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Abstract

Constraint Handling Rules (CHR) is a committed-choice rule-based language that was

originally intended for writing constraint solvers. In this paper we show that it is also

possible to write the classic union-find algorithm and variants in CHR. The programs neither

compromise in declarativeness nor efficiency. We study the time complexity of our programs:

they match the almost-linear complexity of the best known imperative implementations. This

fact is illustrated with experimental results.

KEYWORDS: declarative algorithms, time complexity analysis, disjoint-set problem,

union-find algorithm, constraint handling rules

1 Introduction

When a new programming language is introduced, sooner or later the question arises

whether classical algorithms can be implemented in an efficient and elegant way. For

example, one often hears the argument that in Prolog some graph algorithms cannot

be implemented with best known complexity because Prolog lacks destructive assign-

ment that is needed for efficient update of the graph data structures. In particular,

it is not clear whether the union-find algorithm can be implemented with optimal

complexity in pure (i.e. side-effect-free) Prolog (Ganzinger and McAllester 2001).

In this programming pearl, we give a positive answer for the Constraint Handling

Rule (CHR) programming language. We give a CHR implementation with the best

known worst case and amortized time complexity for the classical union-find algo-

rithm with path compression for find and union-by-rank. This is particularly remark-

able, since originally CHR was intended for implementing constraint solvers only.
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CHR is a concurrent committed-choice constraint logic programming language

consisting of guarded rules that transform multi-sets of constraints (atomic formu-

lae). In CHR, one distinguishes two main kinds of rules: Simplification rules replace

constraints by simpler constraints, e.g. X� Y ∧ Y� X ⇔ X= Y. Propagation rules

add new constraints, which may cause further simplification, e.g. X� Y∧Y� Z⇒ X� Z.

This combination of propagation and multi-set transformation of logical formulae

make CHR a unique and powerful declarative programming language.

Closest to our work is the presentation of a logical algorithm for the union-

find problem in Ganzinger and McAllester (2001). In a hypothetical bottom-up

inference rule language with permanent deletions and rule priorities, a set of rules

for union-find is given that is proven to run in O(M + Nlog(N)) worst-case time

for a sequence of M operations on N elements. The direct efficient implementation

of these inference rule system seems infeasible. It is also not clear whether the

rules given in Ganzinger and McAllester (2001) describe the standard union-find

algorithm as can be found in text books such as Cormen et al. (1990). The authors

remark that giving a rule set with optimal amortized complexity is complicated.

In contrast, we give an executable and efficient implementation that directly

follows the pseudo-code presentations found in text books and that also has optimal

amortized complexity. Moreover, we do not rely on rule priorities.

This paper is structured as follows. In the next section, we review the classical

union-find algorithms. Constraint Handling Rules (CHR) are briefly presented in

section 3. Then, in section 4 we present the implementation of the classical union-

find algorithm in CHR. An improved version of the implementation, featuring path

compression and union-by-rank, is presented next in section 5. In section 6, we argue

that this implementation has the same time complexity as the best known imperative

implementations. This claim is experimentally evaluated in section 7. Finally, section

8 concludes.

2 The union-find algorithm

The classical union-find (also: disjoint set union) algorithm was introduced by

Tarjan in the 1970s (Tarjan and van Leeuwen 1984). A classic survey on the topic

is by Galil and Italiano (1991). The algorithm solves the problem of maintaining

a collection of disjoint sets under the operation of union. Each set is represented

by a rooted tree, whose nodes are the elements of the set. The root is called the

representative of the set. The representative may change when the tree is updated by

a union operation. With the algorithm come three operations on the sets:

• make(X): create a new set with the single element X.

• find(X): return the representative of the set in which X is contained.

• union(X,Y): join the two sets that contain X and Y, respectively (possibly

destroying the old sets and changing the representative).

A new element must be introduced exactly once with make before being subject to

union and find operations.
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In the naive algorithm, these three operations are implemented as follows.

• make(X): generate a new tree with the only node X, i.e. X is the root.

• find(X): follow the path from the node X to the root of the tree. Return the

root as representative.

• union(X,Y): find the representatives of X and Y, respectively. To join the two

trees, it suffices to link them by making one root point to the other root.

