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A model is proposed for predicting the presence of cumulative nonlinear distortions
in the acoustic waveforms produced by high-speed jet flows. The model relies on
the conventional definition of the acoustic shock formation distance and employs
an effective Gol’dberg number Λ for diverging acoustic waves. The latter properly
accounts for spherical spreading, whereas the classical Gol’dberg number Γ is
restricted to plane wave applications. Scaling laws are then derived to account for
the effects imposed by jet exit conditions of practical interest and includes Mach
number, temperature ratio, Strouhal number and an absolute observer distance relative
to a broadband Gaussian source. Surveys of the acoustic pressure produced by a
laboratory-scale, shock-free and unheated Mach 3 jet are used to support findings of
the model. Acoustic waveforms are acquired on a two-dimensional grid extending
out to 145 nozzle diameters from the jet exit plane. Various statistical metrics
are employed to examine the degree of local and cumulative nonlinearity in the
measured waveforms and their temporal derivatives. This includes a wave steepening
factor (WSF), skewness, kurtosis and the normalized quadrature spectral density. The
analysed data are shown to collapse reasonably well along rays emanating from
the post-potential-core region of the jet. An application of the generalized Burgers
equation is used to demonstrate the effect of cumulative nonlinear distortion on an
arbitrary acoustic waveform produced by a high-convective-Mach-number supersonic
jet. It is advocated that cumulative nonlinear distortion effects during far-field sound
propagation are too subtle in this range-restricted environment and over the region
covered, which may be true for other laboratory-scale jet noise facilities.

Key words: acoustics, aeroacoustics, jet noise

1. Introduction
Extensive theoretical, numerical and experimental studies have been conducted over

the past four decades to understand the noise produced by supersonic jet flows. Unlike
subsonic jets, the noise produced by supersonic jets can be categorized into four
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Nozzle
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Uc

FIGURE 1. Simplified schematic of the Mach wave radiation mechanism in the near-field
of the supersonic jet (ambient sound speed a∞ and convective speed Uc of the instability
waves).

distinct mechanisms (Tam 1995): turbulent mixing noise, broadband shock-associated
noise, screech and transonic resonance. The latter three occur when shock structures
are present. Restricting one’s attention to turbulent mixing noise, the more relevant
assemblage of literature reduces to the laboratory-scale jet studies of McLaughlin,
Morrison & Troutt (1975), Tanna & Dean (1975), McLaughlin, Bridges & Kuo
(2010), Papamoschou, Morris & McLaughlin (2010), Baars et al. (2011) and Kuo,
Veltin & McLaughlin (2012), the full-scale flight tests of Morfey & Howell (1981) or
the numerical studies of Morris (1977), Howell & Morfey (1987) and Seiner, Bhat &
Ponton (1994). Aside from conventional spectral analysis, Laufer, Schlinker & Kaplan
(1976), Gallagher & McLaughlin (1981), Petitjean, Viswanathan & McLaughlin
(2006), Veltin, Day & McLaughlin (2011) and Baars & Tinney (2014) studied the
temporal characteristics of the acoustic waveform in a laboratory environment while
Gee et al. (2008) focused on sound produced by a full-scale static jet engine.

Like subsonic jets, the dominant sound produced by shock-free supersonic jets is
caused by turbulent mixing noise (Viswanathan 2004). The formation and evolution of
the large-scale structures associated with this mechanism encompasses various families
of instability waves (Tam & Hu 1989). One particular family acts as surface panels
convecting at supersonic speeds that radiate waves at the Mach cone half-angle:
φ = cos−1(a∞/Uc), as is shown in figure 1. This pattern forms within the zone
of action where acoustic radiation becomes increasingly intense as the convective
acoustic Mach number of the large turbulent structures becomes supersonic. Analytical
models describing the generation of Mach waves were developed by Phillips (1960)
and Ffowcs Williams & Maidanik (1965); however few reliable experiments were
available at that time to verify their accuracy. A decade later the noise produced
by Mach waves became the subject of numerous investigations (McLaughlin et al.
1975; Laufer et al. 1976; Seiner et al. 1994; Tam & Chen 1994; Tam et al. 2008;
Tam 2009). This is attributed to the fact that the noise produced by Mach waves is
the dominant component of turbulent mixing noise and therefore researchers have
attempted to tackle this component in order to achieve significant jet noise reduction
(Papamoschou & Debiasi 1999).

Nonlinear distortion of acoustic waveforms is considered a prerequisite to
understanding the process by which sound waves propagate from supersonic jets.
However, there continues to be a lack of consensus as to how these sound waves
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manifest nonlinearities. A common method for determining if nonlinearities are
present in the waveform is to project the spectra acquired from a near far-field
observer to a far far-field observer using a linear methodology and to compare the
projected spectra to the actual measurement at that location (Viswanathan 2008). If
spherical spreading and atmospheric absorption effects are properly accounted for then
one is led to believe that the residuals between projected and measured waveforms
are attributed to nonlinear distortion. This however requires that the propagation path
be known, which is rarely the case in most laboratory and full-scale jet studies due
to the expense of acquiring multiple observer locations.

Cumulative waveform distortions that become more pronounced with propagation
distance are caused by points on the waveform possessing different amplitudes and
propagating at different speeds (Hamilton & Blackstock 2008). Such distortions
include waveform steepening, shock formation, shock coalescence and relaxation; the
first of these shifts energy upward in the frequency spectrum. Stronger shocks that
travel faster than weaker ones cause shocks to coalesce, thereby reducing the number
of zero crossings; this is reflected by a shift of energy from mid frequencies to low
frequencies. If viscous absorption permits, an overall broadening of the spectrum
occurs.

Where model equations are concerned, nonlinear terms need to be retained in order
for the acoustic waveform to distort. This can be seen in the seminal work of Pestorius
& Blackstock (1974) which resulted in the development of a hybrid time-frequency
algorithm that numerically solves the generalized Burgers equation for broadband
signals. In particular, the algorithm is capable of propagating arbitrarily shaped
waveforms in one dimension while incorporating shock formation and relaxation
effects using nonlinear acoustic theory. The input waveform is propagated in a
stepwise manner by first applying nonlinear distortion using the Earnshaw solution
(Hamilton & Blackstock 2008). Absorption, dispersion, and geometrical spreading
losses are accounted for in the frequency domain while the algorithm can be
formulated to perform both linear and nonlinear predictions of the input waveform.
While the use of the generalized Burgers equation to predict waveform steepening in
plane waves and spherical waves has had considerable success (Pestorius & Blackstock
1974; Webster & Blackstock 1978; Hammerton & Crighton 1993), less favourable
results have been encountered with problems concerning jet noise. Beginning with
the pioneering work of Ffowcs Williams, Simson & Virchis (1975), the lack of
cumulative waveform steepening in the pressure waveform was attributed to low
amplitude levels at the source (personal communication between D. T. Blackstock
and J. E. Ffowcs Williams). Only in recent years has a successful execution of this
algorithm been performed on high-speed jets using full-scale tactical aircraft engines
(Gee et al. 2008).

An alternative to the generalized Burgers equation algorithms can be found in
the work of Howell & Morfey (1987) whereby a nonlinear indicator can be used
to quantify how the energy in the power spectrum is redistributed due to nonlinear
distortion; further details are discussed in § 5.2. A shortcoming of this indicator is
that it requires one to compute the normalized quadrature spectral density, whose
amplitude is highly sensitive to the shape of the signal’s probability density function
(p.d.f.). Likewise, many applications of this nonlinear indicator to problems in jet
noise employed signals from only a single observer. This assumes that the statistical
properties of the jet noise source is known, which continues to elude even the modern
marvels of computational acoustics.
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1.1. Overview of the current study
While a great number of surveys have focused on noise from supersonic jets, very
few have attempted to investigate nonlinear acoustic phenomena in a spatial domain
covering the acoustic near- and far-fields. The current study includes measurements
in the acoustic field of a shock-free, unheated, Mach 3 jet. This high Mach number
ensures the formation of Mach waves, which we believe can provide insightful
information about how the sound propagates from lower-Mach-number jets. Moreover,
due to the spatial range that is covered with these measurements, we can explicitly
address relationships between local and cumulative nonlinear acoustic distortions.

Measurements comprise acoustic waveforms acquired on a grid in the (x, r)-plane
of the jet, where x and r are axial and radial direction respectively. These are unique
in the sense that sufficient spatial information is available in order to make valid
conclusions regarding propagation trends. Spectral features of the sound field from
this Mach 3 jet are described in § 3, followed by a discussion of the difficulties
associated with studying cumulative nonlinear propagation in a laboratory-scale
(range-restricted) environment in § 4. A scaling model is proposed that allows one to
predict indicators of cumulative nonlinearities and the relationship between laboratory
and full-scale experiments. It is inferred from this model that significant cumulative
nonlinear distortions are absent from our acoustic data set. Evidence of this is shown
in § 5 using time-averaged scalar metrics and an application of the Morfey–Howell
indicator.

