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Vortex development behind a finite porous
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This experimental study describes the turbulent wake behind a two-dimensional porous
obstruction, consisting of a circular array of cylinders. The cylinders extend from the
channel bed through the water surface, mimicking a patch of emergent vegetation.
Three patch diameters (D) and seven solid volume fractions (Φ) are tested. Because
flow can pass through the patch, directly downstream there is a region of steady,
non-zero, streamwise velocity, U1, called the steady wake. For the patch diameters and
solid volume fractions considered here, U1 is a function of Φ only. The length of the
steady wake (L1) increases as Φ decreases and can be predicted from the growth of
a plane shear layer. The formation of the von-Kármán vortex street is delayed until
the end of the steady wake. There are two regions of elevated transverse velocity
fluctuation (vrms): directly behind the patch, associated with the wake turbulence
of individual cylinders; and at the distance L1 from the patch, associated with the
formation of large-scale wake oscillation. Velocity along the centreline of the wake
starts to increase only after the patch-scale vortex street is formed, and it approaches
the free-stream velocity over a distance L2. The dimensionless length of the entire
wake, (L1 + L2)/D, increases with patch porosity.

Key words: shear layers, vortex streets, wakes

1. Introduction
Aquatic vegetation is ecologically and structurally important in natural channels. It

provides habitat for animals, and it improves water quality and clarity by taking up
nutrients and by trapping heavy metals and suspended particles (Gacia & Duarte 2001;
Brookshire & Dwire 2003; Schultz et al. 2003; Windham, Weis & Weis 2003; Moore
2004; Cotton et al. 2006; Widdows, Pope & Brinsley 2008). Further, by altering the
mean and turbulent flow field, vegetation can change the distribution of deposition
and erosion, which ultimately controls the channel morphology (Fonseca et al. 1983;
Bouma et al. 2007; Rominger, Lightbody & Nepf 2010).

Circular cylinders are often used to model rigid emergent vegetation, such as reeds,
because they provide a good approximation of the stems. Cylinders piercing the water
surface are placed in staggered, square-grid or random arrangements. Cylinder arrays
that cover the entire flume width have been used to estimate the bulk drag coefficient,
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Vortex development behind a finite porous obstruction in a channel 369

(a) (b) (c)

FIGURE 1. The two-dimensional wakes behind three porous obstructions of diameter
D = 22 cm, with different solid volume fraction, Φ = 1, 0.10, 0.03, (a–c), respectively. The
flume is 1.2 m wide. The obstruction is placed in the middle of the flume and is located just
below the bottom of each picture. The struts holding the dye injection system are visible.
Flow is from bottom to top of the image. The rows of crosses mark 1 m intervals from the
upstream end of the patch. The lateral distance between markers in the same row is 20 cm.

and to study the diffusion and dispersion within the array (e.g. Nepf 1999; Stone
& Shen 2002; Sharpe & James 2006; Tanino & Nepf 2008). Through numerical
modelling, Lopez & Garcia (1998) show that the suspended sediment transport is
reduced in vegetated waterways, due to reduced bed shear stress. Sharpe & James
(2006), White & Nepf (2007, 2008) and Zong & Nepf (2011) studied the lateral
exchange between a free stream and an adjacent parallel region of model vegetation.
However, only a few projects have considered finite patches of model vegetation, with
length and width scales smaller than the channel width. Yet, this configuration is
common in the field (e.g. Sand-Jensen & Pedersen 2008).

A few previous studies have considered flow past finite porous obstructions. Ball,
Stansby & Alliston (1996), Takemura & Tanaka (2007) and Nicolle & Eames (2011)
each used a group of cylinders to model a finite porous body and investigated the
flow through and around the group. Castro (1971), Chen & Jirka (1995) and Huang &
Keffer (1996) investigated the wake structure behind a porous plate. Despite using
different shapes and sizes for the porous body, these studies all show that the
wake behind a porous obstruction is different from that behind a solid body. In
particular, as the porosity of the obstruction increases, the von-Kármán vortex street
originates further downstream in the wake. The region from the porous body to the
formation point of the vortex street is called the steady wake region. In Castro’s
(1971) experiments, the vortex street does not form at all for porosity greater than
0.2. The injection of flow from the trailing edge of a solid body (called base bleed)
produces a similar wake structure, i.e. it creates a steady wake region directly behind
the obstruction (Wood 1967). Wood (1967) observed that as the bleed flow increased,
the vortex formation moved further downstream.

In this study, we observe the wake structure behind a two-dimensional, circular
porous obstruction (representing a patch of model emergent vegetation). For example,
the wake structure observed behind the circular patches with solid volume fractions of
1 (solid body), 0.10 and 0.03 are shown in figure 1(a–c), respectively. Dye is injected
at the two sides of the patch or solid body. Behind the solid body (figure 1a), the
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dye is swept into the familiar von-Kármán vortex street immediately downstream of
the obstruction. In contrast, for the porous cases (b) and (c), there is a region directly
behind the porous body, the steady wake region, in which the dye moves along straight
lines with no lateral motion. The single vortex street does not form until some distance
downstream. As the solid volume fraction (Φ) decreases from 0.10 (figure 1b) to 0.03
(figure 1c), i.e. porosity increases, the initiation of the vortex street occurs further
downstream, and the lateral extent of the vortex street becomes smaller, suggesting that
the strength of the vortices in the street has decreased.

