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Recently, increasing interest in the issue of fractional cointegration has emerged
from theoretical and empirical viewpoints+ Here, as opposed to the traditional pre-
scription of unit root observables with weak dependent cointegrating errors, the
orders of integration of these series are allowed to take real values, but, as in the
traditional framework, equality of the orders of at least two observable series is
necessary for cointegration+ This assumption, in view of the real-valued nature of
these orders, could pose some difficulties, and in the present paper we explore
some ideas related to this issue in a simple bivariate framework+ First, in a situa-
tion of “near-cointegration,” where the only difference with respect to the “usual”
fractional cointegration is that the orders of the two observable series differ in an
asymptotically negligible way, we analyze properties of standard estimates of the
cointegrating parameter+ Second, we discuss the estimation of the cointegrating
parameter in a situation where the orders of integration of the two observables
are truly different but their corresponding balanced versions ~with same order of
integration! are cointegrated in the usual sense+ A Monte Carlo study of finite-
sample performance and simulated series is included+

1. INTRODUCTION

Cointegration has traditionally focused on the case of unit root ~or integrated
of order one! observable processes with weak dependent ~or integrated of order
zero! cointegrating errors+ Formally, we consider that a zero-mean scalar covari-
ance stationary process zt , t � Z, Z � $t : t � 0,61, + + +% , with spectral density
fz~l!, is integrated of order zero, denoted zt ; I ~0!, if

0 � fz~0! � `,

whereas a zero-mean scalar process is I ~d ! if it could be represented as an I ~0!
process after differencing it d times+ More precisely, let zt , t � Z, be an I ~0!
process and then define the Type II fractionally integrated of order d process
jt , denoted jt ; I ~d !, as
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jt � D�dzt
# , t � Z, (1)

where D � 1 � L, L is the lag operator,

~1 � L!�a � (
j�0

`

aj ~a!L
j, aj ~a!�

G~ j � a!

G~a!G~ j � 1!
, (2)

where G~{! represents the gamma function, taking G~a! � ` for a � 0,
�1,�2, + + + , and G~0!0G~0!� 1+ The # superscript attached to a scalar or vector
sequence ht has the meaning

ht
# � ht 1~t � 0!, (3)

where 1~{! is the indicator function+ Note that because of the truncation on the
right-hand side of ~1!, jt � 0, t � 0, whereas integer values of d provide the
typical definition of integrated process with a particular initial condition+ For
example, if d � 1, as aj~1! � 1, j � 0,

jt � (
j�1

t

zj 1~t � 0!+

For an alternative definition of fractionally integrated process ~the Type I class!
see Marinucci and Robinson ~1999!+ Note that for d � 1

2
_ the truncation on the

right-hand side of ~1! is not strictly necessary and implies that jt is only asymp-
totically stationary, in the precise sense defined by Robinson and Marinucci
~2001!+ If d � 1

2
_ , this truncation implies that the variance of jt is finite ~albeit

evolving at rate O~t 2d�1!!, so that jt is well defined in mean-squared sense+
The traditional situation mentioned previously was denoted by Engle and

Granger ~1987! as CI ~1,1!, first and second arguments referring to the integra-
tion orders of the observables and the reduction of these orders by certain lin-
ear combinations, respectively+ Recently, increasing interest about a wider
framework where the orders of integration of both observables and cointegrat-
ing errors could be real, but perhaps not integer, numbers has emerged+ This, in
view of the work of Granger and Joyeux ~1980! and Hosking ~1981! on frac-
tionally integrated processes, represents a natural generalization of the CI ~1,1!
framework, which was already anticipated by Engle and Granger ~1987! because
their CI ~d,b! definition did not necessarily require d, b to be integers+ This
general setting considers CI ~1,1! as a particular situation, noting that I ~1! and
I ~0! are very specific cases of nonstationarity and stationarity, respectively,
whereas it also allows for consideration of “stationary cointegration,” where
the observables are ~perhaps only asymptotically! covariance stationary long-
memory processes, with cointegrating errors also being long memory with strictly
less memory than the observables or weak dependent I ~0! processes+ Theoret-
ical works on estimation of the relation of cointegration in fractional frame-
works include Robinson ~1994!, Jeganathan ~1999!, Kim and Phillips ~2000!,
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Robinson and Marinucci ~2001, 2003!, Hualde and Robinson ~2006!, Robinson
and Hualde ~2003!, and Hualde and Robinson ~2004a!+

This new setting introduces additional challenges with respect to the tradi-
tional CI ~1,1! situation+ In particular, assuming that the integration orders are
real numbers, the precise knowledge of their values seems difficult to justify,
even after pretesting, which contradicts the usual practice in the standard CI ~1,1!
framework, where the assumed knowledge of these orders is used to derive
estimates with optimal asymptotic properties ~see, e+g+, Phillips, 1991!+ In the
fractional setting, some of the works mentioned earlier deal explicitly with the
important issue of unknown integration orders, although, as in the traditional
prescription, standard estimates that do not rely on this knowledge could enjoy
good asymptotic properties+ Among those, the most common ones are the ordi-
nary least squares ~OLS! and the narrow band least squares ~NBLS!, whose
asymptotic properties in possibly fractional circumstances were studied by Rob-
inson and Marinucci ~2001, 2003!+

Furthermore, the real-valued condition of the integration orders also poses
additional problems, which can be presented by the next simple example+ Sup-
pose we observe the processes yt , xt , t � 1, + + + , n, which are I ~d1!, I ~d2!, being
generated by the I ~0! processes z1t , z2 t , respectively+ Then, provided d1 � d2, a
necessary and sufficient condition for the two series yt , xt to be cointegrated is
that the long-run variance-covariance matrix of the bivariate process ~z1t ,z2 t !

' ,
defined as 2p times its spectral density evaluated at frequency 0, is singular+
Needless to say, the existence of cointegration or no cointegration between yt

and xt has an enormous impact on the behavior of different statistics and esti-
mates+ For example, if d1 � d2 � 1 and there is no cointegration, Phillips ~1986!
showed that the OLS estimate [nO �(t�1

n xt yt 0(t�1
n xt

2 is not consistent for the
fundamental coefficient ~see Park, Ouliaris, and Choi, 1988!

n �
v12

v22

, (4)

where vij is the ~i, j !th element of the long-run variance-covariance matrix of
~z1t ,z2 t !

' + Alternatively, if there is cointegration and ~z1t ,z2 t !
' has a structure

such that the linear combination yt � nxt is an I ~0! process, then [nO is an
n-consistent estimate of n, with nonstandard limiting distribution ~Phillips and
Durlauf, 1986!+

The present paper does not focus on departures from the standard notion of
cointegration affecting the singularity of this long-run variance-covariance matrix
~see, e+g+, Jansson and Haldrup, 2002!, but on consequences of relaxing the
condition of equality of the integration orders of the observables, which is nec-
essary for the existence of cointegration+ For example, let d2 � 1 and d1 be a
fixed value such that 0 � d1 � 1 in the previous example+ Clearly, any linear
combination of yt and xt will be I ~1! or I ~d1! depending on whether d1 � 1 or
d1 � 1, respectively+ Thus, irrespective of the possible singularity of the long-
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run variance-covariance matrix of z1t , z2 t , following Robinson and Marinucci
~2001!,

[nO � Op~n
d1�1 !,

so that the OLS estimate either converges to zero or diverges as n tends to
infinity, in the case d1 � 1 or d1 � 1, respectively+ We find two very relevant
issues related to this discussion+ First, even in the situation where the singular-
ity condition on the input error process holds and the difference between the
orders d1, d2 is very small, the asymptotic theory predicts that the OLS esti-
mate does not converge at all to the fundamental coefficient n+ This fact is some-
how counterintuitive, as one could suspect that if d1 and d2 are very close to
each other and the long-run variance-covariance matrix is singular, we are in
fact in a “near cointegration” situation, so that estimates like the OLS should
have a closer finite-sample behavior to the proper case of cointegration than to
the one predicted by the theory with distinct orders of integration+ The Monte
Carlo experiment reported in Section 5 supports this guess, which we find very
appealing when dealing with fractional orders+ Here, as mentioned before, there
could be situations where it is certainly not realistic to assume that the orders
of integration present in the model are known+ If this is the case, any testing
procedure for cointegration should include a pretest for equality of the orders
of integration+ This was considered theoretically by Robinson and Yajima ~2002!
and Hualde ~2002! and empirically by Marinucci and Robinson ~2001!+ But
even if we conclude that the orders of integration of two processes are statisti-
cally equal, their real-valued essence could, in certain circumstances, make us
suspect that the orders are perhaps not strictly equal but only very close to each
other+ Strictly speaking, this would not be a situation of cointegration, but in
practice, properties of the estimates might not be very much affected by minor
differences in orders of integration+ In this case, the typical cotrending that
cointegration implies would be only approximate but could be sufficient to infer
sensible statistical results+

This idea is very close in spirit to some well-established evidence in the lit-
erature+ This mainly refers to the nearly nonstationary first-order autoregres-
sive ~AR~1!! model studied by, among others, Ahtola and Tiao ~1984!, Chan
and Wei ~1987!, Phillips ~1987, 1988!, Cox and Llatas ~1991!, and Elliott ~1998!+
These studies were motivated by the well-known fact that for the AR~1! process

wt � fwt�1 � zt ,

where zt , t � 0,61, + + + , is an independent and identically distributed sequence,
when 6f6 � 1,

Zf �
(
t�2

n

wt wt�1

(
t�2

n

wt�1
2
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is Mn -consistent and asymptotically normal, but this limiting distribution pro-
vides a poor approximation to the actual finite-sample distribution of Zf for mod-
erate n when f is close to ~but below! 1+ Evans and Savin ~1981! presented
numerical evidence that the nonstandard limiting distribution of Zf when f� 1,
which is n-consistent, provides a better approximation when f is close to but
below 1+ This issue becomes very relevant if we are uncertain about whether a
process has a root of unity or in the vicinity of unity+ These authors studied the
limiting distribution of Zf in the case

f � 1 �
a

n
,

which for a certain positive fixed real number a is smaller but approximating 1
as n tends to infinity, wt in this case being a nearly nonstationary AR~1! pro-
cess+ Phillips ~1988! denoted near cointegration the situation where a linear
combination of I ~1! processes was nearly nonstationary+ Jansson and Haldrup
~2002! provided an alternative definition of near cointegration that com-
plements to a certain extent the work of Phillips ~1988!+ Taking our previous
example, assuming d1 � d2 � 1, they analyzed the case where the long-run
variance-covariance matrix of ~z1t ,z2 t !

' tends suitably to a singular matrix, and
they examined asymptotic properties of different estimates of n in this case+
Thus, one of our aims seeks to complement these previous analyses in a partic-
ular sense that we find very relevant in the case of dealing with fractional orders,
that is, the study of a near fractional cointegration situation, where the only
departure from strict cointegration is the existence of very small differences in
the orders of integration of the observables that tend to disappear as the sample
size tends to infinity+ We will refer to this situation as weakly unbalanced
cointegration+

The relevance of the second issue we analyze in the paper can be also better
motivated in the fractional setting+ As we will see in Section 3, in a weakly
unbalanced cointegrating situation, the main message of our work is that one
should not worry about suspected small differences of the integration orders in
the data, because even if this happens, standard estimates could retain the prop-
erties of the strictly balanced situation+ However, there could be cases where
the integration orders of the observables are substantially different, so that it is
unrealistic to model the relation between the series as one covered by weakly
unbalanced cointegration+ Traditionally, different orders of integration implied
that the relation between the series could not be captured by a cointegrating
structure, because the necessary condition of equality of the orders of integra-
tion was missing+ On the contrary, we find that there could be situations where
the integration orders of the observables are substantially different but there
still exists a strong intrinsic linkage between the two processes, in particular
that the long-run variance-covariance matrix of the input error process gener-
ating the integrated processes is singular+ Referring to the previous example,
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suppose d1 � d2, so that yt and xt would not be cointegrated but yt and
xt~d2 � d1! ~which share the same integration order d1! are cointegrated in the
usual sense, where for a scalar or vector process ht and real number c,

ht ~c! � D
cht

# , (5)

noting ~2! and ~3!; that is, the linear combination yt � nxt~d2 � d1! is inte-
grated of an order strictly smaller than d1+ Thus, it is readily seen that if d1 � d2

the relevant parameter to explain the long-run relationship between yt and xt is
n+ If, on the contrary, the orders are different, but there is still cointegration
between a raw and a filtered series, we find that two parameters are relevant to
explain the long-run connection between yt and xt + These parameters are n and
d2 � d1+ We will refer to this situation as strongly unbalanced cointegration+
We believe that this concept could help practitioners in their task of unmasking
anomalies appearing in some estimated models that contradict predictions from
economic theory+ An excellent motivating puzzle for our work is the forward
premium anomaly+ In short, this refers to surprising negative estimates from
the regression of the change in the logarithm of the spot exchange rate on the
forward premium, whereas the theory predicts a theoretical value of one for
that slope ~see Backus, Foressi, and Telmer, 1996; Bekaert, 1996; Bekaert,
Hodrick, and Marshall, 1997!+ Baillie and Bollerslev ~2000! describe this issue
as mainly a statistical phenomenon, characterized by the fact that the integra-
tion orders of dependent and explanatory variables perhaps could be not the
same+ In particular, they suggest that the spot exchange rate could be I ~1!,
whereas there seems to be evidence of long-memory behavior of the forward
premium+ Maynard and Phillips ~2001! gave formal theoretical justification to
this phenomenon+ With these ideas in mind, we hope to offer a sensible statis-
tical solution to what might well be a statistical problem+

The paper is organized as follows+ In the next section we present the model,
assumptions, and particular estimates whose asymptotic properties will be ana-
lyzed in the different situations pinpointed before+ Section 3 collects the main
results, which are fully characterized in Appendix A and rigorously justified in
Appendix B+ Section 4 presents alternative estimates for the strongly unbal-
anced cointegration situation+ Finally, Section 5 reports a Monte Carlo study of
finite-sample behavior of the different estimates presented in the paper and some
artificially generated figures that give further motivation to the strongly unbal-
anced cointegration situation+