2. Experimental arrangement
2.1. Facility

Experiments were performed in a fully anechoic chamber and open jet wind tunnel
located at the J. J. Pickle Research Campus of The University of Texas at Austin.
A plan view of this facility is shown in figure 2. The anechoic chamber has interior
dimensions of 5.8 m (L) × 4.6 m (W) × 3.7 m (H) (wedge tip to wedge tip) and
provides 99 % normal incidence sound absorption for frequencies above 100 Hz. A
modular jet rig is installed along the centreline of the wind tunnel and chamber as
shown in figures 2 and 3(a,c). Further details on this facility are discussed by Baars
& Tinney (2013).

The convergent–divergent nozzle was designed using the method of characteristics
to have an exit gas dynamic Mach number of Me = 3.00 (total temperature,
T0 = 273.15 K, ratio of specific heats, γ = 1.4, specific gas constant of air,
R= 287.05 J kg−1 K−1). The exit diameter was constrained to 25.4 mm resulting in
a throat-to-exit length of 58.4 mm. All measurements were performed with the nozzle
operating under perfectly expanded conditions with a mass flow of 1.04 kg s−1.

2.2. Instrumentation
Acoustic data were acquired using four 1/4 in. prepolarized, pressure-field, condenser
microphones (PCB model 377B10 capsules with model 426B03 preamplifiers).
Microphone signals were digitized using a NI PXI-4472 card which provided the
necessary IEPE power to operate the microphones all the while conditioning the
input signal to eliminate aliasing prior to digitization (filter roll-off occurs at 0.84
times the Nyquist frequency). All four channels were acquired synchronously at a rate
of 102.4 kS s−1 with 24 bit resolution for a minimum of 220 samples. Microphone
diaphragms were oriented at grazing incidence to the acoustic wave fronts (plane of
the diaphragm intersecting the complete jet axis; see Viswanathan 2006) and with
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Control valve
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To 500 HP
vane axial
fan

x

y

FIGURE 2. (Colour online) Plan view of the fully anechoic chamber and open jet
wind tunnel at The University of Texas at Austin with the nozzle test rig installed (to
scale). The microphone locations (projected on the (x, y)-plane) during the planar grid
measurements are indicated by the dark circles.

(a) (b) (c)

FIGURE 3. (Colour online) (a) Arrangement of the chamber during grid measurements.
(b) Detail of the microphone support. (c) The Mach 3 MOC nozzle mounted on the ø 6 in.
settling chamber.

grid caps removed. Two different microphone configurations were used: a planar
grid intersecting the jet axis (identified by dark circles in figure 2) and a line-array
positioned along the Mach cone half-angle. Coordinates for the two configurations
are provided in figure 4(a,b).

2.2.1. Planar grid measurements
The planar grid measurements were acquired on an (x, r)-plane oriented at an angle

of ϕ =−38.5◦. This uniform grid spanned from 5Dj to 145Dj in the axial direction
and from 25Dj to 95Dj in the radial direction with a spacing of 1x = 1r = 10Dj,
where Dj is jet exit diameter. The location of this grid encompasses the geometric
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FIGURE 4. Coordinate system of the (a) planar grid and (b) four-microphone line-array
measurements (in ϕ =−38.5◦ plane).
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FIGURE 5. Microphone observer positions used to construct various line-arrays labelled
A–H. Lines A–G (�) radiate from a point at x/Dj = 20; line H (M) radiates from
the nozzle exit plane. An artificial arc-array (◦) at ρ/Dj = 100 ± 1.5 % is centred
on x/Dj = 20.

far-field where most jet noise measurements are performed. An acoustically transparent
array was constructed that supported the four microphones using 12 in. long, 1/4 in.
diameter tubes, as is shown in figure 3(a,b). The traversing array was repositioned in
between runs to capture acoustic data at all grid positions.

In order to facilitate subsequent discussion, several grid points were selected in
order to form both line- and arc-arrays of acoustic observers. Figure 5 provides
a visual mapping of these observer points. The first of these comprised eight
microphones forming an artificial arc-array at ρ/Dj = 100 ± 1.5 % and centred at
x/Dj= 20. The precise locations of these eight acoustic observers are listed in table 1
and are further denoted by microphones 1–8. Several lines radiating from x/Dj = 20
were then formed, labelled A–G in figure 5. Subsequent discussions employ subscripts
(increasing with outward radial distance) to indicate which microphone is being used.
For example, microphone C4 is located at (x, r)= (95, 75)Dj. Furthermore, lines A–G
are angled at φ = [22, 35, 45, 52, 65, 86, 94]◦, respectively. A final line, H, also
shown on figure 5, originates from the nozzle exit plane.
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Mic. no. 1 2 3 4 5 6 7 8

(x, r)/Dj (115, 25) (115, 35) (105, 55) (95, 65) (85, 75) (75, 85) (55, 95) (45, 95)
φ (deg.) 14.7 20.2 32.9 40.9 49.1 57.1 69.8 75.3
ρ/Dj 98.2 101.2 101.2 99.3 99.3 101.2 101.2 98.3

TABLE 1. Microphone locations used to form an artificial arc-array centred at x/Dj = 20.

2.2.2. Line-array measurements
After the planar grid measurements were processed, the peak noise path was

found to emanate from the post-potential-core region near x/Dj = 20, and along a
path oriented at 45◦ from the jet axis. A line-array of four microphones was then
positioned so as to follow this path. As can be seen from figure 4(b), all four
microphones were positioned at one azimuth angle ϕ. The acoustic waveforms were
not obstructed by upstream microphones due to their 1/4 in. tube supports (figure 3b).

2.3. Test conditions
Experiments were conducted over a duration of three days with weather conditions
being monitored periodically throughout the study. A summary of these conditions is
provided in table 2 using subscripts j,∞, 0 to denote jet exit, ambient and stagnation
conditions, respectively. Column ‘grid-array (day 1)’ corresponds to the measurements
performed in the range x/Dj = [5, 95], r/Dj = [25, 95], whereas column ‘grid-array
(day 2)’ pertains to the remaining section of the grid: x/Dj = [105, 145], r/Dj =
[25, 95]. Jet exit conditions were calculated from standard isentropic relations using
an estimate for the dynamic viscosity based on Sutherland’s law.

A useful metric for predicting the formation of Mach waves in a jet is known as the
Oertel convective Mach number, defined as Mco= (Uj+ 0.5aj)/(aj+ a∞). If Mco< 0.75
then Mach waves are non-existent, for 0.75 < Mco < 1 the Mach waves are in their
developing stages, and for Mco > 1, Mach waves are expected to be fully developed.
For our jet, Mco = 1.31, which suggests that these conditions are more than adequate
for generating strong Mach waves.

2.3.1. Convective velocity
The convective speed of the large-scale turbulent structures is a prerequisite for

calculating the Mach wave radiation angle. Here we have chosen to assume Uc =
0.8Uj, which was motivated by the findings of McLaughlin et al. (1975) and Troutt &
McLaughlin (1982) who showed phase velocities of the axial instability waves to be of
this magnitude over a broad range of wavenumbers; similar findings were reported by
Kerhervé, Fitzpatrick & Jordan (2006). A recent study by Tinney, Ukeiley & Glauser
(2008), based on near-field pressure and velocity correlations, has also shown how
low-mode-number disturbances, residing on the high-speed sides of the annular shear
layer, convect at speeds near 0.8Uj. These low-mode-number events correlate well with
the far-field pressure (Hall et al. 2009). Norum & Seiner (1982) on the other hand,
achieved reasonable results using 0.7Uj.

3. Basic acoustic-field observations
3.1. Statistics

The topography of the overall sound pressure level (OASPL) obtained from the planar
grid measurements is presented in figure 6. Experimentally acquired contours can also
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Grid-array Grid-array Line-array
(day 1) (day 2) (day 3)

Mj 3.00± 1 %
NPR= p0/p∞ 36.73± 4.5 %

Measured p∞ (kPa) 100.7 100.8 101.2
T0 (K) 291.2 286.2 285.1
T∞ (K) 293.3 287.2 287.5
RH (%) 75.4 63.2 48.2

Calculated Tj (K) 104.0 102.2 101.8
aj (m s−1) 204.4 202.7 202.3
a∞ (m s−1) 343.3 339.7 339.9
Uj (m s−1) 613.3 608.0 606.9

fc =Uj/Dj (kHz) 24.1 23.9 23.9
Tj/T∞ 0.35 0.36 0.35
ρ∞/ρj 0.35 0.36 0.35

Rej 7.4× 106 7.6× 106 7.6× 106

Uc = 0.8Uj (m s−1) 490.6 486.4 485.5
Ma =Uj/a∞ 1.79 1.79 1.79
Mc =Uc/a∞ 1.43 1.43 1.43
φ (deg.) 45.6 45.7 45.6

TABLE 2. Summary of experimental conditions for the microphone grid-array and line-
array measurements (Mj was controlled to be the fully expanded Mach number Me= 3.00).

be found in the literature (Potter & Crocker 1966; McLaughlin et al. 1975; Gallagher
& McLaughlin 1981; Varnier 2001; Greska et al. 2008). The classical heart-shaped
pattern and cone of silence are observed. A strong intensity gradient centred along
θ =45◦ (initiating from the jet exit) is also observed and supports the notion that Mach
wave radiation intensity decays rapidly beyond the Mach wave angle. Furthermore, the
edge remains distinct with outward distance up to, and probably beyond, the range of
consideration.

