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SUMMARY
Underwater Modular Self-Reconfigurable (UMSR) robots,
made up of many identical modules, can adjust their
configurations to multiple underwater environments or
tasks. They can be used in many complex underwater
occasions where the ROVs/AUVs can’t work well. However,
their reconfiguration is difficult because this has to involve
many connection adding and removing operations which are
difficult to be executed in the underwater environment. To
reduce the times of these operations, we propose the theory
of Topological Transformation (TT), which includes some
definitions in TT, the basic approach to TT, and the Genetic
Algorithm (GA) based solution for the optimal TT.

KEYWORDS: Topological transformation; Connectivity
planning; Optimal reconfiguration; Modular self-recon-
figurable robots.

I. INTRODUCTION
UMSR robots, composed of many identical modules, can
adjust their configurations to multiple underwater environ-
ments or tasks by series of connections (or disconnections)
and relative movements between modules. They can be used
in many complex occasions such as obstructive offshore
explorations, inconvenient underwater salvages, intricate
oceanic structure inspections etc., where the conventional
ROVs/AUVs1,2 can’t work well. Compared with conven-
tional underwater explorations tools,3 the UMSR robots have
the following advantages:

� Self-maintenance. Due to unit-modularity, the redundant
modules can replace the malfunctioning ones, so the local
failure will not affect the systemic working.

� Multi-locomotion mode. UMSR robots comprise many
independent modules each of which can moderate its
buoyancy so that the robots can go down to the water
floor and crawl on it, or suspend in water and swim or
propel forward, or stick upward to a underwater structure
and trace on it, and so on.

� High-adaptability. UMSR robots can initiatively gather
some environmental information such as terrain, geology
and water current, and so on, and then decide which
configuration best for the environments. For instance, they
can become four-footed robots to creep on the bumpy
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floor, and then reconfigure into cricoid shape to roll on
flat surface.

The UMSR robotics can be viewed as the extension of
land Modular Self-Reconfigurable (MSR) robotics, despite
the fact that their reconfiguration is more difficult than that
of the general MSR robots. To detail the features of UMSR
robots, we firstly review the information of MSR robots.

I.1. Review of MSR robots
MSR robots have the ability of changing configuration auto-
matically, adapting themselves to suit changing environments
or tasks, and their underlying design philosophy is to build
complicated systems from a varying number of modules. The
basic premise behind MSR robots is twofold:4,5

� Systems are made up of any number of identical inter-
connected modules (Modularity).

� The modules have the ability to move to connect and dis-
connect from one another, thereby changing the overall
shape, or configuration, of the robots (Reconfigurability).

Most of the current robots can be grouped into three
categories: lattice MSR robots, chain MSR robots, and
prismatic MSR robots.

In lattice robots, a module needs a substrate of other
modules to move over in order to get to a new location.6

The modules can be seen to occupy discrete positions in a
lattice, and are constrained to move over the exterior surface
or inside cavities. No internal motions are possible when
the modules are closely packed. These robots can closely
approximate solids and 3D surfaces, and well suited to
creating static and deformable solid structures. Lattice robots
are the most popular category, despite the facet that the
hardware implementation of a module is typically complex,
requiring more actuating and connecting parts than in chain
robots. Examples of 2D and 3D Lattice robots are presented
in MTRAN7 and Proteo.8,9

The notable feature of Chain robots apart from the other
categories is that the individual modules can independently
move throughout the robots. In this category, the module
design is such that, in order for a module to have the
reachability necessary to move and connect to a physically
disparate location on the robot, it must be carried to the
goal location by a group, or chain, of other modules. The
mechanical design and implementation of chain robots are
generally simpler than in the other categories, which also
translates into lower cost. Considering that groups of modules
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must be moved at a time, torque limits can become an
important performance factor for the actuator selection.
Polypod4 and CONRO10,11 can be sorted into this category.

The modules of Prismatic MSR robots use primistic
degrees of freedom to move and attach and detach from
others. These robots achieve module relocation by retracting
a module into the interior of the module set and then extruding
another module at the desired goal location on surface, or vice
versa. Overall reconfiguration can be achieved by a repeated
number of these operations. The hardware complexity falls
between that of lattice and chain robots. The typical examples
of this category are TeleCube12,13 and Crystalline.14,15

Except for the three types of MSR robots, there are other
specific MSR robots. For instance, I-Cubes are made up of
two basic elements: independently controlled, actuated, 3
DOF links, and passive connection cubes.16,17 CEBOT, or
Cellular Robots, consisting of a number of heterogeneous
robots, can connect and disconnect from one another to create
different compound robots.18,19

I.2. UMSR robots
UMSR robots adopt the concept of modularity and recon-
figurability of the MSR robots, and extend it to the under-
water domain. The target of UMSR robots is to develop novel
underwater electomechanic systems which can initiatively
collect underwater environmental informations, and decide
the best configuration for the underwater environment or
task, and then reconfigure to it. However, the electomechanic
designs of UMSR robotic modules are much more difficult
than the general MSR robots, which mainly come from the
design of waterproof connecting parts and many additional
integrated parts such as integrated buoyancy modulators and
environmental sensors.