2. MODEL, ASSUMPTIONS, AND PROPOSED ESTIMATES

Throughout the paper, we consider a bivariate triangular array $~ yt, n, xt, n!
' : 1 �

t � n%n�1
` generated by

yt, n � D�dv1t
# , (6)

xt, n � D�~d�un !v2 t
# , (7)
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where un is a sequence of real numbers and vt � ~v1t , v2 t !
' , t � Z, is a zero-

mean bivariate process at least asymptotically stationary with bounded, possi-
bly time-dependent, spectral density f ~t !~l!+ Model ~6!, ~7! is very general and
allows us to consider simultaneously different situations depending on un and
the structure of vt , which will be the key element to assess whether or not there
is cointegration between yt, n and xt, n+ We set subsequently specific conditions
on un and vt that will determine different relations between yt, n and xt, n, that is,
whether they are cointegrated in the wide sense ~balanced, weakly, strongly
unbalanced cointegrated! or not cointegrated at all+We will use the simplifying
notation yt � yt, n, because noting ~6!, yt, n � yt, n ' for n � n ' , and similarly
xt � xt, n in the case un � u for all n+ As cointegration has been mainly consid-
ered among I ~1! or I ~2! processes, we will concentrate on the case where in
~6!, ~7!

d � 2
1
�, (8)

so that for un � 0 both observables are purely nonstationary and the common
cases d � 1 or 2 are covered by our theory+ Note that we treat all purely non-
stationary situations except d � 1

2
_ , a borderline case that would require a dif-

ferent approach+
As will be seen in the next section, for the noncointegrated cases we will

concentrate on the situation where

un � u, for all n+ (9)

Here, the particular case u � 0 was analyzed theoretically by Phillips ~1986!
for the unit root case d � 1 and by Marmol ~1998! for general real d in the
nonstationary region+ This situation was denoted spurious cointegration, and
here the typical dimensionality reduction in the stochastic trends explaining
jointly the evolution of the observables, which characterizes cointegration, is
not present+ The noncointegrated cases will be also characterized by the follow-
ing set of regularity conditions on the process vt + Throughout, we denote by Ip

the p � p identity matrix+

ASSUMPTION NC ~No cointegration!+ The process vt , t � Z, has
representation

vt � A~L!«t ,

where

A~s! � I2 �(
j�1

`

Aj s j

and

~i! A~e il! is differentiable in l with derivative in Lip~®!, ® . 1
2
_ ; in addi-

tion, with 7{7 denoting the euclidean norm,
~ii! the «t are independent and identically distributed vectors with mean

zero, positive definite covariance matrix S, and E7«t7q � `, q � 4,
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q � max$20~2d� 1!, @20~2~d� u!� 1!#1~d� u � 1
2
_ !%; finally, defining

the long-run variance-covariance matrix of vt as

V � A~1!SA'~1!,

with ~i, j !th element vij and the squared correlation coefficient com-
puted from V

r2 �
v12

2

v11v22

,

~iii! v11 � 0, v22 � 0, r2 � 1+

Thus, absence of cointegration will be characterized by vt being a bivariate
covariance stationary process with spectral density matrix f ~t !~l! � f ~l! such
that

f ~l! �
1

2p
A~e il !SA'~e�il !,

with ~i, j !th element fij~l! and

rank~ f ~0!! � rank~V!� 2,

as is implied by ~iii!, which, as mentioned in the Introduction, rules out the
possibility of cointegration between yt and xt, n even if un � 0+ Notice that ~i!
implies (j�1

` j7Aj7 � `, because the derivative of A~e il! has Fourier coeffi-
cients jAj , whence Zygmund ~1977, p+ 240! can be applied+ Further, this also
implies (j�1

` j7Aj72 � `, which, along with the condition in ~ii!, enables us to
apply the functional limit theorem of Marinucci and Robinson ~2000! ~devel-
oping earlier work of Akonom and Gourieroux, 1987; Silveira, 1991!, as is
required to characterize the limit distribution of our estimates+Also, the moment
assumption on «t is satisfied, for any d,d � u � 1

2
_ , by Gaussianity+ Finally,

note that ~i! and ~iii! imply that both individual processes v1t , v2 t , are I ~0!+
Next, we will focus on the situation where there exists cointegration in the

wide sense+ The key here is to characterize properly the structure of vt in ~6!,
~7!, as we do in the next assumption+

ASSUMPTION C ~Cointegration!+ There exist real numbers n � 0 and g
such that

0 � g � d (10)

and a certain process u1t , t � Z, where
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~i!

v1t � nv2 t � u1t ~d� g!; (11)

~ii! the bivariate process ut � ~u1t , v2 t !
' , t � Z can be represented as

ut � B~L!et , (12)

where the conditions on A~L! and «t set in Assumptions NC~i! and ~ii!
apply to B~L!, et , respectively, with E~et et

'! � C and E7et7q � `,
q � 4, q � max$20~2d � 1!, @20~2g � 1!#1~g � 1

2
_ !%; finally, denoting

fij the ~i, j !th element of the long-run variance-covariance matrix of ut ,
namely,

F � B~1!CB '~1!,

~iii! f11 � 0, f22 � 0+

This assumption has very important implications+ First, ~ii! and ~iii! imply
that both u1t and v2 t are I ~0! with differentiable spectral density matrix+ Fur-
ther, by ~i!, v1t is decomposed as the sum of an I ~0! process and an overdiffer-
enced asymptotically stationary process u1t~d� g!, noting ~5! and ~10!+ This is
the most relevant and distinctive condition of Assumption C+ An alternative
representation could have been to consider

Iv1t � nv2 t � Dd�gu1t (13)

instead of v1t , where the second term on the right-hand side of ~13! is now
covariance stationary, so that Iv1t also shares this condition+ However, we find it
more justifiable to use the particular vt characterized by Assumption C, because
under this condition ~6! and ~7! imply that

yt � nxt, n~un !� u1t ~�g!,

xt, n � v2 t ~�~d� un !!,

which if un � 0 for all n is the bivariate cointegrated system involving Type II
fractionally integrated processes considered by Hualde and Robinson ~2006!
and Robinson and Hualde ~2003!+ Note also that even if yt and xt, n are not
cointegrated in the usual sense, standard cointegration occurs between yt and
xt, n~un!+ Thus, the time dependence of vt seems natural when dealing with Type II
processes+ In fact, denoting

h~l! �
1

2p
B~e il !CB '~e�il !, (14)
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with ~i, j !th element hij~l!, it is straightforward to show that under Assump-
tion C the time-dependent spectral density of vt , f ~t !~l! is

f ~t ! ~l! � �at~�b;l! n

0 1
�h~l!�at~�b;�l! 0

n 1
�,

where

at~c;l! � (
j�0

t�1

aj ~c!e
ijl

and

b � d� g,

which is the cointegrating gap+ Clearly, f ~t !~l! can be decomposed as

f ~t ! ~l! � g~l!� R~l!� R ~t ! ~l!, (15)

where

g~l! � �n2 n

n 1
�h22~l!,

R~l! � �6a~�b;l!62h11~l!� 2n Re$h12~l!a~�b;l!% h12~l!a~�b;l!

h21~l!a~�b;�l! 0
�,

R ~t ! ~l! � �bt~�b;l!h11~l!� 2n Re$h12~l! Sat~�b;l!% �h12~l! Sat~�b;l!

�h21~l! Sat~�b;�l! 0
�,

a~c;l! � (
j�0

`

aj ~c!e
ijl, Sat~c;l!�(

j�t

`

aj ~c!e
ijl,

bt~c;l! � 6at~c;l!62 � 6a~c;l!62+

Defining

f ~l! � g~l!� R~l!, (16)

f ~l! is the spectral density function of Ivt � ~ Iv1t , v2 t !
' , which could be referred

to as the covariance stationary process version of vt + Our cointegrating model
implies

rank~ f ~0!! � 2, (17)

because the rank of g~l! is reduced for all l, whereas noting that a~c;0! � 0,
for any c � 0, R~0! � 0+ Also

R~l! � O~ld�g ! as lr 0, (18)
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where the O~{! notation in ~18! does not have the usual meaning of upper bound
but exact rate+ As mentioned before, the type of cointegration between yt and
xt, n depends crucially on the structure of the process vt and more specifically
on the behavior of the component R~l! in the vicinity of frequency 0+ The speed
at which this element vanishes as l tends to 0 is the key to characterize the
strength of the cointegrating relationship, and, in view of ~18!, this is com-
pletely determined by the cointegrating gap b+ Further, by Stirling’s approxi-
mation it can be seen that the rate at which R ~t !~l! vanishes depends also on
this cointegrating gap, specifically

R ~t ! ~l! � O~t�b ! as tr `, (19)

uniformly in l+We believe that ~15!–~19!, which are implied by model ~6!, ~7!
under Assumption C, are the key intrinsic features of any cointegrating model
involving Type II fractionally integrated processes+ Finally, note that the real
number n has the meaning anticipated in ~4!, where vij now denotes the ~i, j !th
element of the long-run variance-covariance matrix of the covariance station-
ary version of vt ~note that under Assumption NC is vt itself !+

For balanced cointegration we assume that un � 0 in ~7!, so that the stochas-
tic trends driving yt and xt are strictly of the same order, but, as opposed to the
case of absence of cointegration, there is a common trend of order d driving
the behavior of both processes+ Weakly unbalanced cointegration will denote
situations where

unr 0 as nr `,

and the previously referred cotrending, which is fully characterized by the order
of integration of the observables and the structure of vt , is only approximate+
Strictly speaking, the triangular array xt, n is I ~d� un!, so that even if the behav-
ior of vt implies CI ~d,b! cointegration in the case un � 0, for fixed n, any
linear combination of yt and xt, n is I ~d! or I ~d � un! depending on whether
un � 0 or un � 0, respectively+ Note that in practice this situation could be
indistinguishable from that of balanced cointegration, so that from the view-
point of modeling purposes the applicability of the idea of weakly unbalanced
cointegration is limited+ However, this concept was not introduced with this
objective but mainly to stress the fact that the effect of minor suspected differ-
ences in the integration orders of the observables could be negligible asymp-
totically+ In fact, one of the points of the paper is to show that even if in finite
samples yt and xt, n are not cointegrated in the strict sense, the presence of a
small perturbation ~converging to 0 as n tends to infinity! in one of the integra-
tion orders in a bivariate system ~which could be thought of as natural in a
framework where the orders of integration are real numbers! may not affect
first-order asymptotic properties of different estimates and statistics, whose finite-
sample performance could display behavior closer to a CI ~d,b! situation than
to the one predicted by the theory if the orders of integration of the observables
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are different+ As will be seen later, our asymptotic results and Monte Carlo
experiment support this idea and also could help to explain the unexpected val-
ues ~over what economic theory predicts! of some estimated parameters that
appear in some empirical studies+

Strongly unbalanced cointegration will be characterized by ~9!, where u� 0
in ~7!+ As mentioned in the Introduction, here yt , xt are not cointegrated, but yt ,
xt~u! are, so that estimates taking into account the imbalance between the orders
of integration of the observables could enjoy good asymptotic properties+

In short, we present the relevant cases in Table 1+
The study of the different situations will mainly focus on analyzing the asymp-

totic properties of a particular class of estimates of the fundamental param-
eter n+ To specify this class, we need some preliminary definitions+ First, for a
scalar or vector process zt , let

wz~l! �
1

M2pn
(
t�1

n

zt e itl

be the discrete Fourier transform and given another sequence ~possibly the same
one! jt , let

Izj~l! � wz~l!wj
' ~�l!, Iz~l!� Izz~l!

be the cross-periodogram and periodogram, respectively+ Thus, we will con-
sider members of the class of estimates of n given by

Tna~m! �

Re�(
j�0

m

cj Ix~a!y~lj !�
(
j�0

m

cj Ix~a!~lj !

