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This paper investigates the transient regime and turbulent wake characteristics of
temporally developing double helical vortices via high-fidelity large-eddy simulation
(LES) for circulation Reynolds numbers in the range ReΓ = 7000–70 000, vortex-core
radii between rc = 0.06R and 0.2R and helical pitches in the range h= 0.36R–0.61R,
where R is the initial helix radius. The present study achieves three objectives:
(i) assess the influence of ReΓ , rc and h on the growth rates of the helical
vortex instability driven by mutual inductance; (ii) characterize the type of vortex
reconnection events that appear during transition; (iii) study the characteristics of
turbulence in the far wake, and in particular quantify the anisotropy in the flow. The
initial transient dynamics is conveniently described in terms of the non-dimensional
time t? = tΓ /h2, yielding the dimensionless growth rate of α∗ ∼ 20 and collapsing
of all the LES data for a given rc/h ratio. The vortex-core displacement growth
rate is found to be Reynolds-number independent, and decreases for larger rc/h
ratios. Several vortex reconnection events are identified during the transition, mostly
initiated by the leap frogging of helical vortices. This phenomenon causes the
entanglement of orthogonal vortex filaments, leading to their separation, followed by
the creation of elongated threads in the axial direction. The turbulent wake generated
by the breakdown of the helical vortices is found to be highly anisotropic with the
axial fluctuations being dominant compared to the radial and azimuthal fluctuations
(near one-dimensional turbulence). The study of integral length scales shows the
presence of a strong large-scale anisotropy, retaining the memory of the initial helical
pitch h, in particular for the integral scale in the axial direction. The large-scale
anisotropy is propagated through the inertial and dissipative ranges, determined from
the computation of the moments of velocity gradients in the three directions.

Key words: turbulence simulation, vortex breakdown, vortex dynamics

1. Introduction

Helical vortices play an important role in a wide range of applications. This
particular vortex system is a main feature of rotating lifting surfaces present in
wind turbine compounds, helicopters, counter-rotating rotors or naval propellers. They

† Email address for correspondence: jchapeli@purdue.edu
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impact in particular the efficiency of such devices, increasing the load on rotor blades,
generating undesirable wake or acoustic nuisances. The helical vortices generated by
rotating blades keep their coherent state in the near wake before breaking up into
turbulence in the far-wake region of the flow. The path of transition to turbulence
depends on various parameters such as the helix radius, helix pitch, vortex-core
radius and the number of blades considered. The study of the transition dynamics
of such vortices is therefore of crucial interest, as the near- and far-wake regions
display important differences in terms of flow structures, patterns and kinetic energy
content. The precise knowledge of the wake dynamics related to helical vortices can,
for example, allow selection of the optimal arrangement for a wind turbine farm.

The theoretical stability bounds of a single helical vortex filament have been
studied by Widnall (1972), who reported three types of instabilities that can lead to
the turbulent breakdown of such vortices. The first type relates to a short-wavelength
perturbation of the filament, arguably present on all curved filaments. The second
type is due to a long-wavelength perturbation of the filament, and the last one,
termed the mutual inductance phenomenon, occurs when the pitch of the helix is
sufficiently low to allow for the neighbouring filaments to interact strongly. This
phenomenon is particularly important regarding the stability of helical vortices, as it
drives the amplitude of the growth rates of vortex-core displacement for sufficiently
small helical pitch values. Gupta & Loewy (1974) have investigated analytically the
stability of multiple arrays of helical vortices and have shown that increasing the
number of intertwined helical filaments or decreasing the helical pitch leads to an
increase in the instability growth rates. Okulov (2004) carried out a similar study and
concluded that an increase in the number of vortices or a decrease of the helical pitch
yields the instability of a wider range of modes. More recently, Nemes et al. (2015)
have investigated experimentally the dynamics of a pair of helical vortices subject to
mutual inductance. They found that a decrease in helical pitch led to faster transition
to turbulence, confirming the analysis of Gupta & Loewy (1974). Felli, Camussi &
Di Felice (2011) have studied experimentally the wake shed by propellers featuring
different number of blades at various rotating speeds corresponding to different
helical pitches. They found that both the increase in number of blades and reduction
of helical pitch led to an anticipated transition towards a turbulent state, in agreement
with the theoretical study of Gupta & Loewy (1974). Once the system of helical
vortices is destabilized, it has been observed both numerically and experimentally
that the leap frogging or merging of vortices can occur (Ivanell et al. 2010; Felli
et al. 2011; Sherry et al. 2013; Nemes et al. 2015). These events yield a breakdown
of the initial vortices and lead to the production of small-scale turbulence.

As numerous works studied the stability of helical vortices by experimental or
numerical means (Alekseenko et al. 1999; Okulov 2004; Okulov & Sørensen 2007;
Walther et al. 2007; Sørensen, Naumov & Okulov 2011; Delbende, Rossi & Daube
2012; Quaranta, Bolnot & Leweke 2015), there is still the need to explain the
vortex reconnection events that appear in the flow during transition and to study the
properties of the resulting turbulence associated with the wake shed by transitional
helical vortices, in particular the type of scales and anisotropy in the flow. The
present work considers a parameter space for which these reconnection events and the
associated generation of small scales are likely to occur, that is, for moderately high
circulation-based Reynolds numbers, ReΓ > 7000 and small vortex-core-to-helix-radius
ratios, rc/R < 0.2. Lower Reynolds numbers and/or thicker vortex cores, such as
ReΓ = 1000–10 000, and rc/R ≈ 0.2–0.3 considered in the simulations of Delbende,
Piton & Rossi (2015), lead to the merging of a pair of helical vortices, without the
presence of vortex reconnection events.
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Large-eddy simulation of double helical vortices 81

The objectives of the present study are threefold: (i) by means of high-fidelity
Navier–Stokes computations, study the influence of Reynolds number, initial vortex-
core radius and helical pitch on the growth rates of the helical vortex instability
driven by mutual inductance; (ii) characterize the type of vortex reconnection events
that typically appear in such flows during transition; (iii) study the properties of
turbulence in the far wake, and in particular evaluate the turbulent scales and quantify
the anisotropy.

The structure of the paper is the following: § 2 presents the computational set-up
based on a high-order compact finite difference framework and the coherent-vorticity
preserving (CvP, Chapelier, Wasistho & Scalo 2018) model for large-eddy simulation.
Section 3 introduces the numerical set-up for the study, based on the definition of
helical vortices in a triply periodic box using the Biot–Savart law with regularized
vortex core. Section 4 deals with the validation of the proposed numerical set-up by
reproducing the experiment of Nemes et al. (2015) for various helical pitch values.
Section 5.3 presents a sensitivity study of the vortex-core displacement rates to
various parameters, namely the helical pitch, Reynolds number based on circulation
and vortex-core radius. A collapse of the vortex-core displacement growth rates
considering various pitch values is obtained considering a non-dimensional time
t? = tΓ /h2 where Γ is the vortex circulation and h the helical pitch. Computations
involving various Reynolds numbers are performed and it is shown that the growth
rates are essentially insensitive to the Reynolds number. Finally, computations
involving various vortex-core radii show that large vortex cores impact the growth
rates, confirming the theoretical study of Gupta & Loewy (1974). Section 5.4 deals
with the characterization of the vortex reconnection events occurring during the
transition, after the end of the inviscid evolution of the flow. In particular, the
helical vortices undergo leap frogging, which creates the conditions of neighbouring
orthogonal vortex filaments to interact. This event yields the separation of the
aforementioned filaments as well as the creation of elongated threads in the axial
direction. A second reconnection event resembling the Crow instability (Crow 1970)
is identified for low pitch-to-helix radius ratio. In § 6, the wake anisotropy is studied
by analysing the values of the anisotropic Reynolds stress tensor as well as its
invariants which are plotted in the Lumley triangle. It is found that for all cases
considered, the turbulent wake retains high anisotropy for long time integration,
with a dominance of the axial fluctuations, in particular in the low Reynolds and
large core radius cases. Higher Reynolds numbers and smaller core radii tend to
lower the anisotropy, with a reduced axial component and more important radial
and azimuthal components, which are also equal. A scale-by-scale anisotropy study
reveals that the integral lengths computed during the decaying regime scale with the
initial helical pitch, emphasizing the influence of the initial conditions even at late
stages of flow evolution. This study also shows that the flow structures are elongated
in the streamwise direction and thin in the radial direction. The large-scale anisotropy
is also found to propagate to the dissipative scales as shown by the ratio of squared
velocity gradients in the radial and longitudinal directions.