UMSR-1 is our first example of UMSR robotics.
Considering the module design difficulties of UMSR robots,
UMSR-1 adopts the chain style configuration which needs
less actuating and connecting parts compared with the lattice
or prismatic style configuration.

In our designing scheme, every module of the UMSR-1
robot is made up of 2 rotational submodules and a connecting
submodule. A rotational submodule can provide two opposite
terminal connecting facets and a rotational DOF. The
hardware in this submodule mainly involves rotation and
connection actuators, a buoyancy modulator, a controlling
chipset, etc. The function of the rotational submodule is to
offer the rotational DOF for relative module movements. As
shown in the Fig. 1, the rotational submodule prototype has
been developed under the underwater rotational connection
and buoyancy modulation tests.

A connecting submodule has 6 connecting facets, and its
hardware mainly includes many connection actuators and a
central processor, etc. Its main function is to offers multi-
directional connecting facets. For the present, its prototype
is being developed for further tests.

Corresponding with the current submodule prototype
development, a virtual model (shown in Fig. 2) of UMSR-1
module is used to simulate the real reconfiguration problems,
which has 2 rotational submodules on two sides and a con-
necting submodule in the middle, and provides six connecting
facets and 2 perpendicular rotational Degree Of Freedoms

Fig. 1. A rotational submodule.

Fig. 2. A virtual module of the UMSR-1 robot.

Fig. 3. Two UMSR robots: (a) A 5-module snake-like robot; (b) A
13-module four-footed robot.

(DOFs). Employing the virtual modules as the basic building
units, many polymorphic robots can be constructed. Fig. 3(a)
shows a 5-module snake-like robot, and Fig. 3(b) shows a 13-
module four-footed robot. The number of modules is chosen
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based on the need of the possible application, generally about
from 5 to 50. Too many modules may cause the difficulties of
underwater communication and coordination, and also result
in the high cost of system manufacture.

I.3. The TT problem of UMSR robots
Similar to the other chain-style MSR robots, the
reconfiguration of UMSR robots is accomplished by series
of connections (or disconnections) and relative movements
between modules. The TT is referred to the changing of
configuration topology (which will defined in section 2.2)
by a sequence of connection adding or removing operations
between modules of UMSR robots. And the aim of the TT
research is to find out the sequence of these operations.
Of course, the connection adding operations may actually
need the motion planning to compute the connection paths
between modules so as to accomplish them. But in this paper,
we are mainly concerned with the TT problem, i.e. deciding
the sequence of connection adding or removing operations
in the reconfiguration of UMSR robots.

UMSR robots work in underwater environments, where
the connection adding or removing operations are difficult
to be executed because the power and communication line
in the connector must be waterproof during these operations.
So in the TT, the times of these operations must be reduced
minimally. Moreover the times reduction of these operations
means the reduction of module movements, and thereby
results in the reduction of energy consumption which is
critical for the robotic underwater survival.

Due to the application difference between MSR
robots and UMSR robots, the existing research on the
reconfiguration planning of MSR robots is mainly focused
on the module motions, i.e. the reconfiguring strategy of
module movements,7,15−17 and the target of the optimal
reconfiguration is to reduce the relative movement between
modules.6 Though a HSD method4 proposed by Casal can
be applied to PolyBot, a chain MSR robot, for connectivity
planning, it don’t consider reducing the times of connection
adding or removing operations since PolyBot aims to the land
application in which these operations are easy to be fulfilled.

In this paper, we endeavor to solve the optimal TT problem,
i.e. minimally to reduce the times of connection adding or re-
moving operations in the UMSR robotic reconfiguration. The
remainder of the paper is organized as follows: In Section 2,

Fig. 4. The six connecting facets of a UMSR module.

we propose a basic approach to TT. In this section, we
introduce the graph representation of UMSR robotic con-
figuration, give some definitions in TT, and then detail the
basic approach to TT based on these definitions. In Section 3,
we focus on the optimal TT, and propose a GA based solution
for this optimization problem. In Section 4, we summarize
the work presented in the paper.

II. BASIC APPROACH TO TT
To illustrate our TT approach, this section firstly introduces
the graph representation of the UMSR robotic configuration,
which converts a modular robotic configuration to a 2-
dimensional graph. By the graph representation, this section
defines some concepts in TT. And then based on the
definitions, the section gives the basic approach to TT, and
induces the principle of the optimal TT.

II.1. Graph representation of UMSR robotic configuration
Before addressing the graph representation, we introduce the
numbers and types of connecting facets. As shown in Fig. 4,
the connecting facets in a module are numbered from 1 to 6,
which are sorted into two classes: Class I , including facets
numbered from 1 to 2, and Class II including facets
numbered from 3 to 6, according to the asymmetry of the
connecting facets. Obviously, the connection on a class-I
facet can provide a rotational DOF, while the connection on
a class-II facet is rigid. The difference of connecting facets
results in the two different kinds of connections between
two modules: the linear connection (Fig. 5(a)) and the cross
connection (Fig. 5(b)). All UMSR robotic configurations can
be constructed with these two kinds of connections.

