condition (5.20), is easily found to be

F(η) =
√

1
4 + eη.

Hence, the longitudinal velocity (5.19) in region 1b′ is written as

Ũ = −X∗
√

1
4 + eη + · · · as X∗ → 0+. (5.21)

To have the solution in the entire region 1b (see figure 8), we shall, finally, consider the
limit

X∗ → 0+, Ψ = O(1). (5.22a,b)

Since the velocity Ue(X∗) at the outer edge of region 1b is regular for all X∗ > 0, the
asymptotic solution of (5.4a) with respect to the limit (5.20a,b) can be sought in the form
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of the Taylor expansion

Ũ(X∗, Ψ ) = Ũ0(Ψ )+ X∗Ũ1(Ψ )+ · · · . (5.23)

Substitution of (5.23) and (5.15) into (5.4a) yields

Ũ1 = 1
2

d2

dΨ 2

(
Ũ2

0

)
. (5.24)

Here Ũ0(Ψ ) remains undetermined. We only know from matching of (5.23) with (5.21)
that

Ũ0(Ψ ) = −eΨ/2 + · · · as Ψ → −∞. (5.25)

Now we can substitute (5.25) into (5.24). We find that

Ũ1(Ψ ) = 1
2 eΨ + · · · as Ψ → −∞. (5.26)

5.2. Displacement effect of region 1b
The displacement effect of a boundary layer is characterised by the angle the streamlines
make with the body surface. Integrating the continuity equation (5.4b) with initial
condition (5.4c), we have

Ṽ
Ũ

= −
Ψ∫

0

1
Ũ2

∂Ũ
∂X∗

dψ. (5.27)

Corresponding to two limits, (5.17) and (5.22a,b), that had to be considered in region 1b,
we shall subdivide the integration interval in (5.27) into two parts:

ψ ∈ [0, ΨΔ] and ψ ∈ [ΨΔ,Ψ ]. (5.28)

Here
ΨΔ = Δ+ 2 ln X∗,

with Δ being a positive parameter satisfying the conditions 1 � Δ � −2 ln X∗. The
second interval in (5.28) corresponds to region 1b′. In terms of variable η it is written
as

η ∈ [Δ,−Δ]. (5.29)

Notice that the interval of variation of η in (5.29) is ‘inverted’ to signify that the left-hand
side boundary of (5.29) corresponds to the lower edge of region 1b′, while the right-hand
side boundary represents its upper edge.

When dealing with the first interval in (5.28), we need to use for Ũ the asymptotic
representation (5.23). Hence, we have

−
ΨΔ∫

0

1
Ũ2

∂Ũ
∂X∗

dψ = −
ΨΔ∫

0

Ũ1(ψ)[
Ũ0(ψ)

]2 dψ + · · · as X∗ → 0+. (5.30)

It follows from (5.25) and (5.26) that

Ũ1(ψ)[
Ũ0(ψ)

]2 → 1
2

as ψ → −∞.
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Keeping this in mind, we rearrange the integral on the right-hand side of (5.30) as

−
ΨΔ∫

0

Ũ1(ψ)[
Ũ0(ψ)

]2 dψ = −
2 ln X∗+Δ∫

0

{
Ũ1(ψ)[
Ũ0(ψ)

]2 − 1
2

}
dψ − ln X∗ − 1

2
Δ

= − ln X∗ − 1
2
Δ+ D + · · · as X∗ → 0−, (5.31)

with constant D given by

D = −
−∞∫
0

{
Ũ1(ψ)[
Ũ0(ψ)

]2 − 1
2

}
dψ.

Now we turn to the second interval in (5.28), where Ũ is represented by (5.19). We see
that

−
Ψ∫

ΨΔ

1
Ũ2

∂Ũ
∂X∗

dψ = 1
X2∗

Ψ−2 ln X∗∫
Δ

(
1
F

− 2
F′

F2

)
dη

= 2
X2∗

⎡⎣ln

√
1
4 + eη − 1

2√
1
4 + eη + 1

2

+ 1√
1
4 + eη

⎤⎦Ψ−2 ln X∗

Δ

= 2
X2∗

[Ψ − 2 ln X∗ + 2] + · · · . (5.32)

Comparing (5.32) with (5.31), it is easily seen that the displacement effect of region 1b is
predominantly due to region 1b′. Substituting (5.32) into (5.27) and rescaling the velocity
components according to (5.1), we can conclude that at the outer edge of region 1b′