The acoustic pressure decay along the peak noise emission path is presented in
figure 7. Experimental data from both grid- and line-array measurements are corrected
for atmospheric absorption. A linear spherical decay trend is matched to the grid-array
measurements in a minimum root-mean-square-error sense. Subsequently, the pressure
decay associated with cylindrical spreading is indicated for reference. It is observed
that the experiment closely resembles the spherical decay. And so, for subsequent
analyses, it is assumed that the sound propagates along a path coinciding with the
peak OASPL and that its amplitude obeys a spherical decay law.

3.1.1. Core lengths of the jet
No centreline data are available for the current study, and so empirical formulations

are used to determine the potential core length (Lc = xc/Dj) and the length of
the supersonic region (Ls = xs/Dj). Nagamatsu & Horvay (1970) showed that
Lc = 5.22M0.90

j + 0.22 and Ls = 5M1.8
j + 0.8 worked well for a broad set of conditions

and that the location of most intense sound generation (Lp = xp/Dj) resided just
upstream of the sonic point in the so-called transition region, but always downstream
of the potential core: Lc < Lp < Ls. These observations were similar to the findings
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FIGURE 6. Contours of OASPL in dB, pref = 20 µPa, taken from Baars & Tinney (2014).
Data of the original grid (10Dj spacing) are interpolated by a factor of 10. Superposed are
the grid points forming the artificial arc-array, and the line-array measurement locations
are also indicated.
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FIGURE 7. Decay of the pressure standard deviation along the peak noise path (φ= 45◦).

of Potter (1968). Varnier (2001) later concluded that the estimate of Nagamatsu
& Horvay (1970) for Ls was adequate in describing the most pronounced sound
source location. However, Varnier (2001) found that for a slightly overexpanded jet,
Mj = 2.8 (Me = 3.3, Me being the design Mach number), Lp resided further upstream
at Ls/Lp ≈ Mα

j with α = 0.85, and that the potential core length was estimated by
Ls/Lc ≈ M0.9

e . Surprisingly, the jet temperature does not appear explicitly in the
previous formulations. In an effort to overcome this deficiency, Greska et al. (2008)
suggested that Lc= 3.134 exp(1.043Mj−Mc); the convective Mach number is affected
by differences in temperature between the core and ambient gases. Lastly, the model
proposed by Witze (1974) is considered here, which governs only supersonic unheated
jets.
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FIGURE 8. PSDs along the artificial arc-array (5 % bandwidth moving filter). Spectra at
shallow and side-line angles are compared to large-scale similarity (LSS) and fine-scale
similarity (FSS) trends, respectively.

Model Lc Lp Ls

Nagamatsu & Horvay (1970) 14.3 — 36.9
Varnier (2001) 13.7 14.5 36.9
Greska et al. (2008) 17.1 — —
Witze (1974) 18.3 — —
Current experimental data — 17.5 —

TABLE 3. Potential core length, location of most intense noise production, and length of
the supersonic region for the Mach 3 jet according to various models.

A summary of the results obtained from these aforementioned models is provided
in table 3. An estimate for the location of maximum peak pressure fluctuations,
obtained by way of linear extrapolation of the peak OASPL, has also been included
for comparison. Visual inspection of figure 6 suggests that Lp = 17.5Dj is reasonable,
and so it will be used throughout the remainder of the analysis.

3.2. Spectral distribution of sound
Estimates of the one-sided power spectral densities (PSDs) from points located on
the artificial arc-array (table 1) are presented in figure 8 using a frequency resolution
of δf = 12.2 Hz (or in terms of Strouhal number, defined as StDj = fDj/Uj, 1StDj =
5.1× 10−4) and N = 8192 samples per bin. Low-frequency wiggles (StDj < 0.03) are
attributed to facility reflections based on the first fundamental frequencies identified
in the spectra and the distance from each observer position to the chamber wall.
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FIGURE 9. PSDs along spreading lines A–G (5 % bandwidth moving filter). Spectra are
averaged from the microphones along the lines after being linearly scaled to ρ/Dj = 100.

Additional spectra are presented in figure 9 and are computed by first scaling each
point to ρ/Dj = 100 and then averaging points that share the same polar position for
a given spreading line (A–G). The scaling involves a simple linear spreading concept
with corrections for humidity. An illustration of this process is shown in figure 10(a)
for microphone observers located along line C and are shown to overlay one another
quite well. Wiggles in the spectra at ρ/Dj = 140 are observed and are believed to
be caused by changes in the flow resistive properties of the melamine foam (that the
acoustic wedges are constructed from) due to rather high relative humidity levels in
the chamber (63 %–75 %) during the first two days of testing. Proof of this is shown
in figure 10(b) by comparing the pressure spectra at two microphone locations and
under different relative humidities (RH); the general features are unaffected.

Nevertheless, spectra in figures 8, 9 and 10(a,b) display two well-accepted trends
that are typical of supersonic jet noise: that is, a pronounced ridge at shallow angles
(φ . 49.1◦) indicative of the noise produced by Mach wave radiation, and broadband
lower-amplitude spectra at sideline angles (φ & 57.1◦) typical of the fine-scale
turbulence mixing noise. Large-scale similarity (LSS) and fine-scale similarity (FSS)
spectra (Tam, Golebiowski & Seiner 1996; Tam et al. 2008) have been included and
demonstrate good agreement for the shallow and sideline angle observers, respectively.

Contours of sound pressure intensity at various Strouhal numbers are illustrated
in figure 11(a–f ). This is obtained by applying a band-pass filter that averages
over 20 % of the chosen centre frequency. Figure 11(a,b) reveals peak intensities
of the low frequencies radiating at angles shallower than the Mach wave radiation
angle with lines emanating from an origin located downstream of the post-potential
core (x & 17.5Dj). This is caused by a considerable drop in axial phase velocity of
the instability waves for low frequencies (St < 0.2) (Troutt & McLaughlin 1982).
For frequencies centred around StDj = 0.2 in figure 11(c), the peak radiation angle
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FIGURE 10. (a) PSDs along the line-array (5 % bandwidth moving filter): unscaled spectra
(top), spectra linearly scaled to ρ/Dj = 100 (bottom). (b) Effect of relative humidity on
the pressure spectra at two microphone locations along the line-array.

follows along the Mach wave radiation angle. Spectra that are filtered around higher
centre frequencies (figure 11d–f ) appear to have origins that are shifted upstream,
but never originate from the nozzle exit plane. These findings are in agreement
with Kuo, Veltin & McLaughlin (2010) who observed that the angular orientation
of the lobe of peak intensity remained mostly unchanged with frequency for an
unheated Mach 1.5 jet. Contrary to the current result, Kuo et al. (2010) observed
a broadening of the lobe at higher frequencies and concluded that this was more
consistent with the notion that the noise pattern produced by the fine-scale turbulence
was more omni-directional. Here, a broadening is not explicitly observed. A plausible
explanation for this discrepancy is the high convective Mach number in this study.
Hence, the highly directional Mach wave radiation process saturates more of the
higher-frequency omni-directional noise content. In general, these findings support the
notion that high-frequency noise radiates from regions close to the nozzle exit, while
low-frequency noise dominates locations further downstream.

4. Acoustic nonlinearities from a laboratory-scale jet

Numerous efforts have been undertaken to investigate nonlinear sound propagation
from jet flows. Crighton & Bashforth (1980) and Crighton (1986) have developed
analytical models to investigate changes in jet noise propagation due to nonlinear
phenomena. Experimental studies in range-restricted environments include the work
of Gallagher & McLaughlin (1981) and Petitjean et al. (2006). Only weak cumulative
nonlinear effects have been observed using a laboratory-scale setup, while strong
nonlinear effects have been observed under full-scale conditions. Examples of
full-scale jet and rocket tests can be found in the literature (Morfey & Howell
1981; McInerny 1996; McInerny & Ölçmen 2005; Gee et al. 2008; Saxena, Morris &
Viswanathan 2009). Here, a scaling model is introduced that could be used to guide
future studies aimed at predicting whether acoustic waveforms produced by jet flows
will undergo cumulative nonlinear distortion.
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FIGURE 11. Contours of the sound pressure level (SPL) in dB, ref: 20 µPa2 Hz−1. The
SPL value is averaged over a domain spanning ±20 % around the centre Strouhal number.

4.1. Acoustic length scales
A first step in determining if nonlinear distortion will occur is to consider two
important acoustic length scales. The first of these is taken as the acoustic absorption
length (la), which is the reciprocal of the absorption coefficient

la = 1
α
. (4.1)

For our laboratory conditions, the curves for the absorption coefficient for different
RH are shown in figure 12(a) and are taken from appendix B of Blackstock (2000).
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FIGURE 12. (a) Absorption curves for different RH taken from appendix B of Blackstock
(2000). (b) The absorption curve for the experimental conditions during the acquisition of
the grid measurements.

