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SUMMARY
Trajectory tracking is one of the main control problems in the context of Wheeled Mobile Robots
(WMRs). Control of underactuated systems has been focused by many researchers during past few
years. In this paper, tracking control of a Tractor–Trailer Wheeled Mobile Robot (TTWMR) has been
discussed. TTWMR includes a differential drive WMR towing a passive spherical wheeled trailer.
Spherical wheels in contrast with standard wheels make the robot highly underactuated with severe
non-linearities. Underactuation is due to the use of spherical wheeled trailer to increase robots’
maneuverability and degrees of freedom. In fact, standard wheels are subjected to non-holonomic
constraints due to pure rolling and non-slip conditions, which reduce robot maneuverability. In
this paper, after introducing the robot, kinematics and kinetics models are obtained. Then, based
on a physical intuition, a novel control algorithm is developed for the robot, i.e. Lyapunov-PID
control algorithm. Subsequently, singularity avoidance of the proposed algorithm is discussed and
the stability of the algorithm is analyzed. Finally, simulation and experimental results are presented
which reveal the effectiveness of the proposed algorithm.

KEYWORDS: Tractor–trailer wheeled mobile robot, Trajectory tracking, Non-holonomic system,
Underactuation, Lyapunov theorem.

Nomenclature

A(q) Constraint Matrix
a1 Length of PC1

ajk Constraint Multipliers
ci Center of Gravity for Tractor and Trailer
ct Spiral Damping Ratio
E(q) Input Conversion Matrix
e Generalized Coordinate Error vector
f Run Force of Tractor
G(q) Gravity Matrix
Ji Inertia of tractor and Trailer
kt Spiral Spring Ratio
kp Proportional Gain of PID-action
ki Integral Gain of PID-action
kd Derivative Gain of PID-action
l Length of PC2

mi Mass of Tractor and Trailer
M(q) Inertia Matrix
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P Middle Point of Tractor Axle
q Generalized Coordinate Vector
r Radius of Actuated Tractor Wheels
ṡ Velocity of Point P

S(q) Jacobian Matrix
T (q, q̇) Kinetic Energy of System
u Kinematic Input Vector
U (q) Potential Energy of System
V (q, q̇) Carioles Matrix
V (e) Lyapunov Function
x, y Location of Point P

z State Variables Vector
L(q, q̇) Lagrangian
λ Lagrange Multipliers
βiγi Corrective Terms
τ Orientation Torque of Tractor
θi Orientation of Tractor and Trailer
ωl Tractor Left Wheel Rotational Velocity
ωr Tractor Right Wheel Rotational Velocity
ζ Workspace Variables

1. Introduction
Wheeled Mobile Robots (WMRs) applications are growing in manufacturing and robotic services,
particularly when flexible motion capabilities are required on reasonably smooth grounds and surfaces.
The wheel is the most popular locomotion mechanism in mobile robotics and in man-made vehicles
due to its simplicity, efficiency and flexibility. Numerous mobility configurations (wheel numbers,
types and locations, sensing and actuation, single or multi-body vehicle structure) can be found for
WMRs locomotion. In addition, mechanical stability is not usually a research problem in wheeled
robots design, because wheeled robots are almost always designed so that all wheels are in ground
contact all the time. Thus, three wheels are sufficient to guarantee stable motion of the robot.1 So,
dynamics and control of these systems were studied by many researchers during past decades.2−4

Dynamics and structural specifications of a variety of WMRs were discussed in ref. [5]. WMRs due to
the pure rolling and non-slip conditions are subjected to non-holonomic constraints. Non-holonomic
constraints are limitations in velocity and acceleration levels. In other words, these constraints reduce
the system degrees of freedom in velocity and acceleration levels without change in degrees of
freedom in displacement level. In addition to increasing complexities in modeling and control, non-
holonomic constraints raise the interesting features of these systems. N. I. Kolmanovsky6 presented
an overview of control methods has been presented. Control of non-holonomic systems has been
focused on various motion tasks including path following,7,8 point stabilization9,10 and trajectory
tracking.11,12 E. Yang et al.13 after obtaining dynamics model of a car-like robot which has two
non-holonomic constraints, achieved a non-linear tracking controller using the dynamic feedback
linearization technique. C. Y. Chen et al.14 proposed an adaptive sliding-mode dynamic controller for
WMRs is designed to implement trajectory tracking mission. J. Huang et al.15 investigated an adaptive
output feedback tracking controller for WMRs to guarantee that tracking errors are confined to an
arbitrarily small ball. D. Chwa16 presented a fuzzy adaptive tracking control method for WMRs, where
unknown slippage occurs and violates the non-holonomic constraint in the form of state-dependent
kinematic and dynamic disturbances. The control problems are mostly studied on dynamics modeling
and control of unicycle or carlike mobile robots, while there are few works on WMRs attached by
passive trailers. The delivery and transportation capacity can be increased via trailers. Also, the cost of
the robot with trailers is much lower than the cost of multiple robots. The purposes of control studies
for tractor–trailer wheeled robots are different from motion aid in human-driven transportation and
delivery systems, to fully autonomous navigation in multi-body mobile robotics. However, the major
drawback of the trailer systems is that the control problem is difficult.