2. Computational set-up
In this work, the compressible fluid motion is simulated by discretizing the Navier–

Stokes operator NS(w), which can be cast in the form:

NS(w)=
∂w
∂t
+∇ · [F c(w)− F v(w,∇w)] = 0, (2.1)
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where w= (ρ, ρU, ρE)T is the vector of conserved variables ρ, U and E (the density,
velocity and total energy respectively), and (∇w)ij = ∂wi/∂xj is the gradient of the
vector of conservative variables. Here F c, F v ∈ R5×3 are the convective and viscous
fluxes, respectively. The ideal gas law is considered for the closure of the system of
equations.

In the present study, the compressible large-eddy simulation (LES) formalism
introduced by Lesieur, Métais & Comte (2005) is adopted, yielding the following set
of filtered compressible Navier–Stokes equations:

NS(w)=∇ · F SGS(w,∇w), (2.2)

where w = (ρ, ρŨ, ρẼ)T is the vector of filtered and Favre-filtered conservative
variables. The Favre filter is defined as, for a given function ϕ, as ϕ̃ = ρϕ/ρ. In the
present approach, the filter is assumed to be implicitly performed by the discretization,
hence termed hereafter grid filter, with a corresponding filter width of ∆ which is
the grid spacing.

The subgrid-scale (SGS) tensor F SGS is the result of the filtering operation and it
encapsulates the dynamics of the unresolved subgrid scales, and is modelled here
using the eddy-viscosity assumption, yielding:

F SGS(w,∇w)=
(

0, 2µtS(w,∇w),−
µt Cp

Prt
∇T̃T

)T

, (2.3)

where S is the strain rate tensor, Prt is the turbulent Prandtl number that is set to
0.5. The CvP–Smagorinsky eddy-viscosity closure (Chapelier et al. 2018), which is
accurate for the prediction of transitional flows, is considered in the present study.
This method aims at reducing the influence of subgrid dissipation during transition
or in regions for which only coherent scales are present. The correction of the eddy
viscosity µt computed using traditional SGS models is proposed in the form:

µCvP
t = f (σ )µt, (2.4)

where f (σ ) is a function detecting small-scale turbulence by the means of the
parameter σ which is the ratio of test-filtered to grid-filtered enstrophy:

σ =
ξ̂

ξ
, (2.5)

where ξ = ω · ω/2, and the hat symbol represents the test filter associated with a
width being larger than the grid filter size. This sensor is activated by progressively
following the spectral broadening of enstrophy associated with the onset of small
scales in the flow, using the following expression:

f (σ )=


1 for σ < σeq,

1
2

(
1+ sin

(
π
σeq − 2σ + 1

2(1− σeq)

))
for σ ∈ [σeq, 1],

0 for σ > 1,

(2.6)

where σeq is the value of test-filtered to grid-filtered enstrophy ratio corresponding to
an equilibrium turbulent state having the Kolmogorov spectrum in the inertial range.
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FIGURE 1. (a) Sketch of the numerical set-up for the simulation of temporally evolving
helical vortices, with inset showing cylindrical system of coordinates local to the vortex
core. (b) Tangential velocity profile, uΨ versus the distance from the vortex core, ζ via
Biot–Savart law (3.2) with and without application of the smoothing kernel (3.3).

An assessment of the sensor f for the present physical system is proposed in § 4. The
baseline eddy viscosity corresponds to the Smagorinsky model:

µt = ρ(CS∆)
2
√

S : S, (2.7)

where ∆ is the grid spacing and CS the model coefficient set to the usual value 0.172.
The test filter used to compute the ratio σ is a sixth-order compact finite difference
filter with strength set to 0.4 (see Chapelier et al. (2018) for additional details).

The compressible, Favre-filtered Navier–Stokes equations are solved using a sixth-
order compact finite difference scheme solver originally written by Nagarajan, Lele
& Ferziger (2003), currently under development at Purdue University. The solver is
based on the staggered grid arrangement, providing superior accuracy compared to a
fully collocated approach. This type of staggered, compact high-order finite difference
schemes developed by Lele (1992) is found to provide quasi-spectral accuracy. The
time integration is performed using a third-order Runge–Kutta scheme.

3. Problem definition
The present work focuses on the study of a pair of temporally developing helical

vortices, initialized in a periodic box, and left to evolve in time. The helical vortex
filaments are first defined in a triply periodic box [LX,LY,LZ] using a parametric curve:

X(φ)= [`φ, R cos(φ), R sin(φ)]T, (3.1)

where R is the radius, h = 2π`/N the pitch of the helix divided by the number of
helical arrays N and φ is an angular variable, varying from 0 to 2πM, where M is
the number of helical periods, used to define the parametric curve. The latter should
not be confused with θ , which is the azimuthal coordinate in the cylindrical system
of reference in figure 1. In the present study, a double helical vortex configuration
is considered, hence N = 2 with three helical periods corresponding to M = 3. The
velocity field induced by the vortex filament is determined by the Biot–Savart law:

u(x)=−
Γ

4π

∫ 2πM

0
Kv

(x−X(φ))× t(φ)
|x−X(φ)|3

dφ, (3.2)
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where t(φ)= (`,−R sin φ, R cos φ) is the tangent vector to the helical filament, Γ is
the circulation and Kv is a smoothing kernel defining the shape of the vortex core. Van
Hoydonck, Bakker & Van Tooren (2010) have proposed an expression for Kv verifying
the model for the vortex-core tangential velocity uΨ (ζ ), as a function of the radial
distance from the core centre, ζ , (figures 1a, inset and 1b) proposed by Vatistas, Kozel
& Mih (1991). This expression has been discussed and tested by Bhagwat & Leishman
(2014), and reads:

Kv =
|x−X(φ)|2√
|x−X(φ)|4 + r4

c

, (3.3)

where rc is the vortex-core radius.
More recent work by Vatistas, Panagiotakakos & Manikis (2015) aimed at defining a

Reynolds-number-dependent turbulent tangential velocity profile. In the present study,
we consider profiles for a laminar flow, as our aim is to investigate the initial flow
instability dynamics and transition to a turbulent state.

Figure 1 presents a view of the initial condition for the simulation of a pair of
helical vortices with all relevant parameters. Here, we set LX = 6h for all simulations,
corresponding to three turns of the helices. The box size in the cross-section is
chosen as LY = LZ = 4.3R. The number of grid points in the x direction is chosen
such that the grid spacings are equal in each direction, namely 1x=1y=1z. This
yields a different number of grid points in the x direction compared to the y and z
directions, depending on the helical pitch. For convenience of notation, the resolution
of computations will be referred to as N3

y , where Ny is the number of grid points in
the y and z directions, whereas the effective number of grid points is N2

y ×Ny× 6h/LY .
As the mutual inductance between vortex filaments is governed by the helical pitch,

the relevant dimensional quantities for the problem are:

(i) The velocity Γ /h characterizing the self-motion of the system of helical vortices.
(ii) The helical pitch h, which is the distance separating two neighbouring vortex

filaments.
(iii) The circulation Γ of the vortex filaments.

The corresponding Reynolds number formed from these quantities is based on
circulation and reads ReΓ = Γ /ν.

Although the numerical method considered in the present study solves the
compressible Navier–Stokes equations, incompressible flow is achieved by setting
the Mach number Γ /h/c0 close to 0.1, where c0 =

√
γ p0/ρ0 is the speed of sound

based on reference thermodynamic quantities. The initial vector of conservative
variables therefore reads:

w(x, t= 0)=
(
ρ0, ρ0u,

p0

γ − 1
+

1
2
ρ0u · u

)T

. (3.4)

According to Okulov (2004), systems of helical vortices with more than one helix and
helical pitch lower than h/R≈ 5 are highly unstable as a wide range of perturbation
modes have a positive growth rate. In fact, the release of small amplitude acoustic
waves due to the compressible nature of the numerical solver, as well as the
approximations induced by determining the velocity using a discretely integrated
Biot–Savart law, are sufficient to trigger the flow instability. The influence of added
perturbations to the initial velocity field is assessed in appendix B.
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FIGURE 2. Iso-surfaces of vorticity coloured by the CvP–LES sensor function for three
different times: before turbulent breakdown, during the vortex filament reconnection event
and during the fully developed turbulent regime.