, (20)

where lj � 2pj0n, j � 0, + + + ,m, are the Fourier frequencies, m is an integer
such that 1 � m � n02, cj � 1, j � 0, n02, cj � 2 otherwise, and a is a possibly
random scalar+ Note that because of the orthogonal properties of the complex
exponential

(
t�0

n�1

e itlj � n, j � 0, mod n; � 0, otherwise,

Table 1. Cointegration between yt and xt, n

f ~0! un � 0 un r 0 un � u � 0

Singular yes weakly unbalanced strongly unbalanced
Full rank no no no
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and by the symmetry of the real part of the ~cross-! periodogram about l� 0,p,
for the particular choice m � @n02# , where @{# denotes integer part,

Tn0~ @n02# ! �
(
t�1

n

xt, n yt

(
t�1

n

xt, n
2

,

which is the OLS estimate+ In this case, the numerator of ~20! is real, so our
notation in ~20! may be redundant+When m � @n02# , we will only consider the
case where

m�1 � m0nr 0 as nr `, (21)

so that under ~21!, ~20! is the NBLS estimate+ This is motivated by the fact that
cointegration is a long-run phenomenon and hence neglecting components of
the observable series associated with high ~short-run! frequencies could improve
the estimation+ For cases where un � u for all n, we will also consider estimates
Tnu~m! ~note that for u� 0 this estimate is, depending on m, the OLS or NBLS!

and Tn Zu~m!, where Zu is a consistent estimate of u such that the following regu-
larity condition holds+ Throughout K denotes a generic positive constant+

ASSUMPTION PE ~Preliminary estimate!+ Provided un � u for all n, there
exists an estimate Zu of u such that

6 Zu6 � K, (22)

and for a real sequence gn, such that

gn log�1 nr ` as nr `, (23)

and random variable L,

gn~ Zu� u!rd L+ (24)

The parameter u reflects the difference between the integration orders of pro-
cesses xt and yt , so that an estimate of u will be naturally based on the differ-
ence of the estimates of their respective orders+ As both processes yt and xt are
observable, ~24! with ~23! is very mild, holding even if Zu is based on semipara-
metric estimates of the orders of xt , yt , such as the log-periodogram or Gauss-
ian semiparametric, analyzed by Robinson ~1995a, 1995b!, respectively, and
extended by Velasco ~1999a, 1999b! to cover arbitrarily large but finite orders
of integration+ The only difficulty here is that these results do not apply directly
to Type II processes, although in this case the bounds measuring the distance
between Type I and Type II processes established by Robinson ~2005! suffice+
For parametric estimates of u, gn � na with a � 1

2
_ is achievable+ The term L

could be Gaussian or non-Gaussian, depending on the method of estimation of
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u, and also on various things, such as, for example, the degree of tapering applied
in the estimation ~see Velasco, 1999a, 1999b!, a user-chosen number ~see Lobato
and Robinson, 1996!, or even d, u ~see Velasco and Robinson, 2000!+ Condi-
tion ~22! is innocuous if Zu is based on estimates that optimize over bounded
sets, this being standard for implicitly defined estimates+

The estimates Tnu~m!, Tn Zu~m! take explicitly into account the possible imbal-
ance between the orders of integration of the series, but, in general, Tnu~m! will
be infeasible, because knowledge of the particular integration orders of the
observables in empirical situations is difficult to justify+ On the contrary, Tn Zu~m!
does not require this knowledge, and in view of Hualde and Robinson ~2006!
and Robinson and Hualde ~2003!, one could suspect that provided Zu converges
fast enough to u, Tn Zu~m! could enjoy the same rate of convergence and limiting
distribution of Tnu~m!+ The fact that generally u is unknown could be a strong
point in favor of the feasible estimate, even if we suspect that u� 0, although,
as shown in the next section, the insertion of Zu could importantly affect first-
order asymptotic properties of the estimates+

Finally, note that we could have equally considered the class of estimates

Ina~m! �

Re�(
j�0

m

cj Ixy~a!~lj !�
(
j�0

m

cj Ix ~lj !

,

with a � �u, � Zu, which in certain cases could be superior to Tna~m!+ More
precisely, under Assumption C, yt and xt~u! are CI ~d,g! cointegrated, whereas,
noting that under this condition

yt ~�u! � nxt � u1t ~�g� u!,

yt~�u! and xt are CI ~d� u,g� u! cointegrated+ This implies that when u � 0,
Ina~m! could enjoy a faster convergence rate than Tna~m!, the opposite happen-

ing when u � 0 ~see, e+g+, Robinson and Marinucci, 2001!+ For simplicity, we
only consider Tna~m!, although the treatment of Ina~m! could be addressed in a
similar way+

3. MAIN ASYMPTOTIC RESULTS

First, we concentrate on the situation of balanced orders, with

un � 0, for all n+ (25)

We collect results corresponding to this case in two theorems that cover the
noncointegrating and cointegrating situations, respectively+Most of these results
are well known in the literature and are presented just for completeness+
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Denote by W~r! the 2 � 1 vector Brownian motion with covariance matrix I2

and define the ~Type II; see Marinucci and Robinson, 1999! fractional Brown-
ian motion

W~r;d! ��
0

r ~r � s!d�1

G~d!
dW~s!

and the 2 � 1 vectors

z � ~1,0!', j� ~0,1!'+

By n we will mean convergence in the Skorohod space D@0,1# endowed with
the J1 topology and related to the different analyzed estimates denote

Tn1 � Tn0~ @n02# !, Tn2 � Tn0~m!, Tn3 � Tnu~ @n02# !,

Tn4 � Tnu~m!, Tn5 � Tn Zu~ @n02# !, Tn6 � Tn Zu~m!,

under ~21!, noting that when u � 0, Tn1 � Tn3, Tn2 � Tn4+ The expressions Tni ,
i � 1,2 and i � 3, + + + ,6 will be referred to as undifferenced-regressor ~U! and
differenced-regressor ~D! estimates, respectively, noting the previous caution
about the equality of the different types of estimates when u � 0+ The main
results will be given in a sequence of theorems linked to different cointegrating
situations and estimates+ For most of the theorems the full characterization of
the limiting distributions and rates of convergence is given in Appendix A+

THEOREM BNCUD ~Balanced orders, no cointegration, U and D estimates!+
Let (6)–(8), (21), (25), and Assumptions NC and PE hold. Then, as n r `,

Tn1n

j 'A~1!S102�
0

1

W~r;d!W '~r;d! drS102A'~1!z

j 'A~1!S102�
0

1

W~r;d!W '~r;d! drS102A'~1!j

, (26)

Tn1 � Tn2 � Op~m
1�2 min$d,1% !, (27)

Tn5 � Tn1 � Op~gn
�1 log n!, (28)

Tn6 � Tn2 � Op~gn
�1 log n!+ (29)

Theorem BNCUD refers to the situation of spurious cointegration+ We omit
the proof of ~26! and ~27! because the first result is a straightforward applica-
tion of Theorem 1 of Marinucci and Robinson ~2000! and the continuous map-
ping theorem, whereas ~27! is implied by Lemma 1 of Marmol and Velasco
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~2004!+ The proof of ~28! and ~29! is given in Appendix B+ Note that as
A~1!SA'~1! � LL' , where

L � �v11
102~1 � r2 !102 v12v22

�102

0 v22
102 �,

from the Cholesky decomposition+We could equally represent the limiting dis-
tribution of Tn1 by ~see Marmol and Velasco, 2004!

Tn1n n�

v11
102~1 � r2 !102�

0

1

j 'W~r;d!W '~r;d!zdr

v22
102�

0

1

j 'W~r;d!W '~r;d!jdr

+ (30)

Note also that ~27!–~29! under Assumption PE imply that all estimates enjoy
the same limiting distribution, so these estimates are not consistent for the fun-
damental parameter n+ As is well known, this inconsistency turns into consis-
tency with reduced rank of V, as is readily seen from ~30! when r2 � 1+
However, this information is not sufficient to derive the limiting distribution of
the estimates, this being precisely the reason why the characterization in Assump-
tion C~i! comes into play+ Defining

Y~d! � j 'B~1!C102�
0

1

W~r;d!W '~r;d! drC102B '~1!j,

the next theorem, given just for completeness, collects results given in Robin-
son and Marinucci ~2001! for OLS and NBLS estimates+

THEOREM BCU ~Balanced orders, cointegration, U estimates!+ Let (6)–(8),
(21), (25), and Assumption C hold. Then, as n r `,

pi ~n!~ Tni � n!n Ji ~g,d!0Y~d!, i � 1,2+

See Appendix A for full characterization of pi~n!, Ji~g,d!, i � 1,2+ As in
Robinson and Marinucci ~2001!, we were unable to characterize the precise
limiting distribution of our estimates in the case d � g � 1, 0 � g � 1

2
_ + It is

also important to note that Assumption C is sufficient for the set of conditions
needed for the different results given in Robinson and Marinucci ~2001! to hold+
In particular, Assumption C~ii! is sufficient for the cumulant spectral density
related conditions and also implies square integrability of the individual spec-
tra of u1t , v2 t , and fourth-order stationarity of ut + We do not consider in this
theorem the behavior of Tn5, Tn6, because this is covered by the more general
Theorem UCD, given subsequently, which assumes un � u, where u is not nec-
essarily 0+

Now, we turn to the weakly unbalanced cointegration case, where un r 0 as
nr `+ Although it is not needed for our proofs, it is convenient to visualize un
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as a monotonic sequence, and to have a neater interpretation of the asymptoti-
cally negligible departures from the equality of the integration orders, we spec-
ify further the un sequence, setting

un �
h

hn

, (31)

where h is a nonzero real finite number and hn is a positive sequence such that

hn log�1 nr ` as nr `+ (32)

Note that h reflects the direction of the asymptotically negligible perturbation
of the order of integration of xt,n , as depending on whether h � 0 or h � 0, un
tends to 0 from above or below, respectively+ We only consider the infeasible
estimates Tni , i � 1,2, hence avoiding the difficulty associated with the fact that
now Zu would estimate not a fixed parameter u but a sequence of parameters,
whereas it does not seem realistic to assume knowledge of un+ In any case, the
main point of the theorem that follows is that in a situation of standard frac-
tional cointegration, a small perturbation of the order of integration of one of
the observables could be asymptotically negligible+

THEOREM ABCU ~Asymptotically balanced orders, cointegration, U esti-
mates!+ Let (6)–(8), (21), (31), (32), and Assumption C hold. Then, as n r `,

qi ~n!~ Tni � n!n Fi ~g,d,n,h!, i � 1,2+

See Appendix A for full characterization of qi~n!, Fi~g,d,n,h!, i � 1,2, and
Appendix B for the formal derivations of those results+ The interpretation of
this theorem is straightforward+ The small perturbation in the order of integra-
tion of xt, n produces some additional terms in the expansion of Tni � n+ Only
one of these terms is competitive with the difference Tni � n when un � 0+ Thus,
the speed at which un tends to 0 determines the relative importance of these
two terms+ Heuristically, on the one hand, if un converges relatively fast to 0,
the presence of the small perturbation un in the order of xt, n does not affect the
limiting distribution of the estimates with respect to the situation where un � 0+
On the other hand, if un converges slowly, the term previously referred to aris-
ing by the presence of the perturbation dominates, and the estimates have a
degenerate limiting distribution+ Apart from these situations, there is an exact
rate for un at which those two terms are balanced, so that contributions from
both appear in the limiting distributions of the estimates+ In this case, the effect
on the situation where un � 0 is simply to shift the asymptotic distribution by
�nh, whereas the rates of convergence remain unchanged+ Finally, note that
~32! is a consistency condition, and as long as it holds, the OLS and NBLS will
be consistent estimates with possibly very slow rates of convergence+
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Finally, we discuss the situation where ~9! holds, so in the case u � 0, the
integration orders of the observables are truly different+ The first theorem devoted
to this situation collects results, mainly based on Robinson and Marinucci ~2001!,
for OLS and NBLS estimates+ As we might guess, because of the imbalance
between the orders, these estimates are not consistent for n+We derive all results
under Assumption NC, although we did not actually use condition r2 � 1, and
the results given subsequently are also valid in the case r2 � 1, which would
denote a situation of cointegration+ It can be seen easily that if r2 � 1, some
terms in the asymptotic distributions given later could disappear, although this
is not always the case+ For the cases where it is possible to fully characterize
the limiting distributions, we also give in Appendix A an alternative represen-
tation of them highlighting this fact and also stressing the dependence of these
distributions on the fundamental parameter n+

THEOREM UU ~Unbalanced orders, U estimates!+ Let (6)–(9) and (21) with
u � 0 and Assumption NC (without the requirement r2 � 1) hold. Then, as
n r `,

ri ~n! Tni n
Qi ~u,d!

Pi ~d� u!
, i � 1,2+

See Appendix A for full characterization of ri~n!, Qi~u,d!, Pi~d � u!, i �
1,2+ These results are mainly taken from Robinson and Marinucci ~2001!, but
we indicate and justify in Appendix B the exact steps that do not follow directly
from this reference+ As expected, U estimates are not consistent for n because
of the imbalance between the orders of integration, so, in most cases, Tni ,
i � 1,2, converge to zero or infinity depending on the different region of the
~u,d! space on which we focus+

Finally, we propose a sensible solution to the problem of unbalanced series
based on the previously defined D estimates, for which the following theorem
holds+

THEOREM UCD ~Unbalanced orders, cointegration, D estimates!+ Let (6)–
(9), (21), and Assumptions C and PE hold. Then, as n r `,

si ~n!~ Tni � n!n Gi ~g,d,n,L!, i � 3, + + + ,6+

See Appendix A for full characterization of si~n!, Gi~g,d,n,L!, i � 3, + + + ,6+
We omit the proof of this theorem because it is almost identical to that of Theo-
rem ABCU+ Trivially, results for Tni , i � 3,4, are identical to those of Theorem
BCU, because taking u differences on the regressor simply balances the series
to turn the situation into one of traditional cointegration, Tni , i � 3,4, behaving
accordingly+ Results for Tni , i � 5,6, are similar to those of Theorem ABCU,
and they also have a straightforward interpretation+ The feasible filtering of the
regressor ~xt~ Zu! instead of xt~u!! makes some additional terms appear in the

782 JAVIER HUALDE

https://doi.org/10.1017/S0266466606060361 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060361


expansion of Tni � n, i � 5,6+ One of these terms is in all cases Op~gn
�1 log n!,

so that unless this term converges faster to 0 than the usual term in Tni � n, i �
3,4, it dominates, obtaining for the feasible estimates in all cases the limiting
distribution

gn log�1 n~ Tni � n!rd nL, i � 5,6, (33)

which is simply the asymptotic distribution of the estimate of u, with a slightly
different convergence rate ~because of the log�1 n factor!, and premultiplied by
the unknown parameter n+ Note that if L is distributed as a zero-mean Gaussian
random variable, the value of n affects the limiting variance of the feasible
estimates+ In any case, it is worth stressing that as long as ~23! holds, the fea-
sible estimates are always consistent+ Note finally that if u is estimated semi-
parametrically, we expect gn to be relatively slow, this being transmitted to the
rate of convergence of the feasible estimates of n+ In the next section we will
propose alternative estimates of n that do not suffer from the serious drawback
of having slow rates of convergence+ On the contrary, they achieve optimal
rates+

4. ALTERNATIVE FEASIBLE ESTIMATES UNDER COINTEGRATION

In this section, we consider the model ~6!, ~7! with ~9! and work under Assump-
tion C+ Noting that the results presented in Theorem UCD may be unsatisfac-
tory in some cases because of the distortive effect of the insertion of Zu instead
of the true imbalance parameter u, in the spirit of Hualde and Robinson ~2006!
and Robinson and Hualde ~2003!, we propose similar estimates to theirs, con-
sidering the possible imbalance of the integration orders of the observables+ As
will become clear subsequently, these estimates enjoy the same optimal asymp-
totic properties of the ones previously referred to, namely, optimal rates of con-
vergence and standard limiting distribution, implying, among other consequences,
that straightforward inference on the value of n is readily available+