V
U

= 2
X2∗
Ψ − 4

X2∗
(ln X∗ − 1)+ · · · . (5.33)

5.3. Displacement effect of region 1a
Let us now calculate the streamline slope V/U in region 1a. For this purpose, we can use
(3.10). At the ‘bottom’ of region 1a, where Ψ∗ is small, the integral on the right-hand side
of (3.10) is given by (3.11). Setting P̄s = − 1

2 in (3.11), we have

Ψ∗∫
0

dΨ ′
∗

U∗(X∗, Ψ ′∗)
=
√

−2P∗ −
√

2Ψ∗ − 2P∗. (5.34)

We are interested in small values of X∗ where P∗ may be obtained by substituting (5.15)
into (3.19). We see that

P∗ = −1
8

X2
∗ + · · · as X∗ → 0+, (5.35)
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which allows us to express (5.34) in the form

Ψ∗∫
0

dΨ ′
∗

U∗(X∗, Ψ ′∗)
= 1

2
X∗ − 1

2
X∗

√
1 + 8

Ψ∗
X2∗
.

For small values of Ψ∗/X2
∗ , √

1 + 8
Ψ∗
X2∗

= 1 + 4
Ψ∗
X2∗
,

and, therefore,
Ψ∗∫

0

dΨ ′
∗

U∗(X∗, Ψ ′∗)
= −2

Ψ∗
X∗
.

It remains to rescale V∗, U∗ and Ψ∗ with the help of (3.3a–c), and we can conclude that at
the ‘bottom’ of region 1a

V
U

= U2
w

2Ψ∗
X2∗

+ · · · = 2Ψ
X2∗

+ · · · . (5.36)

It is easily seen that (5.36) coincides with the first term in (5.33). Hence, the second
term in (5.33) should be solely attributed to the displacement effect of region 1b:

V
U

∣∣∣∣
region 1b

= − 4
X2∗
(ln X∗ − 1)+ · · · as X∗ → 0+. (5.37)

To evaluate the displacement effect of region 1a, we have to use instead of (3.11)
equation (3.12). Setting P̄s = − 1

2 in (3.12) and using (5.35) for P∗, we have

Ψ∗∫
0

dΨ ′
∗

U∗(X∗, Ψ ′∗)
= 1

2
X∗ +

√
2Ψ∗ + 1

4
X2∗. (5.38)

Differentiation of (5.38) with respect to X∗ yields

∂

∂X∗

Ψ∗∫
0

dΨ ′
∗

U∗(X∗, Ψ ′∗)
= 1

2
+ 1

2
1√

1 + 2ξ
, (5.39)

where

ξ = 4Ψ∗
X2∗

.

It follows from (5.39) and (3.10) that at the outer edge of region 1a

V∗
U∗

= 1
2
. (5.40)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

48
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.486


On quasi-steady boundary-layer separation 900 A9-23

It also follows from (5.39) that the main contribution to the displacement effect of
region 1a is produced by region 1a′ (see figure 8), where

ξ = 4Ψ∗
X2∗

= O(1). (5.41)

With the help of (3.3a–c) we can express (5.40) in the form

V
U

∣∣∣∣
region 1a

= 1
2

U2
w + · · · . (5.42)

Comparing (5.42) with (5.37), and keeping in mind that Uw � 1, one can conclude that as
long as X∗ is not too small, the displacement effect of region 1a is dominant. However,
for any Uw, no matter how large, there always exists a vicinity of X∗ = 0, where the
displacement effect of region 1b can no longer be ignored. Our next task will be to examine
the flow behaviour in this new region.

6. Flow near singularity. Inviscid region C

In the region in question (we shall call it region C; see figure 8) we introduce a new
longitudinal coordinate, X̆, such that

X∗ = σ X̆, (6.1)

where the scaling parameter σ is defined by

2| ln σ |
σ 2

= U2
w. (6.2)

This ensures that the streamline angle (5.37) produced by region 1b is the same order
quantity as the streamline angle (5.42) produced by region 1a.