4. Validation against experiments
The present numerical set-up for the study of the dynamics of helical vortices

is first validated against the experiment of Nemes et al. (2015). To facilitate the
comparison with their work, in which they use the definition of the helical pitch
`= 2h, the ratio 2h/R will be considered to yield the same values between the two
studies. Although their study involves eight different cases with 2h/R ranging from
0.7 to 1.8, the comparison between the present computations and experiments is
performed considering the four cases 2h/R = 0.72, 2h/R = 0.91, 2h/R = 1.08 and
2h/R= 1.22. The spatial displacement of vortex cores is computed as the difference
between the radius of the vortices rh(x, t) and the initial radius rh(x, 0) = R. The
displacement is computed as:

d(t)=
1

LX

∫ LX

0
|rh(x, t)− R| dx, (4.1)

with rh(x, t) evaluated based on the position of the maximal vorticity magnitude in the
plane (y, z). Nemes et al. (2015) found an exponential evolution of the vortex-core
displacement as a function of time, d(t)∝ exp(αt).

This section features an evaluation of the numerical set-up for the physical system
considered in the present study. Four computations featuring 963, 1443, 1923 and
2563 grid points with the physical parameters set to 2h/R = 1.08, rc/R = 0.06 and
ReΓ = 7000 are considered. The behaviour of the CvP–LES approach is first assessed
by plotting the iso-surfaces of vorticity at various times of the 1923 computation
and colouring them using the turbulence sensor feature, see Chapelier et al. (2018).
Figure 2 shows that the turbulent sensor is first inactive during the transition, it
then activates at locations when vortex filaments connect and start to generate small
scales and ultimately stays active in the whole computational domain when the flow
enters the fully developed turbulent regime. The sensor function is a factor of the
eddy viscosity, allowing for a reduction of the subgrid dissipation in the vicinity of
coherent vortices, which is particularly useful to capture accurately the transition.

One critical concern is the number of grid points defined to discretize the vortex
cores when the flow is initialized. This directly impacts the prediction of the growth
rate, α, which is based on the accurate identification of the vortex cores. Computations
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FIGURE 3. Sensitivity of growth rates (a) and energy spectra at t = 12 s (b) to the
discretization for the LES computations of the pair of helical vortices at ReΓ = 7000.

2h/R (exp.) 2h/R (LES) α (exp.) α (LES)

0.75 0.72 4.28 4.55
0.95 0.91 2.67 2.85
1.10 1.09 1.95 2.05
1.25 1.22 1.54 1.65

TABLE 1. Experimental and numerical growth rates α computed as d(t)∝ exp(αt).
Experimental measurements have an uncertainty of 5–12 % (Nemes et al. 2015).

with 963, 1443, 1923 and 2563 grid points resolve the initial vortex core of radius
rc with respectively 2.5, 4, 5 and 7 grid points. The vortex-core displacement
growth rates are shown in figure 3(a) for the three discretizations considered. The
discretization with 963 grid points shows fluctuations of the vortex-core displacement
due to the difficulty of identifying the vortex cores locations at coarse resolution.
Increasing the number of grid points leads to a smoother evolution, yielding
quasi-grid-independent results for resolutions of 1443 and beyond. Four points per
vortex core are hence sufficient to capture the initial inviscid evolution of the flow.
The grid convergence is also checked for the fully developed turbulence part by
assessing the axial energy spectra at the final time of computations (t= 12 s), plotted
in figure 3(b). Again, from the resolution of 1443 onwards, the spectra peel off
each other, demonstrating the grid convergence of the numerical procedure. Only the
963 discretization seems under-resolved and shows differences with the other grids
also in the lower wavenumber range. This convergence study suggests that the 1923

grid is adequate to represent accurately the range of relevant physical phenomena
for the present validation study and is chosen as the reference discretization for the
comparison with experimental results involving several values of 2h/R.

Figure 4 shows the growth rates of vortex-core displacement computed numerically
as well as the exponential slopes determined in the experiments by Nemes et al.
(2015). As seen from figure 4 and table 1, a very good agreement is found
between the simulations and experiment for the four different cases considered,
thus corroborating the adequacy of the present numerical set-up for the study of
transitional helical vortices subject to mutual inductance. Also, the fact that the
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FIGURE 4. (Colour online) (a) Comparison of experimental and numerical growth rates
for the validation of the LES computations of the pair of helical vortices at ReΓ = 7000.
The evolution of the average vortex-core displacement d(t) (4.1) after the transition to
turbulence is not displayed. (b) Sketch of helix vortex-core displacement.

temporal growth of the vortex-core displacement is a function of the helical pitch
provides the evidence that the transition is driven by the mutual inductance between
the successive turns of the helices.

5. Dynamics of a pair of helical vortices subject to mutual inductance
5.1. Flow parameters

This section features a comprehensive physical study of the system of a temporally
developing pair of helical vortices. The dynamics of the various flow regimes is
studied considering a range of flow parameters. When the helical pitch h and
circulation Γ are chosen as reference parameters, three non-dimensional quantities
govern the dynamics of the present configuration. Namely, the ratio of pitch to helix
radius h/R, the ratio of vortex radius to pitch rc/h and the Reynolds number ReΓ .
A complete parametric study is performed to assess the influence of each quantity
on the growth rate of vortex-core displacements driven by mutual inductance. The
Reynolds number values span from ReΓ = 7000 to ReΓ = 70 000, the ratio helical
radius to helical pitch from h/R= 0.36 to h/R= 0.61 and the vortex-core radius from
rc/h= 0.166 to rc/h= 0.333. To give an idea about the size of the vortex-core radius
compared to the helix radius, which is often employed in the literature, the present
flow conditions span values of rc/R between 0.06 and 0.20. Table 2 summarizes the
parameter space for the present study, yielding 18 computations for the combination
of all possible values. A thorough evaluation of the resolution quality for each
Reynolds number has been performed including computations considering various
mesh sizes, and is found in appendix A. It has been determined that resolutions of
2883, 3843 and 4803 grids points are adapted to the Reynolds numbers ReΓ = 7000,
21 000 and 70 000, respectively.
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≈h
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˝

FIGURE 5. (Colour online) Flow regimes described from the evolution of volume-averaged
enstrophy. Case rc/h= 0.166, ReΓ = 21 000 and h/R= 0.36.

ReΓ = 7000 ReΓ = 21 000 ReΓ = 70 000

h/R= 0.36 E (red) E (blue) E
h/R= 0.45 @ (red) @ (blue) @
h/R= 0.61 A (red) A (blue) A

TABLE 2. Parameter space and corresponding symbols for the computations of the double
helical vortex configuration. These conditions are reproduced for two different vortex-core
radius ratios: rc/h= 0.166 and rc/h= 0.333.

5.2. Regimes of flow evolution
The flow can be decomposed into three different regimes, represented on the enstrophy
evolution in figure 5, as a function of the non-dimensional time t? = tΓ /h2. From
the beginning of the computation up to t? ≈ 5 (regime (A)), the flow dynamics is
essentially inviscid, and the helical structures undergo relative displacements of their
vortex cores with respect to the initial radius, induced by the mutual interaction
between vortex filaments. During this first period, the volume-averaged enstrophy
remains approximately constant in the flow as the vortices do not experience
significant modification of their properties (vortex-core shapes and circulation). From
t? = 5 and onwards (regime (B)), we can notice a strong increase of enstrophy levels
in the flow. The relative displacement of the vortex cores becomes significant enough
such that the vortex lines become closer to each other and start interacting strongly,
ultimately leading to the reconnection of vortex filaments at multiple locations on
the helices. These vortex reconnection events generate small scales in the flow and
modify significantly the shape of the initial helical vortices. The peak of enstrophy
is reached when all the vortex reconnection events have occurred and all scales have
developed in the flow. The time corresponding to the peak of enstrophy may vary
depending on the flow parameters (Reynolds, helical pitch, initial vortex-core radius).
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FIGURE 6. (Colour online) Evolution of kinetic energy normalized by its initial value as a
function of dimensionless time t?, for vortex-core radius rc/h= 0.166 (a) and rc/h= 0.333
(b). Different colours correspond to different Reynolds numbers (see table 2).

After the peak of enstrophy is reached, the fully developed turbulent regime (C) is
established.

A number of considerations can be made by inspecting the evolution of the volume-
averaged kinetic energy (figure 6). For all cases, the energy weakly decays up to t?≈
10, corresponding to the period during which the flow evolution is mostly inviscid.
Lower Reynolds number cases have the viscous diffusion impact at the large scales
from the beginning of the computations, yielding stronger energy decrease. Another
interesting observation lies in the fact that even if the non-dimensional time scale t?
related to parameters h and Γ is fit to collapse the flow evolution for all cases up
to t? ≈ 10, it does not collapse the turbulent decay rates for t? > 10. Given that the
non-dimensional time t? is scaled with the helical pitch h, the dimensional time at
t? = 30 is higher for higher values of h. It is therefore likely that by t? = 30, the
wake is at a more advanced stage of development for higher helical pitches.