A tractor–trailer system with spherical wheels is an underactuated non-holonomic system which
can be seen in snake-like robots with high degrees of freedom. These systems have high agility
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to move in clumsy environments such as through pipelines for inspection or cleaning, underwater
applications and so on. Actuating all system segments results in higher weights and volumes for the
system. By reducing the number of actuators and using an appropriate control algorithm, without
reducing the number of system segments, one could have a mechanism with enough agility and at
the same time have a system with lower consumption of energy.

A mechanical system may become underactuated due to several reasons. The most obvious way is
the intentional design as in the passive walker of the McGeer.17 Underactuation also arises in robotic
manipulators, for example, when a manipulator arm is attached to a mobile platform, space platform,
or an underwater vehicle.18 The third way that underactuation arises is due to the mathematical
model used for control design, for example, when joint flexibility is included in the model.19 M. W.
Spong20 discussed application of geometric non-linear control of underactuated mechanical systems
and applied to cart pole system, but asymptotic stability is only guaranteed to a manifold and not
to a fixed point. M. Yue et al.21 considered dynamic model for a class of two-WMR as the motion
of an underactuated vehicle body which can represent the time-varying horizontal distance of the
mass center with respect to configuration center. By the computed torque approach, a sliding mode
controller with adaptive gain is proposed to overcome the disturbances of system. P. Oryschuk et al.22

reported the implementation and testing of real-time control of an underactuated two-WMR. However,
most of the controllers designed for underactuated systems are based on structure and geometry of the
systems which are not generalizable. Also, these methods usually do not control all state variables.
Mostly, passive variables are ignored or some active variables are added in order to be devoted for
passive one.

Tractor–Trailer Wheeled Mobile Robots (TTWMRs) have already been studied in some
researches.23−26 A. K. Khalaji et al.24 proposed a robust adaptive feedback linearizing dynamic
controller (RAFLDC) to control a TTWMR using estimated upper-bounds of uncertainties. A. K.
Khalaji et al.25 also designed an adaptive dynamic sliding mode controller to control a TTWMR in the
presence of external disturbances. A. K. Khalaji et al.26 proposed a non-model based control algorithm
using PD-action filtered errors to control a WMR towing two trailers including three non-holonomic
constraints. But, in these works, the considered TTWMR is a differential drive wheeled robot with
standard wheeled trailers. The fundamental difference of this study is use of spherical wheels in
trailer instead of standard wheels in order to increase system maneuverability and degrees of freedom
compared to other TTWMRs. Spherical wheels unlike standard wheels which impose pure rolling
and non-slip conditions in two directions, provide more maneuverability and degrees of freedom for
the system. There is generally an inverse correlation between controllability and maneuverability. For
example, the omnidirectional designs such as the four-castor wheel configuration require significant
processing to convert desired rotational and translational velocities to individual wheel commands.1

Due to the change in structure of the robot and use of spherical wheels instead of standard wheels,
robot become highly underactuated with severe non-linearities subjected to non-holonomic constraint
and makes the robot control more complicated. Trajectory tracking of such complicated TTWMR is
a big challenge. To face these complexities, a new controller, i.e. Lyapunov-PID control algorithm,
is proposed which contains the following investigations:

• Dynamic modeling of the system including kinetic and kinematic models.
• Introducing and proposing a new control algorithm named Lyapunov-PID control algorithm, as a

physical meaningful approach, which can be used for other underactuated systems with the same
structure.

• Discussing singularity avoidance in the controller.
• Analyzing stability of the closed loop system.
• Presenting simulation and experimental results in order to show the effectiveness of the proposed

method.