The numerical study by Nicolle & Eames (2011) also considered patches of
circular cylinders and suggests three distinct flow regimes. For low solid volume
fractions (Φ < 0.05), the individual cylinders are sufficiently far apart that the flow
interactions within the array are weak. Vortices form behind individual cylinders,
but no patch-scale vortex street is formed. At intermediate solid volume fractions
(0.05 < Φ < 0.15), a steady wake forms directly behind the cylinder array, and
a vortex street forms at some distance downstream from the patch (similar to
figure 1b,c). For high solid volume fractions (Φ > 0.15), the cylinder array generates
a wake that is similar to a solid body (figure 1a). Nicolle & Eames (2011) considered
a single patch diameter and varied the number of cylinders within the patch. Here we
will vary both the patch size as well as the cylinder density within the patch.

While previous studies have revealed the presence of a steady wake region behind a
porous obstruction, they have not provided a model for predicting the length scale of
the steady wake (L1), or considered the role of the steady wake velocity scale (U1). In
this study, we provide a more detailed description of the wake structure using velocity
measurements and flow visualization, and use this detail to support a theoretical model
to predict both L1 and U1.

2. Experiment methods
Experiments were conducted in a 16 m long re-circulating flume with a test section

that has a width (B) of 1.2 m and a length of 13 m. The bed of the flume is
horizontal. Circular porous obstructions were constructed with circular cylinders of
diameter d = 0.6 cm that extended from the bed through the water surface and
were set in a staggered arrangement (figure 2a). The patches were placed at the
centre of the flume, beginning 3 m from the start of the test section. Individual
cylinders were held in place by perforated PVC baseboards that extended over the
entire flume bed. Three patch sizes were tested, with diameters of D = 12, 22 and
42 cm. The density of the cylinders within the patch is described by the following
parameters: the number of cylinders per unit bed area, n (cm−2), the frontal area per
unit volume, a= nd (cm−1), the average solid volume fraction, Φ = nπd2/4≈ ad , and
the porosity, β = 1−Φ . This study considered patches with Φ = 0.03 to 0.36 and also
Φ = 1, i.e. a solid obstruction (see table 1). A constant upstream velocity was used,
U∞ = 9.8±0.5 cm s−1. A weir at the downstream end of the test section controlled the
water depth, h = 13.3 ± 0.2 cm. The x-axis points in the direction of flow with x = 0
at the patch leading edge. The y-axis is in the transverse direction, with y = 0 at the
patch centreline (figure 2b).

From measured bed shear velocity, u∗, and depth-average velocity, U, we define
a quadratic-law bed friction coefficient, Cf = u2

∗/U
2. The bottom friction coefficient

Cf = 0.006 was measured in a previous study over the same baseboards (White
& Nepf 2007, 2008). In shallow flow, the bed friction may suppress the vortex
street behind a solid circular obstruction, if the stability parameter S = Cf D/h is
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FIGURE 2. Top view of experiment setup. (a) Patch configuration and dye injection points;
(b) longitudinal and lateral transects (dashed lines) of velocity measurements. x = 0 is at the
upstream edge of the patch, y= 0 is at the centreline of the patch.

greater than a critical value, Sc = 0.2 (Chen & Jirka 1995). Chen & Jirka (1995)
also considered a porous plate (Φ = 0.5), for which they found Sc = 0.09. In our
experiments, S = 0.019, 0.010 and 0.005 for patch diameters D = 42, 22 and 12 cm,
respectively, which are all well below the critical value. Therefore, in our cases the
bed friction is not large enough to suppress the vortex shedding process.

The influence of the channel blockage, i.e. the ratio of the obstruction diameter (D)
to channel width (B), should be considered. For our patches, D/B is 0.10, 0.18 and
0.35 for D = 12, 22 and 42 cm, respectively. Some previous studies have considered
how channel blockage impacts the shedding frequency (fD), or specifically the Strouhal
number (StD). The critical Reynolds number (Rec), at which an unbounded steady
flow past a circular cylinder becomes unstable, is Rec = 47 and its corresponding
Strouhal number is StD ≈ 0.12 (Norberg 1994). Chen, Pritchard & Tavener (1995) and
Coutanceau & Bouard (1977) reported that both Rec and StD increase with increasing
channel blockage. For a blockage 0.64, Sahin & Owens (2004) found Rec and StD

were 285 and 0.44, respectively. For ReD between 100 and 300, Turki, Abbassi &
Nasrallah (2003) showed StD increases with increasing channel blockage. In this study,
ReD is O(104), which is within the regime of turbulent wakes. Therefore, channel
blockage might have some influence on the vortex shedding frequency in our study. In
addition, at the highest channel blockage (D/B = 0.35), the flow forced through the
patch might be increased, relative to an unbounded case. These effects are explored in
the discussion of results.
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To characterize the flow field, velocity measurements were taken using a Nortek
Vectrino, with a sampling volume 6 mm across and 3 mm high. This probe measures
all three velocity components, but, since we consider the flow to be two-dimensional,
we only present the horizontal components. The vertical component was only analysed
to verify the orientation of the probe. The probe was mounted on a platform that
could be moved along and across the flume. The probe was manually positioned,
with a positioning accuracy of ±0.5 cm in the y-direction and ±1 cm in the
x-direction. Longitudinal transects were made through the centreline of the circular
patch (y= 0) and along the edge of the patch (y= D/2), as shown in figure 2(b). The
longitudinal profiles started 1 m upstream of the patch (x = −1 m) and extended
5–9 m downstream of the patch, depending on the patch size. Because of the
difficulty in placing the Vectrino probe head within the densest patches, no velocity
measurements were made within the patch. Lateral profiles were taken at several
positions behind the patch. Owing to the symmetry about the centreline (y = 0), the
lateral profiles were only taken across half of the flume width (from the centreline to a
sidewall, figure 2b). In order to compare the flow fields of a porous body and a solid
body, waterproof contact paper was wrapped around the circumference of the porous
body, creating a solid body of the same diameter. Similar velocity transects were made
for the solid obstruction.