5.3. Inviscid regime and vortex-core displacement growth rates
In this section, the flow dynamics during the initial inviscid regime is studied.
In particular, we are interested in quantifying the growth rates of vortex-core
displacements with respect to their rigid translation due to self-induced axial advection.
The displacements are caused by mutual inductance due to the proximity of vortex
filaments.

The growth rates are studied for a range of flow parameters including helical
pitch, Reynolds number and vortex-core radius. The vortex-core displacement growth
rates are expressed as a function of the non-dimensional time t? = tΓ /h2. This
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FIGURE 7. (Colour online) Vortex-core displacement rates as a function of non-
dimensional time t?, for vortex-core radii rc/h= 0.166 (a), rc/h= 0.333 (b). Dashed line:
exponential growth rate α? = 20.2.

non-dimensional time is obtained using the helical pitch as the reference length
and the reference velocity h/Γ , which corresponds to the self-motion of the helical
vortex induced by the proximity of vortex filaments. Figure 7 shows the evolution
of vortex-core displacement as a function of the time t?. The growth rates collapse
well and the transitional regime following an exponential temporal evolution of the
vortex-core displacement ends near t? = 4. This result confirms that the helical pitch
and therefore the mutual inductance between successive turn of the helices govern the
growth rate of vortex-core displacements. This collapse of the vortex-core evolution
confirms that the growth rate made non-dimensional using the helical pitch and
circulation is a constant value when the mutual inductance mode is predominant.
Here, we choose the same definition of non-dimensional growth rate as Nemes et al.
(2015):

α? = 2πα(2h)2/Γ . (5.1)

In their experiment, they found a value of α? close to 20 for various helical pitches
(with experimental uncertainty between 5 and 12 %). In the present calculations, the
growth rate obtained by fitting the data between t?= 2 and t?= 4 is α?= 20.2, which
is close to the value of 20 found by Nemes et al. (2015). Gupta & Loewy (1974) also
reported linear stability calculations of the growth rates for two helical pitches 2h/R=
0.63 and 2h/R= 0.95 (in the context of a system of two helical vortices) and reported
a maximum value of the growth rate of α?= 20 for both, with respect to various types
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of perturbations. We can also compare the growth rate to those obtained for a single
helical filament, for which h is defined by the distance separating two successive
turns of the single helix. The linear stability computations of Widnall (1972) report
maximal growth rates α?≈ 20; 21; 23; 20 for helical pitches h/R= 0.63; 1.26; 1.9; 6.3
respectively. An experimental study of the stability of a single vortex filament by
Quaranta et al. (2015) reports a maximal growth rate of α?≈ 20 for the helical pitch
h/R=0.5. These results emphasize that the growth rate α made non-dimensional using
the helical pitch (or in the case of a double filament, the shortest distance between two
successive helices), shows similar values for a range of theoretical and experimental
studies. The present results confirm this observation.

Figure 7 also reveals that variations in the Reynolds number do not impact the
transient regime. It is also seen, after t?= 4, that the Reynolds number as well as the
helical pitch have an influence on the growth rates. Namely, low Reynolds numbers
and low helical pitches impair the growth rates of vortex-core displacement, while
high Reynolds and high helical pitches yield a prolongation of the exponential growth
past t?=4. These effects can be attributed to viscous interactions that can occur earlier
when lower Reynolds numbers are considered, interrupting prematurely the inviscid
evolution of the vortices. An increase in the vortex-core size is also found to reduce
the growth of the vortex-core displacement amplitude in time, while still showing an
exponential evolution. This result is in line with the observation of Gupta & Loewy
(1974) who determined analytically that an increase in the vortex-core radius led to a
reduction of the growth rates for two helical vortices. Widnall (1972) determined the
same behaviour in the context of the stability of a single helical vortex filament.

5.4. Transient break-up and study of flow topology
5.4.1. Dynamics for low helical pitch

The flow evolution is studied by inspecting the history of Q-criterion iso-surfaces
at various times for all Reynolds numbers considered, comparing low and high
helical pitches. Figure 8 presents these vorticity plots for the lowest helical pitch and
smallest core radius. Between t? = 0 and 4, the two helical vortices interact, yielding
an acceleration and radius reduction of one helix, and deceleration and radius increase
for the other helix. This phenomenon leads to a leap frogging of the two helices, as
seen from the plot at t? = 6. The proximity of parallel vortices travelling at different
velocities due to the leap frogging triggers sinusoidal oscillations of the vortex
filaments as seen at t? = 8 and t? = 10. These short-wave oscillations have been
experimentally observed by Felli et al. (2011) in the context of the flow past marine
propellers. The nature of these oscillations depends greatly on the Reynolds number.
The highest Reynolds case displays small amplitude/small wavelengths oscillations,
whereas at lower Reynolds numbers, the amplitude of the oscillations and their
wavelengths increase. This enhanced amplitude of oscillations for the lower Reynolds
cases facilitates the reconnection between vortex filaments. The two helices merge
where the oscillation amplitude is the highest, forming an X-shaped structure seen at
t?= 14 for the ReΓ = 7000 case and for the ReΓ = 21 000 case. For the ReΓ = 70 000
case, the merging of these vortices occurs at t? = 18, as seen from figure 8. This
merging of vortex filaments is the source of the generation of small scales in the
flow as well as the decomposition of the main helical structures. This phenomenon is
further studied by focusing on one merging event (figure 11). The event involves two
parallel vortex filaments advected in the axial direction, one faster than the other. The
two display sinusoidal displacements of their core location. The two vortices start
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FIGURE 8. (Colour online) Q-criterion iso-surfaces coloured by pressure plotted at the
beginning of transient regime starting from t? = 4, for the helical pitch h/R= 0.36. The
lowest core radius rc/h= 0.166 case is considered.
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pairing at the location of maximal displacement amplitude. This pairing is initiated
by the appearance of vortex hooks that are perpendicular to the initial vortices. These
secondary vortices interact with the main ones, and their reduced circulation/strength
make them wind around both main vortices, a process similar to the one described by
Zabusky & Melander (1989) in the interaction of strong and weak orthogonal vortices.
This creates an entanglement of the two initial vortices at the location of maximal
oscillation amplitude. Structures of different scales are observed at this location.
The initial low-speed vortex keeps its vertical shape, while the high-speed one is
strongly distorted and is shifted horizontally away from the reconnection zone. This
phenomenon shares strong similarities with the Crow instability (Crow 1970), which
occurs when parallel counter-rotating vortices are subject to large oscillations. The
presently observed phenomenon is also consistent with the computations performed
by Laporte & Corjon (2000), who have super-imposed short-wave oscillations on two
infinite, parallel vortex lines in the study of the elliptical Crow instability. The result
is an entanglement of vortices at the locations where the distance between vortices is
minimal.

A similar reconnection process occurs also for the perpendicular vortex filaments
that can be observed at the top and bottom extremities of the helices at t?= 8 and 10.
This reconnection event also generates small-scale structures, visible for the higher
Reynolds number cases. However, the time of reconnection of these perpendicular
vortex filaments is independent of the Reynolds number. Small-scale generation related
to this particular event can be observed for all three Reynolds cases at t? = 10.

These two events yield a significant alteration of the initial system of helical
vortices. The transition towards fully developed turbulence is accelerated for lower
Reynolds number cases as the first reconnection event promotes the onset of small
scales and yields a decomposition of the coherent vortices. At t? = 26, for the
ReΓ = 7000 and ReΓ = 21 000 cases, the initial shape of helical vortices is essentially
lost, whereas it is still present for the ReΓ = 70 000 case.

The influence of the reconnection of parallel vortices can also be observed by
plotting the temporal evolution of volume-averaged enstrophy for all cases considered,
see figure 10. In particular, for the lowest helical pitch case h/R= 0.36, the enstrophy
peak’s location is clearly a function of the Reynolds number, as it occurs later for the
high-Reynolds-number case ReΓ = 70 000. This early occurrence of enstrophy peak
is related to the small scales generated by the parallel vortices reconnection. This
difference is not visible for the larger core radius rc/h= 0.333 cases, which suggests
that the short-wave oscillations responsible for vortex pairing are not present when
larger core sizes are considered.