2. System Description and Modeling
TTWMR shown in Fig. 1, is a two-wheeled differential drive towing a trailer. Tractor is consisted of
two separately actuated standard wheels and a passive spherical wheel is used in order to maintain
stability. Standard wheels due to non-slip pure rolling conditions are subjected to non-holonomic
constraints, but spherical wheel do not apply any constraint to the system. Tractor is attached to
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Fig. 1. The robot sample in lab.

Fig. 2. Structure of wheeled mobile robot attached by a spherical wheeled trailer.

trailer at point P (middle of actuated wheels axis) by a revolute joint. In order to increase system
maneuverability, trailer is equipped with two passive spherical wheels. Spherical wheels by rolling
in two directions, in addition to increasing system maneuverability and degrees of freedom, do not
apply any constraint to the system, but on the other hand makes system highly underactuated.

It is assumed that there is no slip in robot wheels. System motion is considered in a planar
environment. System parameters are shown in Fig. 2.

2.1. Kinematic model
The main feature in kinematics of WMRs is the presence of non-holonomic constraints due to non-
slip and pure rolling conditions imposed on robot wheels. These non-holonomic constraints can be
expressed in Pfaffian form as

A (q) q̇ = 0, (1)

where A(q) is a (m × n) constraint matrix, where m is the number of constraints, n is the number of
generalized coordinates and q is the system generalized coordinates as

q = [
x y θ1 θ2

]T
. (2)

Non-holonomic constraint imposed on tractor wheels is as follows:

ẋ sin θ1 − ẏ cos θ1 = 0. (3)
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Therefore, the constraint matrix in Pfaffian form can be expressed as

A (q) = [
sin θ1 − cos θ1 0 0

]
. (4)

Note that, from Aq̇ = 0 , it can be concluded that there exist a vector q̇ spanning the null space of
matrix A . Rewriting the relations, the kinematic model of the wheeled robot can be expressed as

q̇ = S (q) ζ̇ , (5)

where S(q) is the jacobian matrix of the system which is a map from system generalized coordinates
to workspace variables and this relation can be expressed as

⎡
⎢⎣

ẋ

ẏ

θ̇1

θ̇2

⎤
⎥⎦ =

⎡
⎢⎣

cos θ1 0 0
sin θ1 0 0

0 1 0
0 0 1

⎤
⎥⎦

⎡
⎣ ṡ

θ̇1

θ̇2

⎤
⎦ . (6)

Kinematic model inputs are rotational velocities of the tractor wheels (ωr, ωl ). For simplicity,
these kinematic inputs can be transformed to translational speed of point P (ṡ ) and rotational speed
of the tractor (θ̇1 ) as

u = [
u1 u2

]T
, (7)

u1 = r

2
(ωr + ωl) , (8)

u2 = r

2b
(ωr − ωl) , (9)

where u = [u1 u2 ]T is the vector of system kinematic control inputs. Now, assuming u1 = ṡ and
u2 = θ̇1, Eq. (6) can be expressed as follows:

ẋ = u1 cos θ1,

ẏ = u1 sin θ1,

θ̇1 = u2,

θ̇2 = θ̇2.

(10)

It is clear that there is no relation between θ̇2 and other variables or inputs; this is due to the
underactuation of the system that has been occurred as a result of using spherical wheels instead of
standard wheels in trailer.

2.2. Kinetic model
Lagrange formulation for a constrained system is as

d

dt

(
∂L
dq̇k

)
−

(
∂L
dqk

)
= fk −

m∑
j=1

λjajk, (11)

where λj is the Lagrange multiplier, m is the number of system constraints, ajk is constraint equations
multiplier, fk is the system generalized force.L is the Lagrangian of the system, which is the difference
between kinetic energy (T ) and potential energy (U ) of the system as

L (q, q̇) = T (q, q̇) − U (q) = 1

2
q̇T B (q) q̇ − U (q) , (12)
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where B(q) is the positive definite inertia matrix of the mechanical system. The system kinetic energy
is also as follows:

T = 1

2
m1

{(
ẋ − a1θ̇1 sin θ1

)2 + (
ẏ + a1θ̇1 cos θ1

)2
}

+ 1

2
m2

{(
ẋ + lθ̇2 sin θ2

)2 + (
ẏ − lθ̇2 cos θ2

)2
}

+ 1

2
J1θ̇

2
2 + 1

2
J2θ̇

2
2 . (13)

Since the potential energy is constant, we can consider L = T . The results are as follows:

(m1 + m2) ẍ − m1a1 sin θ1θ̈1 + m2l sin θ2θ̈2 − m1a1 cos θ1θ̇
2
1 + m2l cos θ2θ̇

2
2 = f cos θ1 + λ1 sin θ1,

(14)

(m1 + m2) ÿ + m1a1 cos θ1θ̈1 − m2l cos θ2θ̈2 − m1a1 sin θ1θ̇
2
1 + m2l sin θ2θ̇

2
2 = f sin θ1 − λ1 cos θ1,

(15)

m1a1 (−ẍ sinθ1 + ÿ cos θ1) + (
J1 + m1a

2
1

)
θ̈1 = τ, (16)

m2l (ẍ sinθ2 − ÿ cos θ2) + (
J2 + m2l

2
)
θ̈2 = 0. (17)

Therefore, system kinetic equations in matrix form will be as follows:

M (q) q̈ + V (q, q̇) = E (q) τ + AT (q) λ. (18)

Using Eqs. (1) and (5), one can write

ST (q) AT (q) = 0. (19)

In order to eliminate the constraint forces AT (q)λ , multiplying the Eq. (18) in Jacobian transpose
matrix and using Eq. (19), we can conclude

ST (q) M (q) q̈ + ST (q) V (q, q̇) = ST (q) E (q) τ . (20)

The first time derivative of Eq. (5) is as

q̈ = Ṡ (q) ζ̇ + S (q) ζ̈ . (21)

Substituting Eq. (21) into Eq. (20), we can conclude

ST (q) M (q)
(
Ṡ (q) ζ̇ + S (q) ζ̈

) + ST (q) V (q, q̇) = ST (q) E (q) τ . (22)

Finally, we will have

⎡
⎣ m1 + m2 0 m2l sin (θ2 − θ1)

0 J1 + m1a
2
1 0

m2l sin (θ2 − θ1) 0 J2 + m2l
2

⎤
⎦

⎡
⎣ s̈

θ̈1

θ̈2

⎤
⎦

+
⎡
⎣−m1a1θ̇

2
1 + m2l cos (θ2 − θ1) θ̇2

2
m1a1ṡθ̇1

−m2l cos (θ2 − θ1) ṡθ̇1

⎤
⎦ =

⎡
⎣f

τ

0

⎤
⎦ . (23)

Underactuation of the system is also evident in kinetics equations.
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2.3. Hybrid model
Control of WMRs has been mostly focused on kinematic control algorithms. However, the lack
of adequate information and relationships as well as the lack of appropriate control algorithms
for underactuated systems provide some difficulties relating to control of these systems based on
kinetic and kinematic algorithms. Therefore, it is important to have an appropriate modeling order
to introduce the system dynamics correctly. To this end, a hybrid dynamics model is derived for the
system, combining kinematics and kinetics equations. Due to the underactuated nature of the system,
orientation of the trailer (θ2 ) cannot be calculated using system kinematic equations. For this system,
tractor is subjected to a first-order non-holonomic constraint and its position can be obtained from
kinematic equations in any instant of time. Note that the trailer has no kinematic constraint; its kinetic
equation is used as a second-order non-holonomic constraint in order to solve system equations. In
fact, we have an underactuated system with four degrees of freedom subjected to a first-order non-
holonomic constraint and a second-order non-holonomic constraint. To this end, Eq. (17) is added to
Eq. (10).

ẋ = u1 cos θ1,

ẏ = u1 sin θ1,

θ̇1 = u2,

θ̇2 = θ̇2,

ẍ sinθ2 − ÿ cos θ2 + kθ̈2 = 0,

(24)

where k is as

k = J2/m2l + l

Unlike conventional methods for the control of WMRs, which θ1 is considered as one of the system
generalized coordinates, ẋ and ẏ are added to the generalized coordinates. The systems state variables
is as

z = [
x, ẋ, y, ẏ, θ2, θ̇2

]T
. (25)

Therefore, we will have

ż1 = ẋ = z2,

ż2 = ẍ = u̇1 cos θ1 − u1u2 sin θ1,

ż3 = ẏ = z4,

ż4 = ÿ = u̇1 sin θ1 + u1u2 cos θ1,

ż5 = θ̇2 = z6,

ż6 = θ̈2 = (−ẍ sin z5 + ÿ cos z5) /k.

