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Abstract. We prove by methods of harmonic analysis a result on the existence of solutions
for twisted cohomological equations on translation surfaces with loss of derivatives at
most 3+ in Sobolev spaces. As a consequence we prove that product translation flows
on (three-dimensional) translation manifolds which are products of a (higher-genus)
translation surface with a (flat) circle are stable in the sense of A. Katok. In turn, our
result on product flows implies a stability result of time-t maps of translation flows on
translation surfaces.
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1. Introduction

The first result on solutions of the cohomological equation for a parabolic non-
homogeneous (but ‘locally homogeneous’) smooth flow was given by the author in [F97]
in the case of translation flows (and their smooth time-changes) on higher-genus translation
surfaces, by methods of harmonic analysis based on the theory of boundary behavior of
holomorphic functions.

Since then refined versions of that result have been proved by (dynamical)
renormalization methods based on ‘spectral gap’ (and hyperbolicity) properties of the
Rauzy—Veech—Zorich cocycle [MMY05, MY16], of the Kontsevich—Zorich cocycle over
the Teichmiiller flow [FF07] and, more recently, of the transfer operator of a pseudo-Anosov
map on appropriate anisotropic Banach spaces of currents [FGL]. The renormalization
approach has the immediate advantage of a refined control on the regularity loss and of
more explicit conditions of Diophantine type on the dynamics, and in particular applies
to self-similar translation flows or interval exchange transformations. It also gives a direct
approach to results for almost all translation surfaces, while an extension to almost all
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directions for any given translation surface had to wait for the work of Chaika and Eskin
[CE] based on the breakthroughs of Eskin and Mirzakhani [EM], Eskin, Mirzakhani and
Mohammadi [EMM] and Filip [Fi].

In this paper we apply a twisted version of the arguments of [F97] to the solution of the
twisted cohomological equation for translation flows and derive results on the cohomo-
logical equation for three-dimensional ‘translation flows’ on products of a higher-genus
translation surface with a circle. For these problems no renormalization approach is
available at the moment, although steps in that direction have been taken in the work of
Bufetov and Solomyak [BS14, BS18a, BS18b, BS18c, BS19] and of the author [F19],
who have introduced twisted versions of the Rauzy—Veech—Zorich and Kontsevich—Zorich
cocycles respectively, and proved ‘spectral gap’ results for them.

The study of solutions of the twisted cohomological equation is therefore motivated
in part by its connection to the question of asymptotics of twisted integrals, investigated
in the above-mentioned papers. In fact, twisted integrals of twisted coboundaries with
bounded transfer function are bounded for all times. However, there are other more
direct motivations, related to the theory of cohomological equations. From results on the
twisted cohomological equation (Theorem 1.1 below) we derive results on the (untwisted)
cohomological equation for translation flows on the three-dimensional product of a
higher-genus surface with a circle (Theorem 1.4) and results on the cohomological
equation for time-t maps of translation flows (Corollary 1.5). These are the first results
of this kind for non-homogeneous ‘parabolic flows’ beyond the case of (translation) flows
on higher-genus surfaces.

For any translation surface (M, h) (a pair of a Riemann surface M and an abelian
differential 2 on M) let H; (M) denote the scale of (weighted) Sobolev spaces (introduced
in [F97], and recalled below in §2), based on the Hilbert space H;? (M) := L2(M, wp) of
square-integrable functions with respect to the area form wj, of the abelian differential, and
defined by the Lie derivative operators given by translation vector fields on the translation
surface (M, h).

For the horizontal translation flow ¢Ifé on M (of generator the horizontal vector
field S) and for any 0 € R, let Z} _ C Hh_s (M) denote the space of (S + 10)-invariant

h,o
distributions, that is, the subspace

I3, =D e H*(M) | (S+10)D =0 ¢ H, “"" ).

For all @ € T, let hy := e '?h denote the rotated abelian differential and let Sy denote the
generator of the horizontal translation flow on (M, hy).
We prove the following results.

THEOREM 1.1. For any translation surface (M, h), for almost all 0 € T and for almost
all o € R (with respect to the Lebesgue measure), the following statement holds. For
all s >0 the space Izﬂﬂ - Hh_s (M) of (Sg + 10)-invariant distributions has finite
dimension (bounded above and below by linear functions of the regularity s > 0). For all
fe H}f (M) with s > 3, satisfying the distributional conditions D(f) = 0 for all (Sp +
10)-invariant distributions D € Ifm, o the twisted cohomological equation (Sp + 10)u =
f has a solutionu € H; (M) for allr < s — 3, and there exists a constant Cy5(6,0) > 0
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such that
lul, < Cr,s(g, )| fls-

In other words, the theory of the twisted cohomological equation of translation flows
is analogous, for Lebesgue almost all twisting parameters, to the untwisted theory of the
cohomological equation for translation flows.

Remark 1.2. In the untwisted case the optimal loss of regularity of solutions of the
cohomological equation is known to be 14 for L Sobolev norms, for almost all translation
flows with respect to any SL (2, R) invariant measure under the hypothesis of hyperbolicity
of the Kontsevich—Zorich cocycle [F07]. Marmi and Yoccoz [MY16] proved a similar, but
slightly weaker, statement for Holder norms. For self-similar translation flows, the loss of
1+ derivatives for Holder norms should follow from the recent work of Faure, Gouézel and
Lanneau [FGL], although spaces with fractional exponents are not explicitly considered
in their paper.

It is natural to conjecture that the optimal loss of derivatives is 1+ also in the twisted
case, and it seems plausible that the whole argument of [F07] would carry over under the
(equivalent?) hypotheses of hyperbolicity of the twisted cocycles introduced in [BS18c,
F19]. At the moment the only known results on such twisted exponents are upper bounds
(in particular, that the top exponent is less than 1) [BS18c, BS19, F19] but no lower bounds
are known.

Remark 1.3. The problem of solution of the cohomological equation (S + Mu = f is
interesting only in the case, considered in Theorem 1.1, of N € :R. In fact, the Lie
derivative operator with respect to a translation flow S on a higher-genus translation
surface (M, h) is essentially skew-adjoint (see [Ne59, Lemma 3.10]), hence its spectrum
is contained in :R. For N & iR, that is, for A in the resolvent set of the operator, we have
the standard L2 a priori estimate

Re(M)?|ulf < Re(M)?uld 4 |(S 4 tIm(W))ulf = (S + Wulj.

From the above a priori estimate, it is possible to derive, for all \ ¢ 1R, the existence of
(unique) solutions u € L*(M, wy) of the cohomological equation (S + N)u = f, for all
data f € H ;L) (M), and by regularization, the existence of regular solutions u € H; (M) for
all regular data f € Hj (M) (in the appropriate weighted Sobolev spaces), with no loss of
derivatives.

A result on the existence of solutions of the cohomological equation for twisted
horocycle flows was recently proved by Flaminio, Forni and Tanis [FFT16], who were
motivated by applications to the cohomological equation for horocycle time-t maps (see
also [Tal2]) and to deviation of ergodic averages for twisted horocycle integrals and
horocycle time-t maps. Twisted nilflows are still nilflows, hence the theory of twisted
cohomological equations in the nilpotent case is covered by the general results of Flaminio
and Forni [FlaFo07]. As for results on deviation of ergodic averages for nilflows, they are
related to bounds on Weyl sums for polynomials. The Heisenberg, and the general step-2,
case are better understood by renormalization methods (see, for instance, [FlaFo06]),
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while the higher-step case is not renormalizable, hence harder (see, for instance, [GT12,
FlaFo14]). Results on twisted ergodic integrals of translation flows and applications to
effective weak mixing were recently proved by the author [F19].

For all (s, v) € N x N, let H;"”(M x T) denote the L? Sobolev space on M x T with
respect to the invariant volume form wy A d¢ and the vector fields S, 7, and 9/9¢: for all
(s,v) € N x N, we define

s

SiT/
agt

Hy'(M x T) := {f € L*(M x T, dvol) ‘ > 2

i+j<s {<v

<+OO};
0

the space H,"(M x T) can be defined for all (s, v) € RT x RT by interpolation [LM]
and the space H, """ (M x T) is defined as the dual of the space H,"" (M x T).

The space L>(M x T, dvol) of the product manifold with respect to the invariant
volume form wj A d¢ decomposes as a direct sum of the eigenspaces {H,? | n €Z} of
the circle action:

L*(M x T, dvol) = €P) H,.
nez
Let now Xg . = Sp + c(9/9¢) denote a translation vector field on the translation manifold
M x T, and let Iz: . C H, """ (M x T) denote the space of Xy c-invariant distributions.
The subspace of Xy .-invariant distributions in I,;H” . supported on the Sobolev subspace
of HS C H? has finite and non-zero dimension, uniformly bounded with respect ton € N.

It follows that the space IZ;” . has countable dimension.

THEOREM 1.4. For any translation surface (M, h), for almost all 0 € T and for almost
all ¢ € R (with respect to the Lebesgue measure), the following statement holds.

Forall s > 3 and v > 2, the space I;l;c C H, """ (M x T) of Xg c-invariant distribu-
tions has infinite (countable) dimension, and for all f € H}f’v (M x T) suchthat D(f) =0
forall D € Ifwvc the cohomological equation X .u = f has a solutionu € H}f’“ (M x T)

forallr <s —3and u < v — 2. In addition, there exists a constant C,(fﬁ’”)(e, ¢) > 0 such

that
llly e < CE2@, N S lls,o-

Following Katok (see [Ka0l, §3.1] or [Ka03, §11.1]) a smooth flow on a smooth
compact, connected manifold M is called C*°-stable if the range of the Lie derivative
operator on C*°(M) is closed in C*°(M) (see also [F08]). In this terminology, Theorem
1.4 implies that for almost all (9, ¢) € T x R, the flow of the vector field Xy on M x T
is C*°-stable. Indeed, the closed-range property is an immediate consequence of the
(Sobolev) estimates on the solutions of the cohomological equation. Our theorem implies
more generally stability in weighted Sobolev spaces of finitely differentiable functions.

In fact, ours is the first example of a C°°-stable non-homogeneous (although locally
homogeneous), non-hyperbolic (partially hyperbolic) hyperbolic flow on a manifold of
dimension at least 3. Indeed, we recall that the only known examples of stable (and
renormalizable) three-dimensional parabolic flows are (up to smooth conjugacies and
time-changes) homogeneous flows: horocycle flows of hyperbolic surfaces [FlaFo03]
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and Heisenberg nilflows [FlaFo06]. However, there has been recent progress (although
conditional) on ‘Ruelle asymptotics’ and deviation of ergodic averages for horocycle flows
for negatively curved metrics on surfaces [AB] (see also [FG18]), hence a proof of smooth
stability (at least in low regularity) for such flows seems within reach of current methods
for the analysis for the transfer operator of hyperbolic flows, along the lines of the work of
Giulietti and Liverani [GL] for Anosov maps of tori.