At each measurement point the instantaneous longitudinal, u(t), and lateral, v(t),
components of the velocity were recorded at mid-depth for 240 s at a sample rate
of 25 Hz. Based on previous studies with emergent obstructions (e.g. White & Nepf
2007), the velocity measured at mid-depth is a good approximation of the depth-
averaged velocity, which may be used to represent the approximately two-dimensional
behaviour of the flow. Three-dimensional effects associated with the bottom boundary
layer are of second order and will not be considered here. Each record was
decomposed into its time-average, (u, v), and fluctuating components, (u′(t), v′(t)). The
overbar denotes the time-average. The intensity of turbulent fluctuations was estimated

as the root-mean-square of the fluctuating velocity, urms =
√
(u′2) and vrms =

√
(v′2).

The mean velocity had an uncertainty of ±0.1 cm s−1. Measurements made in still
water determined the instrument noise, urms.noise = 0.3 cm s−1, which sets the lower
limit at which turbulence intensity can be resolved. Instantaneous records of cross-
stream velocity, v, were used to evaluate the velocity spectrum, Svv, by the Welch’s
method, as described in MATLAB toolbox.

Flow visualization was used to examine the wake structure. Red dye was injected at
the outermost edges of the circular patch (figure 2a) with a constant flow rate which
matched the ambient. The duration of injection was 2 min. The camera was positioned
about 1 m above the flume in order to capture a 6 m region directly behind the patch.
Pictures were taken at 2 s intervals for 1 min duration and were post-processed using
Photoshop software in order to enhance the colour of the dye. Tape was used to mark
positions at 50 cm intervals in the x-direction and 20 cm intervals in the y-direction.
Grids determined by these markers were superposed onto the pictures.

3. Results
3.1. Mean and turbulent velocity profiles

We consider the transverse velocity to indicate the beginning of flow diversion around
the patch (solid circles and right-hand axis in figures 3b,c and 4b,c). However, because
of the centreline symmetry, the mean transverse velocity is zero at y= 0. So, we show
the transverse velocity measured at the outermost edge of the patch, along a transect
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FIGURE 3. Longitudinal profiles of velocity for patches with D = 22 cm: (a) solid body,
Φ = 1, (b) Φ = 0.10, (c) Φ = 0.03. Patch is from 0 < x/D < 1. The dashed line indicates
the downstream end of the patch. Note that the longitudinal velocity (open circles) is given
on the left-hand axis, and the lateral velocity (filled circles) is given on the right-hand axis.
The longitudinal velocity (u) is measured at the centreline, y = 0. The lateral velocity (v) is
measured at y= D/2.

y = D/2. For the porous obstructions shown in figures 3(b,c) and 4(b,c), the diversion
of flow begins approximately one diameter upstream of the patch, consistent with
scaling arguments presented in Rominger & Nepf (2011). For the porous patches the
velocity continues to decelerate after entering the patch, as shown by the fact that the
velocity measured at the end of the patch (x = D) is lower than the velocity entering
the patch (x= 0). Therefore, flow diversion continues within the patch.

Behind the solid obstruction the wake contains a recirculation zone directly behind
the obstruction, shown by the reversed flow (u < 0, figures 3a and 4a), that extends
approximately one diameter downstream of the body. After the recirculation zone, u
increases rapidly back toward U∞. In principle, the wake can never fully recover,
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FIGURE 4. Longitudinal profiles of velocity for patches with D = 42 cm: (a) solid body,
Φ = 1, (b) Φ = 0.10, (c) Φ = 0.03. Patch is from 0< x/D< 1. The dashed line indicates the
downstream end of the patch. Note that the longitudinal velocity (open circles) is given on
the left-hand axis, and the lateral velocity (filled circles) is given on the right-hand axis. The
longitudinal velocity (u) is measured at centreline, y = 0. The lateral velocity (v) is measured
at y= D/2.

since the drag-induced momentum deficit must remain constant downstream of the
obstruction. However, it is useful to define a total length of the wake, L, as the
distance from the downstream end of the patch (x = D) to a point where the rate
of velocity recovery is reduced to (∂(ū/U∞))/∂(x/D) < 0.1. For the solid bodies
of D = 22 and 42 cm, L/D = 3.0 and 3.3, respectively (figures 3a and 4a), and the
Reynolds number is ReD = U∞D/ν = 2.2×104 and 4.1×104, accordingly. These values
are consistent with previous studies. Cantwell & Coles (1983) reported L/D = 2.5 for
a cylinder wake at ReD = 1.4 × 105. Kravchenko & Moin (1999) numerically studied
the flow past a circular cylinder at ReD = 3900, and they found L/D = 3. In contrast,
for shallow flows (S = Cf D/h > 0.2), the decay scale of the wake is set by the bed
friction. Using the e-folding distance defined by Chen & Jirka (1995), L = 2h/Cf ,
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such that the wake length scales with the flow depth, rather than the diameter of the
obstruction.

The wakes behind the porous patches are distinct from those behind the solid body.
We first consider the porous patch with Φ = 0.03 and D= 22 cm shown in figure 3(c).
Downstream of the patch the velocity continues to decrease, and a diverging flow
(v > 0) is observed until roughly x/D ≈ 3, i.e. 2D beyond the end of the patch.
Beyond this point, u is constant until x/D = 9 (figure 3c). This region of uniform
velocity is called the steady wake, and the uniform velocity is denoted as U1. For the
patch with Φ = 0.03 and D = 22 cm (figure 3c), U1/U∞ = 0.6 (U1 = 5.8 cm s−1). In
this case, the steady wake extends from the end of the patch (x/D = 1) to x/D = 9,
a distance denoted as L1. For this case (figure 3c), L1/D = 8 (L1 = 178 cm). The
magnitudes of U1 and L1 for each case are given in table 1. In general, both U1/U∞
and L1/D decrease as Φ increases, and L1 = 0 for Φ = 1 (solid body). For the same
Φ,L1 decreases as D decreases, but U1/U∞ is not a function of D. These trends are
discussed in greater detail later in the paper.