(26)

Now the following transformations have been considered for system input variables:

v1 = u̇1 cos θ1 − u1u2 sin θ1, (27)

v2 = u̇1 sin θ1 + u1u2 cos θ1. (28)

So, the following state space equations are resulted for the system.

ż1 = z2,

ż2 = v1,

ż3 = z4,

ż4 = v2,

ż5 = z6,

ż6 = (−v1 sin z5 + v2 cos z5) /k.

(29)
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3. Control Algorithm Design
Mobile robots controllers can be divided into two groups. Some of the control algorithms are proposed
for kinematic models which their inputs are velocities. Others are proposed for kinetic models which
their inputs are forces and torques. Control of WMRs has been proposed mainly based on kinematic
control. Major reasons are as follows:

• Kinematic models are simpler than kinetic models.
• Most of mobile robots’ actuators are servo motors. These motors often have velocity control loops

with rotational velocity inputs.
• Problems with actuators’ torques control can be changed to a problem with accelerate control

inputs.

In fact, obtaining the hybrid model is due to system underactuation. So, kinetic equation of
trailer orientation which is a second-order non-holonomic constraint is added to kinematic equations.
Now, the aim is to control an underactuated system with a first-order non-holonomic constraint and
a second-order non-holonomic constraint. In the following, based on a physical intuition, a new
controller is developed for the robot, i.e. Lyapaunov-PID control algorithm.

One of most common ways to control a two-WMR is to design control laws based on Lyapunov
method. As mentioned, there is no kinematic relation between the orientation of the trailer and other
variables. Therefore, at first, it is tried to control the tractor, while ignoring the orientation of the
trailer. In fact, controlling the active variables (position and orientation of the tractor) is the aim.
In this situation, there is no control on the trailer and because of attachment to the tractor, has an
unknown motion.

3.1. Physical description of the controller
In this section, first control of tractor is focused and a control algorithm is designed based on Lyapunov
method. Then, based on this intuition, a torsion spring and damper is added at point P to control all
the system.

3.1.1. Controlling the tractor. The concept of a Lyapunov function originates from theoretical
mechanics. Here, we see that in stable conservative systems “energy” is a positive definite scalar
function which should decrease with time. Using this analogy, we can define a generalized energy
as a Lyapunov function to analyze stability for any non-linear system.27 Here, a Lyapunov function
candidate which consists of tractors’ variables is proposed. The aim is to derive a control law to
control the tractor. The following tracking errors are defined:

⎧⎪⎨
⎪⎩

e1 = x − xd = z1 − z1d

e2 = ẋ − ẋd = z2 − z2d

e3 = y − yd = z3 − z3d

e4 = ẏ − ẏd = z4 − z4d

. (30)

Substituting first time derivative of Eq. (30) into Eq. (29) yields

ė1 = e2,

ė2 = v1 − v1d,

ė3 = e4,

ė4 = v2 − v2d,

ż5 = z6,

ż6 = (−v1 sin z5 + v2 cos z5) /k.

(31)

Now consider the following control inputs:

⎧⎨
⎩

v1 = v1d − α2e2 − α1
α2

(
e1 + e2

1
e2

)
v2 = v2d − α4e4 − α3

α4

(
e3 + e2

3
e4

) . (32)
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Table I. System parameters.

Parameters Descriptions Value

m1 (kg) Mass of the tractor 0.9
m2 (kg) Mass of the trailer 0.33
J1 (kg.m2) Mass moment of inertia of the tractor 0.0035
J2 (kg.m2) Mass moment of inertia of the trailer 0.00078
a1 (m) Length of PC1 0.029
l (m) Length of PC2 0.141
r (m) Radius of tractor wheels 0.026
2b (m) Distance between tractor wheels 0.1190

Theorem 1. The control law (32) guarantees asymptotic stabilization of the dynamic system
described by Eq. (31) to the origin as t → ∞.

Proof : To ensure the asymptotic stabilization, the following Lyapunov function candidate is
proposed:

V (e) = 1
2

(
α1e

2
1 + α2e

2
2 + α3e

2
3 + α4e

2
4

)
α1, α2, α3, α4 > 0.

(33)

The first derivative of the chosen Lyapunov function candidate is as

V̇ (e) = (α1e1ė1 + α2e2ė2 + α3e3ė3 + α4e4ė4) . (34)

Substitution from Eq. (31) into Eq. (34) yields

V̇ (e) = α1e1e2 + α2e2 (v1 − v1d ) + α3e3e4 + α4e4 (v2 − v2d ) . (35)

Substitution from Eq. (32) into the derivative of the Lyapunov function candidate will have

V̇ (e) = −α1e
2
1 − (α2e2)2 − α3e

2
3 − (α4e4)2. (36)

It’s evident from Eq. (36) that the derivative of the Lyapunov function candidate is a negative
definite function. Therefore, the chosen tracking errors will be asymptotically stable.