We recall, again following A. Katok’s terminology, that a stable flow on a smooth,
compact, connected manifold M such that the range of the Lie derivative operator has
codimension one in C*(M) is called rigid or cohomology free. The Katok—Hurder
conjecture (known for flows only up to dimension 3; see [F08] and references therein)
states that all smooth rigid flows are smoothly conjugate to linear Diophantine flows on
tori. It is therefore expected that all non-toral uniquely ergodic stable flows have invariant
distributions which are not signed measures, a property which is confirmed by our result,
since the range of the Lie derivative has higher codimension. In fact, in all known examples
of C*°-stable flows, the space of invariant distributions is infinite-dimensional, with the
only partial exception of typical translation flows on compact orientable surfaces, which
have finite codimension in finite differentiability [F97]. Our result confirms once more
the expectation that, in dimension greater than 2, the space of invariant distributions of a
generic smooth non-toral stable flow has infinite dimension even in finite differentiability.

Finally, from Theorem 1.4 on the cohomological equation for the product of translation
flows on higher-genus surfaces with translation flows on the circle we derive, by a general
argument, a result on the cohomological equation for the time-t maps of translation flows
on higher-genus surfaces.

Let @} denote the time-r map of the horizontal translation flow of the abelian
differential 7y on M. For all s > 0, let I,Sm,t C Hh_S(M ) denote the space of <I>5-invariant
distributions, that is, the space of all distributions in H,~ *(M) which vanish on the
subspace

{uo®f —ulueHXM)}NH (M) C H;(M).
We have the following result.

COROLLARY 1.5. For any translation surface (M, h), for almost all 0 € T and for
almost all T € R (with respect to the Lebesgue measure), the following statement holds.
For all f € H;(M) with s > 3, satisfying the distributional conditions D(f) =0 for
all ®f-invariant distributions D € Ifle’r C H, (M), the cohomological equation u o
CD(E —u = f has a solution u € H,: (M), for all r < s — 3, and there exists a constant

C, 50, t) > 0 such that
lul, < Cr,s(e, | fls.

The paper is organized as follows. In §2 we recall basic facts of analysis on translation
surfaces as developed by the author in [F07, F97]. In §3 we introduce a twisted version
of the Beurling-type isometry of the L? space of a translation surface defined in [F97]
(see also [F02]). Section 4 recalls results from the theory of boundary behavior of Cauchy
integrals of finite measures on the circle and applications to the spectral theory of general
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unitary operators on Hilbert spaces, following [F97]. In §5 we prove the core result about
the existence of solutions of the cohomological equation, by the following the presentation
given in [F07] of the original argument of [F97], generalized to the twisted case. Section
5.11is devoted to the core result about existence of distributional solutions, §5.2 to finiteness
results for the spaces of twisted invariant distributions, and §5.3 to the proof of the main
results on existence of smooth solutions for the twisted cohomological equations, product
flows and time-t maps.

Note. Although the paper is mostly self-contained, it is largely based on ideas and
techniques from [F97], already revisited and streamlined in [F07, §§2 and 3]. A familiarity
with these earlier works will therefore greatly facilitate the reading of the present work.

2. Analysis on translation surfaces
This section gathers basic results on the flat Laplacian of a translation surface, following
[F97, §§2 and 3] and [F07, §2].

Let Xy :={p1, ..., ps} C M}, be the set of zeros of the holomorphic abelian differen-
tial 2 on a Riemann surface M, of orders (k1, . . ., k) respectively with k1 + - - - + ks =
2g — 2. Let Ry, := |h| be the flat metric with cone singularities at X, induced by the
abelian differential 7 on M and let wy, denote its area form. With respect to a holomorphic
local coordinate z = x 4+ 1y at a regular point, the abelian differential /4 has the form
h = ¢(2)dz, where ¢ is a locally defined holomorphic function, and, consequently,

Ry = lp@)I(dx* +dyHV2,  wp =19 (2)1* dx A dy. (1)

The metric Ry, is flat, degenerate at the finite set X of zeros of / and has trivial holonomy,
hence h induces a translation surface structure on M.

The weighted L2 space is the standard space Li(M ) := L%(M, wy,) with respect to the
area element wy, of the metric Rj,. Hence the weighted L? norm | - |o is induced by the
hermitian product (-, -), defined as follows: for all functions u, v € L% M),

(u, vy, == / uvwp. 2)
M

Let Fimn) be the horizontal foliation, Freny be the vertical foliation for the holomorphic
abelian differential 4 on M. The foliations Fim) and Fre(n) are measured foliations (in
the sense of Thurston): Fim) is the foliation given by the equation Imi = 0 endowed
with the invariant transverse measure |Im |, FRre(r) the foliation given by the equation
Reh = 0 endowed with the invariant transverse measure |Re /|. Since the metric Ry, is flat
with trivial holonomy, there exist commuting vector fields S, and 7j, on M \ X, such that:
(1) the frame {Sy, T} is a parallel orthonormal frame with respect to the metric R, for
the restriction of the tangent bundle 7 M to the complement M \ X of the set of
cone points;
(2) the vector field Sy, is tangent to the horizontal foliation Fim(;), and the vector field
Tj, is tangent to the vertical foliation Fre(ny on M \ Xy [FO7, F97].
In the following we will often drop the dependence of the vector fields Sy, 7} on the
abelian differential in order to simplify the notation. The symbols Lg, L7 denote the Lie

https://doi.org/10.1017/etds.2021.120 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.120

Twisted cohomological equations for translation flows 887

derivatives, and 15, 17 the contraction operators with respect to the vector field S, T on

M\ Xj. We have:

(1) Lswn =Lrw, =00n M\ X, that is, the area form wy, is invariant with respect to
the flows generated by S and T;

(2) 1swp =Reh and 17wy = Imh, hence the 1-forms ng :=1swp, Ny = —iTwy are
smooth and closed on M and w;, = nr A ns.

Let C3°(M \ Xp,) denote the space of complex-valued smooth functions with compact
support in M \ ¥j. It follows from the area-preserving property (1) that the vector fields
S, T are anti-symmetric as densely defined operators on L% (M), that is, for all functions u,
v e Cy°(M\ Zp) (see [F97, formula (2.5)]),

(SM, U)h = —(M, SU)h’ <T1/t, U)h = _<u9 Tv)h? (3)

respectively. In fact, by Nelson’s criterion [Ne59, Lemma 3.10], the anti-symmetric
operators S, T are essentially skew-adjoint on the Hilbert space Lﬁ (M).

The weighted Sobolev space H }]l‘ (M), with integer exponent k € Z, introduced in [F97],
is defined for k > 0 as the common domain

Hf(M) = () D'T/)nD(T'S))
i+j<k

of the products of non-negative powers of the closures S, T of the essentially skew-adjoint
operators S, T on Li (M) up to order k € N. It is endowed with the weighted Sobolev norms

| - |k, with integer exponent k > 0, which are the euclidean norms induced by the following
hermitian product: for all functions u, v € H ,’f(M ),

(u, v) = % Z (ST u, S'TIv), + (T'S7u, T'S7v),. 4)
i+j<k
The weighted Sobolev spaces with integer exponent —k < O are defined to be the dual
Hilbert spaces, endowed with the dual norms.
The weighted Sobolev space H;]l‘(M ), with integer exponent k € Z, coincides with the
Hilbert space obtained as the completion with respect to the norm | - |; of the maximal
common invariant domain

H®(M) := ﬂ D(S'T)Yy N D(T'SY) 5)
i,jeN

of the closures S, T of the essentially skew-adjoint operators S, T on L% (M).
Since the vector fields S, T commute as operators on Cgo(M \ Xp), the following weak
commutation identity holds on M.

LEMMA 2.1. [F97, Lemma 3.1] For all functions u, v € th (M),
(Su, Tv), = (Tu, Sv)y,. (6)

By the anti-symmetry property (3) and the commutativity property (6), the frame {S, T’}
yields an essentially skew-adjoint action of the Lie algebra R? on the Hilbert space L}zl (M)
with common domain H} (M).
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If X5 # 0, the (flat) Riemannian manifold (M \ ¥j, Rp) is not complete, hence its
Laplacian Ay is not essentially self-adjoint on C;°(M \ Xj;). By a theorem of Nelson
[Ne59, §9], this is equivalent to the non-integrability of the action of R? as a Lie algebra
(to an action of R? as a Lie group).

Following [F97], the Fourier analysis on the flat surface (M, h) will be based on a
canonical self-adjoint extension A }f of the Laplacian Ay, called the Friedrichs extension,
which is uniquely determined by the Dirichlet hermitian form Q : H ,% (M) x H ,% (M) — C.
We recall that, for all u, v € Hé (M),

Ou, v) == (Su, Sv), + (Tu, Tv),. @)

THEOREM 2.2. [F97, Theorem 2.3] The hermitian form Q on L,21 (M) has the following

spectral properties.

(1) Q@ is positive semi-definite and the set EV(Q) of its eigenvalues is a discrete subset
of [0, 4-00).

(2) Each eigenvalue has finite multiplicity. In particular, 0 € EV(Q) is simple and the
kernel of Q consists only of constant functions.

(3) The space L% (M) splits as the orthogonal sum of the eigenspaces. In addition, all
eigenfunctions are C* (real analytic) on M.

The Weyl asymptotics holds for the eigenvalue spectrum of the Dirichlet form. For any
A >0, let N,(A) := card{h € EV(Q) / N < A}, where each eigenvalue N € EV(Q) is
counted according to its multiplicity.

THEOREM 2.3. [F97, Theorem 2.5] There exists a constant C > 0 such that

I Np(A)
m _—

= vol(M, Ry). (8)
A—>+o0

Let Bhi :=8), £1 Ty (witht1 = /—1) be the Cauchy—Riemann operatorsinduced by the
holomorphic abelian differential # on M, introduced in [F97, §3]. Let ./\/lf C Li (M) be
the subspaces of meromorphic (respectively, anti-meromorphic) functions (with poles at
%¥p). By the Riemann—Roch theorem, the subspaces Mff have the same complex dimen-
sion equal to the genus g > 1 of the Riemann surface M. In addition, M;{ N M; =C,
hence

Hy = MHte M)+ = {u € Li(M)‘ f uwp, =0 } )
M

Let H}z = H, N H,} (M). By Theorem 2.2, the restriction of the hermitian form to H,} is
positive definite, hence it induces a norm. By the Poincaré inequality (see [F97, Lemma
2.2] or [F02, Lemma 6.9]), the Hilbert space (H ! Q) is isomorphic to the Hilbert space

(th’ (" )1)

PROPOSITION 2.4. [F97, Proposition 3.2] The Cauchy—Riemann operators 82E are
closable operators on the common domain C3°(M \ Xp) C Li(M ) and their closures
(denoted by the same symbols) have the following properties:

(1) the domains D(Sf) = th (M) and the kernels N(Bf) =C;
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(2) the ranges Rff = Ran(alf) = (./\/lth)J- are closed in L%l (M),
(3) the operators 8; C(HL, Q) —> (R, (-, -)) are isometric.