The following imperative pseudo-code implements this algorithm.

make(x)

p[x] ← x

union(x,y)

link(find(x),find(y))

link(x,y)

if x �= y

then p[y] ← x

find(x)

if x �= p[x]

then return find(p[x])

else return x

In this pseudo-code p[x] denotes the ancestor of x in the tree. If x is the root,

then p[x] equals x.

The naive algorithm requires O(N) time per find (and union) in the worst

case, where N is the number of elements (make operations). With two independent

optimizations that keep the tree shallow and balanced, one can achieve quasi-

constant (i.e. almost constant) amortized running time per operation.

The first optimization is path compression for find. It moves nodes closer to the

root. After find(X) returned the root of the tree, we make every node on the path

from X to the root point directly to the root. The second optimization is union-by-

rank. It keeps the tree shallow by pointing the root of the smaller tree to the root

of the larger tree. Rank refers to an upper bound of the tree depth. If the two trees

have the same rank, either direction of pointing is chosen but the rank is increased

by one.

For each optimization alone and for using both of them together, the worst case

time complexity for a single find or union operation is O(log(N)). For a sequence of

M operations on N elements, the worst complexity is O(M + Nlog(N)). When both

optimizations are used, the amortized complexity is quasi-linear, O(M + Nα(N)),

where α(N) is an inverse of the Ackermann function and is less than 5 for all

practical N.

In the naive pseudo-code, the make, link and find operations have to be redefined

as follows, to add union-by-rank and path compression.
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make(x)

p[x] ← x

rank[x] ← 0

link(x,y)

if x �= y

if rank[x] � rank[y]

then p[y] ← x

rank[x] ← max(rank[x],rank[y] + 1)

else p[x] ← y

find(x)

if x �= p[x]

then p[x] ← find(p[x])

return p[x]

The union-find algorithm has applications in graph theory (e.g. efficient computa-

tion of spanning trees). By definition of set operations, a union operator working on

representatives of sets is an equivalence relation, i.e. we can view sets as equivalence

classes. When the union-find algorithm is extended to deal with nested terms to

perform congruence closure, the algorithm can be used for term unification in

theorem provers and in Prolog.1 The WAM (Aı̈t-Kaci 1991), Prolog’s traditional

abstract machine, uses the basic version of union-find for variable aliasing. While

variable shunting, a limited form of path compression, is used in some Prolog

implementations (Sahlin and Carlsson 1991), we do not know of any implementation

of the optimized union-find that keeps track of ranks or other weights.

3 Constraint Handling Rules (CHR)

In this section we give an overview of the syntax and operational semantics for

Constraint Handling Rules (CHR) (Frühwirth 1998; Frühwirth and Abdennadher

2003; Duck et al. 2004).

3.1 Syntax of CHR

We use two disjoint sets of predicate symbols for two different kinds of constraints:

built-in (pre-defined) constraint symbols which are solved by a given constraint

solver, and CHR (user-defined) constraint symbols which are defined by the rules

in a CHR program. There are three kinds of rules:

Simplification rule: Name @ H ⇔ C B,

Propagation rule: Name @ H ⇒ C B,

Simpagation rule: Name @ H \H ′ ⇔ C B,

where Name is an optional, unique identifier of a rule, the head H , H ′ is a non-empty

comma-separated conjunction of CHR constraints, the guard C is a conjunction

1 It is straightforward to combine the existing CHR solvers for term unification with our union-find
implementation.
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of built-in constraints, and the body B is a goal. A goal (query) is a conjunction

of built-in and CHR constraints. A trivial guard expression “true |” can be

omitted from a rule. Simpagation rules abbreviate simplification rules of the form

Name @ H,H ′ ⇔ C H,B.

3.2 Operational semantics of CHR

Given a query, the rules of the program are applied to exhaustion. A rule is applicable,

if its head constraints are matched by constraints in the current goal one-by-one and

if, under this matching, the guard of the rule is implied by the built-in constraints in

the goal. Any of the applicable rules can be applied, and the application cannot be

undone, it is committed-choice (in contrast to Prolog). When a simplification rule is

applied, the matched constraints in the current goal are replaced by the body of the

rule, when a propagation rule is applied, the body of the rule is added to the goal

without removing any constraints.