For a given UMSR robotic configuration, its graph
representation should reflect all informations of modules
and their connections for the convenience of the robotic
description. So in the graph representation as shown in
Fig. 6 a encircled number represents a module in UMSR
robots, a line between two circled numbers corresponds a
connection between two modules, and the two numbers at
the two ends of a line adjacent with the encircled numbers
denote the connecting facets of the two modules. By the
graph representation, it is easier to obtain the connectivity of
UMSR robotic modules.
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584 Underwater robots

Fig. 5. Two kinds of connections: (a) A linear connection, formed by two class-I connecting facets; (b) A cross connection, formed
by a class-I connecting facet and a class-II connecting facet.

II.2. Definitions in TT
The connection can be seen as the attachment of two connect-
ing facets of different modules, written as (a<fab>, b<fba>),
where a and b are the module numbers, and fab and fba are
the connecting facet numbers of the respective modules. For
example, in Fig. 6 (a), the connection (1<1>,2<2>) is referred
to the attachment of the connecting facet 1 of the 1st module
and the connecting facet 2 of the 2nd module.

Fig. 6. Two 13-module UMSR robotic configurations and their graph representation: (a) A 13-module four-footed robotic
configuration and its graph representation; (b) A 13-module two-wheeled robotic configuration and its graph representation.

The connection path is referred to the set of sequent
connections between two modules. For example, in Fig. 6(a),
the connection path between the 1st and 7th modules can be
written as {(1<1>,2<2>), (2<1>,6<3>), (6<1>,7<2>)}.

The connection set of is connective if there is a connection
path between any two modules in the set.

The size of a connection set is referred to the number of
connections in the set.
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Fig. 7. The MM expressed by the value (7,8,12,11,6,13,5,3,4,9,10,2,1).

The Configuration Topology (CT) here is defined as the
connective set of all connections in a configuration.

Example 1: The CT of the four-foot configuration F (1) in
Fig. 6(a) can be expressed as follow:

T (1) = {(1<1>,2<2>), (2<1>,6<3>), (3<2>,4<1>), (3<1>,
6<4>), (5<1>,6<2>), (6<1>,7<2>), (7<1>,8<2>), (8<1>,
9<2>), (8<3>,11<1>), (8<4>,12<1>), (10<1>,11<2>),
(12<2>, 13<1>)}

Similarly, the CT of the two-wheel configuration F (2) in
Fig. 6(b) can be expressed as follow:

T (2) = {(1<1>,2<2>), (1<2>,6<1>), (2<1>,3<2>), (3<1>,
4<2>), (4<1>,5<2>), (4<5>,7<2>), (5<1>,6<2>), (7<1>,
8<6>), (8<2>,9<1>), (8<1>,13<2>), (9<2>,10<1>), (10<2>,
11<1>), (11<2>,12<1>), (12<2>,13<1>)}

The size of T (1) is 12, and the size of T (2) is 14.
The configuration can be viewed as an entity of modules

and a CT on these modules.
To compare two configurations, the Module Matching

(MM) is introduced. For the two configurations F (a) and
F (b) with the same number of modules, the MM between F (a)

and F (b) is referred to the bi-projective matching between the
modules of F (a) and the modules of F (b), expressed by the
value (v1,v2,v3,. . . ,vn), where n is the number of modules,
vi represents the matching between the ith module in F (a)

and the vth
i module in F (b). For example, in the MM value

(7,8,12,11,6,13,5,3,4,9,10,2,1) between F (1) and F (2) in
Example 1, the first subvalue ‘7’ means the matching between
the 1st module in F (1) and the 7th module in F (2). The
meanings of the other MM subvalues are similar to the first,
this MM can be also expressed by the Fig. 7.

Supposing there is a MM value V between the
configuration F (a) and the configuration F (b), the CT of F (a)is
T (a), the CT of F (b) is T (b), by V :

� The connection c(a) in T (a) is equivalent to the connection
c(b) in T (b) if the connecting facets of the matching
modules are in the same class.

� The connection set C(a) in F (a) is equivalent to the
connection set C(b) in F (b) if every connection in C(a)

can find an equivalent connection in C(b), and vice versa.
� The Maximal Common Subset (MCS) between T (a) and

T (b) is referred to the set of all these connections that
belong to T (a) and have equivalent counterparts in T (b).

� Supposing the connection set C(a1) ⊂ T (a), C(b1) ⊂T (b), the
addition of C(a1) and C(b1) is referred to the connection set
in which the connections belong to C(a1) or have equivalent
counterparts in C(b1) , expressed by C(a1) + C(b1) ; the
subtraction of C(a1) and C(b1) is referred to the connection
set in which the connections belong to in C(a1) and have no
equivalent counterpart in C(b1), expressed by C(a1) − C(b1).
Especially, the addition and subtraction of two connection

sets in a configuration can be seen to operate by a self-
projective MM value.