As the patch becomes denser (Φ increases) and U1 decreases, the diversion of flow
increases (v increases). For D = 22 cm, maximum v/U∞ increases from 0.12 to 0.35
as Φ increases from 0.03 to 0.10 (figure 3c,b, respectively, right-hand axes). Similarly,
for the cases with D= 42 cm (figure 4c,b), maximum v/U∞ increases from 0.2 to 0.37
with Φ increasing from 0.03 to 0.10.

After the steady wake (x > D + L1), the velocity along the centreline increases,
recovering toward the free-stream velocity, U∞. The total length of the wake (L)
is defined the same way as for the solid body, given above. The wake recovery
region has a length scale L2 = L − L1 (reported in table 1). For example, in
figure 3(c), L2/D = 9.1(L2 = 200 cm), and the total longitudinal extent of the wake
is L/D = L1/D + L2/D = 17.2 (L = 378 cm). For the solid body case, the region
L1 is absent (i.e. L1 = 0,U1 = 0) and the length of the wake is L = L2, which
is significantly shorter than the wake of the porous patch of the same size (see
table 1, or figures 3 and 4). Further, the spatial acceleration in the wake recovery
region declines with decreasing solid volume fraction, Φ. The spatial acceleration
can be compared using the factor (U∞ − U1)/L2. For D = 22 cm (figure 3),
(U∞ − U1)/L2 = 0.15, 0.11, 0.02 for Φ = 1, 0.10 and 0.03, respectively. Similarly,
for D = 42 cm (figure 4), (U∞ − U1)/L2 = 0.07, 0.05, 0.01 for Φ = 1, 0.10 and
0.03, respectively. Finally, as the centreline velocity increases over the distance L2,
continuity requires a mass flux toward the wake centre. This results in a negative
transverse velocity (v < 0) on the line y = D/2. After L2, v remains small because the
velocity deficit in the wake is close to zero.

A flow reversal, indicative of a recirculation zone, is present in the wakes behind
the denser patches (Φ = 0.10 in figures 3b and 4b), but is absent in the wakes
of the sparser patches (Φ = 0.03 in figures 3c and 4c). Specifically, u < 0 between
x/D = 3.2 and 3.6 for D = 22 cm (figure 3b) and between 3.1 and 3.8 for D = 42 cm
(figure 4b). The length of the recirculation zone is a bit smaller for the porous patches
than for a solid body, for which the recirculation extended over length scale D, as
discussed above. Castro (1971) observed a recirculation zone behind perforated plates
with low porosity (β = 0 to 0.305). For the solid plate (β = 0), the recirculation zone
was attached to the plate. As the porosity increased, the recirculation zone moved
downstream. For the highest porosity considered by Castro (1971) (β = 0.425), no
recirculation zone was observed.

Next, we consider the lateral structure of the wake and its evolution downstream.
The lateral profiles of u and vrms for the solid patch of D = 22 cm are shown
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FIGURE 5. Lateral profiles of (a) u/U∞ and (b) vrms/U∞ for the solid circular body with
D = 22 cm. Owing to the symmetry about the centreline (y/D = 0), measurements were only
made on one side of the flume (0 < y/D < 2). The solid body is at −0.5 < y/D < 0.5 and
0< x/D< 1.

in figure 5. One profile taken upstream of the body (x/D = −3.6) is included for
reference. Behind the solid patch, the velocity deficit, (U∞ − uy=0), decreases as x
increases. The transverse velocity fluctuation, vrms, is maximum at the centre of the
wake, and decreases monotonically toward the edge of the wake, which is a signature
of a vortex street (Townsend 1947; Lyn et al. 1995). The maximum value of vrms at
the centreline (y/D = 0) decreases with distance downstream, due to the decay of the
wake-scale turbulence.

In contrast to the solid body wake, behind the porous patch there is a steady wake
region (L1) within which the velocity deficit at the centreline does not change with
longitudinal distance (see profiles for x/D 6 9.1 in figure 6a). Very close to the patch,
x/D = 1.4, the mean velocity across the wake is laterally uniform and lower than the
velocity outside the wake (y/D > 0.7). At this same position, the turbulence (vrms)

in the middle of the wake (y/D < 0.5) is higher than the level outside the wake
(figure 6b). This region of elevated turbulence directly behind the patch is due to the
small-scale turbulence generated by individual cylinders. This cylinder-scale turbulence
dissipates quickly, disappearing before the next profile at x/D = 2.3 (figure 6b). At
x/D = 2.3, the narrow peak of vrms at the edge of the wake (y/D ≈ 0.5) is associated
with the shear layer developing between the diminished velocity within the wake
and the higher velocity of the free stream. A similar shear layer is present on the
opposite side of the wake (not shown). Directly downstream of the patch, the two
regions of high shear at the wake’s outer edges are separated by the central region
of uniform flow (similar to a bleed flow), and the shear layers develop individually
with longitudinal distance from the patch. Specifically, the profiles from x/D = 1.4 to
x/D = 9.1 in figure 6(a) (i.e. the steady wake region) show a constant velocity at the
centre of the wake (U1) and a constant velocity outside the wake (U2), and a shear
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FIGURE 6. Lateral profiles of (a) u/U∞ and (b) vrms/U∞ for the patch of
D= 22 cm, Φ = 0.03.

region between these limits that grows laterally downstream. The growth of the shear
layer can also be seen in the profiles of vrms, as the peak of vrms becomes wider,
until eventually at x/D = 9.1 the two shear layers merge at the centreline (figure 6b).
Beyond x/D= 9.1, the shear layers interact to form a single von-Kármán vortex street,
and u at the centreline starts to increase, due mostly to the enhanced transverse mixing
associated with the wake-scale vortices. At x/D= 13.6, vrms is maximum in the middle
of the wake, corresponding to a single street of large vortices. Note that the peak
vrms at the centreline is lower for the porous patch (figure 6b) than for the solid body
(figure 5b), indicating weaker wake-scale oscillations behind the porous patch. The
appearance of the vortices at x = D + L1 is confirmed by flow visualization, which is
discussed below.