First, we discuss the case where b � 1
2
_ ~termed strong fractional cointegra-

tion by Hualde and Robinson, 2004a!+ For the sake of a clear exposition we
consider initially the situation where B~L! � I2 in ~12!, so that ut is a white
noise+ Denoting by cij the ~i, j !th element of C and by eit , i � 1,2, the ith
element of et , assuming g, d, u are known real numbers, the pseudo maximum
likelihood estimate of n is identical to the OLS estimate of n in the equation

yt ~g! � nxt ~g� u!� txt ~d� u!� e1+2t , (34)

where

t � c12 0c22 , e1+2t � e1t � te2 t
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~see, e+g+, Phillips, 1991, in which this result is derived for the case g� u� 0,
d � 1!+ Robinson and Hualde ~2003! showed that under mild regularity condi-
tions this estimate is nb-consistent with mixed-normal limiting distribution+ How-
ever, in practice it is unrealistic to assume knowledge of g, d, and0or u, and
therefore our proposed estimate is in general infeasible+ Fortunately, the results
of Robinson and Hualde ~2003! imply that as long as the estimates of the orders,
say, [g, Zd, Zu, are nk-consistent with

k � max~0,1 � b!, (35)

estimating n from the OLS regression of yt~ [g! on xt~ [g� Zu!, xt~ Zd� Zu! is asymp-
totically equivalent ~to first-order properties! to estimating n from ~34!+ As in
Robinson and Hualde ~2003! the main difficulty here is to find estimates of the
orders for which ~35! holds, because almost Mn -consistency could be required+
Our present framework adds more difficulties because of the unknown nature
of u, and whereas d and d � u can be estimated easily from yt and xt , respec-
tively, to estimate g from residuals, preliminary estimates of the parameters
explaining the long-run linkage between the series, namely, n, u, are needed, as
opposed to the Robinson and Hualde ~2003! situation, where only preliminary
estimation of n was required ~although u� 0 was assumed to be known!+ Thus,
although showing rigorously the properties of the estimates of the orders goes
beyond the scope of the present paper, we propose several sensible estimation
procedures that are relatively simple to implement+ The simplest one is to base
a semiparametric procedure on the residuals yt � Tn Zu~m!xt~ Zu!, where Zu is the
difference between semiparametric estimates of the integration orders of xt and
yt + Provided b � 1, this is a valid strategy, but for b � 1 this procedure does
not ensure obtaining estimates of g with the required rates of convergence+ How-
ever, we could easily improve upon this method by exploiting parametric
assumptions on ut + Keeping the discussion within the white noise framework,
d � u is Mn -consistently estimable from xt by various methods including

Zd� u � arg min
d�D
(
t�1

n

xt
2~d !, (36)

where D is a compact set such that d � u � D ~see Hualde and Robinson,
2004b!+ Similarly, we could estimate g and u simultaneously by

[g, Zu � arg min
c�C,a�A

(
t�1

n

~ yt ~c!� Tna~m!xt ~c � a!!2, (37)

for an appropriate choice of m, where C, A are compact sets such that g � C,
u � A+ The exact properties of [g and Zu could be difficult to justify, but in view
of Hualde and Robinson ~2004b! and ~33!, our guess is that the rate Mn0log n
is achievable for both estimates, and hence ~35! is satisfied for any b � 1

2
_ +
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In the general I ~0! case, we can adapt the estimation procedure proposed in
Robinson and Hualde ~2003! to our present framework+ In particular, if ut is
I ~0! with spectral density h~l! ~see ~14!! depending on a vector of short-
memory parameters w, such that

h~l;w! � h~l!, B~L;w!� B~L!, C~w!�C,

we could define

In~c,d, e, k! �
Ia~c,d, e, k!

Db~c � e, k!
, [n~c,d, e, k!�

a~c,d, e, k!

b~c � e, k!
,

where setting zt~c,d ! � ~ yt~c!, xt~d !!
',

Ia~c,d, e, k! � (
t�1

n

$B~L; k!zxt ~c � e!% 'C~k!�1$B~L; k!zt ~c,d � e!%,

Db~c, k! � (
t�1

n

$B~L; k!zxt ~c!%
'C~k!�1$B~L; k!zxt ~c!%,

and

p~l; k! � z 'h~l; k!�1, q~l; k!� z 'h~l; k!�1z,

a~c,d, e, k! � (
j�1

n

p~lj ; k!wx~c�e!~�lj !wz~c,d�e!~lj !,

b~c, k! � (
j�1

n

q~lj ; k!6wx~c!~lj !62+

Thus, for an estimate of the short-memory parameters [w and estimates of the
orders [g, Zd, Zu, we propose

n*~g,d,u,w!, n*~g,d,u, [w!, n*~ [g,d,u, [w!,

n*~g, Zd,u, [w!, n*~ [g, Zd,u, [w!, n*~ [g, Zd, Zu, [w!, (38)

where n* denotes In or [n+ Each estimate in ~38! reflects situations of different
knowledge about the structure of the model+ Note that the first four estimates
with u � 0 are identical to those presented in Robinson and Hualde ~2003!+
Again, the problem is obtaining [g, Zd, Zu, [w with the required properties, but
procedures incorporating the ideas developed in the white noise situation and
those in Velasco and Robinson ~2000!, hence employing as loss functions pos-
sibly tapered parametric Whittle likelihoods, should provide estimates with
rate of convergence Mn0log n+ In any case, in view of Hualde and Robinson
~2004a!, even if only nk-consistent estimates of the nuisance parameters with
arbitrarily small but positive k are available, narrow band versions of the fre-
quency domain estimates in ~38! could also enjoy optimal asymptotic proper-
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ties for an adequate choice of the bandwidth, semiparametric extensions also
being possible+

The situation where b � 1
2
_ was referred to by Hualde and Robinson ~2006!

as weak fractional cointegration+ In view of the results of this paper, if ut

is a white noise and g, d, and u are known, the OLS in ~34! would produce
Mn -consistent and asymptotically normal estimates of n, this result being eas-
ily extendable to the situation where ut is an autoregressive process of finite
order p, so that

B~L! � (
j�0

p

Bj L j (39)

in ~12!+ In the case where the orders are unknown, additional difficulties arise
because of the presence of the unknown parameter u, but as in the case of strong
cointegration, and following the lines of Hualde and Robinson ~2006!, it seems
possible to deal with this issue, although Mn -consistent estimates of the orders
are needed to estimate n Mn -consistently+

If ut is a white noise, we could improve upon the method proposed in ~37!
by first estimating d � u by ~36! and then g and g � u by

[g, Zg� u � arg min
c�C,b�B

(
t�1

n

~ yt ~c!� Tn~c,b, Zd� u!xt ~b!� St~c,b, Zd� u!xt ~ Zd� u!!2,

(40)

where Tn~c,b,d !, St~c,b,d ! are the estimated slopes corresponding to regressors
xt~b!, xt~d !, respectively, in the OLS regression of yt~c! on xt~b! and xt~d !+
In this case the Mn -consistent estimate of n is Tn~ [g, Zg� u , Zd� u!+ As in Hualde
and Robinson ~2006!, this procedure can be easily extended to the case where
in ~39! Bj is upper-triangular for all j � 1, + + + , p, noting that this is also a valid
strategy when b � 1

2
_ , in which case our proposed estimate of n is nb-consistent

with mixed-normal limiting distribution and the estimates of the orders are also
Mn -consistent+

5. MONTE CARLO EVIDENCE

With the aim of analyzing the finite-sample equivalent of the asymptotic phe-
nomena under wide-sense cointegration described in the paper, we carried out
a small Monte Carlo experiment+We generated ut in ~12! as a white noise pro-
cess of dimensions n � 64, 128, 256, with c11 � c22 � 1, varying the correla-
tion c12 ~taking values 0, 0+5, �0+5!+ Then, we considered ~6!, ~7!, and ~11!
with n � 1 and employed six combinations of ~g,d! given by

~g,d! � ~0, 0+6!, ~0, 1+2!, ~0, 2!, ~0+4, 0+8!, ~0+4, 1+2!, ~0+7, 1!,
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noting that the fourth and sixth cases correspond to weak cointegration, whereas
the rest represent different situations of strong cointegration+ In the first part of
the study, we analyze the case of weakly unbalanced cointegration, where un in
~7! takes four different values un � un

~i ! , i � 1, + + + ,4, where

un
~1! � log�1 n, un

~2!� �n�102, un
~3!� n�1, un

~4!� 0,

for which we study in terms of Monte Carlo bias ~defined as the estimate minus
n! and standard deviation over 1,000 replications the behavior of Tn1, Tn2, noting
that by Theorems ABCU and BCU, these estimates are consistent for all choices
of un except un

~1!+ Results are given in Tables 2– 4 ~for the bias in Tables 2 and
4; for standard deviations in Tables 3 and 5!+ Clearly, in almost all cases bias
decreases as un decreases in absolute value, the sign of un being inversely related
to the sign of the bias because of the relative dominance of the denominator
~numerator! of the estimates when un is positive ~negative!+Although the incon-
sistency of Tn1, Tn2 when un � un

~1! is evident by looking at the evolution of the
bias, the decrease of the bias as n increases is very slow for un � un

~2!+ Biases
for un � un

~3! are larger than when the orders of integration of the observables
are strictly balanced, that is, when un � 0, but not far from them and reacting in
a similar way when n increases+ As expected, for un � un

~i ! , i � 3,4, bias corre-
sponding to both estimates tends to decrease as b increases, this not being the
case when un � un

~2! ~most evident for r � �0+5!+ In fact, the very small bias
for ~g,d! � ~0, 0+6!, ~0+4, 0+8!, ~0+7, 1! for r � �0+5 is the most surprising
result of this part of the Monte Carlo experiment, some cancellations probably
taking place, although in this case, at least when b � 1

2
_ , no clear evidence of

decreases in bias as n increases is observed+ For un � un
~i ! , i � 3,4, bias tends to

increase as 6r6 increases, this also being true for un � un
~2! when r � 0+5 ~but

not when r � �0+5!+ Finally, whereas for r � 0 and un � un
~i ! , i � 3,4, Tn2

clearly beats Tn1 ~most noticeably for ~g,d! � ~0, 0+6!!, this is not the case for
un � un

~2! , especially when r � �0+5, when Tn1 dominates Tn2 ~especially for
small b!+

Standard deviations are reported in Tables 3 and 5+ In almost all cases they
decrease as n increases, including the situation un � un

~1! , which suggests that
the inconsistency of the estimates due to the ~slowly converging to zero! imbal-
ance between the orders is mainly due to a bias problem+ In fact, in many cases,
the smallest variances correspond to this inconsistent case+ In general, standard
deviations tend to decrease as b increases, the effect of changes in r not being
very clear+ Values of standard deviations for the two estimates are very similar,
although some superiority of Tn1 when b � 1

2
_ is noted, whereas for ~g,d! �

~0, 0+6!, in general Tn2 beats Tn1+
The second part of the Monte Carlo experiment focuses on the strongly unbal-

anced cointegration situation+ Here, the only difference with respect to the pre-
vious analysis is that we consider

un � u� 0+3,�0+3, for all n+
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We reported results corresponding to six different estimates, which are as fol-
lows: Tn1, Tn2, their feasible D estimate counterparts Tn5, Tn6, respectively, Tn7, which
is the OLS estimate of n in ~34!, and its feasible version, denoted by Tn8+ Noting
that OLS and NBLS do not rely on any parametric assumption about the struc-
ture of ut , to compute Tn5 and Tn6, the estimate of u was calculated as

Du � Hd� u� Dd,

where Hd� u is the version of the log periodogram estimate of Geweke and
Porter-Hudak ~1983! proposed by Robinson ~1995a! without pooling or trim-
ming, applied to the series

xt
* � xt 1~d� u � 1!� xt ~1!1~1 � d� u � 2!� xt ~2!1~d� u� 2!,

adding back to the estimate 1 or 2 in the case xt
* � xt~1! or � xt~2!, respec-

tively+ Similarly, Dd was computed in the same way by applying the log peri-
odogram to the series

yt
* � yt 1~d � 1!� yt ~1!1~1 � d � 2!� yt ~2!1~d� 2!

instead+ In all cases the bandwidths of the estimates of the orders ~and in fact
also of Tn2 and Tn6! were m � 10, 20, 40, corresponding to n � 64, 128, 256,
respectively+ Alternatively, the feasible estimate Tn8 was derived from the OLS
regression ~34! with g, g � u, d � u replaced by corresponding parametric
estimates derived as in ~36! and ~40!+ We fixed the sets where the respective
functions were optimized in the following way: D � @ Hd� u � 0+15, Hd� u �
0+15# , which in all cases contains the asymptotic 95% confidence interval
@ Hd� u � 1+96s+e+~ Hd� u!, Hd� u � 1+96s+e+~ Hd� u!# , where s+e+~ Hd� u! �
p��M24m; C � @g � 0+5,g � 0+5# , B � @g � u � 1,min~g � u � 0+5, Zd� u �
0+05!# + Note that C and B are infeasible sets, but we found them reasonably
large+ In particular, the upper bound Zd� u � 0+05 seems sensible because we
found it unrealistic that a very small b ~less than 0+05! could be detected+