� Supposing C(a,b) is the MCS between T (a) and T (b),
the TT from T (a) to T (b) is a process of removing the
connections that aren’t in C(a,b), but in T (a)

n , and adding
the connections that aren’t in C(a,b), but have equivalent
counterparts in C(b).

Example 2: in Example 1, by the MM value (7,8,12,11,
6,13,5,3,4,9,10,2,1) between F (1) and F (2):

� (12<2>,13<1>) in T (1) is equivalent to (1<1>,2<2>) in
T (2), because the connecting facets of the 12th module of
F (1) and the 2st module of F (2) are class-I facets, and the
connecting facets of the 13th module in F (1) and the 1st
module in F (2) are class-I facets too.

� The connection set C(1) = {(3<2>,4<1>), (8<1>,9<2>),
(10<1>,11<2>), (12<2>,13<1>)}⊂ T (1), C(2) = {(11<2>,
12<1>), (3<1>,4<2>), (9<2>,10<1>), (1<1>,2<2>)}⊂
T (2), and every connection in C(1) have an equivalent con-
nection in C(2) and vice versa, thus C(1) is equivalent to
C(2).

� Moreover, except the connections in C(1), there is no more
connection in T (1) that has equivalent connection in T (2),
thus C(1) is the MCS between T (1) and T (2).

� The TT from T (1) to T (2) is a process of removing
connections in (T (1)–C(1)) and adding connections that
have equivalent counterparts in (T (2)–C(2)).

II.3. Basic Approach to TT
Based on the above definitions, we propose the following
three-step basic approach to the TT in the UMSR robotic
reconfiguration:

(i) Select a MM value for the TT.
(ii) Find out the connection set to be removed, and the

equivalent connection set to be added for the TT.
(iii) Search for the proper sequence of connection adding

and removing operations to accomplish the TT.

Supposing there are two configurations F (a) and F (b), the
CT of F (a) is T (a), the CT of F (b) is T (b), the three-step
approach to the TT from T (a) to T (b) can detail as following:

In the first step, we should select a MM value V between
F (a) and F (b) for this TT.

In the second step, we should find out the connection set
Cr to be removed, and the equivalent connection set Ca to be
added in the TT. To compute Cr and Ca , we should find the
MCS C(a,b) between T (a) and T (b).

The connection set to be removed can be computed by
Cr = T (a) − C(a,b) , and the equivalent connection set to be
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added can be computed by Ca = T (b) −C(a,b). Notice that Cr

and C(a,b) are in F (a), but Ca is in F (b).
In the last step, we should find out the proper sequence

of the connection adding or removing operations from Cr

and Ca . This step is more complicated than the above two
steps. In this paper we propose a Tree-searching algorithm for
searching the proper sequence, which processes as follows:

(i) Initialize the connection set Crt to be removed, the
connection set Cat to be added, and the CT T

(a)
t of F (a) :

Crt = Cr , Cat =Ca , T
(a)
t = T (a).

(ii) Set up a TT tree, attach the information of {Crt ,Cat ,
T

(a)
t } to the root of the tree, and set the root as the

current branch.
(iii) If there is no removable connection in Crt , find out the

addible connection set Cac in Cat . Update Cat ,T
(a)
t :

Cat = Cat − Cac, and T
(a)
t = T

(a)
t + Cac, add a new

branch with the information of {Crt ,Cat , T
(a)
t } to the

current branch, set the current branch as the ancestor
of the new branch, set the new branch as the current
branch.

(iv) If T
(a)
t is equivalent toT (b), go to (viii).

(v) If there is no removable connection in Crt , go to 7).
(vi) Update Crt ,Cat and T

(a)
t from the current branch. Find

out the removable connection set Crc in Crt , for every
connection cr in Crc:
vi.a Remove cr from Crc, Crt and T

(a)
t , i.e. Crc = Crc −

{cr}, Crt =Crt −{cr}, T
(a)
t = T

(a)
t −{cr};

vi.b Find the addible connection set Cac in Cat ,
update Cat and T

(a)
t : Cat =Cat −Cac, T

(a)
t =

T
(a)
t +Cac;

vi.c Add a new branch with the information of
{Crt ,Cat , T

(a)
t } to the current branch, and set the

current branch as the ancestor of this branch, then
set this new branch as the current branch;

vi.d Analyze whether there is a removable connection
in Crt :
6.4.1) If yes, go to (vi);
6.4.2) Else if T

(a)
t of the current branch is

equivalent to the goal CT T (b), it succeeds, go
to (viii);

vi.e Set the ancestor of the current branch as the current
branch;

(vii) No feasible sequence for this TT problem, step out of
the program.

(viii) Record the path from the current branch to the root of
the tree, figure out the sequence of connection adding
or removing operations from the path, go out of the
program.

In the above Tree-searching algorithm, the removable
connection is referred to this without which the configuration
keeps connective. But for the addible connection, the
following conditions must be satisfied:

� The addible connection must have enough remaining
connecting facets for the modules of the connection. But
the connection between two class-II facets is prohibited,
because it will result in rotational collision between
adjacent modules.

� The addible connection must have an equivalent
counterpart in the CT of the goal configuration.