LetE ={e, |n e N} C th (M) N C°°(M) be an orthonormal basis of the Hilbert space
Li(M) of eigenfunctions of the Dirichlet form (7) and let A : N — R* U {0} be the
corresponding sequence of eigenvalues:

A = Qlen, e,) foreach n e N. (10)

The sequence {\, | n € N} can be equivalently defined as the sequence of eigenvalues
of the non-negative Friedrichs extension —A 5 of the flat Laplacian Aj on M.

We then recall the definition of the Friedrichs (fractional) weighted Sobolev norms and
spaces introduced in [F07, §2.2].

Definition 2.5.

(i) The Friedrichs (fractional) weighted Sobolev norm || - || of order s > 0 is the norm
induced by the hermitian product defined as follows: for all u, v € L% (M),

W, v)s ==Y (L +0)* (1, en), (e, V) (11)

neN

(ii)) The Friedrichs weighted Sobolev space I:I}f (M) of order s > 0 is the Hilbert space

Hy (M) := {u € Lj,(M) / D (42 s ey * < o0 (12)
neN
endowed with the hermitian product given by (11).
(iii)) The Friedrichs weighted Sobolev space b_lh_ S(M) of order —s < 0 is the dual space
of the Hilbert space Hj, (M).

As stated in [F07, Lemma 2.6], the family of Friedrichs (fractional) weighted Sobolev
spaces is a holomorphic interpolation family in the Lions—Magenes sense [LM, Ch. 1],
endowed with the canonical interpolation norm.

The family {H;(M)}scr of fractional weighted Sobolev spaces will be defined as
follows. Let [s] € N denote the integer part and {s} € [0, 1) the fractional part of any
real number s > 0.

Definition 2.6. [F07, Definition 2.7]

(i) The fractional weighted Sobolev norm | - |¢ of order s > 0 is the euclidean norm
induced by the hermitian product defined as follows: for all functions u, v €

H (M),
1 i i) iqj iqj
(u, v); == 3 Z (S'T/u, S'T/v) sy + (T'Su, T' ST v) 5. (13)
i+j<[s]
(ii) The fractional weighted Sobolev norm | - |_g of order —s < 0 is defined as the dual

norm of the weighted Sobolev norm | - |5.
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(iii) The fractional weighted Sobolev space H; (M) of order s € R is defined as the
completion with respect to the norm | - |; of the maximal common invariant domain
HX(M).

It can be proved that the weighted Sobolev space H, * (M) is isomorphic to the dual
space of the Hilbert space H; (M), for all s € R.

The definition of the fractional weighted Sobolev norms is motivated by the following
basic result.

LEMMA 2.7. [F07, Lemma 2.9] For all s > 0, the restrictions of the Cauchy—Riemann
operators E)hi : th M) — Li(M) to the subspaces H;f'H(M) C Hﬁ (M) yield bounded
operators

0F  HI T\ (M) — Hi (M)

(which do not extend to operators I-_I;f“ (M) — P_I;l' (M) unless M is the torus). On the
other hand, the Laplace operator

Ap =8, =8, 8, HX(M) — Li (M) (14)

yields a bounded operator Ay : ﬁ;l'H(M ) — F_I,f (M), defined as the restriction of the
Friedrichs extension A,f : I-—IhZ(M) — Li(M).

We do not know whether the fractional weighted Sobolev spaces form a holomorphic
interpolation family. However, the fractional weighted Sobolev norms do satisfy interpo-
lation inequalities (see [F07, Lemma 2.10 and Corollary 2.26]).

A detailed comparison between Friedrichs weighted Sobolev norms and weighted
Sobolev norms and the corresponding weighted Sobolev spaces is carried out in [F07,
§2]. In particular, we have the following result.

Let H*(M), s € R, denote a family of standard Sobolev spaces on the compact manifold
M (defined with respect to a Riemannian metric).

LEMMA 2.8. [F07, Lemma 2.11] The following continuous embedding and isomorphisms
of Banach spaces hold:
() H*M)C H;(M) = I-_I,f(M)forO <s<l;
(2 H'M)=H;(M) = I-_I}f(M)fors =1
(3) H,(M) C Hy(M) C H*(M) fors > 1.

For s € [0, 1], the space H*(M) is dense in H;, (M) and, for s > 1, the closure of
H; (M) in I-_I,f (M) or H* (M) has finite codimension.

We also have the following sharp version of [F97].

THEOREM 2.9. [F07, Lemma 2.5 and Corollary 2.25] For each k € Z" there exists a
constant Cy > 1 such that, for any holomorphic abelian differential h on M and for all
u € HN(M),

ol lule < llulle < Cr ulg. (15)
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For any 0 <r < s there exists constants C, > 0 and C,s > 0 such that, for all u €
Hj (M), the following inequalities hold:

CoM lullr < luly < Cras luls. (16)
3. The twisted Beurling transform

For every o € R and for every abelian differential 4, we introduce a family of partial
isometries Uy, (of Beurling transform type), defined on a finite-codimensional subspace
of L,zl (M) := L*(M, wp,), which generalized the partial isometry U, = Uj o (for g = h?)
first introduced in [F97, §3], in the study of the cohomological equation for translation
flows.

The partial isometry Uy, is extended in an arbitrary way to a unitary operator Uy
on the whole space L% (M). Resolvent estimates for Uy, will appear to be related with a
priori estimates for the twisted cohomological equations for translation flows on (M, h).
Consequently, we derive our results on twisted cohomological equations from basic
estimates on the limiting behavior as z — 3D of the resolvent Ry (z) := (U — zI)~ !,
defined on the unit disk D C C, of a unitary operator U on a general Hilbert space. Such
estimates, established in [F97], are based on fundamental facts of classical harmonic
analysis, in particular on Fatou’s theory on the boundary behavior of holomorphic
functions. The results obtained are then specialized to the case of the unitary operator
U:=U Jo-

Let i be a holomorphic abelian differential on a Riemann surface M of genus g > 2. Let
{S, T'} be the orthonormal frame for TM on M \ ¥ introduced in §2. We recall that the
1-forms ng = 15wy, and n7 = —irwy are closed and describe the horizontal (respectively,
vertical) foliation of w on M. It is possible to associate to & a one-parameter family of
measured foliations parametrized by 6 € T := R/27Z in the following way. Let hg :=
% b and let Fp be the horizontal foliation of the abelian differential /g, that is, the
foliation defined by the closed 1-form

Im hy = (™" (7 +115) — & (47 — 1n$)} /2.
The foliation Fp can also be obtained by integrating the dual vector field
Sg = (cos 0)S + (sin )T = {e (S +1T)+ (S -1 T)}/2, 17)

which corresponds to the rotation of the vector field S by an angle & € T in the positive
direction.

In the following we will denote by Bflt the Cauchy—Riemannoperators S 1 T, respec-
tively. The twisted Cauchy—Riemannoperators

B, = (S+10)£1T =0 +10 (18)

will play a crucial role. For all 6 € T, let o := o cos 8. We remark that, for every 6 € T,
we have

Sp + 109 1= {e_’gaza + 6193{’0}/2»
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hence we have the formal factorization
—10

Sp + 105 = 67 (@) @)+ oy,
160
= S (@) O + ) 3, (19)

Let Qj + denote the bilinear form defined, for all u, v € H, hl (M), as follows:
OnoW,v) :=((S+10)u, (S+10)v), + (Tu, Tv),.
Let Ko C H,: (M) N C*®(M \ X) denote the finite-dimensional subspace
Kno i={u € HI(M)NC®(M \ 2)|(S + 10)u = Tu = 0}. (20)

LEMMA 3.1. The twisted bilinear form Qo induces a norm on K,f:a N H}} (M). In fact,
for all o € R, there exists a constant C, > 1 such that, for allu € K}f"a N th (M),

)

Proof. Since translation flows are area-preserving, hence symmetric on their common
domain, we have, for all u € H} (M),

Cyl Onou, u) < Qno(u,u) < Cp(1 + Uz)(Qh,O(M, u) +

2
Ly (M)

- ||Su||i%(M) + 2i0 (u, Su), + 62||u||§}2(M) + ||Tu||i%(M). @21

Ono(,u):=((S+10)u, (S+10)u), + | Tull

By the Cauchy—Schwarz inequality, we have

2 2
ISl )+ 1012

2

[, Sudl < Nl 2y IS8l 2 agy <
It follows that

2 2 2

1u135 g, + 200 G, Su)y < (1410 DISuIT ) + 01l .

hence we derive that
O () < (1+ 10D Qo u) + (@ + oD ull7> -
h

By the Poincaré inequality there exists a constant C;, > 0 such that, forall u € H, ,} (M), we
have

Qi (s u) < (1+ 0D Qnou, u) + (@ + o Dllulz
h

<[ +lo])+ C@® +1oD1Qno, u) + (0 + IGI)‘ / uwy
M

The upper bound in the statement is therefore proved.
To prove the lower bound, we proceed as follows. By the definition of Qj ., for the
splitting u = v + it € C+ &+ C C H (M) we have

Oho (u, ) = Qp o (v, v) + 2% (22)
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hence without loss of generality we can reduce the argument to functions u € H hl (M) of
zero average. By the compact embedding H, hl (M) — L?*(M) we derive that there exists a
constant ¢;, > 0 such that, for all u € th (M), we have
2 2 2 2
10173y = €4 @0t w) = ISl .
It follows then by formula (21) that, for || > 2c;1, we have
Oho,u) > Qpou, u) + |U|||”||L%(M)(|O’| ”u”L%(M) - 2||Su||L§(M)) > Ono(u, u).

It remains to prove the bound for |o| < 2c;1. Let us then assume by contradiction that for
all n € N there exist a bounded sequence (0,,) and a sequence u, € K j‘an C H,} (M) of
zero average such that

Qh,O(”ns Up) > th,Un (Up, uy).