Monte Carlo bias and standard deviations are reported in Tables 6–11+ In
Tables 6, 8, and 10 the inconsistency of Tn1 and Tn2 is clearly reflected, with very
large negative ~positive! biases related to positive ~negative! values of u+ Their
corresponding feasible D estimates Tn5 and Tn6 behave in a rather unsatisfactory
way+ In general, smallest biases correspond to the cases ~g, d! � ~0, 0+6!,
~0+4, 0+8!, ~0+7, 1!, but they do not react in the appropriate direction as n increases
~except for some cases with r� �0+5!+ On the contrary, for the cases with d�
1+2, 2, larger positive biases are reported, but in general, they decrease as n
increases, usually very slowly however, indicating that a faster estimate of u or
larger sample sizes may be needed to obtain acceptable results for this class of
estimates+ Also, although their values are relatively similar, the NBLS appears
to be inferior to the OLS+ As expected, Tn7 performs extremely well, with very
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small biases sharing the sign of r and decreasing in absolute value as b increases+
Larger biases are reported for its feasible version Tn8, although this estimate
still works well when b � 0+8, whereas for the other cases, biases are large but
react appropriately when n increases+ Finally, it is worth mentioning that r has
a rather different effect on Tn8 from the one reported in Robinson and Hualde
~2003!+ Now, it seems that in comparison to the r � 0 situation, positive and
negative correlation benefits and worsens the estimate, respectively+

Monte Carlo standard deviations are reported in Tables 7, 9, and 11+ For the
cases of strong cointegration the smallest values correspond to Tn7, closely fol-
lowed by Tn8 when ~g,d! � ~0,2! and the inconsistent estimates Tn1, Tn2 other-
wise+ For the weak cointegration situation, Tn1 and Tn2 are best, followed by
Tn7+ In general, for b � 0+8, Tn8 beats Tn5 and Tn6, the opposite happening when
b � 0+8, although in this case the values corresponding to Tn8 enjoy faster
decreases as n increases, noting that these standard deviations are severely
harmed by replications where the parametric estimates of g � u and d � u are
very close to each other+ Standard deviations decrease as n increases for all
estimates+

Finally, the last part of the Monte Carlo is devoted to motivating the correct
use of graphical tools to detect the possible presence of strongly unbalanced
cointegration+ Thus, we generated pairs of time series of dimension n � 1,000
as in the previous two parts of the experiment, fixing c12 � 0 and concentrat-
ing on different values of g, d, u+ In Figures 1 and 2 we present the situation
where d � 1+4, u � 0+4, and under the heading of cointegrated and no-
cointegrated we denote situations where g� 0 and g� d in ~11!, respectively+
Similarly, Figures 3 and 4, 5 and 6, and 7 and 8 represent pairs of series gen-
erated as in the first case ~but with different seed originating the white noise
process!, for the cases ~d,u! � ~1, 0+8!, ~0+8, 0+4!, and ~0+6, 0+8!, respectively,
where in all situations g� 0 or g� d corresponds to the cases of cointegration
and noncointegration, respectively+ Note that if g � 0, processes yt and xt~u!
are CI ~d,0! cointegrated, whereas if g � d, they are not cointegrated+ Graphs
on the left of each figure simply represent both time series as a function of
time+ Clearly, the main consequence of the gap between the integration orders
is a different dimension in the series, most evident when u� 0+8+ Hence, these
figures simply suggest that the orders of integration of the observable series
are different, but it is usually not possible to assess therefrom whether there is
an intrinsic linkage between the series or not, it being hard to make a guess
about the possible existence of unbalanced cointegration+ This picture changes
dramatically when focusing on the graphs on the right of each figure+ These
represent exactly the same series as on the corresponding left graphs but with
the important difference that the smallest integration order series is drawn with
respect to a different scale given on the right vertical axis+ Here, it is evident
that strong comovements exist ~especially when u� 0+4! between the two unbal-
anced series in the case that cointegration exists, whereas, as expected, the
cotrending does not appear when the series are not cointegrated+We admit that

UNBALANCED COINTEGRATION 793

https://doi.org/10.1017/S0266466606060361 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060361


T
ab

le
6.

M
on

te
C

ar
lo

bi
as
,r

�
0

u
�

0+
3

u
�

�
0+

3

n
g

d
Tn 1

Tn 5
Tn 2

Tn 6
Tn 7

Tn 8
Tn 1

Tn 5
Tn 2

Tn 6
Tn 7

Tn 8

64
0

0+
6

�
0+

54
7

0+
03

6
�

0+
57

4
0+

18
9

�
0+

00
4

0+
16

2
0+

29
1

0+
03

3
0+

59
4

0+
17

5
�

0+
00

4
0+

15
3

0
1+

2
�

0+
61

6
0+

66
1

�
0+

61
6

0+
72

0
�

0+
00

1
0+

00
1

1+
23

0+
71

6
1+

28
0+

83
7

�
0+

00
1

0+
00

0
0

2
�

0+
60

8
0+

68
7

�
0+

60
7

0+
68

6
0+

00
0

0+
00

0
1+

49
1+

02
1+

49
1+

02
0+

00
0

0+
00

0
0+

4
0+

8
�

0+
59

7
0+

06
9

�
0+

60
6

0+
19

6
�

0+
00

6
0+

36
6

0+
62

8
0+

11
3

0+
84

4
0+

23
4

�
0+

00
6

0+
33

2
0+

4
1+

2
�

0+
61

8
0+

67
5

�
0+

61
9

0+
74

9
�

0+
00

3
0+

02
7

1+
22

0+
71

6
1+

27
0+

83
4

�
0+

00
3

0+
03

1
0+

7
1

�
0+

62
3

0+
29

0
�

0+
62

6
0+

39
5

�
0+

00
9

0+
41

7
0+

94
4

0+
33

8
1+

05
0+

47
3

�
0+

00
9

0+
40

3

12
8

0
0+

6
�

0+
62

8
0+

15
3

�
0+

64
5

0+
28

6
�

0+
00

1
0+

03
7

0+
38

0
0+

13
6

0+
73

3
0+

24
6

�
0+

00
1

0+
04

8
0

1+
2

�
0+

68
5

0+
65

8
�

0+
68

5
0+

67
0

0+
00

0
0+

00
3

1+
74

0+
81

6
1+

78
0+

84
9

0+
00

0
0+

00
3

0
2

�
0+

67
7

0+
53

6
�

0+
67

7
0+

53
6

0+
00

0
0+

00
1

2+
03

0+
81

5
2+

03
0+

81
4

0+
00

0
0+

00
1

0+
4

0+
8

�
0+

66
9

0+
21

0
�

0+
67

4
0+

28
2

�
0+

00
1

0+
32

9
0+

89
4

0+
23

1
1+

14
0+

29
5

�
0+

00
1

0+
30

5
0+

4
1+

2
�

0+
68

6
0+

70
9

�
0+

68
7

0+
72

1
�

0+
00

1
0+

01
4

1+
73

0+
86

2
1+

77
0+

89
8

�
0+

00
1

0+
00

8
0+

7
1

�
0+

69
0

0+
41

8
�

0+
69

1
0+

45
4

0+
00

0
0+

48
0

1+
38

0+
55

9
1+

49
0+

62
7

0+
00

0
0+

49
2

25
6

0
0+

6
�

0+
69

7
0+

24
2

�
0+

70
7

0+
35

8
0+

00
0

0+
00

7
0+

44
9

0+
20

1
0+

84
6

0+
29

4
0+

00
0

0+
00

7
0

1+
2

�
0+

74
6

0+
59

5
�

0+
74

6
0+

59
7

0+
00

0
0+

00
4

2+
39

0+
77

2
2+

41
0+

77
6

0+
00

0
0+

00
5

0
2

�
0+

73
6

0+
43

0
�

0+
73

6
0+

43
0

0+
00

0
0+

00
0

2+
74

0+
60

6
2+

74
0+

60
6

0+
00

0
0+

00
0

0+
4

0+
8

�
0+

73
1

0+
29

7
�

0+
73

3
0+

34
4

�
0+

00
1

0+
08

9
1+

18
0+

30
1

1+
47

0+
34

2
�

0+
00

1
0+

09
0

0+
4

1+
2

�
0+

74
6

0+
66

8
�

0+
74

6
0+

67
1

0+
00

0
0+

00
2

2+
38

0+
85

1
2+

41
0+

85
7

0+
00

0
0+

00
2

0+
7

1
�

0+
74

5
0+

49
1

�
0+

74
5

0+
50

5
�

0+
00

2
0+

33
4

1+
93

0+
64

1
2+

04
0+

66
6

�
0+

00
2

0+
33

7

N
ot

e:
Tn 1

�
Tn 0
~@

n0
2#
!,
Tn 2

�
Tn 0
~m
!,
Tn 5

�
Tn
Zu
~@

n0
2#
!,
Tn 6

�
Tn
Zu
~m
!,
Tn 7

�
Tn~
g
,g

�
u,
d

�
u
!,
Tn 8

�
Tn~
[g,
Z

g
�
u,
Z

d
�
u
!,

w
he

re
m

�
10
,2

0,
40
,

co
rr

es
po

nd
in

g
to

n
�

64
,1

28
,2

56
,

re
sp

ec
ti

ve
ly
+

794

https://doi.org/10.1017/S0266466606060361 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060361


T
ab

le
7.

M
on

te
C

ar
lo

st
an

da
rd

de
vi

at
io

n,
r

�
0

u
�

0+
3

u
�

�
0+

3

n
g

d
Tn 1

Tn 5
Tn 2

Tn 6
Tn 7

Tn 8
Tn 1

Tn 5
Tn 2

Tn 6
Tn 7

Tn 8

64
0

0+
6

0+
10

4
0+

32
4

0+
09

2
0+

47
1

0+
11

7
1+

05
0+

26
6

0+
32

3
0+

34
6

0+
46

5
0+

11
7

0+
99

2
0

1+
2

0+
05

6
1+

12
0+

05
6

1+
26

0+
02

5
0+

08
6

0+
44

6
1+

36
0+

42
8

1+
71

0+
02

5
0+

08
0

0
2

0+
04

6
1+

58
0+

04
6

1+
58

0+
00

3
0+

01
3

0+
32

0
3+

06
0+

31
9

3+
08

0+
00

3
0+

01
3

0+
4

0+
8

0+
11

9
0+

53
1

0+
11

8
0+

70
0

0+
21

2
1+

80
0+

45
6

0+
51

0
0+

50
4

0+
66

9
0+

21
2

1+
70

0+
4

1+
2

0+
06

7
1+

18
0+

06
7

1+
40

0+
06

9
0+

39
2

0+
47

0
1+

34
0+

45
6

1+
65

0+
06

9
0+

48
8

0+
7

1
0+

17
9

0+
88

1
0+

18
1

1+
15

0+
30

5
2+

17
0+

70
3

0+
97

0
0+

74
5

1+
29

0+
30

5
2+

13

12
8

0
0+

6
0+

08
6

0+
27

2
0+

07
5

0+
40

0
0+

06
6

0+
26

8
0+

27
4

0+
27

8
0+

36
4

0+
38

0
0+

06
6

0+
35

9
0

1+
2

0+
04

3
0+

84
6

0+
04

2
0+

86
3

0+
01

0
0+

03
8

0+
55

3
1+

32
0+

53
7

1+
47

0+
01

0
0+

03
8

0
2

0+
03

8
0+

78
5

0+
03

8
0+

78
4

0+
00

1
0+

00
5

0+
37

4
1+

44
0+

37
4

1+
44

0+
00

1
0+

00
6

0+
4

0+
8

0+
08

5
0+

52
1

0+
08

3
0+

61
8

0+
12

8
1+

31
0+

53
2

0+
47

5
0+

56
7

0+
56

0
0+

12
8

1+
26

0+
4

1+
2

0+
04

6
0+

90
7

0+
04

6
0+

92
4

0+
03

5
0+

21
2

0+
56

4
1+

35
0+

54
9

1+
52

0+
03

5
0+

11
2

0+
7

1
0+

12
9

0+
83

2
0+

12
9

0+
90

2
0+

18
9

1+
65

0+
79

7
1+

10
0+

81
8

1+
26

0+
18

9
1+

67

25
6

0
0+

6
0+

06
9

0+
25

7
0+

06
1

0+
36

9
0+

04
1

0+
12

5
0+

26
6

0+
24

7
0+

36
3

0+
34

2
0+

04
1

0+
12

7
0

1+
2

0+
03

6
0+

59
1

0+
03

6
0+

59
4

0+
00

4
0+

02
2

0+
68

6
0+

93
3

0+
67

4
0+

94
0

0+
00

4
0+

02
1

0
2

0+
03

1
0+

48
6

0+
03

1
0+

48
6

0+
00

0
0+

00
2

0+
46

3
0+

81
7

0+
46

3
0+

81
7

0+
00

0
0+

00
2

0+
4

0+
8

0+
06

0
0+

50
4

0+
05

8
0+

56
7

0+
08

6
0+

57
2

0+
60

3
0+

44
5

0+
63

3
0+

49
6

0+
08

6
0+

56
6

0+
4

1+
2

0+
03

7
0+

65
6

0+
03

7
0+

65
9

0+
02

0
0+

06
1

0+
69

1
1+

00
0+

67
9

1+
01

0+
02

0
0+

06
1

0+
7

1
0+

08
3

0+
71

0
0+

08
3

0+
73

1
0+

13
0

1+
21

0+
88

1
1+

01
0+

88
6

1+
07

0+
13

0
1+

21

N
ot

e:
Tn 1

�
Tn 0
~@

n0
2#
!,
Tn 2

�
Tn 0
~m
!,
Tn 5

�
Tn
Zu
~@

n0
2#
!,
Tn 6

�
Tn
Zu
~m
!,
Tn 7

�
Tn~
g
,g

�
u,
d

�
u
!,
Tn 8

�
Tn~
[g,
Z

g
�
u,
Z

d
�
u
!,

w
he

re
m

�
10
,2

0,
40
,

co
rr

es
po

nd
in

g
to

n
�

64
,1

28
,2

56
,

re
sp

ec
ti

ve
ly
+

795

https://doi.org/10.1017/S0266466606060361 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060361


T
ab

le
8.