5.4.2. Dynamics for high helical pitch
Figure 9 shows the Q-criterion iso-surfaces at times t? between 4 and 26, here

for the highest helical pitch case h/R = 0.61 considered in the study. As seen from
the plots, the flow shares similarities with the lower helical pitch but also shows
some differences. First, the leap-frogging phenomenon occurs as well, yielding the
reconnection of vortex filaments, but only in the location where the vortex filaments
are perpendicular to each other. A close-up of the Q-criterion iso-surfaces detailing
accurately this vortex reconnection event is displayed in figure 12. The proximity of
orthogonal vortex filaments of equivalent strength generates vortex hooks or fingers (as
described by Boratav, Pelz & Zabusky (1992) and Jaque & Fuentes (2017)), which are
secondary vortices that wrap around the orthogonal vortices. The two initial vortices
become aligned and undergo a typical anti-parallel separation reconnection mechanism
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FIGURE 9. (Colour online) Q-criterion iso-surfaces coloured by pressure plotted at the
beginning of transient regime starting from t? = 4, for the helical pitch h/R= 0.61. The
lowest core radius rc/h= 0.166 case is considered.
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FIGURE 10. (Colour online) Evolution of enstrophy normalized by its peak value as a
function of time t?, for vortex-core radius rc/h= 0.166 (a) and rc/h= 0.333 (b).

t� = 10 t� = 11 t� = 12 t� = 12.5 t� = 13 t� = 14

FIGURE 11. Description of the parallel reconnection event occurring for the low pitch
case h/R= 0.36, small core radius rc/h= 0.166 and ReΓ = 7000. Q-criterion iso-surfaces
plotted in the region of interest at different times during the reconnection.

as described by Kida & Takaoka (1994). Bridges are formed at the extremity of the
region for which the vortices are parallel, corresponding to two new vortex structures.
In between these newly formed structures, a number of elongated threads appear
which the vortex cores are smaller than the initial parallel vortices. The short-wave
oscillations seen for the lower pitch case h/R = 0.36 are not observed for the high
pitch case h/R = 0.61. This yields the small-scale turbulent structures to be mainly
concentrated at the locations where the perpendicular vortex reconnection occurs.
What is remarkable is that the Reynolds number does not significantly influence
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t� = 6 t� = 8 t� = 9 t� = 10 t� = 11

FIGURE 12. Description of the orthogonal reconnection event occurring for the case
h/R= 0.61, rc/h= 0.166 and ReΓ = 7000. Q-criterion iso-surfaces plotted in the region of
interest at different times during the reconnection.

the flow topology at large scales. The main features of the flow remain the same
for the three Reynolds numbers considered, except for the small-scale features that
develop around the main vortices, but without perturbing extensively their shapes. This
similarity of flow patterns is also seen from the enstrophy evolution, see figure 10,
for which the peak occurs at the same time (t?≈ 17) for the three Reynolds numbers
considered, with the helical pitch h/R = 0.61. An interesting feature of the flow
is the presence of secondary vortices, elongated in the axial direction and wrapped
around the helical vortices. The number and size of these secondary vortices is highly
dependent of the Reynolds number, as seen from figure 9, especially at times t? = 8
and t? = 10.

5.4.3. Energy spectra in the fully developed regime
Energy spectra are evaluated at the end of computations (t? = 30) for various pitch

values and Reynolds numbers, with the value of vortex-core radius set to rc/h= 0.166.
Given the strong flow anisotropy, the plane-averaged one-dimensional energy spectra
are considered, with the following definitions:

Eu(kx)=
1

LyLz

∫ Lz

0

∫ Ly

0
|û(kx, y, z)|2 dy dz

Er(kr)=
1

2πLx

∫ 2π

0

∫ Lx

0
|ûr(kr, θ, z)|2 dθ dz.

 (5.2)

The modes û and ûr are computed via a discrete Fourier transform (DFT) in the
axial x and radial r directions, respectively. The radial direction is not periodic nor
statistically homogeneous, however, the velocity component ur reaches negligible
magnitudes values when approaching the helix axis, r → 0, or the edges of the
computational domain, r�R; ûr hence effectively benefits from a compact support in
r, which permits the use of the DFT, or any other variant (e.g. direct cosine transform
of an appropriate type accounting for the non-periodic boundaries), yielding the same
result.

Figure 13 presents the compensated energy spectra plots, obtained using the total
volume-averaged dissipation in the flow defined in appendix A. The ReΓ = 21 000 and
ReΓ = 70 000 cases display a constant energy plateau for a range of wavenumbers
in both directions, which suggests the presence of an inertial range. The lowest
Reynolds ReΓ = 7000 case shows a strong intermediate and high wavenumber energy
decay, emphasizing that the flow dynamics is mainly concentrated in the large scales.
We can notice a collapse of spectra for the highest helical pitch and Reynolds
numbers ReΓ = 21 000 and ReΓ = 70 000. In this case, an increase in the Reynolds
number generates additional smaller scales while retaining mostly the same low
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FIGURE 13. (Colour online) Energy spectra computed at t? = 30 for rc/h = 0.166. (a)
Axial energy spectra; (b) radial energy spectra. η is the Kolmogorov length scale defined
in appendix A.

wavenumber content. This behaviour is different from the smaller helical pitches
h/R = 0.36 and h/R = 0.45 cases, which display significant differences in terms of
energy spectra when considering different Reynolds numbers. This is consistent with
the different flow dynamics observed in figure 8, i.e. different short-wave distortion
of the helical filaments which modifies the topology of the flow depending on the
Reynolds number. In particular, the ReΓ = 70 000 case presents a higher large-scale
energy compared to the ReΓ = 21 000 in both directions, mainly because the parallel
filaments’ reconnection occurs later and preserves the large scales for a longer time.

6. Turbulence properties in the fully developed wake
6.1. Anisotropy of velocity fluctuations

In this section, the anisotropy of turbulent stresses is assessed as a function of time,
for all cases considered. First, the anisotropy stress tensor is computed as follows:

bij =
〈u′i u′j〉

〈u′2r 〉 + 〈u
′2
θθ 〉 + 〈u′2xx〉

−
δij

3
, (6.1)

where 〈u′iu
′

j〉 = 〈uiuj〉 − 〈ui〉〈uj〉 are the velocity fluctuations in the axial (index 1),
radial (index 2) and azimuthal (index 3) directions, and 〈·〉 is a volume-averaging
operator. The adoption of such an averaging operator over the whole computational
domain does not imply that the flow is assumed to be homogeneous in all
directions; quantities such as (6.1) are intended as flow diagnostics, rather than
equivalent ensemble-averaged quantities (the statistical inhomogeneity of the turbulent
fluctuations in the radial direction is taken into account in results presented in § 6.3).

All components of the tensor bij are plotted in figure 14 as a function of time, for
the span of flow conditions summarized in table 2. First, it is observed that for all
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FIGURE 14. (Colour online) Evolution of the components of the anisotropic stress tensor
as a function of time t?, for vortex-core radius rc/h = 0.166 (a) and rc/h = 0.333 (b).
Volume-averaged quantities.

conditions considered, all cross-components of bij are zero, the radial and azimuthal
components brr and bθθ are similar and the turbulence is dominated by the axial
component bxx which carries most of the kinetic energy, hence showing a strong and
persistent anisotropy. Second, it is seen that the degree of flow anisotropy is sensitive
to the Reynolds number, vortex-core radius and helical pitch. Higher vortex-core
radii strengthen the anisotropy of turbulence, while increasing the helical pitch or the
Reynolds number tend to lower the anisotropy.

A qualitative view of the flow anisotropy can be obtained by plotting the position
of the invariants of the anisotropic stress tensor in the Lumley triangle. The two non-
zero invariants, for an axisymmetric representation of the Reynolds tensor, read (see
Simonsen & Krogstad 2005):

II=− 1
2(b

2
rr + b2

xx + b2
θθ + 2b2

rx) (6.2)

III= (brrbxx − 2b2
rx)bθθ . (6.3)

The invariants for all cases are plotted at the end of computations (t? = 30) in the
Lumley triangle and presented in figure 15. The cases with rc/h = 0.333 yield a
quasi one-component turbulence, characterized by a dominating axial component
and vanishing radial and azimuthal components. In this case, the influence of the
Reynolds number on the anisotropy is minimal. Increasing the helical pitch reduces
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FIGURE 15. (Colour online) Anisotropic Reynolds stress tensor invariants plotted in
Lumley triangle at t? = 30 for vortex-core radii rc/h= 0.166 (a) and rc/h= 0.333 (b).

slightly the anisotropy. For the lower vortex-core radius rc/h = 0.166, an increase
in the Reynolds number or helical pitch yields invariant positions moving along
the delimiting line towards an isotropic turbulence state at II = III = 0. This line
characterizes an axisymmetric turbulence with a dominating axial component and
identical radial and azimuthal components. In particular, a high helical pitch coupled
to high Reynolds yields a flow state closer to isotropy. In general, in terms of the
geometrical representation of the stress tensor proposed by Simonsen & Krogstad
(2005), the shape of stress tensor evolves from a line in the thick core radius and
low Reynolds case, to an elongated prolate spheroid when the Reynolds is increased
and core radius decreased. Finally, the elongation of the prolate spheroid is reduced
as the Reynolds keeps increasing and the helical pitch is high, tending towards a
spherical shape characterizing isotropic turbulence.