After normalizing, it is not restrictive to assume that Qj o(u,, u,) = 1, for all n € N,
hence Qpq, (in, un) — 0. By the Poincaré inequality, it follows that after passing to a
subsequence we can assume that u;, — u in L%(M) and u has zero average, as well as that
o, > o € R. Let <I>H§ and <I>HT{ denote the horizontal and the vertical flow, respectively. By
assumption, since

1
e u, o d — u,,||L%(M) = ” /0 (S +10p)up o ®f ds

Ly (M)

t
1/2
= / 1(S +1on)uy o q):vs‘”Li(M) ds < tQh{gn (ttn, up) — 0,
0

t
llup o D — u"”L%(M) = ” / Tup o @ ds
0 Ly (M)

t
1/2
< [ 1700 @100 ds = 10}12 ) — 0
0

it follows that the limit function u € K tg C L% (M) is a zero-average eigenfunction of
eigenvalue —io for the flow CI>H§ and it is invariant for the flow CD]lfi. It follows, in
particular, thatu € C*(M \ )N H é (M), which implies that u is constant on all minimal
components of the flow CI>“§ and QHTQ-invariant on the cylindrical component. In particular,
u € Kp o, hence u = 0. However, from u, — 0in L% (M) and 6, — o, from the identity
in formula (21) we then derive

0= lim Qh,an (Un, up) = lim Qh,O(un, up) =1,
n—00 n— 00

a contradiction. We have thus proved that there exists Cj;, > 1 such that, for allu € K hL,a N
Hy (M),

Cp ' Ono(u, u) < Qno(u, u). =

The twisted Cauchy—Riemann operators appear in the Hodge decomposition of the
twisted exterior differential, which we now introduce (see [V02] or [De96] for a general
introduction to Hodge theory). For all o € R, the twisted exterior differential dj, s is
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defined on the space Q*(M) of complex-valued smooth forms on the surface M by the
formula

dpoo ' =do +10Re(h) Ao foralla € Q*(M).

Since d}% » =0 (as is readily verified), the cohomology H; (M, C) of the complex
(Q*(M), dp ) is well defined and will be called the twisted cohomology of the translation
surface (M, h). We have the following more general definition.

Definition 3.2. Let Q*(M) denote the space of all smooth differential forms on M. Let
n be a real closed smooth 1-form on D and let d,, denote the twisted exterior derivative
defined as

dya =da+1n Ao foralla € Q*(D).

The twisted cohomology (with complex coefficients) H,’(M, C) is the cohomology of the
differential complex (Q*(M), dy).

Let Q*(M, X)) denote the space of all smooth differential forms on M vanishing at
2. The relative twisted cohomology (with complex coefficients) H,;‘(M , Xp, C) is the
cohomology of the differential complex (2*(M, %), dy).

By definition we have H;' (M, C) := H ;‘Re(h)(M , C). A twisted cohomology cocycle
on a twisted cohomology bundle over the Teichmiiller flow is introduced in [F19] in the
study of twisted ergodic integral and effective weak mixing.

The twisted cohomology has a Hodge decomposition with respect to the Hodge operator
*p associated to the flat metric on the translation surface (M, h), which by definition
satisfies the identities

¥p(Re(h)) =Im(h) and x5 (Im(h)) = —Re(h).

By the Hodge decomposition of the space of 1-forms into a holomorphic and an
anti-holomorphic part (respectively, the eigenspaces of eigenvalues F: of the Hodge
operator), there exist twisted Cauchy—Riemann differentials d;ﬁ on forms such that

+ p—
g Bty
K 2

(here d,']“ denotes the projection onto the anti-holomorphic part, and d, the projection
onto the holomorphic part). As a consequence, the twisted cohomology Hnl M, C)
splits a direct (Hodge orthogonal) sum of the holomorphic part H,;’J“(M , C) and the
anti-holomorphic part H,;”(M ,O):

H)(M,C) = H,*(M,C)® H,”™ (M, C).

The twisted Cauchy—Riemann differentials dnjE on functions can be written in terms of
twisted Cauchy—Riemann operators 8,7i as follows: forall f € H hl (M),

df f =@ Hn and d; f =@, )k
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The twisted Cauchy—Riemann operators 82; introduced in formula (18) correspond to the
special case of n = oRe(h):

+ + +
0o =0 T10 =20 Ren)

The dimension of the twisted cohomology can be exactly computed. In fact we have the
following results.

LEMMA 3.3. For all closed real smooth 1-form n € Q' (M), the following dimension
identity holds:

1 if [nle HY(M, Z),

dimc H'(M, C) =
7 0 otherwise.

Proof. We repeat here for the convenience of the reader the argument given in [F19,
Lemma 4.1]. Let ZS(M , C) denote the space of functions f € C*°(M) such that

dyf =df +2minf =0.

It follows from the above equation that the function f is constant along each leaf of the
measured foliation F; = {n = 0}, hence all the leaves of F;, are compact. In addition, we
have

d(ff)=@Nf+df)f==2minff+2mnff=0,

hence either f = 0 or there exists ¢y € C\ {0} such that f/cy : M — U(l) ={z € C|
|z| = 1} and there exists a real-valued function 6 : M — R/Z such that

f(x) =exp(—2mi6(x)) forallx € M.

By definition we have df = —2m1fd6, and since by assumption f € ZS(M , ©), the space
of d;-closed 0O-forms, that is, complex-valued functions, and f(x) # 0 for all x € M, it
follows that d6 = 7. Since 6 : M — R/Z, we conclude that n € H' (M, 7).

Conversely, let us assume that [n] € H 1 (M, Z). Given any point p € M, the function

X
f,,(x):exp<—2mf 17) forallx e M,
P

is a well-defined, non-zero element of Z S(M , C) since

dfy, = =2mifpn.

In addition, given any g € Zg (M, C) we have

d(fpg) = (dfp)g + fp(dg) = 211 frgn — 271 frgn = 0,

hence fp g is a constant, which implies that H,?(M , C) has dimension equal to 1. O
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LEMMA 3.4. For all closed real smooth I-forms n € QY (M), the following dimension
identities hold:

dim¢ H) (M, C) = 2dim¢ H)(M, C) + 2g — 2,
dime H, (M, T, C) = #(Zy) + dime H)(M, C) +2g — 2.

Proof. The proof of the above dimension relation is given in greater generality by
Goldman in [Go84, §1.5], and also explained in our context in [F19, Lemma 4.3]. We
outline the argument for the convenience of the reader.

Let £, denote the local system on M defined as the subbundle of the space Q*(M) of
complex-valued forms & on the universal cover M such that

y*(@) = exp (1 / n)& forall y € m (M, *).
Y

The twisted cohomology H,'(M, C), defined as the cohomology of the complex of the
twisted differential d,, on complex-valued forms Q*(M), is isomorphic to the cohomology
H*(M, L), defined as the cohomology of the complex of the exterior differential d on
L,-valued forms Q*(M, L,)).

The cohomology H'(M, L), defined as the de Rham cohomology of the correspond-
ing local system £, can be identified with other cohomologies such as the singular, Cech,
or simplicial cohomologies with local coefficients in £,. In simplicial cohomology, we
have that the (finite-dimensional) cochain complex is independent of the flat connection
which defines the local system, so its Euler characteristic equals 2 — 2g, since the local
system L, has rank equal to 1. Now the Euler characteristic is invariant under taking the
cohomology of the complex, so the Euler characteristic of the graded cohomology space
also equals 2 — 2g. Finally, since M is a closed orientable surface, by the Poincaré duality
H*(M, L) =H oM, Ly). By definition of Euler characteristic of a complex, we have

dime¢ H(M, £,) — dimc H'(M, L,)) + dim¢ H*(M, L,) =2 — 2g,

so that dim¢ H'(M, Ly) =2 dim¢ HO(M, L) +2g — 2, as stated.

It remains to prove the dimension formula for the relative cohomology. Since
Ql(M, ) c QY(M) and any twisted cohomology class in H L(M, C) can be represented
by a twisted closed 1-form with compact supportin M \ X there exists a natural surjective
map H'(M, £;,,C) - H'(M, C). It remains to compute the kernel of such a map. An
element of its kernel can be represented by a 1-form « with compact support in M \ X,
such that there exists a function f € C*°(M) with o = d,, f. The function f is uniquely
determined up to kernel of the twisted differential, that is, up to cohomology classes
in HO(M, C). By a local calculation, since the form o = d, f vanishes near ¥, it has
vanishing cohomology class in H'(M, £, C) if and only if the function f vanishes
at Xj,. It follows that the kernel of the map has dimension #(%;) — dim¢c HO(M, Ly),
and the dimension formula for the relative homology follows from that for the absolute
homology. O

The twisted Cauchy—Riemann operators 82; on the Hilbert space L%; (M) are described
in the following proposition.
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PROPOSITION 3.5. The Cauchy-Riemann operators 82; are closable operators on
CP(M\X)C Li(M) and their closures (denoted by the same symbols) have the
following properties.

() D@ ,) = H)(M)and N} ,) = Kno C H}(M).
(i1) The kernels M%(O‘) - Li (M) of the adjoint operators (82:’0)* have finite dimen-
sions d* (o) such that

dt(0)=d (—0) =g — 1 +dimc(Kp,,) forallo € R.
(iii)  The adjoints (Bhi’g)* of Bhiﬁ are extensions of—a,fa, and we have closed ranges
Rj, = Ran (3;,) = [ME(o)]".

(iv)  The operators 8,:—;7 : (Khl,(7 N H}E M), One) — (R,fa, (-, +)n) are isometric.

Proof. Tfu,v e H}} (M), Lemma 2.1 implies the following identity:

(@) 1t 0y 0) = ((S + 10, (S +10)v)y, + (Tu, Tv),
+1((Tu, (S+10)v), —((S+10)u, Tv),) = OQne(u, v). (23)

It follows immediately that the operators 82[6 are closed with domain D(Bfg) =H ,} (M)
and that their kernels are both equal to K, C H }f (M).
Since, forall u, v € H}} (M), we have

(@1 v) = ([(S+10) £1Tu, v),,
= —(u, [(S +10) F1TIv), = —(u, 87, v}y,

and the adjoint (8250)* of 8:0 is an extension of —B,f o

The dimension of the kernels /\/l:)g (o) of the Cauchy—Riemann operators 8;5 . in L% (M)
follows from the fact that the quotients ./\/li:E (0)/Kp are, respectively, isomorphic to the
anti-holomorphic and holomorphic twisted cohomology spaces H, hlj (M, C), which have
half the dimension of the twisted cohomology H, hl’a (M, C). We describe the isomorphism
below. The maps j;—L : M;(a) — thf(M, C) defined as

Jrm*y=[mTh] and j, (m7)=[m"h] forallm®* e M (o),

are isomorphisms. In, fact the maps jf are onto since by definition any cohomology class
ct e th”;t(M , C) is represented by a tyvisted holomorphic section m™h (respectively, by
a twisted anti-holomorphic section m ™ k), hence we have, in the weak sense,

0=d (mTh)= @, ,m")(hAh) and 0=d, (m h)= (0, m )(hAh)

which implies that E)ifgmjE =0, hence m™* € M:Zt(o). We the prove that the maps j* are

injective. The kernels of the maps jhi can be described as follows. By definition, we have
that j£(m*) = 0 if and only if there exists f* € H,!(M) such that dj, , f* = m™h and
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dpo f~ = m™h, respectively. The latter identities imply that

3:!: f:l:
k.o =m®*.

a,f(,fizo and

Since the condition a,f(,fi =0 for functions f* e H,}(M) implies that f* e Kho,
by definition it follows that (S +10) f* = Tf* =0, hence m* =87 f*/2=0. We
have thus proved that the spaces M:'EE(U) are isomorphic to the spaces th:;t(M ,0),
respectively, hence they have the same dimensions. Finally, by definition, the cohomology
H}?ﬂ (M, C) coincides with the subspace K} », hence by Lemma 3.4 we derive

dimg (M3 (0)) = dime(H, ' (M, C)) = dimc(Hj , (M, C))
=g — 1 +dimc(Hy,, (M, ©) = g — 1 +dimc(Ko).