The coefficient has units of nepers per unit distance and can be converted to
decibels per unit distance α according to α(f ) = 8.686α(f ). Figure 12(b) presents
the absorption coefficient for a relative humidity of 70 % (average humidity for our
grid measurements) and demonstrates the various contributions from relaxation and
thermoviscous absorption. Relaxation dominates at low frequencies and for air, two
relaxation processes are involved: absorption associated with the vibration of both
nitrogen molecules (αN2) and oxygen molecules (αO2). Thermoviscous effects (αtv)
dominate at higher frequencies and are expressed by the asymptotic formula

αtv = δ (2πf )2

2a3∞
, (4.2)

where δ is the diffusivity of sound and has value 3.64× 10−5 m2 s−1.
The second acoustic length scale is taken as the shock formation distance. For

progressive plane waves with Gaussian waveform statistics (non-steepened) that are
emitted by a broadband source, the shock formation distance, as introduced by
Gurbatov & Rudenko (p. 383, Hamilton & Blackstock 2008), is

x= ρ∞a3
∞

β(2πf0)prms
. (4.3)

In (4.3), the ambient density is taken as ρ∞ = 1.223 kg m−3, the coefficient of
nonlinearity is given by β = (γ + 1)/2= 1.2, prms is the pressure standard deviation
of the source, and f0 is the centre frequency of the broadband source. Since the
source field of a jet is complex, and mostly unknown, our analysis is confined to a
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FIGURE 13. Concept of scaling approach indicating the comparison of characteristic
nonlinear parameters between the model prediction (subscript Fm, ‘m’ from model) and a
full-scale measurement (subscript Fr, ‘r’ from reference).

single sound ray propagating into the acoustic far-field. The ray is aligned with the
peak noise angle and emanates from a point in the shear layer. This is reasonable
since the most interesting region concerning nonlinear noise propagation resides
along this ray. The location of this emission point scales with nozzle diameter, and
is identified in figure 13 by r0 = sDj. For simplicity, the sound intensity is assumed
to obey a spherical decay law (figure 7) along the peak noise angle. Therefore, only
the spherical shock formation distance is considered and is denoted by r (Hamilton
& Blackstock 2008) such that,

r= r0 exp (x/r0) . (4.4)

Shock formation distances are typically much larger for spherically spreading sound
waves than for plane waves due to the spreading losses in the former that cause a
more rapid decay in the waveform amplitude with distance and hence, a reduction of
the steepening process.

As a next step, the pressure standard deviation (prms) and centre frequency (f0)

at the emission point are obtained by examining the measurements of the SPL
presented in figure 10(a,b). The closest measurement along the peak noise direction
(ρ/Dj = 60: OASPL = 140.1 dB and f0 = 3.6 kHz) is extrapolated towards the
emission point with corrections for atmospheric absorption; this assumes spherical
spreading (figure 13). The initial amplitude of the sound ray at the emission-point
is computed as prms = 4948 Pa (167.9 dB) and the centre frequency is assumed to
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FIGURE 14. (a) Spherical shock formation distance and (b) effective Gol’dberg number
for the laboratory-scale scenario as function of emission-point location r0 = sDj.

be equal to f0 = 3.6 kHz. Using the aforementioned approach and parameters, the
shock formation distance (rL), as function of scale s of the radial emission point, is
presented in figure 14(a) where the subscript L refers to laboratory-scale conditions.
The increasing trend is expected, since an emission point that is located further from
the jet centreline is associated with a lower starting waveform amplitude, which
causes the waveform to steepen less fast and thus extends the shock formation
distance. Lastly, for the given centre frequency, the attenuation coefficient is found
to be αL = 2.60 × 10−3 Np m−1 (indicated in figure 12b) which corresponds to an
absorption length of laL ≈ 385 m.

4.2. Effective Gol’dberg number
Having reviewed the two acoustic length scales of interest in this study (absorption
length and shock formation distance), and the means by which they can be obtained
from laboratory measurements, a parameter that is relevant to the occurrence of
cumulative nonlinear distortion in the waveform is examined next. We will first
review this parameter for the case of plane waves. Propagation of plane waves can
be modelled by the following generalized form of the Burgers equation:

∂p
∂x
= βp
ρ0a3∞

∂p
∂τ
+ψτ {p} , (4.5)

where p is acoustic pressure, x is the coordinate along the propagation path, ρ0 is
ambient density, τ = t− x/a∞ is retarded time, and ψτ is the atmospheric absorption
and dispersion operator. For a thermoviscous fluid, a non-dimensional form of (4.5)
can be written as

∂P
∂σ
= P

∂P
∂θ
+ 1
Γ

∂2P
∂θ 2

, (4.6)

where P = p/prms, σ = x/x and θ = 2πf0τ (Hamilton & Blackstock 2008, p. 312).
Parameter Γ is the only adjustable coefficient in (4.6) and represents the importance
of the viscosity term relative to the nonlinear term, since

Γ = 1
αx
= la

x
. (4.7)

In the literature, Γ is known as the Gol’dberg number. Since this dimensionless
number is equal to the ratio of the absorption length to the plane wave shock
formation distance, it is therefore a measure of the strength of nonlinear distortion
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relative to that of dissipation (Hamilton & Blackstock 2008). When Γ . 1, attenuation
dominates and the formation of shocks is suppressed. When Γ � 1, cumulative
nonlinear distortion is expected to occur. And so, for the case of plane waves, this
single ratio of length scales is sufficient to determine whether significant cumulative
nonlinear distortions arise in the waveform. Because the source signal in this work
is broadband, the Gol’dberg number is dependent on the frequency that is selected.
For simplification, the centre frequency (f0) is selected for our analysis, as was
done in computing the shock formation distance earlier; this is now denoted as the
characteristic Gol’dberg number.

We turn our attention now to a spherical wave field. The generalized Burgers
equation for spherically spreading waves may be expressed in dimensionless form as
(Naugol’nykh, Soluyan & Khokhlov (1963); see also Hamilton & Blackstock 2008,
p. 323)

∂Q
∂ζ
=Q

∂Q
∂θ
+ exp(ζ/σ0)

Γ

∂2Q
∂θ 2

. (4.8)

Here, σ0 = r0/x is the ratio of source radius r0 to the plane wave shock formation
distance, Q = (σ/σ0)P is dimensionless pressure with spherical spreading removed,
and ζ = σ0 ln(σ/σ0) is a stretched coordinate. While the evolution of a plane wave
is governed completely by the single dimensionless parameter Γ , two dimensionless
parameters – length scale ratios Γ and σ0 – determine how spherical waves evolve. It
has been recently shown by Hamilton (2013) that an effective Gol’dberg number for
diverging spherical waves may be expressed as

Λ= Γ exp(−ζsh/σ0), (4.9)

and ζsh = π/2. Substitution of (4.9) in (4.8) results in the following form of the
Burgers equation for spherical waves:

∂Q
∂ζ
=Q

∂Q
∂θ
+ exp[(ζ − ζsh)/σ0]

Λ

∂2Q
∂θ 2

. (4.10)

Note that for Λ� 1 and in the neighbourhood of where shock formation occurs for
an initially sinusoidal wave in the absence of losses (i.e. at ζ = 1), the second term
on the right-hand side, which accounts for losses, is negligible in comparison with the
first term, which accounts for nonlinearity. As a result, shock formation is guaranteed
for Λ� 1, whereas nonlinear effects are negligible for Λ. 1.

The effective Gol’dberg number Λ for the current laboratory-scale Mach 3 jet is
shown in figure 14(b). For the entire range of emission-point locations considered,
ΛL < 0.4. A typical source size is estimated to span the width of the shear layer in
the post-potential-core region of the flow. Given the relatively linear growth of the
jet shear layer (roughly 0.10 x; see Tinney et al. 2008), an emission-point location
scale of s = r0/Dj = 2.5 is expected and is assumed to hold over a range of jet
conditions. The resultant shock formation distance and effective Gol’dberg number for
this laboratory-scale study are determined to be rL(s=2.5)=18.0 m and ΛL(s=2.5)=
0.15.

For typical full-scale conditions, where higher temperature ratios and larger nozzle
diameters are anticipated, the centre frequency, and thus α(f ), decreases. It will be
shown below that under these conditions, x/r0 will decrease by a factor of about 14.2.
Thus, the effective Gol’dberg number Λ will become larger in the full-scale study
thereby making cumulative nonlinear effects more dominant in the matching full-scale
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case. It is important to point out that (4.4) assumes that the emitted signal at ρ = r0
possesses Gaussian statistics. It is shown later that the waveform distribution from
the nearest far-field observer point is well-approximated with Gaussian statistics, but
has sawtooth-like structures. And so, it is unclear whether the waveform is born in
this way or has undergone a significant steepening process within the hydrodynamic
periphery of the jet flow. Concurrent studies by Fiévet et al. (2013) suggest that
waveforms are initially steepened at the source, but such measurements, when taken
too close to the jet flow, become corrupted by hydrodynamic effects and the true
form of the acoustic waveform is difficult to obtain. Nevertheless, the shock formation
distance and Gol’dberg number are expected to decrease and increase, respectively,
with pre-steepened waveforms, which will differ slightly from what is predicted by
this model. This warrants additional analysis to determine what effect a pre-steepened
wave has on the shock formation distance.