Region C is composed of the stream filaments that pass through regions 1a′ and 1b′; see
figure 9. The longitudinal velocity U∗ in region 1a′ is given by (3.9). Setting P̄s = − 1

2 and
taking into account that for small X∗ the pressure is given by (5.35), we can express (3.9)
in the form

U∗ =
{− 1

2 X∗
√

1 + 2ξ if ξ ∈ [0,− 1
2

]
,

1
2 X∗

√
1 + 2ξ if ξ > − 1

2 ,
(6.3)

where ξ is given by (5.41).
If we now express (5.35) and (6.3) in terms of the new coordinate (6.1), and return to

the original variables P, U and Ψ with the help of (3.3a–c) and (3.4a,b), then we will see
that in region 1a′

P = U2
wσ

2
(
− 1

8 X̆2
)

+ · · · ,

U =
⎧⎨⎩Uwσ

(
− 1

2 X̆
√

1 + 2ξ
)

+ · · · if ξ ∈ [0,− 1
2

]
,

Uwσ
(

1
2 X̆

√
1 + 2ξ

)
+ · · · if ξ > − 1

2 ,

where

ξ = 4Ψ

U2
wσ

2X̆2
.
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C

1a

1b
1b¢
1a¢

FIGURE 9. Formation of region C.

This suggests that the solution in region C has to be sought in the form

U = Uwσ Ŭ + · · · , P = U2
wσ

2P̆ + · · · ,
X = σ

Uw
X̆, Ψ = U2

wσ
2Ψ̆ ,

⎫⎬⎭ (6.4)

with functions Ŭ(X̆, Ψ̆ ) and P̆(X̆, Ψ̆ ) satisfying the following matching condition with the
solution in region 1a′:

P̆ = − 1
8 X̆2 + · · · ,

Ŭ =
{− 1

2 X̆
√

1 + 2ξ + · · · if ξ ∈ [0,− 1
2

]
,

1
2 X̆

√
1 + 2ξ + · · · if ξ > − 1

2 ,

⎫⎪⎪⎬⎪⎪⎭ as X̆ → ∞. (6.5)

Here ξ is expressed in terms of variables of region C by means of the equation

ξ = 4Ψ̆

X̆2
. (6.6)

To formulate the corresponding matching conditions with the solution in region 1b′, we
need to return to (5.21). Combining it with the first equation in (5.1) and applying the
rescaling (6.1), renders the solution in region 1b′ in the form

U = Uwσ(−X̆)
√

1
4 + eη + · · · ,

which means that the sought matching condition for the velocity Ŭ in region C is written
as

Ŭ = −X̆
√

1
4 + eη + · · · as X̆ → ∞. (6.7)

The similarity variable η is defined by (5.18). We now need to express it in terms of the
variables (6.4) of region C. Substituting (6.1) and the fourth equation in (6.4) into (5.18),
we have

η = U2
wσ

2Ψ̆ + 2| ln σ | − 2 ln X̆.

Finally, it follows from (6.2) that 2| ln σ | = U2
wσ

2 and, therefore, we can write

η = χ(Ψ̆ + 1)− 2 ln X̆, (6.8)

where χ = 2| ln σ |.
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Before performing mathematical analysis of the flow in region C we need to supplement
(6.4) with the corresponding asymptotic representation of the lateral velocity V . For this
purpose,

∂Ψ

∂X
= −V (6.9)

is used. Evaluating the left-hand side in (6.9) with the help of (6.4) it is easily seen that in
region C the lateral velocity should be sought in the form

V = U3
wσ V̆. (6.10)

Now we can substitute (6.4) into the momentum equation (2.4a). We see that in the limit
Uw → ∞ this equation reduces to

Ŭ
∂Ŭ

∂X̆
= −dP̆

dX̆
,

which shows that the flow in region C can be treated as inviscid. This allows us to use the
Bernoulli equation

1
2

Ŭ2 + P̆ = H̆(Ψ̆ ). (6.11)

The Bernoulli function H̆(Ψ̆ ) can be found by means of matching with solutions in
regions 1a′ and 1b′. We start with region 1a′, where we have to use (6.5) and (6.6). We see
that

H̆1a′ = Ψ̆ . (6.12)

When matching with region 1b′, (6.7) and (6.8) have to be used, leading to

H̆1b′ = 1
2 eχ(Ψ̆+1). (6.13)

Notice that the matching between (6.12) and (6.13) is performed by setting Ψ̆ → 0 in
(6.12) and Ψ̆ → −∞ in (6.13). The composite Bernoulli function that is applicable to all
streamlines in region C is obtained by adding (6.12) to (6.13):