The formula for the range Ria follows from a general fact of Hilbert space theory, as
soon as we have proved that the range is closed. It follows from Lemma 3.1 that R;—f , are
closed. In fact, the subspaces Rf:a coincide with the range of restrictions of the operators
8,;%6 to the subspace K h%g N H,} (M). By Lemma 3.1 these restrictions have closed range.

Finally, (iv) is a direct consequence of the identity in formula (23). O]

The results just proved in Proposition 3.5, in particular (iv), allow us to give a precise
meaning to the formal factorization (19), by introducing a family of unitary operators on
Li (M), which, as will be seen, contains a great deal of information about the properties of
the differential operator Sp + 10 (6 € T) defined in formula (17). Let Uj, » : R, — RZ -
be defined as

Uno = (3 ) (@, ;)" (24)

It is an immediate consequence of assertion (iv) of Proposition 3.5 that Uj , is a partial
isometry. Thus, we extend in the natural way the domain of definition of Uy, as follows.
Let

J 1 Mf(0) - M5(0) (25)

be an isometric operator, with respect to the euclidean structures induced on M;(O’)
and M7, (o) by the Hilbert space L% (M). The existence of J is a consequence of the
fact that the deficiency subspaces M;(a) and M (o) are isomorphic finite-dimensional
vector spaces of the same complex dimension (equal to the genus g of the surface M).
In fact, there exists a whole family of operators J as required, parametrized by the Lie
group U(g, C). Let nhi’c : L,% M) — R,jlfa be the orthogonal projections. We recall that
R}jﬁ . are the orthogonal complements of M (o), respectively (Proposition 3.5). Once an
isometric operator J as in formula (25) is fixed, the partial isometry Uj, », associated with
the holomorphic abelian differential 2 on M and o € R as in formula (24), will be extended
to a unitary operator U; , on the whole Li(M ) by the formula

Ujo(W) = Upomy, )+ J(I =7, )(u) forall ue L;(M)
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(the dependence of the unitary operator Uy, on the abelian differential is omitted in the
notation for convenience).
The following version of the formal identities (19) holds on H, }: (M):

6719 _ 619 3 _
So 100 = —— (WUso + ") 0y = — (U5 + ) 3. (26)

A priori estimates for Sp are related by formula (26) to estimates for the resolvent
Rjo(z) = Uy —2zI)~" of any of the operators U;,, as z — T non-tangentially.
Since these are unitary operators, their spectrum is contained in the unit circle {z €
C | |z| = 1}. As a consequence, the resolvent R 5 (z) is a well-defined operator-valued
holomorphicfunction on the unit disk D := {z € C| |z| < 1}. In addition, by the spectral
theoremfor unitary operators, it is given by a Cauchy integralon d D of the spectral measure
associated with U ;.

4. Spectral theory of unitary operators

Let U : H — "H be anyunitary operator on a (separable) Hilbert space /. By the spectral
theorem [Yo, XI1.4], its resolvent Ry (z) := (U — zI)~! can be represented as a Cauchy
integral of the spectral family as follows. For any u, v € H,

2 .
(Ru@u, v)y = / (z— eV d(Ey(t)u, v)y forallz € D,
0

where (-, - )7 denotes the inner product in H and {Ey (t)}o<;<2 denotes the spectral
family associated with the unitary operator U on H. Our approach from [F97] is based
on the fundamental property of holomorphic functions on D, which can be represented as
Cauchy integrals on d D of complex measures, of having non-tangential boundary values
almost everywhere.

We recall below general results on the boundary behavior of Cauchy integrals of
complex measures. The modern theory of these singular integrals, based on the Lebesgue
integral, was initiated by Fatou in his thesis [Ft]. The results gathered below were
originally obtained by Riesz [Rz], Smirnov [Sm], Hardy and Littlewood [HL]. The
arguments, given in [F97, §3], follow the approach of Zygmund [Zy, VIL.9], based on
real variables methods, and are taken from the books by Rudin [Rd] and Stein and Weiss
[SWI].

Let 1« be a complex Borel measure (of finite total mass) on d D. The Cauchy integral of
1 is the holomorphic function 7, on D defined as

2w
1,(2) == / (z—e")Vdu@r) forallz e D. (27)
0

LEMMA 4.1. [F97, Lemma 3.3A] The non-tangential limit

Iy(2) > 1;(0) asz— e,

exists almost everywhere with respect to the (normalized) Lebesgue measure L on the
circle T. In addition, there exists a constant C > 0 such that the following weak type
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estimate holds:
C
LIOeT| [1;0)]>1} < " || forallt > 0,
where | 11| denotes the total mass of the measure [.

Lemma 4.1 is not enough for our purposes, since it gives no information concerning the
behavior of Cauchy integrals (27) as the convergence to the limiting boundary values takes
place. The necessary estimates are given below, following [F97], in terms of non-tangential
maximal functions, the definition of which we recall below following [Rd, §11.18].

For 0 < o < 1, we define the non-tangential approach region €2, to be the cone over
D(0, @) of vertex z = 1, that is, the union of the disk D(0, «) and the line segments from
the point z = 1 to the points of D(0, «). Rotated copies of ©,, having vertex at e'?, will
be denoted by 2, (6).

For any complex function ® on the unit disk D and 0 < o < 1, its non-tangential
maximal function Ny (®) is defined on T as

No (P)(0) := sup{|P(2)] | z € 2a(6)}. (28)

We would like to complete Lemma 4.1 with estimates on the non-tangential maximal
function Ny (/,) of the Cauchy integral in formula (27). This can be accomplished by a
standard argument of basic Hardy space theory.

For the convenience of the reader, we will recall the definition of Hardy spaces H? (D)
on the unit disk D [Rd, §§7 and 17.6]. Let @ be a complex function on D. For 0 < r < 1,
we define the functions &, on T by the formula

®,(0) ;= (re'?) foralld €T,
and, for 0 < p < oo, we define
|q>|p = Sup{|q>r|p |0 <r <1}

where | - |, denotes the L” norm on T with respect to the Lebesgue measure. The Hardy
space HP (D) is defined to be the space of holomorphic functions @ on the unit disk D
such that [®[, < co.

LEMMA 4.2. [F97, Lemma 3.3B] The holomorphic function 1,, given as a Cauchy
integral (see formula (27)) of a Borel complex measure | on 9D, belongs to the Hardy
spaces HP (D), for any 0 < p < 1. (Consequently, it admits a non-tangential limit almost
everywhere on 0D.) In addition, its non-tangential maximal function Ny (1) belongs to
LP(T, L), for any 0 < p < 1 and for all o < 1, and there exist constants Ay, Aq,p > 0,
with Ay, — 00 as p — 1, such that the following estimates hold:

INo (L) p < Aallylp < Ag plil,

where | 11| denotes the total mass of the measure (.

The general harmonic analysis lemmas (Lemmas 4.1 and 4.2) are then applied via the
spectral theorem to the resolvent of an arbitrary unitary operator on a Hilbert space. The
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abstract Hilbert space result which we obtain in this way will then be applied to the unitary
operators Uy 5, U (lr introduced in §3.

COROLLARY 4.3. [F97, Corollary 3.4] Let Ry(z) : H — H, z € D, denote the resolvent
of a unitary operator U : H — H on a Hilbert space H. Then, for any u, v € H, the
holomorphic functions ® (u, v)(-) := (R(-)u, v)y belong to the Hardy spaces H (D), for
any 0 < p < 1. Consequently, they admit a non-tangential limit almost everywhere on d D.
Furthermore, their non-tangential maximal functions Ny (u, v) belong to LP (T, L), for any
0 < p < landforall o < 1, and there exist constants Ay, Ag,p > 0, with Ay p — 00 as
p — 1, such that the following estimates hold:

|No(u, 0)[p < Aa| P, V)| p < A, plut|pe V]34

where | - |1 denotes the Hilbert space norm.

5. Solutions of the twisted cohomological equation
In this section we adapt to the twisted cohomological equation the streamlined version
[FO07] of the main argument of [F97, Theorem 4.1] given with the goal of establishing the
sharpest bound on the loss of Sobolev regularity within the reach of the methods of [F97].
We prove in §5.1 a priori Sobolev bounds for distributional solutions of the cohomo-
logical equation with respect to the Friedrichs weighted Sobolev norms, then in §5.3 for
smooth solutions with respect to fractional weighted Sobolev norms.
In §5.2 we prove results on the structure of the space of twisted invariant distributions,
which give obstructions to the existence of solutions of the cohomological equations.

5.1. Distributional solutions. ~We derive results on distributional solutions of the twisted
cohomological equation from the harmonic analysis results of §4 about the boundary
behavior of the resolvent of a unitary operator.

We recall the definition of the Friedrichs weighted Sobolev spaces and norms, given
in Definition 2.5. The Friedrichs weighted Sobolev space Fl}f (M) can be defined, for
all s € R, as the maximal domain of the (fractional) power (—A ,f )$/2 of the Friedrichs
extension —A 5 of the non-negative flat Laplacian, endowed with the following norms. Let
{\x | k € N} denote the sequence of eigenvalues (repeated according to their multiplicities)
of the non-negative Friedrichs Laplacian —A,f relative to a orthonormal basis & = {ey |
k € N} of eigenfunctions. The Friedrichs weighted Sobolev norms are given, for all
s €R,as

1/2 .
lulls = (Z(l + M) |u, ek)|2) for all u € Hj, (M).
keN

Definition 5.1. Let h be an abelian differential and let o € R. A distribution u € I:Ih_ "(M)
will be called a (distributional) solution of the cohomological equation (S + 10)u = f for
a given function f € H, * (M) if

(u, (S +10)v) = —(f,v) forallve H T (M) N H(M).
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Let hg = e % be its rotation and let oy := o cos . Let {Sp} denote the one-parameter
family of rotated vector fields introduced in formula (17):

So = {e (S +1T)+e%S —11)}))2.

Forall s € R, let H; (M) C H; (M) and ﬁj;(M) C I-_I}f(M) the subspaces of distributions
vanishing on constant functions. By Lemma 2.8, for all s € [—1, 1], we have H; (M) =
H; (M), hence H; (M) = H; (M).