4.3. Scaling the shock formation distance
Scaling laws are derived for the occurrence of cumulative nonlinear waveform
distortions between the laboratory- and full-scale environments in terms of jet exit
parameters (i.e. Dj, Mj, Tj). First, the shock formation distance, (4.3) and (4.4), is
scaled based on lossless fluid theory; this is the most favourable scenario for studying
nonlinear effects, since the distance to shock formation is now the shortest possible
(Λ → ∞). In reality, absorption will delay, and partly suppress, this process. The
physical meaning of this scaling will therefore be commented on later when the
Gol’dberg number is scaled. Foremost, it is assumed that the propagation medium
for the laboratory- and full-scale environments is the same (i.e. ambient air). On the
other hand, it is not assumed in our formulations that the Strouhal number (StDj)
corresponding to the peak SPL in the two environments is the same (variations in
non-dimensional frequencies appear from changes in jet exit conditions, Mj and Tj).
And so, peak frequencies are related by f ∝ StDjUj/Dj. Lastly, the sound intensity
I for shock-free supersonic jets has been shown to vary with the jet exit velocity
to the eighth power, thus I ∝ U8

j (Lighthill 1954). Since the intensity is given by
I = p2

rms/(ρ∞a∞), it can be shown that the emitted waveform amplitude satisfies
prms ∝ U4

j . It has been further shown by Viswanathan (2004) that for a range of
temperature ratios, the acoustic intensity still scales closely with U8

j for acoustic
Mach numbers ranging from about 0.5 to 1.7. Upon inserting the aforementioned
assumptions into (4.3), the following relationship unfolds:

x∝ Dj

U5
j StDj

. (4.11)

In the most general case for a supersonic jet, and by repeatedly taking into account
the equal-medium assumption, (4.11) can be written as

x∝ Dj

M5
j T2.5

j StDj

. (4.12)

Knowing that r0 = sDj, the exponent in (4.4) can be expressed as follows:

x
r0
∝ 1

M5
j T2.5

j StDj

, (4.13)
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which employs all of the jet parameters of interest. The shock formation distance
between the laboratory-scale (denoted by L) and full-scale (denoted by F) environ-
ments can be related as follows:

rL

r0L
=
(

rF

r0F

)η
, (4.14)

where the parameter η is obtained by substituting (4.13) into (4.4) and is defined as

η= η (Mj, Tj, StDj

)= xL/r0L

xF/r0F
=
(

MjF

MjL

)5 (TjF

TjL

)2.5 (StDjF

StDjL

)
. (4.15)

Because geometric scaling is observed throughout the literature, one may prefer to
normalize the shock formation distance (4.14) by the nozzle exit diameter, which
results in the following expression:

rL

DjL
=
(

rF

DjF

)η
s(1−η). (4.16)

Here we show how (4.16), in combination with (4.15), constitutes a reasonable scaling
relationship for the shock formation distance in terms of jet exit parameters.

In an effort to illustrate the scaling laws, we will first consider variations in η under
different laboratory-scale conditions. This requires a full-scale reference case to be
selected from the literature; we will resort to a recent study by Gee et al. (2012).
Their study comprised surveys of the far-field acoustics from a Pratt & Whitney F-135
engine installed in an F-35A military aircraft. The exit conditions of this study were
approximated to be MjF = 1.4 and TjF = 1000 K (the engine was operated at military,
100 % ETR, power) with a nozzle exit diameter of DjF = 0.95 m. It was found that
the foregoing assumptions of the jet operating conditions had little influence on the
results. Gee et al. (2012) observed peak OASPLs of 138.8 dB at a radial location
of ρ/DjF = 80 (centred 6.7 m aft of the aircraft) and at an angle of 50◦ from the
jet axis. The centre frequency along the peak direction was found to be 300 Hz and
tests were conducted with relative humidity levels of 24 % (αF= 1.48× 10−4 Np m−1).
This full-scale reference case is used throughout the remainder of this section. Given
the full-scale conditions of Gee et al. (2012), the parameter η is determined from
(4.15) and found to be 14.2 (see point 1 in figure 15). We will show later on how a
reasonable prediction of the Gol’dberg number pertaining to the full-scale conditions
can be determined from any laboratory-scale tests.

Variations in η are illustrated in figure 15 for a wide range of operating conditions
(1.0<MjL < 3.5 and 50 K< TjL < 1200 K). It is important to note that in this visual
representation, Strouhal number remains constant at StDjL = 0.15 for the laboratory-
scale case (based on our operating conditions) and at StDjF = 0.32 for the full-scale
case. The correct mapping of StDjL = StDjL(MjL, TjL) is currently unknown. However,
StDjF/StDjL = 1 if temperature and Mach numbers are matched, and so η should equal
one under such conditions. And so, since the effect of Strouhal ratio on η is not
accurately accounted for under varying jet conditions (differences in Mach number and
temperature ratios between laboratory- and full-scale), figure 15 is, strictly speaking,
only valid for point 1 from our current study. However, the magnitude of η does
not change significantly (remains within the same order of magnitude) when different
laboratory-scale studies are considered (Baars 2013).
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FIGURE 15. (a) Parameter η for the scaling of the spherical shock formation distance for
supersonic jets relative to a full-scale reference case (MjF = 1.4, TjF = 103 K). Conditions
of the current study (point 1) along with the unheated (point 2) and heated (point 3) jet
conditions from Baars et al. (2011) are indicated by the solid circles. (b) η for fixed MjL=
1.4, (c) η for fixed TjL = 103 K, identified by dashed lines in (a).

In figure 15, the parameter η resides within roughly two orders of magnitude
for a wide range of laboratory operating conditions. Furthermore, when the
laboratory experiment encompasses an unheated and low-Mach-number jet, η becomes
significantly large. This is the first indicator that studying cumulative nonlinearities
in range-restricted environments is not necessarily feasible when the jet is operated
under these conditions. Namely, if η becomes large, rL/DjL becomes extensively large
(although the source size factor becomes much smaller than one). Shock formation
(in an ideal lossless world) is thus expected to occur far outside any practical
laboratory-scale anechoic environment. As a final indication of the usefulness of
these scaling laws, it can be shown that when η = 1, it follows from (4.16) that the
shock formation distance scales geometrically:

rL

DjL
= rF

DjF
. (4.17)

4.4. Scaling the effective Gol’dberg number for spherical waves
Upon learning the effect of jet exit conditions on shock formation distance, it is
natural for one to inquire about how these conditions can impact on the effective
Gol’dberg number Λ. This ultimately determines to what extent, and in what
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FIGURE 16. Illustration of the qualitative picture of nonlinearities along a ray for two
different effective Gol’dberg numbers: Λ1 >Λ2 (not to scale).

range, cumulative nonlinear waveform distortions become pronounced. A simplified
illustration of the effect of Gol’dberg number on the degree of cumulative nonlinear
distortion to the waveform emanating from the point of maximum OASPL is
illustrated in figure 16. One may choose to consider these two trends representative
as of the amplitude of the second (or higher-order) harmonics in the case of a
mono-frequency source. Or, with the current study in mind, figure 16 would illustrate
increases in energy in the high-frequency bands of the SPL (relative to a base
case) since steepened signals encompass more high-frequency energy. Nevertheless,
an initial rise in the waveform distortion due to cumulative nonlinear effects
(waveform becomes more nonlinear) eventually plateaus and reaches its maximum
value when viscous absorption becomes dominant. Viscous absorption continues to
relax any further distortions and so the degree of nonlinearity eventually decreases
asymptotically with propagation distance. When the effective Gol’dberg number is
smaller (dashed curve relative to solid curve), wave steepening develops less rapidly.

Ideally, one would prefer to match laboratory- and full-scale scenarios where the
relationship between the degree of cumulative nonlinearity and ρ/Dj is concerned.
This would ensure that the wave steepening process (and possible shock formation and
coalescence) occurs at similar positions along the propagation path. Only then will an
interpretation of sub-scale results be valid for the corresponding full-scale conditions.
And so, it is in one’s interest to hold ΛDj constant, or at least within the same order
of magnitude (given the assumptions in this model discussed earlier).

Here we now explore whether cumulative nonlinear distortions to the acoustic
waveform produced in the current laboratory-scale environment can be used to
predict the same type of distorted waveform observed in full-scale tests, or under
what conditions might one be able to replicate the full-scale distorted waveform in
a range-restricted environment. The mathematical expressions for this are relatively
straightforward. From (4.9) and (4.16), it can be shown that

ΛF

ΛL
= αL

αF

xL

xF
exp ((xL/r0L)− (xF/r0F)) (4.18)

which can be rewritten as

(ΛFDjF)= (ΛLDjL)η
αL

αF
exp ((xL/r0L)− (xF/r0L)) . (4.19)
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FIGURE 17. Effective Gol’dberg number for the full-scale case as predicted by the
model: ΛFm(s, StDjF/StDjL) (multiply contour values by 103).