H̆ = Ψ̆ + 1
2 eχ(Ψ̆+1). (6.14)

Substituting (6.14) into (6.11) and solving the resulting equation for Ŭ, we find that

Ŭ = ±
√

2Ψ̆ + eχ(Ψ̆+1) − 2P̆. (6.15)

To decide where the velocity Ŭ is positive and where it is negative, we need to consider
the topology of the streamlines in region C. We shall use for this purpose the streamline
sketch in figure 10. We know that in region 1b′ and in the lower part of region 1b′ on the
right-hand side of the sketch, the fluid particles move against the flow outside the boundary
layer. As they do so, they encounter a growing pressure and experience a deceleration. In
fact, given Ψ̆ on the streamline considered, one can find the pressure P̆ that makes the
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fluid stop and turn back. This means that any cross-section AA′ in region C has a ‘reverse’
point R, where

Ŭ = 0.
The value Ψ̆R of the streamfunction on the streamline passing through point R is obtained
by setting Ŭ = 0 in (6.15). This leads to the equation

2Ψ̆R + eχ(Ψ̆R+1) = 2P̆, (6.16)

relating Ψ̆R to the pressure P̆ at cross-section AA′.
To find the pressure distribution P̆(X̆) in region C, we shall use the fact that this region

is rather short and, therefore, the flow is subject to the conditions of the ‘condensed flow
regime’ (see Bogolepov & Neiland 1971). In this regime the streamline slope angle at the
outer edge of region C remains constant:

V
U

∣∣∣∣
Y̆=∞

= const. (6.17)

The value of the constant on the right-hand side of (6.17) may be obtained through
matching with the solution (5.42) in region 1a:

V
U

∣∣∣∣
Y̆=∞

= 1
2

U2
w. (6.18)

Applying the scalings (6.4) and (6.10) to the velocity components U and V on the left-hand
side of (6.18), we can conclude that in region C the following equation holds:

V̆

Ŭ

∣∣∣∣∣
Y̆=∞

= 1
2
. (6.19)

The left-hand side of (6.19) may be calculated using the continuity equation (2.4b). It is
written in terms of variables (6.4), (6.10) of region C as

∂

∂Ψ̆

(
V̆

Ŭ

)
= ∂

∂X̆

(
1

Ŭ

)
. (6.20)

When integrating (6.20) across region C, one needs to distinguish three intervals on AA′;
see figure 10. The first one, AR, lies below the reversal point R. The fluid crosses this
interval from right to left, and the velocity Ŭ is given by (6.15) with the minus sign.
Above point R the velocity Ŭ becomes positive, and we have to use (6.15) with the plus
sign. Equation (6.15) remains valid until point M is reached. This point lies on the last
streamline that originates in region 1b′ and turned back by the rising pressure. The value
Ψ̆M of the streamfunction at point M is defined by the equation

2Ψ̆M + eχ(Ψ̆M+1) − 2P̆M = 0. (6.21)

Here P̆M is the maximum value of pressure P̆ in region C. The latter is defined by the
strength of the impinging expansion fan:

Ps = −1
2

U2
w − U2

wσ
2P̆M. (6.22)

The streamlines crossing AA′ above point M originate in the unperturbed flow region
before the expansion fan (see figure 10), where H̆ also should be a linear function of Ψ̆ ,
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Ψ̆ = ΨM
˘ Ψ̆R

R
S

M

A¢

A

Region 1a¢

Region 1b¢

FIGURE 10. Streamline pattern in region C.

as it is in region 1a′. However, due to obvious misalignment of the streamline before and
after the impinging expansion fan (see figure 6), we shall modify (6.12) as follows:

H̆ = Ψ̆ + Ψ̆0. (6.23)

To find the shift parameter Ψ̆0, we consider the stagnation point S in figure 10. At this
point, Ŭ = 0 and P̆ = P̆M and, therefore, the left-hand side of (6.23) is calculated as

H̆ = 1
2

Ŭ2 + P̆ = P̆M,

while the right-hand side equals

Ψ̆M + Ψ̆0.