THEOREM 5.2. Let h be an abelian differential on M with minimal vertical foliation. Let
r>2and p € (0, 1) be such that rp > 2. For any o € R, there exists a bounded linear
operator

Uy - Hy (M) — LP(T, H" (M)

such that the following statement holds. For any o € R and any f € H™' (M) there exists a
full measure subset F,. (o, f) C T such thatu := U, (f)(0) € I-—I}:r (M) is a distributional
solution of the cohomological equation (Syp + 109)u = f, for all 0 € F.(f,0). In addi-
tion, there exists a constant By, := By (p, r) > 0 such that, forall f € ’H;l(M), vanishing
on constant functions,

1/p
1Us (H)lp = (f s ()OI, d9> < Bulfll-1.
T
The above theorem is a consequence of the following estimate.

LEMMA 5.3. Let h be an abelian differential on M with minimal vertical foliation. Let
r>2andp € (0, 1) be suchthatrp > 2. Foranyo € Randany f € ’H;I(M), vanishing
on constant functions, there exists a measurable function Aps(f) = Ape(f, p,r) €
LP(T, £) such that, for all v € H;H (M), we have

I(fs o)l < Ano (f. 0) 1(Se +1ap)vll, (29)

In addition, the following bound for the LP norm of the function Apq(f) holds. There
exists a constant Bj := Bj(p,r) > 0 such that, for every o € R and for every f €
H, ! (M), vanishing on constant functions, we have

|Ane ()lp = Br 1 fll-1- (30)

Proof. We recall formulas (26):

e—19 _ 619 3 _
So 109 = —— (WUyo + ") 8, = — (U; 5 + 7)) 0, (31)

It appears from the above formulas that, since the twisted Cauchy—Riemann opera-
tors, which are elliptic partial differential operators, have finite-dimensional kernel and
cokernel, a formal solution of the cohomological equation (Sp + top)u = f (up to a
finite-dimensional cokernel) can be written in terms of the inverses of the operator
Ujo + 21 or U;(lr + e~ 2. However, since U; and U;l are unitary operators, their
spectrum in contained in the unit circle, hence the inverses of the operators Uy » + 207

or U]; + e 297 are a priori unbounded on L%(M ). (It can in fact be proved that the
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spectra of Uy and U;l coincide with the full unit circle.) The key idea of the argument is
to construct inverses in the distributional (weak) sense by taking non-tangential boundary
limits of the resolvents (Uj s + z1 )y Lor Wy, (17 + zI)~!, which are well-defined bounded
operators on the Hilbert space L,21 (M) as long as the spectral parameter z € C belongs to
the interior of the unit disk.

Thus, our proof of estimate (29) is based on properties of the resolvent of the operators
Ujs, U ]}T In fact, it is based on the general results, summarized below in §4, concerning
the non-tangential boundary behavior of the resolvent of a unitary operator on a Hilbert
space, applied to the operators Uj s, UJ_}, on L%l (M). The Fourier analysis of [F97,
§2], also plays a relevant role through Lemma 2.9 and the Weyl’s asymptotic formula
(Theorem 2.3).

Since the vertical foliation of /4 is minimal, it follows that all 7-invariant functions in
the space H hl (M) are constant, hence the common kernel of the twisted Cauchy—Riemann
operators Kj o C H}: (M) coincides with the subspace of constant functions.

Following [F97, Proposition 4.6A] or [F02, Lemma 7.3], we prove that there exists
a constant Cj, > 0 such that the following statement holds. For any ¢ € R and for any
distribution f € H, l(M) there exist (weak) solutions F;t € L%(M) of the equations
a,fa FF = f such that

IFElo < Ch I fll-1. (32)
In fact, the maps given by
3,fav—> —(f,v) forallve H} (M), (33)

are bounded linear functionals on the (closed) ranges Rig C L%(M) of the twisted
Cauchy-Riemann operator a,;tﬂ : H}: (M) — Lﬁ(M ). In fact, the functionals are well
defined since by assumption K, = C and f vanishes on constant functions, and they
are bounded since, by Lemma 3.1 and Proposition 3.5, there exists a constant Cj, > 0 such
that, for any o € R and for any v € H ,f (M) of zero average,

I(f, v)l

IA

Ifl=1lvh < CRllfll=1Qno(v)

(34)
Cull =1 Qno W) = Ci £ -1 13;,vlo.

IA

Let <I>f,t be the unique linear extension of the linear map (33) to L%l (M) which vanishes on
the orthogonal complement of R}TU in L%(M ). By (34), the functionals bef are bounded
on Lﬁ(M ) with norm

19E| < Ch 1 f1-1.

By the Riesz representation theorem, there exist two (unique) functions F, (,i € L% (M) such
that

(v, F¥y, = ®X(v) forallv e L3 (M).

The functions ch are by construction (weak) solutions of the twisted Cauchy—Riemann
equations 8;5 FGjE = f satisfying the required bound (32).

https://doi.org/10.1017/etds.2021.120 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.120

904 G. Forni

The identities (31) immediately imply that

(@5 v, F)y = 2¢7° (RE (2)(Sp + 100)v, Fi),
—(z+ esz“))(Rf’U (z)affv, FE),, (35)

where RJJ’,U (z) and R;ﬂ (z) denote the resolvents of the unitary operators U; , and U;é
respectively, which yield holomorphic families of bounded operators on the unit disk
D cC.

Let r >2 and let p € (0,1) be such that pr > 2. Let £ = {ex}xen denote the
orthonormal Fourier basis of the Hilbert space Li(M ) of eigenfunctions of the Friedrichs
Laplacian, described in §2. By Corollary 4.3 all holomorphic functions

Rty 1(@) 1= (R5 (e FE)y  keN, (36)

belong to the Hardy space H” (D), for any 0 < p < 1. The corresponding non-tangential
maximal functions NkdE (over cones of arbitrary fixed aperture 0 < o < 1) belong to the
space LP(T, £) and for all 0 < p < 1 there exists a constant Ay , > 0 such that, for any
abelian differential & on M, for every o € R and k € N, the following inequalities hold:

INioilp < Aapleclo |F o = Aap 1F 1o < Aap Ci | f1-1- (37)

Let {\r}xen be the sequence of the eigenvalues of the Dirichlet form Q := Qj, o introduced
in §2. Let w € Hy (M). We have

o0

(R7,@w, Fyly =) (w, ey Ry, (), (38)
k=0

hence, by the Cauchy—Schwarz inequality,

e
(R}, @w. F), Z R @ (1 + 20" |(w, el

— I+
|Rh,a,k(z)|2 1/2 00 . 5 1/2
S(I;)m) (lg)(l-i-)\k) |<w»€k)h|>

>R, 1 (@12 \\ 2
- ((Z Aok )) lwl,. (39)
= (M)

Let N, hiﬂ (0) be the functions defined as
00 + 24\ 1/2
IN, o1 (O] /
NE@©) = (D 2 — . 40
ho @) ((k_o (142" )) 0

Let N, }fg (w) denote the non-tangential maximal function for the holomorphic function
(ij’a_(z)w, F(;t)h. By formulas (39) and (40), it follows that, for all & € T and all functions
w € Hj (M), we have

NE ) () < NE,©) [[wll,. @)
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The functions N}if € LP(T, £) forany 0 < p < 1. In fact, by formula (37) and (following
a suggestion of Stephen Semmes) by the ‘triangular inequality’ for the space L?/? with
0 < p < 1, we have

0]

1
+ P p
Nialh = ey 0P (3 T 1 < e @

The series in formula (42) is convergent by the Weyl asymptotics (Theorem 2.3) since
pr/2 > 1. Let then

o0

1 1/p
By(p,r) == (An,p C —_— .
h(p r) ( o,p h)<k:ZO(l+)\.k)pr/2>
By taking the non-tangential limit as z — —e¥*? in identity (35), formula (41) implies
that, for all & € T such that Nhi (T F26) < 400,

0
O vs F 0l < Ny G F20) 11(So + 109)v ]l

hence the required estimates (29) and (30) are proved with the choice of the function
Apo(f,0) := N[:O(rr —20)or Apo(f,0) := N, , (7 +20), forall 6 € T. O

Proof of Theorem 5.2. By the estimate (29) of Lemma 5.3, the linear map given by
(Sp +109)v — —(f,v) forallve H ' (M), (43)

is well defined and extends by continuity to the closure of the range Iég (6) of the linear
operator Sy + 10y in I-_I}f (M). Let Uy (f)(0) be the extension uniquely defined by the
condition that Uy (f)(6) vanishes on the orthogonal complement of R’ (9) in HJ (M).
By construction, for almost all 6 € T the linear functional u := U, (f)(0) € I-_I,;r(M)
yields a distributional solution of the cohomological equation (Sy + 10p)u = f whose
norm satisfies the bound

1Us (IO —r < Ano (f,0).

By (30) the L? norm of the measurable function U, (f): T — I-_I;’(M) satisfies the
required estimate

1/p
Us (H)lp = (/1r 1Us (/YO d9> < Bulfll-1. O

THEOREM 5.4. Let h be an abelian differential with minimal vertical foliation. For any
r > 2and p € (0, 1) such that pr > 2, there exists a constant Cy, ,, , > 0 such that, for all
zero-average functions f € I:I}f_l(M), for all o € R and for Lebesgue almost all 6 € T,
the twisted cohomological equation (Syp + 109)u = f has a distributional solution ug €
I-_Ih_ "(M) satisfying the following estimate:

1/p
( /T llugll”, d@) < Chpsr I fllr=1. (44)
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Proof. Let {\(|k € N} denote the sequence of eigenvalues of the Friedrichs Laplacian
relative to the orthonormal Fourier basis £ = {ex}ren of eigenfunctions of the Hilbert
space L%l(M), described in §2. Let r > 2 and p € (0, 1) be such that pr > 2.

By Theorem 5.2, for any k € N\ {0} there exists a function with distributional values
up :=Uy(ex) € LP(T, I-_I,;r(M )) such that the following statement holds. There exists a
constant Cp, » := Cy(p, r) > 0 such that

1/p
( fT lur @), de) < Chy llell=1 < Chy (1+20)7" V2 (45)

In addition, for any k € N\ {0}, there exists a full measure set Fx(c) C T such that, for
all 6 € Fi (o), the distribution u := uy(0) € P_Ih_ "(M) is a (distributional) solution of the
cohomological equation (Sp + 109)u = e.

Any function f € H,; ~L(M) of zero average has a Fourier decomposition in L% (M):

f= Y (freae

keN\{0}

A (formal) solution of the cohomological equation (Sg + 109)u = f is therefore given by
the series

wp =Y ([, ey ur(0). (46)

keN\{0}
By the triangular inequality in I-_I}: "(M) and by the Holder inequality, we have

02, \'2
||u9||rs< 3 %) 11l

keN\{0}
hence by the ‘triangular inequality’ for L? spaces (with 0 < p < 1) and by estimate (45),
1
/nuen‘_’, do < cf,’,( > —) ([ (47)
B pr/2 r—1
T keNV(0) (1 + )
Since pr/2 > 1 the series in (47) is convergent, hence uy € I-_Ih_ "(M) is a solution of the

equation (Sp + 10p)u = f which satisfies the required bound (44). ]

5.2. Twisted invariant distributions and basic currents. In this section we describe
the structure of the space of obstructions to the existence of solutions of the twisted
cohomological equation (S + 10)u = f.