� The addible connection must have 6 or more DOFs for
space movement between two modules of the connection.

The above Tree-searching algorithm searches the
sequence solution by depth, and T

(a)
t in the last branch

will be equivalent to the goal CT T (b). However some MM
values are infeasible, because the operation sequence can’t
be searched out by them. For the infeasible MM values, a lot
of additional connection adding and removing operations
must be added in, which will complicate the TT problem.
So if we meet the infeasible MM value, we must choose
another MM value.

Example 3: To accomplish the TT from T (1) to T (2) in
Example 1.

In the first step, select the MM value (7,8,12,11,6,13,
5,3,4,9,10,2,1).

In the second step, we should find out the connection set
Cr to be removed, and the equivalent connection set Ca to be
added in the TT. To compute Cr and Ca , we should find out
the MCS C(1,2) between T (1) and T (2).

C(1,2) = {(3<2>,4<1>), (8<1>,9<2>), (10<1>,11<2>),
(12<2>,13<1>)}

The connection set Cr to be removed can be expressed by:
Cr = T (1) −C(1,2) = {(1<1>,2<2>), (2<1>,6<3>), (3<1>,

6<4>), (5<1>,6<2>), (6<1>,7<2>), (7<1>,8<2>), (8<3>,
11<1>), (8<4>,12<1>)}

The equivalent connection set Ca to be added can be
expressed by:

Ca = T (2) −C(1,2) = {(1<2>,6<1>), (2<1>,3<2>), (4<1>,
5<2>), (4<5>,7<2>), (5<1>,6<2>), (7<1>,8<6>), (8<2>,
9<1>), (8<1>,13<2>), (10<2>,11<1>), (12<2>,13<1>)}

In the third step, searching out the sequence of the
connection adding or removing operations from Cr and
Ca . Employing the Tree-searching algorithm, the following
sequence can be searching out:

1) Adding (5<2>,13<2>) and (1<2>,9<5>)
2) Removing (8<4>,12<1>)
3) Removing (2<1>,6<3>), adding (2<1>,10<2>)
4) Removing (8<3>,11<1>), adding (4<2>,11<1>)
5) Removing (7<1>,8<2>), adding (8<2>,12<1>)
6) Removing (5<1>,6<2>), adding (7<1>,9<1>)
7) Removing (3<1>,6<4>), adding (3<1>,6<2>)
8) Removing (1<1>,2<2>), adding (1<1>,2<6>)
9) Removing (6<1>,7<2>), adding (5<1>,7<2>) and (2<2>,

6<1>)

According to this sequence, the TT from T (1) to T (2) is
shown in Fig. 8.

From the above basic approach, we can see: for a feasible
MM value between F (a) and F (b), T (a) is the CT of F (a), T (b)

is the CT of F (b), C(a,b) is the MCS between T (a) and T (b),
the result of TT from T (a) to T (b) is to remove connections in
(T (a) −C(a,b)) from T (a), and add some connections which
have equivalent counterpart in (T (b) −C(a,b)) to T (a), so the
times of connection adding or removing operations is
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Fig. 8. The TT from T (1) to T (2) by the MM value (7,8,12,11,6,13,5,3,4,9,10,2,1).
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equal to the subtraction of the total size of T (a) and T (b)

by the double size of T (a,b), expressed by

Times = S(a) + S(b) − 2∗S(a,b).

Where S(a) is the size of T (a), S(b) is the size of T (b), and
S(a,b) is the size of C(a,b).

In Example 3, S(a) = 12, S(b) = 14, S(a,b) = 4, hence the
times of connection adding or removing operations is 18.

From the above expression, we can see that if we want
to reduce the times of connection adding or removing
operations, we should increase the size of the MCS, which
is decided by the adopted MM value. So, for the optimal TT,
we should try to find the optimal feasible MM value, i.e. the
MM value by which the maximal size of the MCS can be
obtained.

III. GA BASED SOLUTION TO THE OPTIMAL TT
From the above section, we have known that the key of the
optimal TT is to find the optimal MM value. Since both
the MM values and the search space are discrete in nature,
combinatorial optimization techniques should be applied.

Exhaustive search techniques can find the exact optimal
matching values, but the search space is so large that
implementation of such an algorithm becomes infeasible. For
a TT between two UMSR robots with n modules, there are
n! MM values according to the permutation and combination
theory. Supposing it will take about P computations for a
MM value to judge its feasibility and get the size of the
MCS, there will need about P · n! computations for two n-
module robots. If n= 20, P = 104, there will needs about
2.4*1022 computations to get the exact optimal solution.
Obviously, exhaustive search techniques aren’t fit for this
discrete optimal problem.

Due to the huge times of computations, we have to adopt
some probabilistic search techniques such as the Genetic
Algorithm (GA) and the Simulated Annealing (SA) methods
to solve this problem. In this paper, we use the GA method.