It is preferred to express the ratio αL/αF in terms of jet parameters, which could
be achieved by using an absorption coefficient comprising only thermoviscous
effects; see (4.2). However, since vibrational states of the molecules form unique
asymptotes that differ between laboratory- and full-scale scenarios (differences in
peak Strouhal numbers may be large; see figure 12b), classical absorption alone is
incapable of furnishing an accurate comparison between the two scenarios. Thus,
in order to compute parameter group (ΛDj) for the full-scale case based on known
laboratory-scale values (or vice versa), (4.19) is used directly.

With this approach in mind, an attempt is made to predict the effective Gol’dberg
number of the full-scale conditions, based on the model and the current laboratory-
scale conditions (denoted by the subscript ‘Fm’, see the schematic in figure 13), and
is shown in figure 17. The model prediction (ΛFm) is dependent on the emission-point
location and full-scale Strouhal number corresponding to the peak frequency in the
direction of maximum OASPL. Once again, since the effect of Mach number and
temperature ratio on the peak Strouhal number is unknown at this time, a range of
possible solutions based on StDjF/StDjL should be considered.

Choosing now to isolate a peak Strouhal number for the full-scale condition (based
on the measurements of Gee et al. 2012), the effect of source size on ΛFr can be
determined, as is shown in figure 18(a) for the appropriate choice of StDjF/StDjL . Here,
the Gol’dberg number for the full-scale condition, predicted by the model and based
on laboratory-scale conditions, is approximately 1260 times higher than the laboratory
value. On the contrary, if we choose to fix the emission-point scale (s = 2.5), the
effect of Strouhal number on the Gol’dberg ratio can be determined, as is shown in
figure 18(b). The decay in Gol’dberg number above StDjF/StDjL = 2.5 is a consequence
of increased absorption at higher frequencies.

In an effort to determine the validity of this model approach, the effective Gol’dberg
number is computed for the full-scale study of Gee et al. (2012), and compared to
the prediction based on laboratory-scale conditions. The same approach for estimating
nonlinear characteristic parameters is applied to the full-scale conditions whereby the
OASPL at the emission point is obtained by extrapolating near-field observer levels
to an imaginary point at r0 with corrections for atmospheric absorption. The resultant
full-scale effective Gol’dberg number is shown in figure 18(a) and is approximately
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FIGURE 18. (a) Effective Gol’dberg number for the laboratory case (ΛL), the full-scale
model prediction (ΛFm) and the full-scale measurement (ΛFr), note that the dashed line
(indicating ΓL) is not visible due to its low amplitude. (b) Ratio of the predicted full-scale
and laboratory Gol’dberg number as function of Strouhal number ratio.

Case la (m) x (m) r (m) r/Dj Λ ΛDj (m)

(a) Lab. (current data) 385 0.36 18.0 708 0.150 0.004
(b) Full (Gee et al. 2012) 6738 2.13 5.83 6.13 764.1 725.8
(c) Full (model, I ∝U8

j ) 6738 0.95 3.72 3.92 3821 3630

(d) Full (model, I ∝U3
j ) 6738 2.44 6.98 7.35 550.9 523.4

TABLE 4. Nonlinear characteristic parameters for the: (a) laboratory-scale case computed
from current measurements, (b) full-scale computed directly from measurements of Gee
et al. (2012), (c) full-scale predicted from laboratory-scale conditions using the presented
model, and (d) similar to case (c), but assuming I∝U3

j . The emission-point scale is s=2.5.

five times lower than the model prediction. A summary of the nonlinear parameters
is provided in table 4 based on a typical emission-point scale of s= 2.5. Additionally,
the model predictions were recalculated assuming I∝U3

j , following the work presented
by Ffowcs Williams (1963). The results of this are presented in case (d) of table 4.
When comparing the values to cases (b) and (c), it can be concluded that nonlinear
parameters are of the same order of magnitude.

This model is scrutinized further by considering the laboratory-scale study of Baars
et al. (2011) comprising a heated (T0 = 1020.6 K and Tj = 706.6 K) fully expanded
Mach 1.553 jet, with an exit diameter of Dj = 50 mm. The measurement along the
peak noise direction (also at around 45◦) is located at ρ/Dj = 58.5. The OASPL
was measured to be 138.20 dB with a centre frequency of 3 kHz. The full-scale
parameters predicted by these new laboratory-scale conditions are summarized in
table 5. Like table 4, the results of table 5 appear to be within an acceptable range
(i.e. same order of magnitude) where a prediction of the shock formation distance
and effective Gol’dberg number are concerned. The same exercise was repeated
with a different full-scale reference study and resulted in predicted values of similar
accuracy; this is summarized by Baars (2013).

While we consider these results to be good, we prefer to offer a number of
plausible reasons for the discrepancies in case one might wish to improve on this
first principles approach. Foremost, the dependence of the emission-point scale s
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Case la (m) x (m) r (m) r/Dj Λ ΛDj (m)

(a) Lab. (Baars et al. 2011) 582 0.54 9.72 195 1.146 0.057
(b) Full (Gee et al. 2012) 6738 2.13 5.83 6.13 764.1 725.8
(c) Full (model, I ∝U8

j ) 6738 4.16 14.4 15.1 103.7 98.55
(d) Full (model, I ∝U3

j ) 6738 4.92 19.8 20.9 52.95 50.30

TABLE 5. Similar to table 4, but for the laboratory measurements of the heated jet
presented by Baars et al. (2011).

on exit Mach number and exit temperature ratio is unknown and may result in
large differences between laboratory-scale and full-scale conditions. Furthermore,
the source intensity relationship for high-Mach-number and high-temperature-ratio
nozzles (rockets) is not clearly known and may resemble more the trends presented by
Ffowcs Williams (1963). Likewise, the decay in sound intensity near the source obeys
cylindrical spreading (p∝ 1/

√
ρ). This has an added effect of reducing the intensity

at the emission point (s = 2.5), and further extending the shock formation distance.
Nevertheless, insightful conclusions can be drawn here. Foremost, the parameter
group (ΛDj) being more than three orders of magnitude lower in the laboratory-scale
case suggests that cumulative nonlinear distortions in the acoustic waveform will
be more distinct under full-scale conditions, as opposed to measurements performed
in a range-restricted environment. For instance, the increased peak frequency has
a profound influence on the Gol’dberg number due to increased absorption. This
further delays the shock formation which makes it more difficult to capture and study
cumulative nonlinear distortions in a range-restricted environment. Finally, cumulative
nonlinear effects are expected to form in the waveforms emitted by this unheated
Mach 3 jet flow. However these distortions are not expected to appear significant in
the region where our measurements are being conducted, given the spatial confines of
our anechoic chamber. Thus, no major wave steepening and coalescence are expected
to be observed, as will be shown in the next section.

5. A statistical description of the acoustic field
We begin with a correlation study along our line-array in § 5.1 to verify the

propagation path of noise produced by this jet flow. Various statistical metrics are then
used in § 5.2 to quantify the degree of both local and cumulative nonlinear distortion,
which includes a waveform propagation study using the generalized Burgers equation.

5.1. Spectral statistics along the propagation path
If the propagation path is unknown, one may inadvertently link differences between
the measured and linearly projected far-field spectra to cumulative nonlinear effects;
this problem has been addressed only recently (Kuo et al. 2012; Baars 2013; Baars
& Tinney 2014). As an illustration, spectra along lines C and H (see figure 5) are
presented in figure 19(a) (all scaled to ρ/Dj = 100 using linear spreading). While
the spectra along line C collapse, it is clear that they do not along line H. This is
simply because the noise does not propagate along line H, and so different features
of the far-field pressure waveform from various angles are observed instead of
just one propagation angle. This example shows the importance of having sufficient
knowledge about the spatial dependence of the sound field, as opposed to single point
measurements far from the jet. From the spectra along the line-array (figure 10a) it
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FIGURE 19. (a) PSDs along lines C (black lines) and H (grey lines) after being linearly
scaled to ρ/Dj = 100 (centred on x = 0 for line H and x/Dj = 20 for line C) (5 %
bandwidth moving filter). (b) The temporal cross-correlation coefficient between the first
and subsequent microphones on the line-array.

is clear that there is no significant increase in the high frequencies and so it is
assumed that cumulative nonlinear distortion is too weak or non-existent in this
region. Cross-correlations between the first (60Dj) and three subsequent microphones
are presented in figure 19(b) to show the arrival times of the acoustic disturbances
along the line-array. The high correlation coefficients (0.64<ρxx < 0.77), suggest that
distortions are weak along this path, since they would have been expected to cause a
more significant loss of linear coherence (Ffowcs Williams et al. 1975).