Definition 5.5. For all r >0, let Z; ~C H,"(M) denote the space of distributions
invariant for the twisted Lie derivative operator S + o, that is, the space

7= 1{D e Hy"(M)|(S +10)D = 0.

Twisted invariant distributions are in one-to-one correspondence with twisted basic
currents. We introduce Sobolev space of 1-forms and of one-dimensional currents.
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Definition 5.6. Let S(M, T*M) denote the space of all Borel measurable sections of the
cotangent bundle 7*M. For all r > 0, the weighted Sobolev space of 1-forms W; (M) is
defined as follows:

Wi (M) :={a e S(IM,T*M) | (isa, i7ar) € Hj (M) x Hj (M)}. (48)

The weighted Sobolev space of 1-currents W, " (M) is defined as the dual space of the
weighted Sobolev space of 1-forms W; (M).

Twisted basic currents are defined as follows.

Definition 5.7. For all r >0, let B) = C H,~ "(M) denote the space of twisted basic
currents, that is, the space

B}, :=1{C e W, (M) | (Ls +10)C = 15C = 0}.

(Here L denotes the Lie derivative operator on currents in the direction of the vector field
Son M\ Xp.)

The notions of twisted invariant distributions and twisted basic currents are related (for
the untwisted case see [F02, Lemmas 6.5 and 6.6] or [F07, Lemma 3.14]):

LEMMA 5.8. A one-dimensional current C € B;w if and only if the distribution C A
Re(h) € IZ’G. In addition, the map

Dy : C —> —C ARe(h) 49)
is a bijection from the space B}, , onto the space I ;.
Proof. The map Dy, is well defined since for any C € B, we have
(Ls+10)[C ARe(h)] =[(Ls +10)C] ARe(h) = 0.
The inverse map is the map B, : Z , — B, , defined as
Bi(D) =i1sD forall D € Ig,h'

(Here 15 denotes the contraction operator with respect the vector field S on M \ Xj, which
maps distributions, as currents of degree 2, to currents of degree 1.)
The map By, is well defined since 15 o 15 = 0, and

(Ls+io0)oig=150(Ls+10).
It follows that if D € IZ,U then C =i15D € B,’m since
(Ls+10)C =150(Ls+10)D=0 and 15C =15sD) =0.

Finally, the map By, is the inverse of the map Dj,. In fact, since 15C = 0 (as C is basic) and
D A Re(h) = 0 (as a current of degree 3), and :gsRe(h) = 1, we have

(Bj, 0o Dy)(C) = —15(C ARe(h)) = —15C ARe(h) + C AisReh = C,
Dy o Bp)(D) = —(sD ARe(h)) = —15(D ARe(h)) + (D AigRe(h)) = D.

The argument is complete. O
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We recall the definition of the twisted exterior differential dj, o :
dpoo :=do +10Re(h) A forallae € Wy (M).

The twisted exterior differential extends to currents by duality.
Definition 5.9. A current C € W, * (M) is dj 5-closed if
dpoC =dC +10Re(h) AC) =0.
LEMMA 5.10. A current C € B, , if and only if isC = 0 and C is dj o -closed.

Proof. 1f C € B} _, then15C = 0 by definition, and

ho?
18dp o C =15[dC +10(Re(h) AC)] = LsC +106C =0,

so that 15dj - C = 0, which implies d, C = 0, as dj, - C is a current of degree 2 (and
dimension 0) and the contraction operator 15 is surjective onto 2-forms.
Conversely, if 15C = 0 and dj »C = 0, then by the above formula L5C +10C =0,

hence C € B, thereby completing the argument. O

By the de Rham theorem for twisted cohomology, it is possible to attach a twisted
cohomology class to any dj, »-closed current.

For any real closed 1-form n on M, let Hnl (M, 2y, C) denote the relative twisted
cohomology introduced in Definition 3.2. For every abelian differential zon M and o € R,
let us adopt the notation

Hj (M, T, C) := H}pn(M., Zp, C).

LEMMA 5.11. For every r > 0, the cohomology map j, : B , — H;:U(M, ¥, C) such
that jr(C) is the twisted cohomology class of the twisted basic current C € By,  is a
well-defined linear map.

Proof. A current C € W, " (M) does not in general extend to a linear functional on
C°°(M), hence is not a current on the compact surface M. However, since the space
Qg(M \ ¥) of smooth 1-forms with compact support in M \ X, is a subspace of
the Sobolev space of 1-forms W}: (M), for all r > 0, it follows from the de Rham
theorem for the twisted cohomology that the current C € W~ "(M) such that dj ,C =0
in Wh_(rH)(M) has a well-defined twisted cohomology class [C] € H,}qg M, 2y, C). In
fact, C defines a linear functional on the twisted cohomology with compact support
H M \ Xp, C), which is dual to the relative cohomology th,a (M, 2, C) by the

ho,c
intersection pairing on 1-forms given by integration. [

The structure of the space of basic currents with vanishing cohomology class, with
respect to the filtration induced by weighted Sobolev spaces with integer exponent, was
described in [F02, §7] (see also [F07, §3.3], with respect to the filtration induced by
weighted Sobolev spaces with general real exponent). We extend these results below to
the space of twisted basic currents.
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Let §, : BZ;I — BZ’U be the linear maps defined as follows (see [F02, formula (7.18')]
and [F07, formulas (3.61) and (3.62)] for the untwisted case):

C ARe(h)

8,(C) := (dpo 017)(C) = — dh,a( o

) for C € Bj,. (50)

Indeed, it can be proved by Lemma 5.8 and by the definition of the weighted Sobolev
spaces H; (M) and W; (M) that formula (50) defines, for all » > 0, bounded linear maps
8 B —> B,

Let K}, CZ,, CH, "(M) denote the subspace of distributions which are twisted
S-invariant and T-invariant, that is,

Ky :=1{D € H;"(M) | (S +10)D =TD = 0.

Leti, : K, . — B, denote the restriction to K},  of the inverse of the map D" . .~
Bj, . (see Lemma 5.8), that is, the map defined as

ir(D) :=15D forall D €K} .

THEOREM 5.12. For all r > 0 there exist exact sequences

_1 & Jr
B, o —— Hjl (M, T, C). (51)

ir—1

r—1
0— ’Ch,a

Proof. The map i,_; : ICZ;] — BZ;] is by definition injective, since the contraction
operator is surjective onto the space of functions ( 0-forms).

The identity Im(i,_1) = ker(§,) holds since by Lemma 5.8 a current C € BZ;I if and
only if C = 15D with D € Z; ! and in addition

8(1sD) = dpo(tr1sD) =17(S +10)D —15(T' D) = —15(T D),

hence §,(1sD) = 0 if and only if 7D = 0 (since T D has degree 2 and the contraction is
surjective onto the space of functions ( 0-forms).

The identity Im(8,) = ker(j,) holds by the following argument. Let C" € B3}  be a
current such that [C'] =0 € th’U(M , 2p, C), hence there exists a current U of degree 0
(and dimension 2) such that C" = dj, ,U.Let C = U A Im(h). By definition we have C’ =
6(C). We claim that C = U A Im(h) € BZ;I. In fact, by definition 15(U A Im(h)) = 0,
and since 15C’ = 0, we have

(Ls+10)U AIm(h)) = (Ls +10)(U) A Im(h)
= 15dpo U AN 1m(h) = 15C" Alm(h) = 0.

The argument is thus complete. O

The above theorem and Lemma 5.8 imply the following finiteness result.

COROLLARY 5.13. For any abelian differential h on M, for all o € R and for all s >
0, the spaces T, _ of twisted invariant distributions for the operator S+ 10 and the
corresponding space of B;, . of twisted basic currents have finite dimension.
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We conclude this subsection by proving a lower bound on the dimensions of the spaces
of twisted invariant distributions.

COROLLARY 5.14. Let h be an abelian differential with minimal vertical foliation. For all

0 €T, let hg := e *?h be the rotated abelian differential and let o := o cos 0. For any

r > 2 and for almost all 6 € T, the subspace j, (B,rm’ o) N H,} (M, C) has codimension
(M, C).

0,00

at most equal to 1 in the o0

Proof. Let o be any twisted closed 1-form, that is, a 1-form such that
dpy.opot = do +10gRe(hg) Ao = 0.

Let a := fRe(hg) 4+ glm(hg) and assume that f € I-—I;_l(M) with » > 2 and that f is
orthogonal to constant functions. Then by Theorem 5.4 it follows that the cohomological
equation

(Sg +109)u = f

has a distributional solution u € I-_Ih_r (M) for almost all & € T. Let C denote the current
of degree 1 (and dimension 1) uniquely determined by the formula

dpyoptt = (d +10g9Re(hg))u =a + C.

It is clear from the definition that C is closed with respect to the twisted differential dj, o, ,
that is, dj, 4, C = 0, and in addition 15,C = 0, hence, by Lemma 5.10, the current C is a
twisted basic current dj, 4, -cohomologous to the 1-form c.

Finally, it can be proved that for all o € R all cohomology classes in H, é - (M, C) can
be represented by dj ;-closed 1-forms o € Wy (M) withr > 1. ]

5.3. Smooth solutions. In this section we prove our main result on the existence of
smooth solutions of the twisted cohomological equation for translation flows, which holds
for any abelian differential in almost all directions, and derive as a corollary our result on
cohomological equations for product translation flows.