This high-level description of the operational semantics of CHR leaves two

main sources of non-determinism: the order in which constraints of a query are

processed and the order in which rules are applied. As in Prolog, almost all CHR

implementations execute queries from left to right and apply rules top-down in

the textual order of the program.2 This behavior has been formalized in the so-

called refined semantics that was also proven to be a concretization of the standard

operational semantics (Duck et al. 2004).

In this refined semantics of actual implementations, a CHR constraint in a query

can be understood as a procedure that goes efficiently through the rules of the pro-

gram in the order they are written, and when it matches a head constraint of a rule,

it will look for the other, partner constraints of the head in the constraint store and

check the guard until an applicable rule is found. We consider such a constraint to be

active. If the active constraint has not been removed after trying all rules, it will be

put into the constraint store. Constraints from the store will be reconsidered (woken)

if newly added built-in constraints constrain variables of the constraint, because then

rules may become applicable since their guards are now implied. Obviously, ground

constraints need never to be considered for waking. The discussion above will be of

use in section 6 where we derive the time complexities of our CHR programs.

4 Implementing union-find in CHR

The following CHR program in concrete ASCII syntax implements the operations

and data structures of the naive union-find algorithm without optimizations:

• root(X) represents p[X] = X,

• X ~> PX represents p[X] = PX,

• find(X,R) implements R = find(X),

• make and union are identical.

2 The nondeterminism due to the wake-up order of delayed constraints and multiple matches for the
same rule are of no relevance for the programs discussed here.
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The constraints make/1, union/2, find/2 and link/2 define the operations, so we

call them operation constraints. The constraints root/1 and ~>/2 represent the tree

data structure and we call them data constraints.

make @ make(X) <=> root(X).

union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).

findNode @ X ~> PX \ find(X,R) <=> find(PX,R).

findRoot @ root(X) \ find(X,R) <=> R=X.

linkEq @ link(X,X) <=> true.

link @ link(X,Y), root(X), root(Y) <=> Y ~> X, root(X).

The elements we apply union to are constants as usual for union-find algorithms.

Hence the arguments of all constraints are constants, with the exception of the

second argument of find/2 that must be a variable that is bound to a constant in

the rule findRoot.

Actually, the use of the built-in constraint = in this rule is restricted to returning

the element X in the parameter R. In particular no full unification is ever performed.

This union-find program and the one in the next section are not confluent

(Schrijvers and Frühwirth 2004; Schrijvers and Frühwirth 2005), i.e. results are

dependent of the order in which applicable rules are applied. The main reason is

that the relative order of find and union operations matters for the outcome of a

find. This behavior is inherent in the union-find algorithm due to its update of the

tree structure (see also the discussion of the logical reading of the rules in Schrijvers

and Frühwirth (2004)).

5 Optimized union-find

The following CHR program implements the optimized classical union-find al-

gorithm with path compression for find and union-by-rank (Tarjan and van Leeuwen

1984). The union/2 constraint is implemented exactly as for the naive algorithm.

make @ make(X) <=> root(X,0).

union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).

findNode @ X ~> PX , find(X,R) <=> find(PX,R), X ~> R.

findRoot @ root(X,_) \ find(X,R) <=> R=X.

linkEq @ link(X,X) <=> true.

linkLeft @ link(X,Y), root(X,RX) root(Y,RY) <=> RX >= RY |

Y ~> X, NRX is max(RX,RY+1), root(X,NRX).

linkRight @ link(X,Y), root(Y,RY), root(X,RX) <=> RY >= RX |

X ~> Y, NRY is max(RY,RX+1), root(Y,NRY).
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When compared to the naive version ufd basic, we see that root has been

extended with a second argument that holds the rank of the root node. The rule

findNode has been extended for path compression already during the first pass

along the path to the root of the tree. This is achieved by the help of the variable R

that serves as a place holder for the result of the find operation. The link rule has

been split into two rules, linkLeft and linkRight, to reflect the optimization of

union-by-rank: The smaller ranked tree is added to the larger ranked tree without

changing its rank. When the ranks are the same, either tree is updated (both rules

are applicable) and the rank is incremented by one.