This leads to the following equation:

P̆M = Ψ̆M + Ψ̆0. (6.24)

Eliminating P̆M from (6.24) with the help of (6.21), we find that

Ψ̆0 = 1
2 eχ(Ψ̆M+1). (6.25)

It remains to substitute (6.25) back into (6.23) and then into (6.11). Solving the resulting
equation for Ŭ, we see that above point M,

Ŭ =
√

2Ψ̆ + eχ(Ψ̆M+1) − 2P̆.

Consequently, for any Ψ̆ > Ψ̆M, we can express the result of the integration of (6.20) in
the form

V̆

Ŭ
= ∂

∂X̆

⎡⎢⎣−
Ψ̆R∫

+∞

dΨ̆√
2Ψ̆ + eχ(Ψ̆+1) − 2P̆

+
Ψ̆M∫
Ψ̆R

dΨ̆√
2Ψ̆ + eχ(Ψ̆+1) − 2P̆

+
Ψ̆∫

Ψ̆M

dΨ̆√
2Ψ̆ + eχ(Ψ̆M+1) − 2P̆

⎤⎥⎦ ,
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or, equivalently,

V̆

Ŭ
= ∂

∂X̆

⎡⎢⎣ +∞∫
Ψ̆M

dΨ̆√
2Ψ̆ + eχ(Ψ̆+1) − 2P̆

+2

Ψ̆M∫
Ψ̆R

dΨ̆√
2Ψ̆ + eχ(Ψ̆+1) − 2P̆

+
Ψ̆∫

Ψ̆M

dΨ̆√
2Ψ̆ + eχ(Ψ̆M+1) − 2P̆

⎤⎥⎦ . (6.26)

It remains to substitute (6.26) into (6.19), and we will have the following
integro-differential equation for P̆:

1
2

= d

dX̆

⎡⎢⎣2

Ψ̆M∫
Ψ̆R

dΨ̆√
2Ψ̆ + eχ(Ψ̆+1) − 2P̆

⎤⎥⎦

+ dP̆

dX̆

⎡⎢⎣ +∞∫
Ψ̆M

dΨ̆[
2Ψ̆ + eχ(Ψ̆+1) − 2P̆

]3/2 + 1√
2Ψ̆M + eχ(Ψ̆M+1) − 2P̆

⎤⎥⎦ . (6.27a)

It should be solved together with (6.16) subject to the boundary condition

P̆ = −1
8

X̆2 + · · · as X̆ → ∞ (6.27b)

given by (6.5).
The results of the numerical solution of (6.27) are displayed in figure 11. We found that

when performing the calculations, a really fine partition in Ψ̆ is needed to make the results
mesh independent. This is due to the fact that the first integral on the right-hand side of
(6.27a) is singular at the lower limit of integration Ψ̆ = Ψ̆R. Its vicinity Ψ̆ ∈ [Ψ̆R, Ψ̆R + δ]
requires a special treatment. We approximated 2Ψ̆ + eχ(Ψ̆+1) − 2P̆ by a linear function

2Ψ̆ + eχ(Ψ̆+1) − 2P̆ =
[
2 + χ eχ(Ψ̆R+1)

]
(Ψ̆ − Ψ̆R),

and calculated the resulting integral analytically.
Typical behaviour of the solution is shown in figure 11 where the results of the

calculations performed for ΨM = −0.4 and three values of χ = 3.0, 4.0 and 5.0 are
displayed. We found that for large enough X̆, the asymptote (6.27b) is followed very
closely. Then the graphs corresponding to different values of χ start to deviate from one
another. The larger parameter χ , the lower P̆ appears to be. Still, for all χ , the pressure
increases monotonically with decreasing X̆. Interestingly enough, the solution terminates
at a finite position X̆0 where P̆ becomes infinite.

6.1. Analysis of the singularity

The behaviour of the solution near singular point X̆0 may be studied analytically based
on the following observations. When P̆M becomes large, the displacement effect of the
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FIGURE 11. Pressure variation in region C for ΨM = −0.4 and χ = 3.0, 4.0 and 5.0.

boundary layer is predominantly due to the region that lies inside the loop formed by the
streamline with Ψ̆ = Ψ̆M; see figure 10. This allows us to disregard the two terms on the
second line in (6.27a). We also note that the streamlines originating from region 1a cannot
penetrate the region with large P̆. This means that the contribution (6.12) of region 1a′ into
the composite Bernoulli function (6.14) can be disregarded. This reduces (6.27a) to