LEMMA 5.15. Let h be an abelian differential with minimal vertical foliation. For every
s >r > Osuchthats —r > 3 there exists p € (0, 1) such that for every o € R there exists
a function Ap s = Ape(p,r,s) € LP(T, L) such that the following statement holds. For
almost all 0 € T and for all zero-average functions v € H;‘f“ (M), we have

[vly < Apg () 1(So +100)0]s, (52)
and there exists a constant By, := Bp(p, r, s) > 0 such that, for all o € R, we have
|Ah,o|p =< Bh'

Proof. Let {\r | k € N} denote the sequence of eigenvalues of the Friedrichs extension
—A ,f of the non-negative flat Laplacian, relative to the orthonormal Fourier basis & = {ey |
k € N} of eigenfunctions of the Hilbert space L%(M ), described in §2. We recall that the
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Friedrichs weighted Sobolev norms are given, for all s > 0, as follows (see Definition 2.5):

1/2 B
lulls = <Z(1 + )| (u, ek)|2> for allu € H (M).

keN

Let @ > 2 and let p € (0, 1) be such that ap > 2. By Lemma 5.3, for all k € N\ {0}
there exists a function A;lki = A;lk()y (p,a) € LP(T, L) such that, for all v € H,‘fH(M) of
zero average, we have

k
(v, ex)| < Apr O)11(Sp + 109)vla-
In addition, there exists a constant By, := Bj(p, «) such that

k _
|AY) |p < Bllexll—1 = Bu(1 + )~/

Let 8 > 1 such that (8 + 1)p > 2. It follows that, for any v € H ;l”l(M ) of zero average,
we have

172
lvll—p < (( Y oa+ xk)—ﬁA;’fg(9>2)) 1(Ss + 108Vl
keN\{0}
Let then Ap s := Ano (p, @, B) denote the function defined, for 6 € T, as follows:
. 1/2
A (0) == (( Yoa+ xkrﬂA,ﬁ,),(e)z)) :
keN\{0}

By the triangular inequality for the space L?/? (with p/2 < 1) we have

r/2
B, 4k
Anslh=| D (T +nm)7P(AR)?
keN\{0} p/2
_ k —
< Y AP0 < BT (1) BHr,
keN\{0} keN\{0}

By the Weyl asymptotics, the series on the right-hand side of the above formula is
convergent as soon as (8 + 1)p > 2. Let then v € H;;‘H(M) so that Ayv € H(M) and
we have

Ivll—ps2 = I — ANl—g < Ano O)I(So + 100)(I — Af)vllg
= Apo O — AR (So +109)V]le = Ano (0)]1(Sp + 106)Vlat2.

By the interpolation inequality for the Friedrichs norms and by Lemma 2.8, for every
o €10, 1), wheneverap > 2, (8+ 1)p > 2 and p + B < 2, we have

Wl = lvllp < Ano @S + 100)Vlla+p+p < Ao (@)|(So +100)V|atp+p-

Finally, for all » > 0, by applying the above bound to all functions ST/ v and TS/, for all
i, j <[r], we finally have that there exists a constant C, > 0 such that

lvlr = CrApg (0)(So +109)V]atprr- (53)
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Since, given s > r > 0 with s —r > 3, it is always possible to find « > 2, 8 > 1 and
p € (0, 1) such that

s=a+p, ap>2, (B+Dp>1 and {r}+p <2,

the bound in formula (52) follows immediately from that in the above formula (53), hence
the argument is complete. O

THEOREM 5.16. Let h be an abelian differential with minimal vertical foliation. For any
s >r > 0suchthats —r > 3, there exist p € (0, 1) and a constant C, 3 > 0 such that the
following statement holds. For any o € R and for almost all 6 € T, for any f € H; (M)
of zero average such that D(f) = 0 for all twisted invariant distributions D € Ige’ o’ the
cohomological equation (Sp + 109)u = f has a zero-average solution Uy (f) € H; (M)

satisfying the following estimate:

1/p
(/T o ()17 d9> <Crs|fls (54)

Proof. It follows from the a priori bound of Lemma 5.15 that, for all o € R and for almost
all @ € T, the subspace

{f € Hp(M) | | € (S +109)[H,(M)]}

is closed in H; (M), hence it coincides with the kernel of the subspace Ih_9 5’00 NHS(M)
of all twisted invariant distributions vanishing on constant functions. In addition, it follows
by continuity that there exist p € (0, 1) and a function Ay, € LP(T, £) such that, for
all f e H; (M) N Ker( h_;,oe)’ the unique zero-average solution Uy (f) € H; (M) of the
cohomological equation (Sg + 10p)u = f satisfies the bound

Lo (NNr = Ano O] fls-

From the above inequality and the bounds on the L? norm of the function Aj » established
in Lemma 5.15, it follows immediately that

1/p
</T o ()IF d9> < |Anolp 1 fls < Bn | fls-

The proof of the theorem is therefore complete. O

Proof of Theorem 1.1. The condition that & has a minimal vertical foliation it is not
restrictive since the statement is rotation-invariant, and any abelian differential has a
minimal direction [Ma, AG].

The finiteness of the dimension of the space I;;,U C H,:S(M) of (S 4+ 10)-invariant
distributions has been proved in Corollary 5.13 (for all 0 € R and all 8 € T). A linear
upper bound on the dimension of the space Z; . follows from Theorem 5.12, and a linear
lower bound on the dimension of the space Ifle’ . for all o € R and for almost all § € T,
follows from Theorem 5.12 and Corollary 5.14.

If the function f € Hj (M) is constant, then for o # 0 the constant functionu = —1f/o
is a solution (which is unique in L% (M)) for almost all & € T. For o = 0, there is no
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solution unless f = 0, in which case the solution is the zero constant. The argument is
therefore reduced to the case of functions of zero average.

By Theorem 5.16, for any abelian differential 2 with minimal vertical foliation, the
twisted cohomological equation (Sp + 1o cos 8)u = f can be solved with Sobolev bounds
for all f € Hy (M) of zero average in the kernel of all twisted invariant distributions,
for all o € R and for almost all 0 € T. Let then F C T x R be the set of (0,0) €
T x R such that the twisted cohomological equation (Syp + 10)u = f can be solved with
Sobolev bounds for all f € H; (M) of zero average in the kernel of all twisted invariant
distributions. Since the map (6, 0) — (0, 0 cos §) from T x R into itself is absolutely
continuous, it follows from Theorem 5.16 that the set F has full Lebesgue measure. Finally,
the statement of the theorem follows by Fubini’s theorem. O

Forall s, v € N, let H}f (M x T) denote the L? Sobolev space on M x T with respect
to the invariant volume form wj, A d¢ and the vector fields S, T, and 9/0¢:

s

SiTi
gt

HY" (M x T) = {f e L3 (M x T, dvol) ‘ >

i+j<s £<v

<—|—OO};
0

the space H,""(M x T) can be defined for all (s, v) € RT x RT by interpolation [LLM]
and the space H, "~ "(M x T) is defined as the dual of the space H,"" (M x T).

Now let Vy . = Sp + ¢ cos 8(d/d¢) denote a translation vector field on M x T, and let
I;lév’c denote the space of V. invariant distributions.

The space L>(M x T, dvol) of the product manifold with respect to the invariant
volume form w;, A d¢ decomposes as a direct sum of the eigenspaces {H,?|n € Z} of the
circle action:

L2(M x T, dvol) = @ Hno.
nez
COROLLARY 5.17. Let h be an abelian differential with minimal vertical foliation. Let
s >r >0 be such that s —r > 3 and let v > 2 and u < v — 2. For all ¢ € R and for
almost all 0 € T there exists a constant Cﬁfﬁ’”(@, ¢) > 0 such that the following statement
holds. For any f € H}f’v (M x T) such that D(f) = 0 for all Vy .-invariant distributions
D e I;mvc - Hh_s’_v(M x T), the cohomological equation Vg cu = f has a solution u :=

Up(f) € H; (M) satisfying the following estimate:
U (F)lrge < CHO, ) | fls- (55)

Proof. By the Fourier decomposition with respect to the circle action, the argument is
reduced to proving the existence of solutions for the cohomological equations

(Sp + 2micn cos O)u, = fp. (56)

For n = 0 the above equation reduces to the cohomological equation for the translation

flow on M, so that the result already follows from [F07]. For every n € N\ {0}, let

0" :=2mcn € R. The (finite-dimensional) space IZQ gon C H,™ (M) of twisted (Sp +
e

10,")-invariant distributions embeds as a subspace of the space I;;;UC CH, " 7"(MxT)
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of Vp c-invariant distributions, for all v € N, by the formula

D< > fne2’”¢) = D(fy).

nez
By Theorem 5.16 there exist constants C,. 5 > 0 and p € (0, 1) and, for every € > 0,
there exists a full measure set F.,(e) C T of measure at least 1 — ¢/ n2, such that for
all 0 € F.,(¢€), for every f, € IZQ o there exists a solution u, € H; (M) N H,? of the
e?)

cohomological equation (56) which satisfies the Sobolev estimate
lunlr < Cr,se_l/pnz/p|fn [s.

In fact, the above claim follows immediately from Theorem 5.16.
From the claim it follows that for all functions f € Hg’” (M x T) with v > 2/p, such
that f, € IZ;"GC,H for all n # 0, for all 6 € Fe(€) := (), Fen(€) the function u =
]

Zn?go u, € H=2/P(M) is a solution of the cohomological equation Vy .u = f. Since,

for any € > 0, the set F.(¢) has Lebesgue measure at least 1 — Ce withC =), £0 1/ n2,
the argument is complete. O

Proof of Theorem 1.4. The space Iz;)v . of Vp c-invariant distributions is generated by the
union of subspaces I;w yen overalln e Z. The statement of the theorem then follows from
)

Corollary 5.17 by Fubini’s theorem. O

Proof of Corollary 1.5. For any ¢ € T, let My, = M x {¢pp} C M x T. The return map
of the flow of the vector field Xy to the transverse surface My, = M is smoothly
conjugate to the time-1/c¢ map d>(19,/ CC of the translation flow generated by the horizontal
vector field Sp on M. Since the return time function is constant (equal to 1), it is possible to
derive results on the cohomological equation for the return (Poincaré) map (the time-1/c
map) from results on the cohomological equation for the flow. In fact, the procedure is as
follows. Let CIDEC denote the flow of the vector field Xg . on M x T.Let x € C*°(T) be a
smooth function with integral equal to 1 supported on a closed interval I C T \ {¢o}. Let
F(f) e H}‘: (M x T) be the function defined as follows:

fx)x@) fortel,

F(f)o ®! =
R G,c(x’ %0) {0 fort & 1.

Let f € H;(M) and let us assume that the cohomological equation Xy .U = F(f)
has a solution U € HZ’” (M x T). Then the restriction u = U|My, is a solution of the
cohomological equation u o @é{f —u = f for the time-1/c map. In fact, for all x € M,
we have

) 1/c 1/c
”OCD(;,/Z_MZ/ Xo,cUo @ dt = Fx(po+ct)dt = f(x)
0 0

By the Sobolev trace theorem, for any v > 1/2, the restriction U|Mgy, of a function U €
H,"(M x T) is a function u € H}, (M), and there exists C;, > 0 such that

lul, < C;LHU”H/:"‘(MXT)-
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The result then follows from Theorem 1.4. In fact, for every Xy .-invariant distribution
D eI’ C H, """ (M x T), we define the distribution Dy, € H, *(M) as

hg,c

Dy (f) := D(F([)).

By Theorem 1.4 it follows that, for Dy;(f) =0 for all D € I,i;‘fc, there exists a solution
U e H;’” (M x T) of the cohomological equation Xy .U = F(f), hence a solution u =
U|M e H] (M) of the equation u o <I>é/c —u = f. Finally, for all u € H>*(M) such that
uo @é/c —u € H; (M), we have

Dy o /¢ —u) = D(F(uo @S —u)) = D(F(u) o @,/ — F(u)) =0,

since D € Z,"’ . is by assumption X c-invariant. O
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