In the wake behind a solid body there is a single peak in vrms at the centreline
(x/D = 2, open circles in figure 7), associated with the formation of the von-Kármán
vortex street (Bearman 1965; Lyn et al. 1995). In contrast, two distinct zones of
elevated turbulence can be identified in the wake behind the porous patch. First, there
is a small peak of vrms directly behind the patch (x/D = 1, crosses and open squares
in figure 7), associated with the small-scale turbulence generated in the wakes of
individual cylinders (see also figure 6b, x/D= 1.4). These small eddies die out quickly.
A second maximum in vrms appears at the formation of the patch-scale vortices and is
denoted as vrms,max . For Φ = 0.10 in both figure 7a and figure 7b, the peak (vrms,max) at
x/D = 5 is nearly as distinct as that behind the solid body. However, as Φ decreases
(compare Φ = 0.10 and 0.03 in figure 7), vrms,max becomes lower, spans a longer
longitudinal distance, and moves further downstream. The position and magnitude of
vrms,max are reported in table 1. Note that the position of vrms,max is measured from the
downstream end of the patch. Since the vortex is formed from the interaction of two
shear layers, the position of vrms,max is always downstream of the steady wake region
L1, consistent with the observation by Wood (1967). Because the turbulence intensity
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FIGURE 7. Longitudinal profile of vrms/U∞ at the centreline, y= 0: (a) D= 22 cm,
(b) D= 42 cm. Patch is at 0< x/D 6 1.
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FIGURE 8. Power spectra measured on centreline directly behind the patch (a,c), and at the
position of maximum vrms, (b,d,e). Patch of D = 22 cm and: (a,b) Φ = 0.03; (c,d) Φ = 0.14;
(e) solid body.

(vrms,max) weakens as Φ decreases, velocity recovery is slower, i.e. L2/D increases
as Φ decreases (table 1).

The two distinct scales of turbulence present in the wake of the porous patch can
be seen in the velocity spectra (figure 8). First consider the patch of D = 22 cm and
Φ = 0.03. At a location close to the downstream end of the patch (x= 24 cm, x/D≈ 1,
figure 8a), there is a narrow peak in Svv at fd = 2 Hz. This corresponds to the von-
Kármán vortex street generated behind individual cylinders. Specifically, the cylinder
Reynolds number is Red = (ū(x = D, y = 0)d)/ν = 400, and its Strouhal number is
Std = (fdd)/ū(x = D, y = 0) = 0.18. This is consistent with the vortex shedding of a
solid cylinder, St ≈ 0.2 for 200 < Re < 3 × 105 (Roshko 1961; Schewe 1983). Further
downstream in the same wake (x = 300 cm, x/D ≈ 14, corresponding to the position
of vrms,max , figure 8b), the peak frequency in the spectrum shifts to 0.1 Hz, which
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FIGURE 9. The relation between L2/D and vrms,max/U∞. The dashed line indicates the
solid-body limit.

corresponds to the patch-scale von-Kármán vortex street. In fact, for all patches
of diameter D = 22 cm, the velocity spectrum measured at the location of vrms,max
(figure 8b,d,e) contained the same dominant frequency, fD = 0.1 Hz, which corresponds
to the shedding frequency of a solid cylinder of diameter D = 22 cm. Specifically,
StD = (fDD)/U2 = 0.17. Note that U2 is used instead of U∞, as a more representative
value for the outer shear-layer velocity. By comparing the magnitude of the peaks in
Svv (figure 8b,d,e), we note that the turbulence intensity of the wake-scale vortices
is greatest for the solid body (figure 8e, Svv = O(104)), and decreases with solid
volume fraction. Specifically, the peak is higher for the denser patch shown (figure 8d,
Svv = O(103)) than for the sparser patch shown (figure 8b, Svv = O(102)), which is
consistent with the turbulence profiles shown in figure 7, i.e. vrms,max is smaller for
smaller Φ (larger porosity). For the case of D = 22 cm and Φ = 0.14, the velocity
exiting the patch is too low to generate cylinder-scale turbulence, Red = O(10);
therefore there is no velocity fluctuation at the cylinder scale for this case, i.e. no
peak in spectrum (figure 8c).

After the two shear layers grow wide enough to interact and form a von-Kármán
vortex street, the velocity in the wake starts to increase. The length of the velocity
recovery (wake decay) region is L2. The increase of the centreline velocity back to
the free-stream value is due to the cross-wake mixing driven by the wake-scale vortex
street. The turbulence intensity is less for the porous body than for the solid body
(figure 7) and consequently the length scale required for the velocity to recover (L2)
is longer for the porous body wakes, compared to the solid body case (figure 9).
Specifically, L2/D increases with decreasing vrms,max . The solid body cases (shown as
solid symbols) indicate that the lower limit of L2/D is 3 (dashed line).