6.2. Scale-by-scale anisotropy study
This section is devoted to the study of the relevant scales that develop during the
turbulent regime, and their relation with the flow parameters. The integral scales of
turbulence are defined as the integrals of the two-point correlation functions (see e.g.
Pope 2000):

Lij =

∫ x0

0

〈ui(x)ui(x+ xjej)〉kl

〈ui(x)2〉kl
dxj, (6.4)

where k 6= i, l 6= i and k 6= l, such that the correlations are averaged in the two
directions different than i. ej is the unit vector in the jth direction and x0 is the
coordinate corresponding to the correlation function having a zero value. In our case,
the index 1 corresponds to the axial direction, while the index 2 corresponds to
the radial direction, yielding four different integral scales. Lxx and Lrr are the axial
scales related to the velocity components u and ur, respectively. Lxr and Lrx are the
transverse scales. We first plot the axial scales Lxx as a function of h/R in figure 16
to assess the dependency of the length of the streamwise vortices to the helical pitch.
The values of Lxx are computed at t? = 30 which corresponds to the fully developed
turbulent regime. Interestingly, the size of the streamwise structures is found to
be directly proportional to the helical pitch, as the values Lxx/h stay constant for
different values of h. This means that the initial value of helical pitch sets the size
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FIGURE 16. (Colour online) Axial integral scale Lxx as a function of helical pitch h/R
plotted at t? = 30 for vortex radii rc/h= 0.166 (a) and rc/h= 0.333 (b).
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FIGURE 17. (Colour online) Ratio of axial integral scales L̃x/L̃r as a function of helical
pitch h/R plotted at t? = 30 for vortex radii rc/h= 0.166 (a) and rc/h= 0.333 (b).

of streamwise turbulent structures even during the fully developed turbulent regime,
and that the influence of the initial condition remains important for a long time after
the breakdown of the helical structures. The Reynolds number and initial vortex-core
radius are found to have little influence on the integral scale in the axial direction.

The anisotropy at large scales can be assessed by plotting the ratio of axial to radial
integral scales, which should be equal to 1 for isotropic turbulence, see Pope (2000).
In particular, we choose the definitions introduced by Carter & Coletti (2017), L̃x =

(LxxLxr)
1/2 and L̃r = (LrrLrx)

1/2, that account for the transverse integral length scales.
Figure 17 shows the ratio L̃x/L̃r at t? = 30 for the various flow parameters. All cases
display large-scale anisotropy, with the size of vortices being larger in the axial than in
the radial direction (by a factor 2 to 4). Regarding the smaller core radius rc/h=0.166
cases, the ratio is highest for the intermediate helical pitch h/R = 0.45, and lower
for the helical pitches h/R = 0.36 and 0.61. This can be explained by two factors.
First, the increase in helical pitch yields an increase of the axial integral scale, which
explains the high values for the intermediate helical pitch. Second, the low values of
integral scales ratio for the highest helical pitch can be explained by the fact that
the turbulence is more isotropic for higher helical pitches, as seen from the Lumley
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triangle plots. This effect counteracts the increase of the axial-to-radial integral scale
ratio, by an elongation of the turbulent structures in the radial direction.

Considering the larger vortex-core radius rc/h = 0.333, a quasi-linear increase of
the ratio as a function of the helical pitch is observed. From the observation that Lxx

scales with h, this behaviour can be ascribed to radial scales the size of which is
independent from the helical pitch. This fact is consistent with the observation from
the Lumley triangle that the anisotropy is stronger for the larger vortex-core radius.
The larger vortex core somewhat inhibits turbulent structure elongation in the radial
direction, yielding increased large-scale anisotropy for increasing helical pitch.

Overall, it is quite remarkable that the initial parameters defining the helical vortices
have a persisting influence on the dynamics of the fully developed wake. In particular,
the axial integral scales are directly proportional to the helical pitch, and the initial
large vortex-core radius strengthens the anisotropy of the flow, preventing the turbulent
structures becoming isotropic by restricting their radial extent.

The small-scale anisotropy is also investigated. As stated by George & Hussein
(1991), the average of the squared velocity gradients depend considerably on the
dynamics of the smallest scales of the flow. Therefore, they proposed to study the
small-scale anisotropy by computing the following ratios:

K1 = 2

〈(
∂u
∂x

)2
〉/〈(

∂ur

∂x

)2
〉

(6.5)

K2 = 2

〈(
∂u
∂x

)2
〉/〈(

∂uθ
∂x

)2
〉

(6.6)

K3 = 2

〈(
∂u
∂x

)2
〉/〈(

∂u
∂r

)2
〉

(6.7)

K4 = 2

〈(
∂u
∂x

)2
〉/〈(

1
r
∂u
∂θ

)2
〉
, (6.8)

where 〈·〉 denotes the volume-averaging operator. All these ratios should be equal to 1
for isotropic flows, and deviation from unity indicates a level of small-scale anisotropy.
Moreover, these ratios are useful to verify the axisymmetric isotropy of small-scale
structures (in the radial and azimuthal directions), satisfied if the equalities K1 = K2

and K3 =K4 hold.
The axisymmetry of small-scale structures is further checked by computing

additional velocity gradient ratios as proposed by Ganapathisubramani, Lakshminara-
simhan & Clemens (2008):

M1 =

〈(
∂u
∂r

)2
〉/〈(

1
r
∂u
∂θ

)2
〉

(6.9)

M2 =

〈(
∂ur

∂x

)2
〉/〈(

∂uθ
∂x

)2
〉

(6.10)

M3 =

〈(
∂uθ
∂r

)2
〉/〈(

1
r
∂uθ
∂θ

)2
〉

(6.11)
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FIGURE 18. (Colour online) Small-scale anisotropy factors K and M as a function of h/R
for an initial vortex-core radius rc/h= 0.166.

M4 =

〈(
1
r
∂ur

∂θ

)2
〉/〈(

1
r
∂u
∂θ

)2
〉
. (6.12)

Axisymmetric isotropy is achieved when all these ratios are equal to 1. Figure 18
shows the values of ratios K and M for all cases considered, at t? = 30. First, the
axisymmetric isotropy seems to be well verified for all Reynolds numbers. Indeed,
these cases show values of M1, M2, M3, M4 close to 1 and also verify the relations
K1 = K2 and K3 = K4. All computations exhibit a ratio K1 that tends to a value
around 1.5, emphasizing a strong small-scale anisotropy. Similarly to the large-scale
anisotropy, the small-scale anisotropy is stronger when the Reynolds number or the
helical pitch decreases. The anisotropy identified at large scales seems therefore to
propagate through the smallest scales via energy transfers. The fact that the ratios
K1 and K2 are greater than 1 also suggests an elongation of dissipative scales in the
axial direction.

6.3. Radial velocity profiles in the wake
In this section, the velocity profiles in the wake are studied using the classical
Reynolds decomposition ui = Ui + u′i, where Ui is the (statistical) mean of the ith
component of velocity, hence averaged in the axial and azimuthal directions, with the
respective operator indicated as 〈·〉x θ or 〈·〉13; the corresponding fluctuating quantity
is indicated with u′i. As a reminder, the directions (x, r, θ) are also herein referred to
as (1, 2, 3). When the subscript is omitted for brevity, it is assumed that the symbol
refers to the axial component, e.g. U = Ux. The statistical quantities U = 〈u〉13 and
〈u′i u′j〉13 are therefore only a function of the radial direction r.