1
4

= d

dX̆

∞∫
Ψ̆R

dΨ̆√
eχ(Ψ̆+1) − 2P̆

. (6.28)

Here Ψ̆R is related to the pressure P̆ via the equation

eχ(Ψ̆R+1) = 2P̆,

that is obtained by disregarding 2Ψ̆R in (6.16).
The integral on the right-hand side of (6.28) is easily calculated:

∞∫
Ψ̆R

dΨ̆√
eχ(Ψ̆+1) − 2P̆

= π

χ
√

2P̆
. (6.29)

It remains to substitute (6.29) into (6.28) and integrate the resulting equation with respect
to X̆. We find that

P̆ = 8π2

χ 2

1

(X̆ − X̆0)2
+ · · · as X̆ → X̆0, (6.30)

with X̆0 denoting the position of the singularity. We found that (6.30) agrees very well
with the numerical results of figure 11.

It should be noted that if the expansion fan strength parameter P̆M as defined by (6.22) is
finite, then the pressure P̆ will only rise to P̆M, and the above description gives a complete
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representation of the flow. However, the above theory is also applicable to the case of a
self-induced pressure rise in region C which leads to a singularity. In this case a new region
should be introduced near the singular point. In this region the variation of the pressure
across the boundary layer becomes important. The situation is analogous to that discussed
in Neiland & Sychev (1966) and Neiland (1969a). We intend to study this analogy in detail
and present the results in a subsequent publication.

7. Concluding remarks

Our objective in this paper is to understand if and when the boundary layer can separate
from a rigid body surface that moves in the direction opposite to the main flow external to
the boundary layer. Here we choose the external flow to be supersonic. The reason for this
is twofold. First, in a supersonic flow the region of interest is relatively small which makes
it easier to formulate the governing equations and boundary conditions. Second, we wanted
to study both the flow with an adverse pressure gradient and the flow with a favourable
pressure gradient. As we have seen the adverse and favourable pressure gradient can be
easily achieved in supersonic flows by imposing either a shock wave or an expansion fan
impinging on the boundary layer.

The interaction of the shock wave with the boundary layer is a classical problem of the
triple-deck theory. Strictly speaking this theory is valid when the non-dimensional wall
velocity Uw = V̂sh/V̂∞ is an order O(Re−1/8) quantity. In § 4 we presented the results of
the numerical solution of the triple-deck equations for the boundary layer on an upstream
moving wall. The case of an impinging shock, when the boundary layer is exposed to
the adverse pressure gradient, was analysed earlier by Zhuk (1982) and Yapalparvi &
van Dommelen (2012). Their calculations (and our theoretical arguments) suggest that
the increasing wall speed suppresses the separation. Keeping this in mind, the main
attention in the present work is payed to the boundary layer exposed to an expansion
fan. We found that two eddies form in the boundary layer: one lies downstream of the
impinging expansion fan and the other upstream of the fan. The former grows as the
wall speed |Uw| increases, while the latter becomes relatively small. The observed flow
behaviour resembles that in the so-called ‘pseudo-shock’ (see Ruban & Vonatsos 2008),
which establishes a link to the ‘collisional separation’ as described by Stewartson, Cebeci
& Chang (1980) and Kluwick & Wohlfahrt (1986).

These conclusions are confirmed by theoretical analysis of the flow that has been
performed under the assumption that the wall speed is larger than that in the triple-deck
theory, namely, 1 � Vsh/V∞ � Re−1/8. In this case the viscous lower tier of the
triple-deck structure splits into the inviscid and viscous layers. The pressure distribution
along the interaction region can be found by analysing the interaction of the inviscid
layer with the external supersonic flow. Still, to satisfy the no-slip condition on the body
surface, one has to study the flow behaviour in the near-wall viscous layer. We found
that the solution for the viscous layer remains smooth in the case of an impinging shock,
but develops a singularity when the boundary layer interacts with the expansion fan.
A detailed analysis of the flow behaviour near the singularity shows that a new shorter
region should be introduced in the vicinity of the separation point. In this vicinity the
flow is governed by the integro-differential equation (6.27a). We found numerically and
by means of theoretical analysis of (6.27a) that solution encounters yet another singularity
(6.30). The physical processes that lead to its formation are essentially the same as those
leading to a singularity in the expansion solution of the classical triple-deck theory; see
Neiland (1969a) and Neiland & Sychev (1966).
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