III.1. GA based searching for the optimal MM value
The GA is a probabilistic search method based on the
principle of evolution and hereditary of nature systems.20,21

In such an algorithm, a population of individuals for each
generation is maintained. The individual is implemented
with suitable data structure and is evaluated by a ‘fitness
function’ to give a measure of its ‘fitness’. A new population
is formed through selecting the more suitable individuals.
In this procedure, an individual with larger ‘fitness’ value
is more likely to be selected for the new generation. Some
members of the new generation undergo transformations by
the ‘genetic operators’ to form new solutions. Probability
rules are applied to determine the execution of the operators.
Two types of genetic operators are considered in general:
Crossover type and mutation type. The crossover operation
reorganizes data segments in several individuals to form new
individuals. The mutation operator makes small changes in
a single individual. After some number of generations, the
individuals will converge to the optimal or nearly optimal
solution.

III.1.1. Coding scheme. It is reported that the computational
efficiency and stability of GAs rely primarily on the data
representation method, i.e. the coding scheme. Classical
GAs usually use fixed-length binary string as a chromosome
(the data structure) for its individuals and the genetic
operators: the binary mutation and the binary crossover.
Such a coding scheme when adopted for robot configuration
designs becomes inconvenient because the binary string
representation is not sufficient to reflect the nature of the
design parameters. So in our GA, there are some alterations
including employing the problem-specific data structure to
represent the chromosomes and modifying the ‘genetic’
operators appropriate for the given data structure. Since
the MM value (v1, v2, . . ., vn) conceptually defines the data
structure of the solution space, we adopt the MM value as the
chromosome and defined the MM related genetic operators.
The main objective behind such an implementation is to move
the GA closer to the solution space.

III.1.2. Fitness evaluation. The objective of optimization
is to find out the optimal or near-optimal feasible MM value
by which we can get the maximal or near-maximal size of
the MCS. According to this, the fitness evaluation for a MM
value needs two-step computation: First, analyzing the MCS
and get the size of it, And then judging whether the MM
value is feasible or not, i.e. confirming there is a sequence of
connection adding or removing operations for the TT using
the Tree-searching algorithm in subsection 3.3. If the MM
value is feasible, i.e. the sequence exists, its fitness value
adopts the size of the MCS; or else, the fitness value is zero.
The fitness function can be expressed by:

F (V ) =
{
S(a,b) if V is feasible
0 if V is unfeasible

Where V is a MM value, S(a,b) is the size of the MCS
between two CTs by V.

Obviously, a MM value with bigger fitness value will have
more chance of getting the next generation.

III.1.3. Generation scheme. The generation scheme is
proposed to automatically generate the initial population of
MM values. The scheme is executed by a random selector
that produces the give number of population from arbitrary
permutations of the all module numbers. For example, we can
randomly select a MM value (6,5,7,9,8,4,3,2,1,10,13,11,12)
as an individual from a permutation of module numbers of a
13-module robot. Repeating the selection the given number
of times, we can obtain the given number of population.

III.1.4. Crossover operator. The crossover operator applies
to two MM values. As shown in Fig. 9, a cut-off line is
randomly chosen in the latter half of the MM values. The
subvalues in the two matching values after the cut-off line
are called pre-swapped subvalues. However, this operator
only swaps the pre-swapped subvalues that have no equal
subvalues in the counterpart pre-swapped subvalues. The
subvalues before the cut-off line will not swapped, but if
they are equal to some swapped subvalues, they should be
changed into the counterpart swapped subvalues.
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Fig. 9. The crossover operation between V (a) and V (b).

The cross-over operation in Fig. 9 can be processed as the
following steps:

(i) After the cut-off line, swapping ai and bi , if ai �= bj and
bi �= aj , where k ≥ n/2, k + 1 ≤ i ≤ n and k + 1 ≤ j ≤ n;

(ii) Before the cut-off line, ai = bj , if ai = aj , where 1 ≤ i ≤ k

and k + 1 ≤ j ≤ n.

As shown in Fig. 10, there are three examples of the cross-
over operation. In Fig. 10 (a), there is a crossover operation
between (2,4,5,7,1,13,9,6,12,10,3,11,8) and (11,3,4,8,2,13,
12,10,1,9,5,6,7). In this example, there is no equal subvalue
after the cut-off line in two MM values, so all the pre-swapped
subvalues participate in swapping. And if the subvalues
before the cut-off line have the equal subvalues after the
cut-off line, change their value according to the cross-over
operation step 2).

In Fig. 10 (b), there is an equal subvalue ‘3’ in two MM
values after the cut-off line, so only two subvalues after
the cut-off line participate in swapping for the cross-over
operation. The changing of subvalues before the cut-off line
is similar with the past example in (a).

The reason why the equal subvalues after the cut-off line
cannot participate in swapping is that if these subvalues go
to swapping, it will lead to some repeated subvalues in the
MM values. As shown in Fig. 10 (c), if the equal subvalues
‘3’ execute swapping, they will reach the improper results.

III.1.5. Mutation operator. The mutation operator applies
to a single module matching value, which comprises the
swapping suboperator and the circulating suboperator. The
swapping suboperator is accomplished by swapping any
two selected subvalues, while the circulating suboperator is
accomplished by circulating all subvalues left or right at any
times.