6 Time complexity

While automatic complexity analysis results for CHR exist (Frühwirth 2002), these

do not take into account the refined operational semantics of CHR (Duck et al.

2004) and hence will yield only a very crude approximation of the actual complexity.

Instead we establish the time complexity of our CHR programs by first showing

that they are operationally equivalent to the respective imperative algorithms. By

showing next that all the individual computation steps in the CHR program have the

same complexity as their imperative counterparts, we have then effectively proven

that the overall time complexity properties are identical to the ones of imperative

implementations.

6.1 Operational equivalence

We start by considering the naive algorithm. Because of the refined operational

semantics of CHR, the query of make/1, union/2 and find/2 constraints (and any

other conjunction of constraints) is evaluated from left to right, just as is the case

for equivalent calls for the imperative program.

Because of this execution order, the operation constraints behave just as their

imperative counterparts. The imperative if-then and if-then-else constructs

are encoded as multiple rules. The appropriate rule will be chosen because of a

combination of different matchings, partner constraints and guards.

Moreover, the recursion depth for the find/2 constraint is equal to the path from

the initial node to the root just like in the imperative algorithm. The unification in

the body of the findRoot rule cannot wake up any constraints, since the variable

that is bound to a constant does not occur in any other constraint processed so far.

It is clear from the CHR program and the refined operational semantics, that

there is only ever at most one operation constraint in the constraint store. Moreover,

whenever a data constraint is called, the operation constraint has already been

removed. Thus a data constraint will never trigger any rule, because of lack of the

necessary partner constraint.

6.2 Time complexity equivalence

Now that we have shown the operational equivalence of the CHR program with

the imperative algorithm, we still need to show that the time complexities of the

different computation steps (corresponding to rule applications) are also equal.
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The following time complexity assumptions of a CHR implementation are reas-

onable (based on the discussion of CHR operational semantics in section 3.2). They

are effectively implemented by the SICStus (Intelligent Systems Laboratory 2003),

HAL (Holzbaur et al. 2005) and K.U.Leuven (Schrijvers and Demoen 2004) CHR

systems. All of the following operations of the refined operational semantics take

constant time:

• The Activate transition, excluding the cost of adding the constraint to the

constraint store.

• The Drop transition, i.e. ending the execution of a constraint.

• The Default transition, i.e. switching from trying one rule to trying the next

rule.

• Matching for Herbrand variables and constants, given a bounded reference

chain length. This occurs in the Simplify and Propagate transitions.

• Instantiating a variable that does not occur in any constraints, i.e. an obvious

optimization of the Solve transition.

• Checking simple arithmetic built-in constraints like >= and min.

The following complexity assumptions can be realized in practice by appropriate

indexing, i.e. constraint store lookup based on shared variables:

1. The cost of finding all constraints with a particular value in a particular

argument position is constant. Even if there are no such constraints. The cost

of obtaining one by one all constraints from such a set is is proportional to

the size of the set.

2. The CHR constraint store allows constant addition and deletion of any

constraint.

3. If more than one partner constraint has to be found, an ordering of look-ups is

preferred, if possible, such that the next constraint to look-up shares a variable

with the previously found constraints and the active constraint.

The last item is a heuristic presented in (Holzbaur et al. 2005) and implemented in

the HAL and K.U.Leuven CHR systems. In Section 7 we will discuss appropriate

constraint store data structures that fulfill the remaining assumptions.

From these assumptions it is clear that processing a data constraint takes constant

time: the constraint is called, some rules are tried, some partner constraints which

share a variable with the active constraint are looked for, but none are present, and

finally the call ends with inserting the data constraint into the constraint store.

Hence our naive CHR implementation has the same time complexity properties

as the naive imperative algorithm.