Figure 19 shows the mean velocity profiles as well as the Reynolds stresses at
various pitches for ReΓ = 21 000 and rc/R = 0.166. The profiles are plotted at the
time t? = 30 at which the turbulent wake develops. Regarding the mean profiles, the
axial component displays maximal values near the helix centreline, then decreases
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FIGURE 19. Radial velocity profiles plotted at t? = 30, cases ReΓ = 21 000 and rc/R =
0.166. The mean components are normalized by Γ /h and the Reynolds stresses by (Γ /h)2.
Quantities averaged in the axial and azimuthal directions.

progressively when approaching the helix radius. This profile corresponds to the
typical velocity defect observed in the wake of rotating devices. The mean radial
and azimuthal velocities display values close to zero, which indicates that no average
rotating motion is present in the flow. The axial fluctuations are dominant compared
to the radial and azimuthal fluctuations which have the same levels. The peak of
velocity fluctuations is located around r = R, indicating that the region of turbulent
production and small-scale generation is related to the initial helix radius. Overall, it
is interesting to note that the wake development is more advanced when the helical
pitch is increased, as seen from the mean centreline axial velocity, Uc = Ux(r = 0),
which is reduced for higher helical pitch, and the velocity fluctuations more spread
out along the radial direction. This can be attributed to the time scale issue addressed
in § 5.2 from the observation of the evolution of volume-averaged kinetic energy.
The time scale t? = tΓ /h2 is indeed suited to the collapse of the flow evolution for
different helical pitches up to the occurrence of the reconnection events, but is not
appropriate afterwards to describe the evolution of the turbulent wake. Hence, various
wakes at the same dimensionless time t? = 30 are in fact in more advanced stages of
development for higher helical pitches.
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6.4. Far-wake self-similarity
In this section, the self-similarity of the flow is assessed in the far wake, and the
self-similar properties compared to those of known results related to the spatial
development of helical vortices past wind turbines. A simulation with the parameters
ReΓ = 21 000, h/R = 0.36 and rc/h = 0.166 is performed up to t? = 240, in order
to assess the self-similarity in the turbulent far wake, with a box size extended
to Ly = Lz = 6.5R in the helix cross-section to accommodate the larger spreading
of the wake. The number of grid points is increased accordingly to match the
spatial resolution of the original simulation with a smaller box size. The region of
self-similarity can be identified by plotting the evolution of the centreline velocity
and displacement thickness which read:

Uc =
1
Lx

∫ Lx

0
u(x, r= 0) dx (6.13)

δ? =
1

Uc

∫
∞

0
U(r)r dr, (6.14)

where U(r) is the axial velocity component averaged in the axial and azimuthal
directions. According to Dufresne & Wosnik (2013) or Okulov et al. (2015), the
self-similar region, for a spatially developing wind turbine wake, is identified when
the centreline velocity and displacement thickness verify Uc ∝ (x − x0)

−2/3 and
δ?∝ (x− x0)

1/3, respectively. For the present temporally developing wake configuration,
the time replaces the longitudinal spatial coordinate such that these laws translate
to Uc ∝ (t − t0)

−2/3 and δ? ∝ (t − t0)
1/3. The evolutions of Uc and δ? are plotted in

figure 20. The centreline velocity and displacement thickness remain constant up to
approximately t? = 50, then start to respectively decrease and increase. Starting from
t?≈ 100, the agreement with the −2/3 and 1/3 power laws for Uc and δ?, respectively,
is reasonable, indicating the onset of the self-similar region. To further assess the
self-similarity in the wake, the axial velocity and turbulent kinetic energy profiles
are plotted in figure 21 at various times corresponding to the self-similar region. The
profiles are made non-dimensional using either the self-similarity variables Uc and
δ? (figure 21b,d) or the non-self-similar variables h, R and Γ (figure 21a,c). The
mean axial velocity collapses well for the different times considered when made
non-dimensional using the self-similarity variables, as well as the turbulent kinetic
energy. The turbulent kinetic energy profiles show variations near the centre of the
helix, which can be attributed to the relatively low statistical sampling depending
directly on the axial extent of the box (in a spatially developing wake, this would
correspond to the temporal sampling of the statistics). Considering larger boxes in
the axial direction would probably yield a better statistical convergence allowing for
a more thorough assessment of the wake self-similarity. As this can be a topic for
future studies, the present results hint at the collapse of the velocity fluctuations in the
self-similar region of the wake. Considering larger boxes in the cross-plane direction
could also allow assessment for longer times of the spread of the wake and the extent
of the self-similar regime. The results in the present section indicate that temporally
developing helical vortices can relate to more applied rotor–wake configurations. An
additional comparison against experiments in proposed in appendix C, in which the
present methodology is assessed for the representation of large-scale instabilities that
occur in the developed wake past rotor blades.
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FIGURE 20. Temporal evolution of centreline velocity and displacement thickness for the
simulation with parameters ReΓ = 21 000, h/R= 0.36 and rc/h= 0.166.
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FIGURE 21. Mean velocity and turbulent kinetic energy radial profiles in the self-similar
region of the wake. (a,c) Variables made non-dimensional using h, R and Γ . (b,d)
Variables made non-dimensional using the self-similar quantities Uc and δ?. The quantity
E= (1/2)〈u′2 + u′2r + u′2θ 〉13 is the turbulent kinetic energy.

7. Conclusion

This paper discussed a numerical study of temporally developing double helical
vortices subject to the mutual inductance phenomenon. The helical vortices are defined
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in a periodic domain using the Biot–Savart law with a regularized Kernel, then left to
evolve temporally by solving the Navier–Stokes equations with an ad hoc large-eddy
simulation closure, enabling the consideration of high-Reynolds-number computations.
The numerical set-up has been validated by accurately reproducing the growth rates
obtained from the experiment of Nemes et al. (2015) for a range of helical pitches.
A thorough study involving 18 computations covering a range of flow parameters
including the helical pitch, initial vortex-core radius and Reynolds number has been
conducted.

A study of vortex-core displacement growth rates occurring during the early
inviscid regime considering various flow parameters has confirmed some properties of
the mutual inductance phenomenon. A collapse of the growth rates regarding various
helical pitches h has been obtained defining a non-dimensional time t∗ = tΓ /h2

where Γ is the vortex circulation. Computations involving various Reynolds numbers
have shown that vortex-core displacement growth rates are mostly insensitive to
the Reynolds based on the circulation and fluid viscosity. At low Reynolds number,
however, a restriction of the extent in time of the exponential growth of vortex-core
displacement is observed. It has also been confirmed that a larger initial vortex-core
radius reduces the growth rates, as found analytically by Gupta & Loewy (1974).

The vortex reconnection events yielding transition to fully developed turbulence
have been characterized. After the end of the inviscid regime, the helices undergo
leap frogging, which creates the conditions for vortex reconnection. Two types of
vortex reconnection events have been identified. The first one, occurring for all values
of helical pitch considered, is due to the proximity of orthogonal vortex filaments
during the leap frogging of the helices. This event occurs when the orthogonal
filaments become progressively anti-parallel, creating bridges separating the two
initial vortices. Threads of small core radius that are elongated in the axial direction
appear in between the bridges. The second event is observed only for small helical
pitch, and concerns high- and low-speed vortex filaments that present large amplitude
oscillation, allowing for a merging of vortices in a similar way as the elliptical Crow
instability.

A study of the turbulence anisotropy in the wake of the pair of helical vortices
during the fully developed turbulence regime has been conducted. Calculations of
the anisotropic Reynolds stress tensor have revealed a strong anisotropy for all cases,
with a dominant axial component compared to the radial and azimuthal fluctuations,
which are equal. The computation of the Lumley invariants shows that increasing the
helical pitch or Reynolds number reduces the turbulence anisotropy, whereas a larger
initial vortex-core radius strengthens the anisotropy. A scale-by-scale anisotropy study
showed that the axial integral scale is directly proportional to the helical pitch. The
large scales are found to be anisotropic, with an elongation in the axial direction
compared to the radial direction. This large-scale anisotropy is also propagated to
smaller scales, as found by computing the moments of vorticity gradient ratios in
various directions.

Future directions for this work may involve the evaluation of the shapes of the
vortex cores and their evolution in terms of the wake’s age, as proposed by Martin &
Leishman (2003), in order to determine how the transition to turbulence in the present
case affects the vortex-core velocity profiles. The self-similarity study and assessment
of large-scale instabilities in the far wake should also be extended to more realistic
configurations, including the blade root vortex and vortex-core initialization that takes
into account inflow turbulence.
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FIGURE 22. Energy spectra for the grid sensitivity study considering various Reynolds
numbers and the case h/R= 0.36 and rc/h= 0.166.
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Appendix A. Evaluation of the resolution for the LES computations of the helical
vortices

In this appendix, the resolution is assessed for the smallest core radius and helical
pitch cases, for all Reynolds numbers.