For example, for a MM value V (a) = (2,4,5,7,1,13,9,6,
12,10,3,11,8), after swapping subvalue ‘9’ with ‘12’, and
circulating all subvalues right 2 times, it becomes V (a)’ =
(11,8,2,4,5,7,1,13,12,6,9,10,3).

III.1.6. Implementation of the GA. The proposed GA is
successfully implemented with C++ codes in the Microsoft
Development Environment. As Fig. 11 shows, in the overall
algorithm, the input parameters include the number of
modules n, the population size np, the number of destination
generation ng , the probability of the crossover operator pc,
and the probability of the mutation operator pm. The first
step is to randomly generate np MM values for the initial

Fig. 10. Three examples of crossover operation: (a) The cross-
over operation between (2,4,5,7,1,13,9,6,12,10,3,11,8) and (11,3,4,
8,2,13,12,10,1,9,5,6,7); (b) The crossover operation between
(2,4,5,7,1,13,9,6,12,10,3,11,8) and (11,6,4,8,2,13,12,10,1,9,5,3,7);
(c) The improper crossover operation between (2,4,5,7,1,13,9,6,
12,10,3,11,8) and (11,6,4,8,2,13,12,10,1,9,5,3,7).

generation by using the generation scheme. It is followed by
the fitness evaluation procedure to evaluate the fitness value
for every MM value. After fitness evaluation procedure, a new
generation of MM values is produced through reproduction,
crossover, and mutation operations. The entire process will
be repeated until the predetermined number of generation ng

is reached. In the final generation, we choose the MM value
with the maximal fitness value as the optimal or near optimal
MM value.

III.1.7. Constrained optimal MM value searching in
TT. The above MM value optimization is based on the
consideration of the general TT problem, but in some cases
there are some special things that cannot be ignored. For
instance, there is a module with some sensors or cameras that
must match another specific module of goal configuration
so as to keep relative position of these devices unchanged
after the TT. This case can be simply viewed as that there
is a constraint in the TT that two modules of the respective
configuations must always keep matching.
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Fig. 11. The implementation of GA based MM value optimization.

Fig. 12. A constrained crossover operation between (2,4,5,9,1,13,
7,6,12,10,3,11,8) and (11,6,4,8,2,13,7,10,1,9,5,3,12).

For the constrained TT, the GA algorithm can show great
advantages. The only difference of the constrained MM
value searching from the general case is that the constrained
subvalues always keep unchanged in the searching process,
or rather, except for the constrained subvalues, the GA-based
searching operations on the other subvalues in the constrained
case are the same with these in the general case.

For example, supposing the 7th subvalue of a MM value
must take ‘7’ after the TT. As Fig. 12 shows, the subvalue ‘7’
keeps unchanged after swapping in the crossover operation.

And the mutation operation on a MM value can
accomplished as the following:

For V (a) = (2,4,5,9,1,13,7,6,12,10,3,11,8), after swapping
between subvalue ‘9’ and subvalue ‘12’, and circulating all
subvalues right 2 times, it becomes V (a)’ = (11,8,2,4,5,12,7,
1,13,6,9,10,3).

III.1.8. Time complexity of GA based searching
algorithm. In the above GA based searching algorithm,
the computations are mainly spent on the three steps: the
evaluation on all individuals, the individual selection by

Fig. 13. The result of general TT based on GA optimization.

individual fitness and the genetic operations on the selected
individuals. Supposing it needs P computations for a MM
value to compute the fitness of all individuals, the evaluation
on all individuals will need np·ng·P computations. The
individual selection will need about n2

p·ng computations. The
genetic operations will need about n2·np·ng computations.
So the above GA based searching algorithm will need about
(np·ng·P + n2

p·ng + n2·np·ng) computations. If n = 20,
np = 200, ng = 50, P = 104, the algorithm will need about
1.06*108 computations. Compared with the exhaustive
search which needs n!·P computations, the GA based
searching algorithm need much fewer computations.

III.2. GA based solution to the optimal TT problem
By taking the above GA searching, we can find out the
optimal MM value for a TT problem. And then by this optimal
MM value, we can employ the basic approach in section II.3.
to find the sequence of connection removing or adding
operations for the optimal TT. Owning to the maximal size
of the MCS, the times of the connection removing or adding
operations in the TT will be reduced to the minimum.

In order to demonstrate the effectiveness of the proposed
GA based optimal TT, two examples are present in this
subsection. In the first example (Example 4), we try to use the
proposed GA based solution to solve the general optimal TT
form T (1) to T (2) in Example 1. After the GA based MM value
searching, we can find out the near-optimal MM value. Then
by this value, we can find out the sequence of connection
adding or removing operations. From this example, we can
see the GA based solution can effectively reduce the times
of connection operations in the TT. In the second example
(Example 5), a constraint is added to the same TT problem,
we can also find a desirable near-optimal result by the GA
based solution. In these two examples, the parameters of
GA are taken as the number of modules n= 13, the size
of population np = 200, and the number of goal generation
ng = 50.

Example 4: To employ the GA based solution to accomplish
the TT from T (1) to T (2) in Example 1 without constraint.