3.2. Flow visualization
Flow visualization was used to observe both the steady wake and the vortex street
(figure 10). Images are grouped by patch size, D. For each patch size, the steady
wake becomes longer and the lateral extent of the wake oscillation becomes smaller
as Φ decreases. The distance from the downstream end of the patch to the point
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1 0.36 0.14

0.10 0.05

0.10 0.04

0.03

(a)

(b)

(c)

FIGURE 10. Flow visualization. The patch is just out of sight at the bottom of each picture.
Flow is from bottom to top. The dye was injected at the two outmost edges of the patch. The
struts holding the dye injector are visible in some of the pictures. The white grid starts at x =
50 cm (from the leading edge of the patch) and marks the distance of 50 cm in the x-direction
and 20 cm in the y-direction. The yellow crosses mark 1 m intervals. The horizontal white
bar indicates the end of the steady wake (L1,dye). The values of L1,dye are reported in table 1.
(a) D= 42 cm; (b) D= 22 cm; (c) D= 12 cm.
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FIGURE 11. Comparison between L1 and L1,dye. L1 is the length of the steady wake measured
from longitudinal profile of u at the centreline. L1,dye is measured from flow visualization, and
is defined as the point at which the dye traces meet at the centreline.

where the two streaks of dye merge, denoted L1,dye, is another measure of the steady
wake region. For each case, L1,dye was obtained by averaging the lengths measured
from ten individual pictures (table 1). The length scales of the steady wake region
measured from velocity profiles (L1) and from dye images (L1,dye) are the same within
uncertainty (figure 11).

Because pictures were taken at 2 s intervals, the vortex frequency (fD) could be
estimated from the picture series. The images also reveal that the vortices become
increasingly irregular and intermittent as the solid volume fraction decreases. For
example, in the case of D = 12 cm, Φ = 0.04 (figure 10c), the two dye streaks
eventually mix downstream, but no clear pattern of oscillation occurs. Similarly, in
Castro’s (1971) study of the wake behind a perforated plate, the vortex street ceases
to form for the plates with porosity higher than 0.2, which is a solid volume fraction
Φ < 0.8. For the porous array considered here, the transition occurs at a much lower
Φ, with the vortex street ceasing to form only for Φ < 0.04. This is very close to
the limit (Φ = 0.05) found with the numerical model of Nicolle & Eames (2011). The
higher solid volume fraction limit observed by Castro (1971) is likely to be associated
with the difference in aspect ratio between a slim plate, with streamwise dimension
much smaller than spanwise dimension (Castro 1971), and a circular patch, with
comparable streamwise and spanwise dimensions (Nicolle & Eames 2011, and the
present study). The cessation of the vortex street at some level of porosity is related
to the velocity difference induced by the porous obstruction. As the porosity increases,
the velocity difference U2 − U1 decreases, producing a smaller velocity gradient. When
U2 − U1 is too small, the instability is not strong enough to generate a vortex street,
although weak oscillations may still be identified in spectral analysis, a phenomenon
Castro (1971) referred to as wake flapping.

The Strouhal number, StD = fDD/U2, based on the frequency obtained by flow
visualization, is included in table 1. The values of fD found through imaging
agree with the spectral peak estimates, also shown in table 1. A distinct vortex
street is observed for U1/U2 < 0.35 (Φ > 0.04), and no vortex street is observed
for U1/U2 > 0.35 (Φ < 0.04, figure 12). For cases without a visual vortex street,
oscillation was still picked up in the spectra. Whether or not a vortex street was
observed, StD estimated from spectra was nearly constant with a mean value of 0.17.
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FIGURE 12. Strouhal number (StD = fDD/U2) versus (a) the velocity ratio of U1/U2 and
(b) solid volume fraction. The existence of a vortex street is determined from the flow
visualization. For the cases with the vortex street, fD is obtained from the flow visualization.
For the cases with no vortex street, fD is obtained from Svv .

This is similar to the results of Ball et al. (1996), who observed StD = 0.22 for
Φ = 0.23, 0.06 and 0.01. In contrast, Castro (1971) recorded a gradual, but distinct,
upward shift in Strouhal number as the solid volume fraction of their perforated plate
decreased. This may be attributed to a shift in the shedding length scale from the plate
width to the smaller length scales defined by the solid material between the holes in
the plate. A similar shift was observed by Nicolle & Eames (2011). Specifically, for
low solid volume fractions (Φ < 0.05) the shedding from individual cylinders within
the patch determined the oscillation frequency in the near wake, i.e. the individual
cylinder diameter set the length scale for vortex shedding. However, for higher solid
volume fraction, the patch behaved like a solid array, producing wake oscillations that
scaled on the patch diameter. Because the spectral analysis for figure 12 is made
further downstream from the obstruction than these two previous studies, it does not
reflect the oscillations associated with individual cylinders within the patch (e.g. as
observed in spectra directly behind the patch, figure 8a), and this might explain why
we do not see an increase in oscillation frequency as the patch solid volume fraction
decreases.

Finally, the porosity not only has an impact on the velocity difference 1U = U2−U1,
but also the efficiency with which this shear is converted to turbulence. Specifically,
the ratio vrms/1U decreases with decreasing Φ (i.e. increasing porosity), as shown
in figure 13. This is consistent with changes in the vortex strength and coherence
observed by flow visualization. Note that Φ = 0.4 is close to the solid body limit
vrms,max/1U = 0.5. In addition, since vrms,max is positively related to the velocity
difference, 1U (figure 13), and the wake decay depends on the turbulence intensity in
the wake (shown in figure 9), L2 increases with increasing U1/U2. Figure 14 shows
this trend of L2/D and L/D increasing with increasing U1/U2. The solid body cases
correspond to U1/U2 = 0 and L/D= L2/D≈ 3.

4. Discussion
4.1. Steady wake region and growth of the shear layer (L1)

In the steady wake behind the porous patch, shear layers at the two wake edges grow
until they meet at the middle of the wake, after which a single vortex street can form.
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FIGURE 13. Turbulence intensity, vrms,max , normalized by the velocity difference
1U = U2 − U1.
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FIGURE 14. L2/D and L/D versus the velocity ratio of U1/U2.