The proof of operational equivalence and equivalent complexity of the optimized

algorithm and CHR program is similar. Because of this equivalence with the

imperative algorithm, our CHR program also has worst-case time complexity is

O(M + Nlog(N)) and amortized time complexity O(M + Nα(N)).
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7 Experimental evaluation

To experimentally validate the complexity derived above, we have run the CHR

program in SWI-Prolog (Wielemaker) using the K.U.Leuven CHR system (Schrijvers

and Demoen 2004). This CHR system will use hashtables as constraint stores for

lookups on shared variables that are ground. These hashtables allow for efficient

lookup, insertion and deletion of constraints. By adding the appropriate mode

declarations to our program, the system establishes the groundness of shared

variables.

By initializing the hashtables to the appropriate sizes and choosing the used

constants appropriately, it is possible to avoid hashtable collisions. Then, the

hashtables essentially behave as arrays (just as in the imperative code) and the

assumptions of the previous section are effectively realized.

In contrast, the first and de facto standard CHR system, available in SICStus

(Intelligent Systems Laboratory 2003), does not provide the necessary constant time

operations. While it does have constant lookup time for all constraint instances of

a particular constraint that contain a particular variable, it does not distinguish

between argument positions. Hence, the lookup of root(X,R) can be done in

constant time given X, but the lookup of X ~> Y is proportional to the number of

~> constraints X appears in. If X is a node with K children, then it will be O(K).

Moreover, while the insertion of a constraint instance is O(1), deletion is O(I), where

I is the total number of instances of the constraint.

The queries we use in our experimental evaluation consist of N calls to make/1,

to create N different elements, followed by N calls to union/2 and N calls to

find/2. The input arguments of the latter two are chosen at random among the

elements. Even the SICStus CHR system exhibits near-linear behavior for a random

set of union operations. So we consider instead a contrived set of union operations:

disjoint trees of elements are unioned pairwise until all elements are part of the same

tree. Figures 1(a) and 1(b) show the runtime results for SICStus and SWI-Prolog.

It is clear from the figure that SICStus does not show the optimal quasi-linear

behavior anymore which is still observed in SWI-Prolog.

We also compare the above two cases to the case where the hashtables are not

initialized to a large enough size, but instead double in size and rehash each time

their load equals their size. While individual hashtable operations no longer take

constant time, on average they do (Cormen et al. 1990), which is sufficient for our

complexity analysis. This is confirmed by experimental evaluation (see Figure 1(c)).

The above comparisons illustrate that it is vital for efficiency to use a CHR system

with the proper constraint store data structures. To the best of our knowledge, the

K.U.Leuven CHR system is currently the only system that provides hashtable-based

indexing constraint stores.

8 Conclusion

We have shown in this paper that it is possible to implement the classical union-

find algorithm concisely and efficiently in Constraint Handling Rules (CHR). The

implementation is easily extended with optimizations like path-compression and
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Fig. 1. For legend see facing page.
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Fig. 1. Observation of behavior for contrived unions.

union-by-rank. In addition, we showed the optimal time complexity properties of

our implementations. The declarative nature of CHR is no compromise for time

complexity.

At http://www.cs.kuleuven.ac.be/~toms/Research/CHR/UnionFind/ all

presented programs as well as related material are available for download. The

programs can be run with the proper time complexity in the latest release of SWI-

Prolog. The technical report (Schrijvers and Frühwirth 2004) associated with this

paper contains a detailed analysis of the confluence properties and logical semantics

of our union-find implementations.

In future work we intend to investigate implementations for other variants of

the union-find algorithm. For a parallel version of the union-find algorithm parallel

operational semantics of CHR have to be investigated (confluence may be helpful

here). A dynamic version of the algorithm, e.g. where unions can be undone, would

presumably benefit from dynamic CHR constraints as defined in Wolf (2005).
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November 2004. Last but not least we would like to thank our reviewers for their

suggestions and comments that greatly helped to improve the paper.

References

Aı̈t-Kaci, H. 1991. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press.

Cormen, T. H., Leiserson, C. E. and Rivest, R. L. 1990. Introduction to Algorithms. MIT

Press.

Duck, G. J., Stuckey, P. J., de la Banda, M. G. and Holzbaur, C. 2004. The Refined

Operational Semantics of Constraint Handling Rules. Proceedings of the 20th International

Conference on Logic Programming, B. Demoen and V. Lifschitz, Eds., 90–104.
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