M
on

te
C

ar
lo

bi
as
,r

�
0+

5

u
�

0+
3

u
�

�
0+

3

n
g

d
Tn 1

Tn 5
Tn 2

Tn 6
Tn 7

Tn 8
Tn 1

Tn 5
Tn 2

Tn 6
Tn 7

Tn 8

64
0

0+
6

�
0+

49
1

0+
39

8
�

0+
54

3
0+

51
2

0+
00

1
0+

04
6

0+
69

6
0+

40
6

0+
89

9
0+

50
1

0+
00

1
0+

02
6

0
1+

2
�

0+
61

4
0+

78
7

�
0+

61
5

0+
83

5
0+

00
1

�
0+

00
6

1+
28

0+
86

5
1+

30
0+

96
8

0+
00

1
�

0+
00

4
0

2
�

0+
60

6
0+

35
2

�
0+

60
6

0+
35

1
0+

00
0

�
0+

01
0

1+
48

0+
66

3
1+

48
0+

66
2

0+
00

0
�

0+
01

0
0+

4
0+

8
�

0+
52

7
0+

45
9

�
0+

54
4

0+
58

4
0+

00
1

0+
13

6
1+

06
0+

48
6

1+
26

0+
59

3
0+

00
1

0+
11

6
0+

4
1+

2
�

0+
60

5
0+

96
1

�
0+

60
6

1+
04

0+
00

1
�

0+
00

3
1+

36
1+

03
1+

39
1+

15
0+

00
1

0+
00

4
0+

7
1

�
0+

53
3

0+
68

3
�

0+
53

8
0+

77
9

0+
00

0
0+

18
5

1+
48

0+
77

3
1+

60
0+

93
7

0+
00

0
0+

11
3

12
8

0
0+

6
�

0+
59

7
0+

50
2

�
0+

62
8

0+
58

7
0+

00
3

0+
02

0
0+

77
7

0+
48

4
1+

02
0+

53
8

0+
00

3
0+

01
3

0
1+

2
�

0+
68

5
0+

81
0

�
0+

68
5

0+
81

8
0+

00
0

�
0+

00
7

1+
77

0+
99

1
1+

79
1+

02
0+

00
0

�
0+

00
6

0
2

�
0+

67
5

0+
17

6
�

0+
67

4
0+

17
6

0+
00

0
�

0+
00

7
2+

01
0+

37
0

2+
01

0+
36

9
0+

00
0

�
0+

00
6

0+
4

0+
8

�
0+

62
8

0+
54

1
�

0+
63

6
0+

61
6

0+
00

5
0+

13
0

1+
31

0+
58

4
1+

54
0+

64
3

0+
00

5
0+

13
1

0+
4

1+
2

�
0+

68
1

1+
05

�
0+

68
1

1+
07

0+
00

1
0+

00
5

1+
84

1+
24

1+
87

1+
28

0+
00

1
0+

00
8

0+
7

1
�

0+
63

0
0+

82
9

�
0+

63
2

0+
86

6
0+

00
6

0+
37

0
1+

92
1+

02
2+

03
1+

12
0+

00
6

0+
35

8

25
6

0
0+

6
�

0+
68

1
0+

58
4

�
0+

69
9

0+
66

2
0+

00
1

0+
00

6
0+

84
0

0+
54

3
1+

13
0+

58
5

0+
00

1
0+

00
5

0
1+

2
�

0+
74

7
0+

74
8

�
0+

74
7

0+
74

9
0+

00
0

�
0+

01
8

2+
41

0+
99

2
2+

43
0+

99
9

0+
00

0
�

0+
01

8
0

2
�

0+
73

6
0+

06
9

�
0+

73
6

0+
06

9
0+

00
0

�
0+

00
3

2+
74

0+
22

6
2+

73
0+

22
6

0+
00

0
�

0+
00

3
0+

4
0+

8
�

0+
71

0
0+

60
7

�
0+

71
3

0+
64

6
0+

00
3

0+
03

9
1+

59
0+

61
9

1+
85

0+
64

8
0+

00
3

0+
04

0
0+

4
1+

2
�

0+
74

5
1+

05
�

0+
74

5
1+

05
0+

00
1

0+
00

1
2+

47
1+

33
2+

49
1+

34
0+

00
1

0+
00

1
0+

7
1

�
0+

71
2

0+
82

4
�

0+
71

2
0+

83
5

0+
00

4
0+

21
7

2+
44

1+
05

2+
56

1+
08

0+
00

4
0+

22
0

N
ot

e:
Tn 1

�
Tn 0
~@

n0
2#
!,
Tn 2

�
Tn 0
~m
!,
Tn 5

�
Tn
Zu
~@

n0
2#
!,
Tn 6

�
Tn
Zu
~m
!,
Tn 7

�
Tn~
g
,g

�
u,
d

�
u
!,
Tn 8

�
Tn~
[g,
Z

g
�
u,
Z

d
�
u
!,

w
he

re
m

�
10
,2

0,
40
,

co
rr

es
po

nd
in

g
to

n
�

64
,1

28
,2

56
,

re
sp

ec
ti

ve
ly
+

796

https://doi.org/10.1017/S0266466606060361 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060361


T
ab

le
9.

M
on

te
C

ar
lo

st
an

da
rd

de
vi

at
io

n,
r

�
0+

5

u
�

0+
3

u
�

�
0+

3

n
g

d
Tn 1

Tn 5
Tn 2

Tn 6
Tn 7

Tn 8
Tn 1

Tn 5
Tn 2

Tn 6
Tn 7

Tn 8

64
0

0+
6

0+
13

5
0+

36
5

0+
10

3
0+

52
9

0+
10

1
0+

67
0

0+
22

2
0+

34
7

0+
30

0
0+

49
6

0+
10

1
0+

72
7

0
1+

2
0+

05
5

1+
16

0+
05

4
1+

33
0+

02
1

0+
08

8
0+

41
8

1+
35

0+
41

6
1+

67
0+

02
1

0+
08

2
0

2
0+

04
7

1+
47

0+
04

7
1+

47
0+

00
3

0+
01

6
0+

30
5

2+
65

0+
30

4
2+

66
0+

00
3

0+
01

5
0+

4
0+

8
0+

13
0

0+
61

4
0+

12
2

0+
80

0
0+

18
4

1+
66

0+
41

1
0+

56
1

0+
45

7
0+

73
1

0+
18

4
1+

73
0+

4
1+

2
0+

06
8

1+
25

0+
06

7
1+

50
0+

05
9

0+
26

3
0+

42
2

1+
39

0+
41

9
1+

73
0+

05
9

0+
24

2
0+

7
1

0+
16

5
0+

91
1

0+
16

4
1+

09
0+

26
6

2+
23

0+
64

9
1+

12
0+

68
5

1+
46

0+
26

6
2+

24

12
8

0
0+

6
0+

10
2

0+
31

6
0+

08
0

0+
45

6
0+

05
8

0+
22

8
0+

23
6

0+
28

4
0+

32
3

0+
39

0
0+

05
8

0+
25

6
0

1+
2

0+
04

3
0+

89
3

0+
04

3
0+

91
5

0+
00

9
0+

03
7

0+
52

6
1+

43
0+

52
1

1+
52

0+
00

9
0+

03
7

0
2

0+
03

9
0+

66
9

0+
03

9
0+

66
8

0+
00

1
0+

00
6

0+
38

4
1+

03
0+

38
4

1+
03

0+
00

1
0+

00
6

0+
4

0+
8

0+
09

2
0+

60
0

0+
08

6
0+

72
4

0+
11

3
0+

85
2

0+
48

0
0+

51
8

0+
51

3
0+

62
2

0+
11

3
0+

79
2

0+
4

1+
2

0+
04

7
1+

05
0+

04
7

1+
09

0+
03

1
0+

12
0

0+
51

8
1+

60
0+

51
2

1+
74

0+
03

1
0+

11
6

0+
7

1
0+

11
6

0+
88

6
0+

11
6

0+
96

5
0+

16
8

1+
62

0+
73

1
1+

26
0+

75
0

1+
53

0+
16

8
1+

54

25
6

0
0+

6
0+

07
8

0+
28

6
0+

06
5

0+
41

5
0+

03
4

0+
12

3
0+

23
2

0+
24

9
0+

33
0

0+
33

1
0+

03
4

0+
12

2
0

1+
2

0+
03

3
0+

65
9

0+
03

3
0+

66
2

0+
00

4
0+

01
7

0+
66

1
1+

26
0+

65
4

1+
28

0+
00

4
0+

01
7

0
2

0+
03

0
0+

37
9

0+
03

0
0+

37
9

0+
00

0
0+

00
3

0+
44

3
0+

73
3

0+
44

3
0+

73
2

0+
00

0
0+

00
3

0+
4

0+
8

0+
06

5
0+

54
5

0+
06

2
0+

60
9

0+
07

3
0+

35
3

0+
56

8
0+

44
4

0+
59

9
0+

49
0

0+
07

3
0+

33
8

0+
4

1+
2

0+
03

4
0+

82
9

0+
03

4
0+

83
7

0+
01

6
0+

06
1

0+
64

9
1+

49
0+

64
1

1+
53

0+
01

6
0+

06
1

0+
7

1
0+

07
8

0+
68

0
0+

07
7

0+
69

6
0+

11
2

0+
96

7
0+

83
9

1+
14

0+
83

9
1+

21
0+

11
2

0+
94

7

N
ot

e:
Tn 1

�
Tn 0
~@

n0
2#
!,
Tn 2

�
Tn 0
~m
!,
Tn 5

�
Tn
Zu
~@

n0
2#
!,
Tn 6

�
Tn
Zu
~m
!,
Tn 7

�
Tn~
g
,g

�
u,
d

�
u
!,
Tn 8

�
Tn~
[g,
Z

g
�
u,
Z

d
�
u
!,

w
he

re
m

�
10
,2

0,
40
,

co
rr

es
po

nd
in

g
to

n
�

64
,1

28
,2

56
,

re
sp

ec
ti

ve
ly
+

797

https://doi.org/10.1017/S0266466606060361 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060361


T
ab

le
10

.
M

on
te

C
ar

lo
bi

as
,r

�
�

0+
5

u
�

0+
3

u
�

�
0+

3

n
g

d
Tn 1

Tn 5
Tn 2

Tn 6
Tn 7

Tn 8
Tn 1

Tn 5
Tn 2

Tn 6
Tn 7

Tn 8

64
0

0+
6

�
0+

60
2

�
0+

27
4

�
0+

60
5

�
0+

10
0

0+
00

0
0+

33
1

�
0+

09
4

�
0+

27
0

0+
31

8
�

0+
10

1
0+

00
0

0+
29

9
0

1+
2

�
0+

61
7

0+
50

1
�

0+
61

7
0+

56
0

0+
00

0
0+

04
0

1+
22

0+
57

3
1+

29
0+

69
2

0+
00

0
0+

02
9

0
2

�
0+

60
5

0+
89

8
�

0+
60

4
0+

89
7

0+
00

0
0+

01
4

1+
50

1+
22

1+
50

1+
22

0+
00

0
0+

01
3

0+
4

0+
8

�
0+

65
3

�
0+

22
8

�
0+

65
5

�
0+

11
6

0+
00

0
0+

56
2

0+
24

2
�

0+
21

2
0+

48
7

�
0+

09
8

0+
00

0
0+

54
7

0+
4

1+
2

�
0+

62
7

0+
34

6
�

0+
62

7
0+

40
2

0+
00

0
0+

10
5

1+
14

0+
42

1
1+

20
0+

50
6

0+
00

0
0+

14
2

0+
7

1
�

0+
68

7
�

0+
05

8
�

0+
68

8
0+

03
4

0+
00

0
0+

63
6

0+
51

1
�

0+
02

4
0+

62
2

0+
09

3
0+

00
0

0+
63

0

12
8

0
0+

6
�

0+
66

3
�

0+
15

9
�

0+
66

6
�

0+
00

4
�

0+
00

1
0+

06
3

�
0+

00
5

�
0+

18
0

0+
46

0
�

0+
04

6
�

0+
00

1
0+

05
4

0
1+

2
�

0+
68

8
0+

49
8

�
0+

68
8

0+
51

1
0+

00
0

0+
01

8
1+

76
0+

72
1

1+
81

0+
74

9
0+

00
0

0+
01

6
0

2
�

0+
67

7
0+

77
9

�
0+

67
7

0+
77

8
0+

00
0

0+
00

8
2+

05
1+

07
2+

05
1+

07
0+

00
0

0+
00

8
0+

4
0+

8
�

0+
70

6
�

0+
13

3
�

0+
70

7
�

0+
06

6
�

0+
00

2
0+

35
1

0+
51

4
�

0+
12

6
0+

79
1

�
0+

06
4

�
0+

00
2

0+
35

5
0+

4
1+

2
�

0+
69

3
0+

32
0

�
0+

69
3

0+
33

0
�

0+
00

1
0+

02
2

1+
69

0+
51

2
1+

74
0+

53
1

�
0+

00
1

0+
02

4
0+

7
1

�
0+

73
3

0+
04

0
�

0+
73

4
0+

07
1

�
0+

00
3

0+
63

4
0+

94
9

0+
14

2
1+

06
0+

18
6

�
0+

00
3

0+
58

7

25
6

0
0+

6
�

0+
71

6
�

0+
07

4
�

0+
71

9
0+

04
7

�
0+

00
1

0+
00

7
0+

06
5

�
0+

10
6

0+
57

2
0+

00
0

�
0+

00
1

0+
01

2
0

1+
2

�
0+

74
7

0+
46

9
�

0+
74

6
0+

47
3

0+
00

0
0+

04
3

2+
40

0+
63

4
2+

44
0+

63
9

0+
00

0
0+

04
2

0
2

�
0+

73
8

0+
76

2
�

0+
73

8
0+

76
1

0+
00

0
0+

00
4

2+
75

0+
96

2
2+

75
0+

96
2

0+
00

0
0+

00
4

0+
4

0+
8

�
0+

75
4

�
0+

05
5

�
0+

75
4

�
0+

01
4

�
0+

00
3

0+
10

3
0+

79
6

�
0+

05
3

1+
10

�
0+

01
5

�
0+

00
3

0+
11

1
0+

4
1+

2
�

0+
74

8
0+

28
9

�
0+

74
8

0+
29

1
0+

00
0

0+
00

4
2+

35
0+

42
3

2+
38

0+
42

6
0+

00
0

0+
00

2
0+

7
1

�
0+

77
3

0+
07

6
�

0+
77

4
0+

08
7

�
0+

00
6

0+
31

9
1+

45
0+

17
1

1+
56

0+
18

7
�

0+
00

6
0+

31
2

N
ot

e:
Tn 1

�
Tn 0
~@

n0
2#
!,
Tn 2

�
Tn 0
~m
!,
Tn 5

�
Tn
Zu
~@

n0
2#
!,
Tn 6

�
Tn
Zu
~m
!,
Tn 7

�
Tn~
g
,g

�
u,
d

�
u
!,
Tn 8

�
Tn~
[g,
Z

g
�
u,
Z

d
�
u
!,

w
he

re
m

�
10
,2

0,
40
,

co
rr

es
po

nd
in

g
to

n
�

64
,1

28
,2

56
,

re
sp

ec
ti

ve
ly
+

798

https://doi.org/10.1017/S0266466606060361 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060361