5.2. Metrics for quantifying nonlinearities
Various statistical metrics have been used in the past to locally characterize the
degree of nonlinearity in a waveform (Gallagher & McLaughlin 1981). The spatial
topography of these localized nonlinear indicators can be used to infer information
about cumulative distortions in that region, as is done here. We begin with the
third and fourth central moments of the pressure waveform p(t), and its derivative
ṗ(t), which are used to characterize deviations from a Gaussian process and are
presented in non-dimensional form as skewness (S) and kurtosis (K). For the pressure
waveform, these are defined as S(p) = p3/σ 3 and K(p) = p4/σ 4, where σ is the
variance of p(t), p3 and p4 are the third and fourth central moment of the p.d.f.
respectively (Tennekes & Lumley 1972). Additional indicators include the wave
steepening factor (WSF) and the Morfey–Howell indicator. The first of these is
defined as the modulus of the average negative slope divided by the average positive
slope in the waveform (Gallagher & McLaughlin 1981). The range of WSF is thus
[0, 1], where 1 corresponds to a pure harmonic wave and zero to a perfect N wave.
The Morfey–Howell indicator has become an increasingly popular approach in the
jet noise community for those interested in studying cumulative nonlinear acoustic
waveform distortions. Applications can be found in the literature (McInerny & Ölçmen
2005; Petitjean et al. 2006; Kuo et al. 2010). Originally derived by Morfey & Howell
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(1981), this indicator starts with a statistical from of the Burgers equation

∂

∂r

[
r2e2αrSpp(r, f )

]=−2πf
β

ρ∞c3∞
e2αrQp2p(r, f ), (5.1)

where r is the coordinate along the propagation path, Spp is the double-sided PSD of
the pressure, and Qp2p is the quadrature spectral density, which is the imaginary part
of the conjugated single-sided cross-spectral density between the pressure squared and
the pressure (Bendat & Piersol 1980):

Qp2p(f )=−Im
[
2P2(f )P∗(f )

]
. (5.2)

Here, P(f ) and P2(f ) are the Fourier transforms of the signals p(t) and p2(t)
respectively. The factor two accounts for the single-sided version of the PSD.
The spatial rate of change of the PSD, involving linear spreading and atmospheric
absorption, appears on the left-hand side of (5.1) and would be zero in the case of
linear spreading. A logical step forward is to argue that the right-hand side accounts
for nonlinear distortion of the spectrum (Morfey & Howell 1981). Thus, any nonlinear
distortion must be the consequence of a non-zero value of the quadrature spectral
density. In the case of a positive right-hand side (for certain frequencies), the PSD
on the left-hand side gains energy in that frequency band due to nonlinear distortion,
and vice versa for a negative right-hand side. Equation (5.1) can be thought of as
being analysed between two points (1r apart from each other) on a propagation path.
In practice, the right-hand side is computed at a single point and so the left-hand side
is the derivative at that point in the limit of small 1r. Here we choose to consider
the normalized form of the quadrature spectral density,

Q(f )= Qp2p(f )
p3

rms

, (5.3)

which has dimensions of Hz−1. One of the most used forms of the indicator has been
introduced as Q/S and uses the PSD to obtain a dimensionless quantity:

Q
S
(f )= Qp2p(f )/p3

rms

Spp(f )/p2
rms

. (5.4)

Once again, the indicator can only measure how the energy in the PSD is
redistributed due to cumulative nonlinear distortion effects when multiple points
on a spreading ray are analysed. As an example, Q and Q/S are shown in figure 20
for arc-array microphone 5. The trends are relatively similar, as is expected given that
S is positive-definite. However, Q/S increases quite significantly at higher frequencies
due to the roll-off of the PSD. Overall, both Q and Q/S exhibit the same features
that are required of this study. However, an exact interpretation of the amplitude of
the indicator, as well as its physical meaning, is problematic for those working with
this technique.

Before proceeding further, it is important to emphasize the nonlinear detection
characteristics of this single-point indicator. Foremost, the quadrature spectral density
Qp2p is zero for a truly Gaussian signal. This is assumed to be the case for the
noise source in the above discussion. Therefore, when a Gaussian acoustic waveform
propagates away from its source, it may distort and become non-Gaussian due
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FIGURE 20. The normalized quadrature spectral density Q (in Hz−1), and the Q/S
Morfey–Howell indicator for arc-array microphone 5.

to nonlinearities. The single-point Morfey–Howell indicator detects this as being
non-zero and so one concludes that the waveform has undergone cumulative nonlinear
distortion between the source region and observer location. However, no distinction
can be made between local effects, cumulative effects, or a combination of the two
based on a single-point measurement alone (Howell & Morfey 1987). It is further
pointed out that the quadrature spectral density is highly sensitive to deviations from
a Gaussian, which may be an unavoidable consequence of instrument errors or the
averaging process.

To demonstrate this, an arbitrarily chosen, and experimentally acquired, waveform
is selected from a jet noise data set to form the basis for the simulated data. Since it
is preferred to start with a characteristic jet noise signal that was subject to minimal
wave steepening, a pressure waveform is extracted from the unheated jet study
presented by Baars et al. (2011). The far-field pressure waveform at ρ/Dj = 58.5
and θ = 20◦ is considered; its time series was sampled at 200 kHz and includes
a total of 221 samples. The spectrum peaks at a centre frequency of f0 = 1.2 kHz.
The signal is projected to several observer positions using the numerical algorithm
presented by Gee (2005). The algorithm is an extended version of the seminal work
presented by Pestorius & Blackstock (1974). The simulation is performed with typical
atmospheric conditions (T∞ = 288.0 K, p∞ = 1 atm, RH= 40 %, ρ∞ = 1.226 kg m−3,
a∞ = 340.2 m s−1, β = 1.201) and with a large source amplitude at r = 3 m
(prms = 582.4 Pa, or 149.3 dB, pref = 20 × 10−6 Pa) to ensure sufficient waveform
steepening. The algorithm assumes that the fluid is lossless (no viscous absorption)
and plane wave propagation is used for practical purposes so that the resultant shock
formation distance is estimated from (4.3) to be x= 9.2 m.

Four of the projected waveforms p(t) at r= [4, 6, 8, 10] m are shown in figure 21
along with the original input waveform (r = 3 m) and the corresponding time
derivatives ṗ(t); derivatives are computed using a first-order forward difference
routine. PSDs, quadrature spectral densities and the Morfey–Howell indicator of these
projected waveforms are shown in figure 22 alongside the quantity associated with
the input waveform at r = 3 m (dashed line). Statistical attributes of the evolving
waveform and its temporal derivative, are inspected by way of its p.d.f., skewness
and kurtosis, and are listed in table 6.

In figure 21(a,b) the waveform is shown, as expected, to undergo wave steepening,
shock formation and eventual coalescence with increasing distance from the source.
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FIGURE 21. Waveform projections using the generalized Burgers equation, at various
radial distances as indicated. (a) The raw waveform and (b) its temporal derivative.

The p.d.f. of p(t), indicated by the symbol B, shows negligible deviations from
a Gaussian whereas ṗ(t) manifests deviations which increase significantly with
increasing distance. For the spectral behaviour of the waveform in figure 22(a), shifts
in energy from mid to high frequencies are observed and crossover frequencies
increase with incremental distances from the source. This upward shift in energy
is a well-known consequence of waveform steepening. Likewise, Q(f ) and Q/S(f )
for the input waveform are non-zero in figure 22(b,c), thus demonstrating the acute
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FIGURE 22. (a) PSDs, (b) normalized quadrature spectral density Q and (c) the Q/S
Morfey–Howell indicator applied to the waveform data in figure 21.

sensitivity of these parameters to the p.d.f. of the signal. This non-zero quadrature
spectral density and Morfey–Howell indicator at the r = 3 m observer position is a
testament to the necessity of measuring these properties at several positions along
the propagation path (as opposed to just one) if one is to accurately characterize
the degree of cumulative nonlinear distortion to the far-field acoustics from jet flows,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

22
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.228


360 W. J. Baars, C. E. Tinney, M. S. Wochner and M. F. Hamilton

r (m) OASPL (dB) S(p) S(ṗ) K(p) K(ṗ) WSF

3 149.3 0.095 2.529 3.062 19.25 0.669
4 148.7 0.037 7.438 2.930 92.50 0.433
6 147.5 −0.004 8.648 2.864 96.59 0.252
8 146.3 −0.010 8.790 2.895 97.03 0.201

10 145.2 −0.006 9.047 2.948 102.68 0.182

TABLE 6. Statistical properties of the raw and projected waveforms displayed in
figure 21(a).

since the statistical nature of the source is most often unknown. Thus, a non-zero
quadrature spectral density observed from a single-point measurement alone may
inadvertently compel one to believe that a cumulative nonlinear distortion process is
perceived.

Morfey & Howell (1981) have suggested that for aircraft noise prediction studies, it
is preferable to integrate Q/S along the propagation path in order to characterize the
net flux of energy transfer. Here we have chosen to confine the limits of integration
to the negative part of the quadrature spectral density, i.e.