The length of the steady wake, L1, is therefore determined by the growth rate of the
individual shear layers and the patch diameter, which sets the initial distance between
the shear layers. We draw on previous descriptions of planar shear layer growth (e.g.
Champagne, Pao & Wygnanski 1976). The characteristic width of the shear layer is
δ (figure 15a). Given the mean velocity within the shear layer, U, and the velocity
difference, 1U, the shear layer growth rate is

dδ
dx
= Sδ

1U

U
; (4.1)

Sδ is an empirical parameter which is constant over a wide range of 1U/U. Dimotakis
(1991) reports Sδ ≈ 0.06 to Sδ ≈ 0.11. Champagne et al. (1976) found Sδ ≈ 0.097. The
shear layer grows linearly and preferentially into the low-velocity stream (figure 15b).
The length scale δ is the distance between the positions of y0.9 and y0.1. In this study
we are only interested in how fast the shear layers grow toward the centre of the wake,
and at what x position they reach the centreline, so that we are only interested in
the position of y0.1. We define a new width, δ1, as the distance from the edge of the
patch, y = D/2, to y0.1(figure 16). Using a formula similar to (4.1), Sδ1 is the growth
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FIGURE 15. The plane shear layer. (a) Definition of shear layer width, δ = y0.9 − y0.1.
(b) Streamwise variations of y0.1, y0.5 and y0.9.

U1

L1

1

U2

D 2

D

Shear layer

Shear layer

FIGURE 16. Sketch of the shear layer growth in L1, and the definition of δ1.

parameter for δ1. The low velocity within the steady wake is U1 and the velocity
outside the wake is U2, such that U = (U1 + U2)/2 and 1U = U2 − U1. Rearranging
(4.1), Sδ1 can be obtained from dδ1/dx,

Sδ1 = (dδ1/dx)(U/1U). (4.2)

Lateral profiles of Reynolds stress (u′v′) within the steady wake region were
used to estimate dδ1/dx. For example, figure 17(a) shows the lateral profiles of
Reynolds stress for the patch of D = 42 cm, Φ = 0.03. In each profile, the region
of negative Reynolds stress corresponds to the shear layer. We define the inner
edge of the shear layer as the point where the Reynolds stress reaches zero.
Then, δ1 is the distance from the inner edge of the shear layer to the edge
of the patch (y = D/2). An example is shown in figure 17(a). The length scale,
δ1, measured for each profile (figure 17a) is shown in figure 17(b), from which
dδ1/dx = 0.089 ± 0.008. With U1 = 5.0 cm s−1 and U2 = 13.0 cm s−1 (table 1), we
obtained, Sδ1 = 0.098 ± 0.014 from (4.2). The values of Sδ1 obtained for all cases,
and the corresponding values of U/1U are plotted in figure 18. There is no clear
trend between Sδ1 and U/1U, so that we can assume Sδ1 = 0.10 ± 0.02 is a
constant. Using this value, L1 can be estimated from the modified equation (4.2),
dδ1/dx = Sδ11U/U. The length scale L1 extends from x = D to a point where
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FIGURE 17. D = 42 cm and Φ = 0.03. (a) The lateral profiles of Reynolds stress. Each
profile is offset by −0.4 from the previous profile. δ1 is measured from the edge of the patch
(dashed line, y = D/2 = 21 cm) to the inner edge of the negative peak of the Reynolds stress.
As an example, the width estimated for the x = 250 cm profile is indicated. (b) The width of
the shear layer, δ1, as a function of x. The slope and its uncertainty are obtained by linear
regression with 95 % confidence level, dδ1/dx= 0.089± 0.008.
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FIGURE 18. The values of Sδ1 determined from (4.2) versus U/1U.

δ1 = D/2; therefore, assuming δ1 = 0 at x= D, dδ1/dx= (D/2)/L1, so we can write

L1 ≈ D/2
Sδ1

U

1U
. (4.3)

The values of L1 predicted from (4.3) agree with the measured values within
uncertainty (figure 19).

Wood (1967) and Ball et al. (1996) also studied the steady wake region using flow
visualization. In Wood’s experiment, particles were introduced into the channel flow
but not into the base bleed flow. A clear region with no particles was observed directly
behind the body. It indicated that the bleed flow did not mix with the outside flow
for some distance behind the trailing edge, LWood , which has similar meaning to our
L1. Wood (1967) found that LWood increased as the velocity ratio U1/U2 increased,
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FIGURE 19. Comparison between L1 measured from longitudinal profiles of u and L1
calculated from (4.3).
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FIGURE 20. The relation between the dimensionless length of the steady wake, L1/D, and
the velocity ratio U1/U2. The estimated value of L1 from (4.3) is represented by the solid line.

where U1 was the bleed flow rate and U2 was the velocity outside the wake. Ball
et al. (1996) injected dye at the centre of the upstream face of a square array of
circular cylinders and the dye streak remained straight until some distance behind the
array, LBall , and then started to oscillate laterally. In our study, we injected dye at
two sides of the circular array of circular cylinders. Similar to Wood’s cases, a clear
region behind the porous array is observed and its length is denoted as L1,dye (table 1).
The several observations of L1(LWood , LBall , L1,dye,L1) are compared to the prediction
of L1 (from (4.3)) in figure 20. A data point at L1/D = 0 and U1/U2 = 0 represents
the bluff body case which has no region L1. All three studies show the same trend:
dimensionless length, L1/D, increases as U1/U2 increases. LBall is close to our data.
LWood has the same slope but is offset from the other studies by about D. The possible
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D  12 cm
Square patch, D  40 cm
(Ball et al. 1996)
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0.4

0.5
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0.7

FIGURE 21. Velocity in the steady wake region (U1) as a function of the cylinder density (Φ).
The estimation from (4.5) is represented as a solid line.

reason is that Wood’s model is more streamlined, and in particular has a greater aspect
ratio (length to width), so that the flow directly at the trailing edge is a parallel
shear layer. However, in Ball’s study and in the current study, the patch has an aspect
ratio of 1, so that the flow at the trailing edge is not parallel, and additional flow
diversion is observed after the body, extending about one diameter downstream from
the body. Thus, for obstructions of aspect ratio 1, a parallel flow shear layer may not
be achieved until one diameter downstream of the trailing edge, and this lengthens the
steady wake by one diameter, consistent with the shift between Wood’s measurements
and the other studies (figure 20).