T
ab

le
11

.
M

on
te

C
ar

lo
st

an
da

rd
de

vi
at

io
n,
r

�
�

0+
5

u
�

0+
3

u
�

�
0+

3

n
g

d
Tn 1

Tn 5
Tn 2

Tn 6
Tn 7

Tn 8
Tn 1

Tn 5
Tn 2

Tn 6
Tn 7

Tn 8

64
0

0+
6

0+
07

4
0+

27
0

0+
07

6
0+

40
8

0+
09

6
1+

55
0+

29
2

0+
27

2
0+

36
2

0+
39

7
0+

09
6

1+
53

0
1+

2
0+

05
4

0+
99

1
0+

05
3

1+
19

0+
02

0
0+

44
2

0+
45

8
1+

26
0+

42
6

1+
58

0+
02

0
0+

36
2

0
2

0+
04

7
1+

27
0+

04
7

1+
27

0+
00

2
0+

01
6

0+
29

9
2+

35
0+

29
8

2+
35

0+
00

2
0+

01
6

0+
4

0+
8

0+
09

1
0+

43
8

0+
09

2
0+

55
5

0+
17

8
2+

00
0+

45
0

0+
43

2
0+

48
6

0+
57

3
0+

17
8

1+
97

0+
4

1+
2

0+
05

6
1+

01
0+

05
6

1+
21

0+
05

6
0+

85
0

0+
48

5
1+

24
0+

46
0

1+
47

0+
05

6
0+

97
9

0+
7

1
0+

13
5

0+
73

3
0+

13
6

0+
90

2
0+

25
9

2+
18

0+
62

9
0+

81
0

0+
66

0
1+

03
0+

25
9

2+
14

12
8

0
0+

6
0+

06
3

0+
24

3
0+

06
3

0+
35

6
0+

05
7

0+
63

4
0+

30
0

0+
24

2
0+

38
0

0+
34

4
0+

05
7

0+
46

0
0

1+
2

0+
04

2
0+

78
7

0+
04

2
0+

82
3

0+
00

9
0+

04
2

0+
55

2
1+

30
0+

52
7

1+
38

0+
00

9
0+

04
1

0
2

0+
03

7
0+

74
3

0+
03

7
0+

74
3

0+
00

1
0+

00
6

0+
36

4
1+

53
0+

36
4

1+
52

0+
00

1
0+

00
6

0+
4

0+
8

0+
06

7
0+

42
4

0+
06

7
0+

51
0

0+
11

2
1+

32
0+

53
0

0+
38

6
0+

55
5

0+
46

8
0+

11
2

1+
37

0+
4

1+
2

0+
04

2
0+

72
9

0+
04

2
0+

74
8

0+
03

0
0+

35
7

0+
57

3
1+

16
0+

55
1

1+
21

0+
03

0
0+

42
7

0+
7

1
0+

10
2

0+
65

2
0+

10
2

0+
70

8
0+

16
7

1+
78

0+
72

3
0+

80
0

0+
73

7
0+

88
5

0+
16

7
1+

75

25
6

0
0+

6
0+

05
7

0+
22

3
0+

05
6

0+
30

4
0+

03
6

0+
20

8
0+

30
3

0+
22

0
0+

39
2

0+
28

9
0+

03
6

0+
21

7
0

1+
2

0+
03

5
0+

52
9

0+
03

5
0+

53
2

0+
00

4
0+

02
5

0+
68

8
0+

91
2

0+
67

0
0+

92
2

0+
00

4
0+

02
5

0
2

0+
02

9
0+

52
1

0+
02

9
0+

52
1

0+
00

0
0+

00
3

0+
45

7
0+

96
7

0+
45

7
0+

96
7

0+
00

0
0+

00
3

0+
4

0+
8

0+
05

1
0+

41
2

0+
05

1
0+

46
0

0+
07

6
0+

64
3

0+
62

3
0+

37
4

0+
64

4
0+

41
6

0+
07

6
0+

67
1

0+
4

1+
2

0+
03

5
0+

49
9

0+
03

5
0+

50
1

0+
01

7
0+

06
9

0+
70

4
0+

78
5

0+
68

7
0+

79
0

0+
01

7
0+

06
6

0+
7

1
0+

07
3

0+
52

3
0+

07
3

0+
53

6
0+

11
6

1+
19

0+
82

9
0+

68
9

0+
82

8
0+

71
5

0+
11

6
1+

19

N
ot

e:
Tn 1

�
Tn 0
~@

n0
2#
!,
Tn 2

�
Tn 0
~m
!,
Tn 5

�
Tn
Zu
~@

n0
2#
!,
Tn 6

�
Tn
Zu
~m
!,
Tn 7

�
Tn~
g
,g

�
u,
d

�
u
!,
Tn 8

�
Tn~
[g,
Z

g
�
u,
Z

d�
u
!,

w
he

re
m

�
10
,2

0,
40
,

co
rr

es
po

nd
in

g
to

n
�

64
,1

28
,2

56
,

re
sp

ec
ti

ve
ly
+

799

https://doi.org/10.1017/S0266466606060361 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060361


Figure 1. Strongly unbalanced cointegrated I ~1+8!, I ~1+4! series+

Figure 2. Noncointegrated I ~1+8!, I ~1+4! series+

Figure 3. Strongly unbalanced cointegrated I ~1+8!, I ~1! series+

Figure 4. Noncointegrated I ~1+8!, I ~1! series+
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Figure 5. Strongly unbalanced cointegrated I ~1+2!, I ~0+8! series+

Figure 6. Noncointegrated I ~1+2!, I ~0+8! series+

Figure 7. Strongly unbalanced cointegrated I ~1+4!, I ~0+6! series+

Figure 8. Noncointegrated I ~1+4!, I ~0+6! series+
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this is not a significative study, and undoubtedly further empirical and Monte
Carlo investigation is needed, but our intention in showing these figures was
simply to give the flavor of the possible existence of intrinsic linkages between
series with different orders of integration and thus motivate empirical research-
ers to interpret real data following these lines+
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APPENDIX A:
Characterization of Limiting Distributions

THEOREM BCU+

(i) If g � d � 1

pi ~n! � nb, Ji ~g,d!� j 'B~1!C102�
0

1

W~r;d!W '~r;g! drC102B '~1!z,

g � 2
1
�, i � 1,2,

pi ~n! � nb, Ji ~g,d!� j 'B~1!C102�
0

1

W~r;d! dW '~r!C102B '~1!z,

g� 0, i � 1,2; (A.1)

(ii) if g � d � 1

p1~n! � n2d�10log n, J1~g,d!� 2h12~0!sin~dp!, g � 0,

p1~n! � n, J1~g,d!� j 'B~1!C102�
0

1

W~r! dW '~r!C102B '~1!z

�(
j�0

`

E~u10 v2,�j !, g� 0,

p2~n! � n2d�10log m, J2~g,d!�J1~g,d!, g � 0,

p2~n! � n, J2~g,d!� j 'B~1!C102�
0

1

W~r! dW '~r!C102B '~1!z�ph12~0!,

g� 0;

(iii) if g � d � 1

p1~n! � n2d�1, J1~g,d!��
�p

p

a~d;l!a~g;�l!h12~l! dl,

p2~n! � nbmg�d�1, J2~g,d!� 2~2p!1�g�dh12~0!
cos~bp02!

1 � g� d
+

THEOREM ABCU+

(i) If g � d � 1

qi ~n! � nb, Fi ~g,d,n,h!�
Ji ~g,d!

Y~d!
,

hn

nb log n
r `, i � 1,2,

qi ~n! � nb, Fi ~g,d,n,h!�
Ji ~g,d!

Y~d!
� nh, hn; nb log n, i � 1,2,

qi ~n! � hn 0log n, Fi ~g,d,n,h!� �nh,
hn

nb log n
r 0, i � 1,2,
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where for any two sequences an, bn, ; denotes that an0bn r 1 as n r `;

(ii) if g � d � 1

q1~n! � n2d�101log n , F1~g,d,n,h!�
J1~g,d!

Y~d!
,

hn

n2d�1 log n1log�1 n

r `,

q1~n! � n2d�101log n , F1~g,d,n,h!�
J1~g,d!

Y~d!
� nh,

hn; n2d�1 log n1log�1 n ,

q1~n! � hn 0log n, F1~g,d,n,h!� �nh,
hn

n2d�1 log n1log�1 n

r 0,

q2~n! � n2d�101log m , F2~g,d,n,h!�
J2~g,d!

Y~d!
,

hn

n2d�1 log n1log�1 m

r `,

q2~n! � n2d�101log m , F2~g,d,n,h!�
J2~g,d!

Y~d!
� nh,

hn; n2d�1 log n1log�1 m ,

q2~n! � hn 0log n, F2~g,d,n,h!� �nh,
hn

n2d�1 log n1log�1 m

r 0,

where 1a � 1~g � 0! � a1~g � 0!;

(iii) if g � d � 1

q1~n! � n2d�1, F1~g,d,n,h!�
J1~g,d!

Y~d!
,

hn

n2d�1 log n
r `,

q1~n! � n2d�1, F1~g,d,n,h!�
J1~g,d!

Y~d!
� nh, hn; n2d�1 log n,

q1~n! � hn 0log n, F1~g,d,n,h!� �nh,
hn

n2d�1 log n
r 0,

q2~n! � nbmg�d�1, F2~g,d,n,h!�
J2~g,d!

Y~d!
,

hn

nbmg�d�1 log n
r `,

q2~n! � nbmg�d�1, F2~g,d,n,h!�
J2~g,d!

Y~d!
� nh,

hn; nbmg�d�1 log n,

q2~n! � hn 0log n, F2~g,d,n,h!� �nh,
hn

nbmg�d�1 log n
r 0+

UNBALANCED COINTEGRATION 805

https://doi.org/10.1017/S0266466606060361 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060361


THEOREM UU+

(i) If 2d � u � 1, d � u � 1
2
_

ri ~n! � nu, Qi ~u,d!� z 'A~1!S102�
0

1

W~r;d!W '~r;d� u! drS102A'~1!j,

Pi ~d� u! � j 'A~1!S102�
0

1

W~r;d� u!W '~r;d� u! drS102A'~1!j, i � 1,2;

(ii) if 2d � u � 1, 0 � d � u � 1
2
_

r1~n! � n1�~2d�u!, P1~d� u!��
�p

p

61 � e il 6�2~d�u! f22~l! dl, (A.2)

r2~n! � num1�2~d�u!, P2~d� u!�
2f22~0!

~2p!2~d�u! ~1 � 2~d� u!!
, (A.3)

Qi ~u,d! � z 'A~1!S102�
0

1

W~r;d! dW '~r!S102A'~1!j,

d� u� 0, i � 1,2; (A.4)

(iii) if 2d � u � 1, 0 � d � u � 1
2
_

r1~n! � log�1 n, P1~d� u!��
�p

p

61 � e il 6�2~d�u! f22~l! dl,

r2~n! � log�1 m�m

n
�1�2~d�u!

, P2~d� u!�
2f22~0!

~2p!2~d�u! ~1 � 2~d� u!!
,

Qi ~u,d! � 2f12~0!sin~dp!, i � 1,2;

(iv) if 2d � u � 1, d � u � 0 (or equivalently d � 1, u � �d)

r1~n! � 1, P1~d� u!��
�p

p

f22~l! dl,

Q1~u,d! � z 'A~1!S102�
0

1

W~r! dW '~r!S102A'~1!j�(
j�0

`

E~v20 v1,�j !,

r2~n! � mn�1, P2~d� u!� 2f22~0!,

Q2~u,d! � z 'A~1!S102�
0

1

W~r! dW '~r!S102A'~1!j�pf12~0!;
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(v) if 2d � u � 1, d � u � 0

r1~n! � 1, P1~d� u!��
�p

p

61 � e il 6�2~d�u! f22~l! dl,

Q1~u,d! ��
�p

p

a~d;l!a~d� u;�l! f12~l! dl,

r2~n! � �m

n
��u

, P2~d� u!�
2f22~0!

~2p!2~d�u! ~1 � 2~d� u!!
,

Q2~u,d! �
2~2p!1�~2d�u! f12~0!cos~up02!

1 � ~2d� u!
+

Alternative Representation of the Limiting Distributions of Theorem UU. Under
the same conditions of Theorem UU, assuming v12 � 0, as n r `,

ri ~n! Tni n nCi ~d,u!, i � 1,2,

where ri~n! are the normalizing sequences given in Theorem UU and denoting gij~l!�
fij~l!0fij~0! , i, j � 1,2,

~i! if 2d � u � 1, d � u � 1
2
_

Ci ~d,u! �
~r�1~1 � r2 !102, 1!�

0

1

W~r;d!W '~r;d� u! drj

j '�
0

1

W~r;d� u!W '~r;d� u! drj

, i � 1,2;

~ii! if 2d � u � 1, d � u � 0 ~or equivalently d � 1, u � �d)

C1~d,u! �
2p~r�1~1 � r2 !102, 1!�

0

1

W~r;d! dW '~r!j

�
�p

p

g22~l! dl

,

C2~d,u! � p~r�1~1 � r2 !102, 1!�
0

1

W~r;d! dW '~r!j;

~iii! if 2d � u � 1, 0 � d � u � 1
2
_

C1~d,u! �
2 sin~dp!