Qneg =
∫

fneg

Q(f )df , (5.5)

which, in practice, involves integrating from f1 to f2 in figure 20. Table 7 displays the
results of applying (5.5) to the sample waveforms. As expected, a clear change in the
net flux is manifested, which is due to the cumulative nonlinear waveform distortion.

5.2.1. Application to the far-field of the Mach 3 jet
Having reviewed how the quadrature spectral density and other statistical metrics are

affected by cumulative nonlinear waveform distortions, the next step is to apply the
same analysis methods to the current data set of our Mach 3 jet flow. It is important
to note that the pressure time series of the current study were high-pass filtered
at 400 Hz to ensure that slow drifts in the microphone signal and equipment were
not saturating any result of the skewness and any other statistical metric. Figure 23
depicts estimates of Q and Q/S from the microphone signals along spreading lines
A to G as they emanate from the post-potential-core regions of the flow. It is clear
that each spreading line exhibits a unique trend for both Q and Q/S and that their
amplitudes are greatest at shallower angles. This implies that nonlinearities in the
pressure signals are strongest within the Mach cone. Further, for a given spreading
line, the trends collapse quite well, which suggests that the propagation path has been
correctly identified; had line H been chosen from figure 5, false conclusions would
be formed regarding the presence of cumulative nonlinearities. Contours of Qneg from
the Mach 3 jet data are also shown in figure 24(a); note that contours of (Q/S)neg
result in a similar topography. The angle at which the maximum negative values
occur is slightly steeper than the estimated Mach wave radiation angle, but continues
along a path emanating from the post-potential-core regions of the flow.

From figures 23(a,b) and 24(a), a number of important conclusions can be made
about the use of the Morfey–Howell indicator for characterizing either local or
cumulative nonlinear distortions in the waveform. Negligible changes are observed
in Q and Q/S over the propagation paths emanating from the post-potential-source
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FIGURE 23. (a) The quadrature spectral density, and (b) the normalized quadrature
spectral density along the spreading lines A–G (5 % bandwidth moving filter).

r (m) −Qneg −(Q/S)neg × 10−3 (Hz)

3 0.072 1.156
4 0.139 2.196
6 0.196 3.204
8 0.220 3.440

10 0.235 3.426

TABLE 7. Metrics corresponding to the spectra of the raw and projected waveforms
displayed in figure 22(b,c).

region which suggests that if the waveform is undergoing cumulative distortions, the
process is very slow to form in this region and that the shock formation distance is
much further out than our farthest measurement. This provides evidence that earlier
estimates for the shock formation distance are indeed correct; our model estimates
rL = 18.0 m and ΛL = 0.15 for s= 2.5Dj. While our measurements extend to 140Dj
from the source, they are still confined by the restrictions of the chamber walls
which only extend to about 3.5 m; this is approximately 20 % of the estimated shock
formation distance. Figure 23(a,b) is the first real demonstration that little to no
measurable cumulative nonlinear distortions are present in this region of the far-field
even though single-point Q and Q/S indicators are non-zero.

Contours of WSF, skewness of the pressure time series and skewness of the
pressure time derivative are shown in figure 24(b–d), respectively. The contour
levels have been normalized as described in the captions, so that their ranges fall
between 0 and 10. Illustrating them in this way means that a higher number indicates
more nonlinearities in the waveform, or shock-type structures in the waveform. The
topography of these metrics indicates how waveforms are most steepened along the
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FIGURE 24. Contours of (a) Qneg, (b) WSF, where (1 −WSF)max = 0.36 at (x, r)/Dj =
(95, 85), (c) pressure skewness, where S(p)max = 0.47 at (x, r)/Dj = (65, 55) (contours
of S(p) = 0.3: contour line 6.4, and S(p) = 0.4: contour line 8.2 is indicated as well),
and (d) skewness of the pressure derivative, where S(ṗ)max = 1.96 at (x, r)/Dj= (115, 85).
Subfigures (b), (c) and (d) are taken from Baars & Tinney (2014).

Mach wave radiation angle with lines closely aligned with the direction of highest
sound intensity. A steep inclination is observed for all criteria which resembles the
trend observed for the OASPL (figure 6). Although the trends are globally similar
for all criteria, there are subtle differences in the location of the peak values. The
physical relevance of the node at (x, r)/Dj = (135, 55) is questionable given the
proximity of the wind tunnel collector to this measurement location. And so, aside
from the lack of significant waveform steepening, shock coalescence also appears to
be absent in our measurement region. A summary of these nonlinear indicators along
the arc-array is listed in table 8 for reference. This clearly indicates that the skewness
of the pressure derivative is more sensitive to these nonlinear, shock-type waveform
structures, as was demonstrated by McInerny (1996).

6. Summary and conclusions
The acoustic field of an unheated and perfectly expanded Mach 3 jet flow was

examined to understand the degree of local and cumulative nonlinear waveform
distortion of sound produced by high-speed jets. The source mechanisms of interest
are those produced by the formation of Mach waves which propagate significantly
from regions that are known to be confined to boundaries defined by the potential
core and supersonic core lengths.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

22
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.228


On cumulative nonlinear acoustic waveform distortions from high-speed jets 363

Mic. no. OASPL (dB) S(p) S(ṗ) WSF −Qneg

1 129.5 0.047 0.828 0.867 0.047
2 130.9 0.069 1.234 0.812 0.089
3 133.8 0.281 1.657 0.736 0.206
4 135.5 0.371 1.720 0.697 0.280
5 135.4 0.435 1.673 0.657 0.368
6 131.6 0.371 0.973 0.778 0.261
7 125.5 0.177 0.231 0.941 0.089
8 124.7 0.144 0.177 0.956 0.073

TABLE 8. Metrics corresponding to the microphones on the artificial arc-array.

A model for predicting the formation of cumulative nonlinear distortions to acoustic
waveforms produced by jets has been proposed, and comprises a reformulation of
expressions for shock formation distance and an effective Gol’dberg number in terms
of jet parameters of practical interest. This includes typical effects imposed by jet
Mach number, temperature ratio, and Strouhal number of the peak frequency being
along the peak noise emission path. Laboratory-scale measurements of the Mach 3
jet are used in conjunction with full-scale tests documented in the literature to justify
the findings of this model. Two different scaling scenarios are then presented for the
practising scientist to choose from. The first of these allows shock formation distance
to be preserved between laboratory and full-scale conditions based on a geometric
scaling of the shock formation distance using nozzle diameter. The second scenario
allows one to preserve the wave steepening process between laboratory and full-scale
conditions based on a match of the effective Gol’dberg number.

There are, of course, several opportunities for improving upon this model by
developing a more thorough assessment of how jet exit conditions affect scaling
parameters. Where Strouhal number is concerned, it is still unclear how the
peak frequency along the dominant sound propagation path depends on jet exit
conditions such as temperature ratio or Mach number. It is also assumed here that
the location from where the waveform is emitted scales with nozzle diameter only.
This assumption disregards the dependence of the emission-point location size on
Mach number, Reynolds number, temperature ratio, or even the operating state of the
nozzle (overexpanded or underexpanded). For overexpanded and underexpanded jets,
broadband shock noise is saturated by turbulent mixing noise along shallow angles
to the jet axis (within the Mach cone of the jet) so measurable distortions of the
acoustic waveform are still anticipated for supersonic jets operating under off-design
conditions so long as the effective Gol’dberg number is shown to be sufficiently
large. Deficiencies in our understanding of these dependences would be alleviated
by accurate parameterization of the effects of Strouhal number and source size on
Mach number, temperature ratio and Reynolds number. Finally, and most importantly,
it is unclear what effect a pre-steepened acoustic waveform has on shock formation
distance. Waveform steepening occurs when the wave amplitude is large enough
to overcome viscous absorption. This requires a large source intensity and, hence,
a high Mach number at the exit. This suggests that cumulative nonlinear acoustic
distortions are unlikely to occur under subsonic jet exit conditions. However, viscous
absorption is considerably weaker at low frequencies, and so it is still plausible for a
geometrically large subsonic flow to produce acoustic waves capable of undergoing
cumulative nonlinear distortions. Nevertheless, Mach waves that develop in supersonic
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jets produce pre-steepened waveforms and thereby accelerate the wave steepening
process and shorten the shock formation distance. A documented execution of the
generalized Burgers equation using pre-steepened waveforms could provide useful
answers to this last concern.

Temporal waveforms from the Mach 3 jet study are then examined using various
statistical metrics including skewness, kurtosis, WSF and the Morfey–Howell
nonlinearity indicator. For the Morfey–Howell indicator, it is demonstrated that
the spatial evolution of this metric, along a path resembling a p ∝ 1/r decay law,
should only be considered, due to the problematic interpretation of its amplitude
as well as the highly directive nature of the sound field produced by jets; similar
concerns have been reported only recently by others (Kuo et al. 2012; Baars 2013).
This is especially important for problems in jet noise where the statistical nature of
the source term is unknown.
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