Firstly, we should find out the optimal MM value with the
proposed GA based searching. The parameters of genetic
operators are taken as pc = 0.6, pm = 0.1. The result of
genetic algorithm is shown in Fig. 13. After 25 times of
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Fig. 14. The optimal TT from T (1) to T (2) by the MM value (6,5,7,10,9,8,13,12,11,1,2,3,4).

generation selection, the program reaches the near-optimal
MM value Vopt = (6,5,7,10,9,8,13,12,11,1,2,3,4).

By this MM value, the MCS between T (1) and T (2) can be
expressed by:

C(1,2) = {(1<1>,2<2>), (3<1>,6<4>), (5<1>,6<2>),
(6<1>,7<2>), (7<1>,8<2>), (8<1>,9<2>), (10<1>,11<2>),
(12<2>,13<1>)}

By this MM value, employing the basic approach in
Section 2, we can find out the sequence of connection adding
or removing operations:

(i) Adding (1<2>,10<2>) and (4<2>,5<2>)
(ii) Removing (2<1>,6<3>), adding (2<1>,13<2>)

(iii) Removing (8<3>,11<1>)
(iv) Removing (3<2>,4<1>), adding (3<2>,13<3>)
(v) Removing (8<4>,12<1>), adding (4<1>,9<1>), (11<1>,

12<1>)

Fig. 15. The result of a constrained TT based on GA optimization.

The whole TT process is shown in Fig. 14, which needs
only 10 times of connection adding or removing operations.
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Fig. 16. The optimal constrained TT from T (1) to T (2) by the MM value (4,3,2,1,10,9,7,13,8,6,5,12,11).

Compared with the TT in Fig. 8 which needs 18 times of
these operations, 8 times of operations is saved owing to the
bigger size of MCS by this near-optimal MM value.
Example 5: To employ the GA based solution to accomplish
the TT from T (1) to T (2) in Example 1 with a constraint.

If there is a constraint in the topological transformation,
the result may be different from the general case. In this

example, the 7th module in F (1) must match the 7th module
in F (2) since some devices such as cameras must be mounted
on the same relative mid place.

Firstly, we can employ the proposed GA based searching
to get the optimal MM value in which the seventh subvalue
must take ‘7’ and by which the TT from T (1) to T (2) needs the
minimal times of connection operations. In this example, the
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genetic operator is taken as pc = 0.6, pm = 0.2. The result
of GA is shown in Fig. 15, after 17 times of generation
selection, the program have gotten the near-optimal MM
value Vopt = (4,3,2,1,10,9,7,13,8,6,5,12,11).

By this MM value, the common MCS between T (1) and
T (2) can be expressed by:

C(1,2) = {(1<1>,2<2>), (3<2>,4<1>), (5<1>,6<2>),
(8<1>,9<2>), (10<1>,11<2>), (12<2>,13<1>)}

By this MM value, employing the basic approach in
Section 2, we can find out the sequence of connection adding
or removing operations:

(i) Adding (4<2>,10<2>) and (5<2>,13<2>)
(ii) Removing (3<1>,6<4>)

(iii) Removing (6<1>,7<2>), adding(1<6>,7<2>)
(iv) Removing (7<1>,8<2>), adding(7<1>,9<5>)
(v) Removing (2<1>,6<3>), adding (2<1>,3<1>)

(vi) Removing (8<3>,11<1>), adding (1<2>,11<1>) and
(6<1>,9<1>)

(vii) Removing (8<4>,12<1>), adding (8<2>,12<1>)

The whole constrained TT process is shown in Fig. 16,
which needs 14 times of connection adding or removing
operations. Compared with the TT in Fig. 8 which needs
18 times of these operations, 4 times of these operations is
avoided. From this example, we can see that the times of
connection adding or removing operations in the constrained
TT also can be reduced with the proposed GA based
solution.

IV. CONCLUSIONS
Different from the conventional underwater exploring tools,
USMR robots have the characteristics of modularity and
reconfigurablity. The modularity endows UMSR robots
with good maintainability for the redundant modules in
robotic system can replace the broken-down ones. The
reconfigurability provides them with good adaptability to
multiple environments or tasks. However, the reconfiguration
of UMSR robots has to involve many connections adding
and removing operations which are difficult to be executed
in the underwater environments for the waterproof reason.
So the timing of these operations should be reduced to the
minimum. To reduce the times, we propose the TT theory
which includes the basic approach to the TT, and the GA
based solution for the optimal TT problem.

In the basic approach to the TT, we presents some
definitions in TT, bring up the basic approach to TT based
on the definitions, and then sums up the basic principle of
the optimal TT; the optimal TT should be accomplished by
the feasible optimal MM value with the maximal size of the
MCS.

To find the optimal MM value, we adopt the GA based
optimization, present the detailed implementation scheme
of the optimization, and then come up with the GA based
solution for the optimal TT problem. After that, we give two
examples to illustrate the GA based solution. From those
two examples, we can see the GA based solution can not
only effectively reduce the times of connection adding or

removing operations in the general TT, but also solve the
constrained TT problem.
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