�
�p

p

61 � e il 6�2~d�u!g22~l! dl

,

C2~d,u! � ~2p!2~d�u! ~1 � 2~d� u!!sin~dp!;
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~iv! if 2d � u � 1, d � u � 0 ~or equivalently d � 1, u � �d)

C1~d,u! �

2p~r�1~1 � r2 !102, 1!�
0

1

W~r! dW '~r!j� f12
�1~0! (

j�0

`

E~v20 v1,�j !

�
�p

p

g22~l! dl

,

C2~d,u! � p~r�1~1 � r2 !102, 1!�
0

1

W~r! dW '~r!j�
p

2
;

~v! if 2d � u � 1, d � u � 0

C1~d,u! �
�

�p

p

a~d;l!a~d� u;�l!g12~l! dl

�
�p

p

61 � e il 6�2~d�u!g22~l! dl

,

C2~d,u! �
~2p!1�u~1 � 2~d� u!!cos~up02!

1 � ~2d� u!
+

THEOREM UCD+

si ~n! � pi�2~n!, Gi ~g,d,n,L!�Ji�2~g,d!0Y~d!, i � 3,4;

(i) If g � d � 1

si ~n! � nb, Gi ~g,d,n,L!�
Ji ~g,d!

Y~d!
,

gn

nb log n
r `, i � 5,6,

si ~n! � nb, Gi ~g,d,n,L!�
Ji ~g,d!

Y~d!
� nL, gn; nb log n, i � 5,6,

si ~n! � gn 0log n, Gi ~g,d,n,L!� nL,
gn

nb log n
r 0, i � 5,6;

(ii) if g � d � 1

s5~n! � n2d�101log n , G5~g,d,n,L!�
J1~g,d!

Y~d!
,

gn

n2d�1 log n1log�1 n

r `,

s5~n! � n2d�101log n , G5~g,d,n,L!�
J1~g,d!

Y~d!
� nL,

gn; n2d�1 log n1log�1 n ,

s5~n! � gn 0log n, G5~g,d,n,L!� nL,
gn

n2d�1 log n1log�1 n

r 0,
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s6~n! � n2d�101log m , G6~g,d,n,L!�
J2~g,d!

Y~d!
,

gn

n2d�1 log n1log�1 m

r `,

s6~n! � n2d�101log m , G6~g,d,n,L!�
J2~g,d!

Y~d!
� nL,

gn; n2d�1 log n1log�1 m ,

s6~n! � gn 0log n, G6~g,d,n,L!� nL,
gn

n2d�1 log n1log�1 m

r 0,

where 1a � 1~g � 0! � a1~g � 0!;

(iii) if g � d � 1

s5~n! � n2d�1, G5~g,d,n,L!�
J1~g,d!

Y~d!
,

gn

n2d�1 log n
r `,

s5~n! � n2d�1, G5~g,d,n,L!�
J1~g,d!

Y~d!
� nL, gn; n2d�1 log n,

s5~n! � gn 0log n, G5~g,d,n,L!� nL,
gn

n2d�1 log n
r 0,

s6~n! � nbmg�d�1, G6~g,d,n,L!�
J2~g,d!

Y~d!
,

gn

nbmg�d�1 log n
r `,

s6~n! � nbmg�d�1, G6~g,d,n,L!�
J2~g,d!

Y~d!
� nL,

gn; nbmg�d�1 log n,

s6~n! � gn 0log n, G6~g,d,n,L!� nL,
gn

nbmg�d�1 log n
r 0+

APPENDIX B: Proofs of Theorems

Proof of Theorem BNCUD. First, we show ~28!+ Now

Tn5 � Tn1 �
(
t�1

n

yt ~xt ~ Zu!� xt ! (
t�1

n

xt
2 �(

t�1

n

xt yt(
t�1

n

~xt
2~ Zu!� xt

2!

(
t�1

n

xt
2~ Zu! (

t�1

n

xt
2

,
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so that, in view of Theorems 4+4 and 5+1 of Robinson and Marinucci ~2001!, ~28! holds
on showing

(
t�1

n

yt ~xt ~ Zu!� xt ! � Op~n
2dgn

�1 log n!, (B.1)

(
t�1

n

~xt
2~ Zu!� xt

2! � Op~n
2dgn

�1 log n!+ (B.2)

First, as in Robinson and Hualde ~2003!, by Taylor’s theorem, for some R � 1, the left
side of ~B+1! is

(
t�1

n

yt(
j�0

t�1

(
r�1

R�1 ~� Zu!r

r!
aj
~r!~d!v2, t�j �(

t�1

n

yt(
j�0

t�1 ~� Zu!R

R!
aj
~R!~ Nd!v2, t�j , (B.3)

where

aj
~r!~b! �

d r

dbr
aj ~b!

and Nd is an intermediate point between d and d � Zu+ Now, in view of Lemmas D+1 and
D+5 of Robinson and Hualde ~2003! and Assumption PE, choosing R large enough, the
dominant term in ~B+3! is the first one, so that ~B+1! follows from minor modifications
of Theorems 4+4 and 5+1 of Robinson and Marinucci ~2001!, where the only difference
is that the weights aj

~r!~d! are not covered by those of Robinson and Marinucci ~2001!
because of the presence of log factors but they just contribute the log factor in ~B+1!
~see, e+g+, Bingham, Goldie, and Teugels, 1989, Cor+ 1+7+3!+ The proof of ~B+2! is iden-
tical to that of ~B+1!, to conclude for ~28!+ Finally, ~29! follows from minor modifica-
tions of Propositions 4+1 and 4+2 of Robinson and Marinucci ~2003!+ �

Proof of Theorem ABCU. We give only the proof for Tn1, the proof for Tn2 being
almost identical in view of Propositions 4+1 and 4+2 of Robinson and Marinucci ~2003!+
Now

Tn1 � n �
(
t�1

n

u1t ~�g!v2 t ~�d!

(
t�1

n

v2 t
2 ~�d!

� n
(
t�1

n

~v2 t ~�d!� xt, n !xt, n

(
t�1

n

xt, n
2

(B.4)

�
(
t�1

n

u1t ~�g!xt, n

(
t�1

n

xt, n
2

�
(
t�1

n

u1t ~�g!v2 t ~�d!

(
t�1

n

v2 t
2 ~�d!

+ (B.5)

The first term on the right-hand side of ~B+4! is the usual one appearing with strictly
balanced orders, whose asymptotic behavior was discussed in Theorem BCU+ Next, as
in the proof of Theorem BNCUD, by Taylor’s theorem and ~32!, it is readily seen that
the dominant term on the second term on the right-hand side of ~B+4! is
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�nun

(
t�1

n

v2 t ~�d! (
j�0

t�1

aj
~1!~d!v2, t�j

(
t�1

n

v2 t
2 ~�d!

+

Taking derivatives in ~2!,

(
j�0

t�1

aj
~1!~d!v2, t�j � (

j�1

t�1

c~ j � d!aj ~d!v2, t�j � c~d! (
j�1

t�1

aj ~d!v2, t�j , (B.6)

where c~x! is the digamma function

c~x! �
d

dx
log G~x!+

By Taylor’s theorem, the first term on the right-hand side of ~B+6! is equal to

(
j�1

t�1

(
r�0

R�1 c~r! ~ j !

r!
d raj ~d!v2, t�j �(

j�1

t�1 c~R! ~ j � Nd!

R!
dRaj ~d!v2, t�j , (B.7)

where c~r!~x! represents the rth derivative of the digamma function

c~r! ~x! �
d r

dx r
c~x!,

with the convention c~0!~x!� c~x! and j � j � Nd � j � d+ Noting that as in the proof of
Lemma D+1 of Robinson and Hualde ~2003!, for l � 1,

6c~l ! ~x!6 � K~1 � x!�l,

the first term in the expansion ~B+7! is the dominant one+ By ~6+3+21! in Abramowitz
and Stegun ~1970, p+ 259!, for j � 0

c~ j ! � log j �
1

2j
� 2�

0

` tdt

~t 2 � j 2 !~e2pt � 1!
+ (B.8)

The absolute value of the third term is bounded by

K�
0

` tdt

~t 2 � j 2 !e2pt
�

K

j
�

0

` dt

e2pt
�

K

j
,

implying from ~B+8! that

c~ j ! � log j � O~ j�1 !+

Thus, the first term in ~B+6! is

(
j�1

t�1

log jaj ~d!v2, t�j � Op�(
j�1

t�1

j�1 6aj ~d!v2, t�j 6�+ (B.9)
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By Marinucci and Robinson ~2000!, the first term in ~B+9! is Op~t d�102 log t !, whereas,
by Stirling’s approximation, the second one is Op~1 � log t1~d� 1!� t d�11~d � 1!!+ In
addition, by Marinucci and Robinson ~2000! the second term in ~B+6! is Op~t d�102!, so
that by Marinucci and Robinson ~2000! and the continuous mapping theorem

(
t�1

n

v2 t ~�d! (
j�1

t�1

aj
~1!~d!v2, t�j

log n(
t�1

n

v2 t
2 ~�d!

rp 1+

Finally, noting that due to ~32!, ~B+5! is in all cases of smaller order than the first term
on the right-hand side of ~B+4!, we conclude the proof of the theorem+ �

Proof of Theorem UU. First, ~i! follows from direct application of Theorem 1 of
Marinucci and Robinson ~2000!, the continuous mapping theorem, and Theorems 4+4
and 5+1 of Robinson and Marinucci ~2001!+ Next, under ~ii!, xt is asymptotically station-
ary, and defining

Ixt � (
j�0

`

aj ~d� u!v2, t�j ,

which is that covariance stationary version of xt , it is straightforward to show that under
our conditions

n�1(
t�1

n

Ixt
2rp E~ Ixt

2! ��
�p

p

61 � e il 6�2~d�u! f22~l! dl

~see, e+g+, Hualde and Robinson, 2006!+ By the Cauchy–Schwarz inequality, the proof
of ~A+2! would be complete on showing

(
t�1

n

~ Ixt � xt !
2 � op~n!+ (B.10)

The expectation on the left-hand side of ~B+10! is

(
t�1

n �
�p

p

(
j�t

`

(
k�t

`

aj ~d� u!ak~d� u!e i ~ j�k!l f22~l! dl

� K(
t�1

n �
�p

p

�(
j�t

`

aj ~d� u!e ijl�
2

� K(
t�1

n

(
j�t

`

j 2~d�u!�2 � Kn2~d�u!,

as d � u � 1
2
_ , so ~B+10! holds, to complete the proof of ~A+2!+ Next, ~A+3! follows on

showing

1

n2~d�u!m1�2~d�u! (
j�0

m

cj Ix ~lj !rp

2f22~0!

~2p!2~d�u! ~1 � 2~d� u!!
+
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Now,

(
j�0

m

cj Ix ~lj ! � 2(
j�1

m

I Ix ~lj !� 2(
j�1

m

~Ix ~lj !� I Ix ~lj !!� Ix ~0!+ (B.11)

Related to the first term, by Theorem 1 of Robinson ~1994!,

2p

n (j�1

m

I Ix ~lj !

�
0

lm

61 � e il 6�2~d�u! f22~l! dl

rp 1,

where

�
0

lm

61 � e il 6�2~d�u! f22~l! dl ;
f22~0!lm

1�2~d�u!

1 � 2~d� u!
,

where the symbol ; indicates here that the ratio of left- and right-hand sides tends to 1
as l tends to 0+ Thus,

2

n2~d�u!m1�2~d�u! (
j�1

m

I Ix ~lj !rp

2f22~0!

~2p!2~d�u! ~1 � 2~d� u!!
, (B.12)

noting that when d � u � 0, ~B+12! reflects the standard result for I ~0! processes ~see,
e+g+, Brockwell and Davis, 1991, Thm+ 10+4+1!,

m�1 (
j�1

m

I Ix ~lj !rp f22~0!+

Next, the second term in ~B+11! is equal to

2(
j�1

m

6wx ~lj !� w Ix ~lj !62 � 4 Re�(
j�1

m

~wx ~lj !� w Ix ~lj !!w Ix ~�lj !� + (B.13)

By the Cauchy–Schwarz inequality, the second term is bounded by

K�(
j�1

m

6wx ~lj !� w Ix ~lj !62 (
j�1

m

I Ix ~lj !�102

+

By previous arguments

(
j�1

m

I Ix ~lj ! � Op~n
2~d�u!m1�2~d�u! !,
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and by Robinson ~2005!,

(
j�1

m

E6wx ~lj !� w Ix ~lj !62 � K(
j�1

m

j�1lj
�2~d�u!� Kn2~d�u! (

j�1

m

j�1�2~d�u!

� K log m, d� u� 0,

� Kn2~d�u!, d� u � 0,

so the second term of ~B+13! is Op~m102 log102 m! if d � u � 0, or Op~n2~d�u!

m102�~d�u! ! if d � u � 0, so that it is of smaller order than the first on the right-hand
side of ~B+11!+ Similarly, the first term of ~B+13! is of smaller order+ Finally, the third
term on the right-hand side of ~B+11! is

1

2pn
�(

t�1

n

xt�2

� Op~n
2~d�u! !,

by Marinucci and Robinson ~2000!, also of smaller order, to conclude the proof of ~A+3!+
Finally, ~A+4! holds as ~A+1!, and the results corresponding to ~iii!, ~iv!, and ~v! are

straightforward applications of previous arguments and results in Robinson and Mari-
nucci ~2001!+ �
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