In order to determine the right resolution for each Reynolds number, the energy
spectra are evaluated at the end of computations (t?=30) with discretizations featuring
various numbers of grid points (namely 1923, 2883, 3843 for ReΓ = 7000 and 21 000,
and 2883, 3843, 4803 for ReΓ = 70 000). The energy spectra are plotted in figure 22,
and it is seen that there is an almost perfect collapse of the large-scale energy for
the 2883 and 3843 cases regarding the ReΓ = 7000 and 21 000 computations. For the
ReΓ = 70 000 computations, the collapse is observed for all grids. This confirms the
adequacy of the present approach in capturing accurately the large-scale content of
the flow for a range of discretizations. The resolutions chosen for the computations
presented in this paper are 2883 for Reynolds number ReΓ = 7000, 3843 for ReΓ =
21 000 and 4803 for ReΓ = 70 000.

The resolution is further assessed by computing the evolution of the ratio of the
grid size to the Kolmogorov scale, as well as the ratio of subgrid dissipation to total
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FIGURE 23. (Colour online) Evolution of grid spacing to Kolmogorov length scale ratio,
subgrid dissipation to total dissipation ratio and grid spacing to Taylor microscale ratio
for various Reynolds numbers. Case rc/h= 0.166 and h/R= 0.36.

dissipation, which are plotted in figure 23. The isotropic definition of the Kolmogorov
length scale is considered:

η=

(
ν3

ε

)1/4

, (A 1)

where ε = εSGS + εvis is the total dissipation, εvis = 〈νSijSij〉 is the volume-averaged,
resolved viscous dissipation and εSGS = 〈νtSijSij〉 is the modelled, subgrid one. In this
work, we intend to perform LES computations that capture most of the inertial range
and confine the unresolved scales to the dissipative range, to ensure that the resolution
is sufficient to yield a meaningful physical analysis. In order to assess the quality of
resolution, the grid size to Taylor microscale ratio is plotted in figure 23. The isotropic
definition of the Taylor microscale is considered:

λ=
√

15νu2
rms/ε, (A 2)

where rms is the root mean square.
While this definition does not account for the anisotropy of the flow, it still provides

a valuable insight into the quality of the resolution for the scales located in the inertial
range. The plot confirms that the resolution is indeed sufficient to capture most of the
inertial range, as there are at least five grid points per Taylor microscale for every
case.

Appendix B. Assessment of initial perturbations of the flow field

In this appendix, we assess the influence of perturbations added to the initial
velocity. According to Okulov (2004), the system of infinite double helical vortices
for the range of helical pitches considered in the present study is highly unstable,
and any shape of perturbation will virtually yield the destabilization of the system.
In the present study, the flow field is initially perturbed by low amplitude acoustic
waves that are released due to the resolution of the compressible Navier–Stokes
equations at low Mach number. This initial perturbation is sufficient to trigger the
flow instability, and this section aims at quantifying the response of the flow to added
velocity perturbations with a given amplitude. The initial velocity field is perturbed
as follows:

up(x, t= 0)= u(x, t= 0)+ εA(x)|u(x, t= 0)|, (B 1)
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FIGURE 24. Sensitivity of growth rates (a) and energy spectra at t = 5 s (b) to initial
perturbations for the LES computations of the pair of helical vortices at ReΓ = 7000,
rc/h= 0.166 and h/R= 0.36.

where ε is the amplitude of the perturbation and A a random number array which
values are between −1 and 1. Figure 24 shows the growth rates and energy spectra
at the final time of the computations for one case of the study. It is found that both
quantities are mildly impacted by the amount of perturbation considered. To further
assess the influence of the initial perturbation on the flow field, the Q-criterion iso-
surfaces are plotted at t? = 15 (figure 25) for the various amplitudes considered for
the perturbation. It is seen that the added perturbations do not modify the large-scale
flow features, however, they do impact slightly the development of small scales in
the flow, as seen from the elongated streaks observed in the centre of the domain for
the highest amplitude of perturbation. Given the relatively weak impact of the added
perturbations to the flow field, all computations considered for the present study were
performed using only the initial acoustic disturbance as the trigger for instability. In
fact, as pointed out by Okulov & Sørensen (2007), for sufficiently small values of the
helical pitch (all of which considered in the present study satisfy this condition), the
stability problem of multiple helical vortices does not depend strongly on the type of
perturbation added to the system.

Appendix C. Assessment of large-scale instabilities in the wake
This appendix is dedicated to the identification of the large-scale motion that

has been observed in previous experimental works for rotor–wake configurations
by Okulov et al. (2014), in order to give an additional physical justification to the
present methodology. In Okulov et al. (2014), temporal energy spectra computed in
the vicinity of the helical vortices (i.e. r= 0.66R) have revealed that, as the dominant
frequencies in the near wake are related to the rotor characteristics (i.e. the helical
pitch), the far-wake frequencies are independent of the rotor features and show a low
frequency content associated with a constant Strouhal number St = fD/U∞ ≈ 0.23,
where f is the frequency, D the diameter of the rotor and U∞ the incident flow
speed. In the present work, we try to show the onset of these large-scale events from
our temporally developing wake, in order to find an additional correlation between
the present methodology and more applied rotor–wake configurations. To be able to
detect this large-scale content, a computation with h/R = 0.61, ReΓ = 21 000 and
rc/h = 0.166 is carried out with M = 12 turns of the initial helical vortex, using an
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FIGURE 25. (Colour online) Sensitivity of flow patterns at t?= 15 to initial perturbations
for the LES computations of the pair of helical vortices at ReΓ = 7000, rc/h= 0.083 and
h/R= 0.36.
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FIGURE 26. Iso-contours of the axial velocity component in a r–x plane at t? = 40.
Computation with a large box LX = 24h in the axial direction, with parameters h/R= 0.61,
ReΓ = 21 000 and rc/h= 0.166.
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FIGURE 27. Energy spectra computed in the axial direction, at the radial location r =
0.66 R at different times during wake evolution, from computations with an extended
computational box LX = 24h in the axial direction, for h/R = 0.61, ReΓ = 21 000 and
rc/h= 0.166.

extended computational box size in the axial direction LX = 24h, which enables larger
scales to be represented compared to the box with LX = 6h. This value of helical
pitch is close to one of the rotor configurations in the work of Okulov et al. (2014).
They considered a three-bladed rotor, and the corresponding spacing between two
neighbouring helical vortices for their case λ= 3 is h/R= 0.7, where λ is the rotor tip
speed ratio. The axial velocity component iso-contours are first plotted in a r–x plane
at t? = 40, shown in figure 26. Large-scale motions with wavelengths higher than
h are clearly identified from this visualization which displays interesting similarities
with figure 13 of Okulov et al. (2014) which shows particle image velocimetry
visualizations of the flow past a three-bladed rotor in the far wake. A more precise
evaluation of the large-scale content in the wake is obtained by computing the
energy spectra in the axial direction at radius r = 0.66R, which is equivalent to the
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frequency energy spectra from Okulov et al. (2014). The energy spectra in the present
simulation are computed in multiple locations r= 0.66R and then averaged. It is seen
from figure 27 that for early flow evolution, the energy spectra are highly dependent
of the initial condition for which the dominant wavelength corresponds to the helical
pitch h. Then, harmonics with lower wavenumbers start to appear in the flow, around
t?= 15, due to the leap frogging of helical vortices. After the turbulent breakdown, the
energy spectra become more broadband towards both higher and lower wavenumbers,
with a dominant low wavenumber energy content that is not present for the initial
condition, a seen in the plots at t? = 21 and t? = 30. Then low wavenumber energy
becomes more important, as seen from the plots at times t? = 36 and t? = 40. This
correlates to the findings of Okulov et al. (2014), who observed the onset of low
frequency events in the fully developed wake. By relating the wavenumber to the
frequency with the relation kx/2π = f /U∞, it is possible to determine a Strouhal
number for the spatial energy spectrum, defined as St = kmaxD/2π, where kmax is
the wavenumber corresponding to the energy maximum. At t? = 40, the Strouhal
corresponding to the most energetic wavenumber is St = 0.26, which is close to the
value of 0.23 found by Okulov et al. (2014). It would however be possible to extend
further the size of the box to enable the onset of larger-scale features and future
studies could then assess the Strouhal number for longer boxes, various pitches and
Reynolds numbers, and also the effect of blade root vortices could be included.
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