4.2. Magnitude of flow in the steady wake region (U1)

The reduction in velocity from U∞ to U1 depends on the drag imposed by the patch,
which is related to both the size of the patch (D) and its solid volume fraction (Φ).
However, in the cases considered here, U1/U∞ depends only on Φ, and is independent
of aD (figure 21). The square patches tested by Ball et al. (1996) are also included
in figure 21. For the patch Φ = 0.36, U1/U∞ is essentially zero, within measurement
uncertainty, suggesting that the solid body limit has been reached by this value of Φ.

The lack of dependence on aD can be explained by results from Rominger &
Nepf (2011), who describe the deceleration through a long porous patch (length much
larger than width). The velocity at the centreline starts to decline from some distance
upstream of the patch, and the deceleration continues into the patch over a length xD,
after which the flow reaches a steady velocity, U0. Rominger & Nepf (2011) found
that the upstream adjustment length scales on the half-width of the patch (b = D/2),
and both the interior adjustment length (xD) and the final interior velocity (U0) depend
on the dimensionless parameter, CDaD, called the patch flow-blockage. CD is the drag
coefficient for the cylinders within the patch. Adapting (4.2) from Rominger & Nepf
(2011), the interior adjustment length scale is given by

xD

D
∼ 2

CDaD

[
1+

(
CDaD

4

)2
]1/2

. (4.4)

For low flow blockage (CD aD < 4), xD/D scales with (CDaD)−1. For high flow
blockage (CDaD > 4), xD ∼ D only. Using CD = 1 for simplicity, CDaD = 0.8–17 for
the patches tested in this paper. Specifically, for all cases with Φ > 0.1, CDaD > 4,
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and these cases fall in the high-flow-blockage regime and therefore xD ∼ D. If the
patches were infinitely long, the flow would adjust to its interior velocity over the
length scale D. The circular patches we studied provide just this length, so U1 is
expected to be equal to the interior velocity predicted for an infinite patch (U1 = U0),
which was derived by Rominger & Nepf (2011),

U0

U∞
=
√

Cf

h

(1−Φ)
CDa

=
√

Cf

CD

d

h

(
1
Φ
− 1
)
. (4.5)

Note that in this regime U0/U∞ is a function only of the solid volume fraction,
consistent with our observations (U1/U∞ = f (Φ), figure 21). The velocity predicted
from (4.5), using the previously measured Cf = 0.006, the drag coefficient, CD = 1,
cylinder diameter, d = 0.6 cm, and the water depth, h = 13.3 cm, is shown with a
dashed line in figure 21. The agreement with the experimental results is excellent for
Φ > 0.1, for which CDaD > 4, consistent with the definition of high flow blockage.

In the low-flow-blockage regime (CDaD < 4), the interior adjustment length scales
with (CDa)−1, (4.4), which is longer than D. In that case, the near-wake velocity
would be higher than the interior velocity predicted by (4.5), and we would expect
the normalized velocity, U1/U∞, to be a function of the flow blockage (aD) as well
as the solid volume fraction (Φ). Indeed, at the lowest patch density considered here
(Φ = 0.03, 0.04,CDaD = 0.8–2.5) the measured velocity is higher than the prediction
from (4.5) as shown in figure 21. Finally, for Φ 6 0.1, the channel blockage did not
have an impact on U1/U∞. Specifically, at both Φ = 0.1 and 0.03, U1 for all three
blockages (D/B= 0.10, 0.18, 0.35) agreed within uncertainty (figure 21). However, we
expect U1/U∞ will be dependent on D/B at higher values of channel flow blockage,
specifically as D/B approaches unity.

5. Conclusion
The wake behind a porous body has two unique features compared to the wake

behind a solid body. First, a steady wake region extends a distance L1 behind the body,
and L1 increases with increasing patch porosity. Second, the formation of the von-
Kármán vortex street is delayed until beyond L1. The flow exiting the patch is laterally
uniform and slower than the flow that passes around the patch. The streamwise
velocity at the centreline (U1) remains at a constant value over the majority of the
steady wake region. For the patch diameters and porosities considered here, U1/U∞
is a function of the porosity only. Close behind the patch, the wake contains small-
scale turbulence generated in the wakes of individual cylinders. Shear layers form
at both sides of the wake. Initially, the two shear layers do not interact, and grow
independently with distance downstream from the patch. The shear layers grow to the
centreline at x = D + L1, which marks the end of the steady wake. The length of the
steady wake region (L1) can be predicted using the equation of the plane shear layer
growth.

After the steady wake (L1), a von-Kármán vortex street is formed from the
interaction between the shear layers. The turbulence structure in this region is on the
scale of the patch and dominates the transverse mixing across the wake. The maximum
turbulence intensity behind a patch (vrms,max) is lower than that behind a solid body,
which leads to a slower decay of the velocity deficit. As the solid volume fraction
decreases, and U1/U2 increases, the vortex street weakens, losing some coherence, and
for Φ < 0.04, no vortex street is formed and only weak oscillation exists in the wake.
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