3.1.1.1. Simulation results. Now, the proposed algorithm is simulated on the following circular
trajectory. System parameters are given in Table I.

x = r cos (ωt) ,

y = r sin (ωt) .
(37)

The results are (for r = 1, ω = 0.5 ) shown in Figs. 3 and 4.
As can be seen from Fig. 3, tractor has followed the desired trajectory appropriately. But as it can

be seen from Fig. 4, the trailer oscillates around the reference trajectory and this is because of that
there is no control on the trailer. To handle this problem and eliminate vibrations, a torsion spring
and damper is considered to attach in point P (in connection point of tractor and trailer).

3.1.2. Adding torsion spring and damper. In this section, a torsion spring and damper is added in
point P , attachment point of trailer to tractor. Therefore, Eq. (17) should be retrieved in order to
contain the influence of adding torsion spring and damper. Note that adding spring and damper do
not change the kinetic energy of the system and it will be the same as Eq. (13). In this case, general
Lagrange formulation has been used which is as follows:

d

dt

(
∂L
dq̇k

)
−

(
∂L
dqk

)
+ ∂F

dq̇k

= fk −
m∑

j=1

λjajk, (38)
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Fig. 3. Tracking desired trajectories in cartesian space for the tractor.

Fig. 4. Tracking desired trajectories in cartesian space for the trailer.

where the dampers term (F ) and potential energy of the system (U) can be obtained as follows:

U = 1

2
kt (θ1 − θ2)2, (39)

F = 1

2

n∑
r=1

n∑
s=1

crs q̇r q̇s = 1

2
ct

(
θ̇1 − θ̇2

)2
. (40)

Therefore, we will have

θ̈2 = 1

k

(−ẍ sin θ2 + ÿ cos θ2 + kt (θ1 − θ2) + ct

(
θ̇1 − θ̇2

))
, (41)

ż6 = 1

k

(−v1 sin z5 + v2 cos z5 + kt (θ1 − θ2) + ct

(
θ̇1 − θ̇2

))
. (42)
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Fig. 5. Tracking desired trajectories in cartesian space for the tractor in presence of torsion spring and damper
at point P .

Substituting Eq. (42) instead of the last relation in Eq. (31) yields

ė1 = e2,

ė2 = v1 − v1d,

ė3 = e4,

ė4 = v2 − v2d,

ż5 = z6,

ż6 = 1
k

(−v1 sin z5 + v2 cos z5 + kt (θ1 − θ2) + ct

(
θ̇1 − θ̇2

))
.

(43)

Theorem 2. With the designed control law (32), tracking error signals, for the dynamic system
(31), will asymptotically converge to zero.

Proof : Consider the following Lyapunov function candidate:

V (e) = 1
2

(
α1e

2
1 + α2e

2
2 + α3e

2
3 + α4e

2
4

)
α1, α2, α3, α4 > 0.

(44)

The first derivative of the chosen Lyapunov function candidate is as

V̇ (e) = (α1e1ė1 + α2e2ė2 + α3e3ė3 + α4e4ė4) . (45)

Substitution from Eqs. (32) and (42) into Eq. (45), yields

V̇ (e) = −α1e
2
1 − (α2e2)2 − α3e

2
3 − (α4e4)2. (46)

It’s evident from Eq. (46) that the derivative of the Lyapunov function candidate is a negative
definite function. Therefore, the chosen tracking errors will be asymptotically stable.

3.1.2.1. Simulation results. Now simulation is done for a circular trajectory given in Eq. (37). The
results are shown in Figs. 5 and 6, where controller parameters are given in Table II.

Obtained results reveals that adding torsion spring and damper is an appropriate solution for the
oscillations of the trailer and the system is completely controlled. Note that, the considered spring
and damper can be used virtually through control algorithm. Therefore, designed controller should
be modified in order to play the roles of torsion spring and damper by its own. In the next section,
we will focus on this issue.
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Table II. Controller parameters.

Parameters Value

α1, α3 25
α2, α4 10
kt (N/m) 200
ct (N.s/m) 200
ρ 2.5
kd 12
kp 48
ki 64
(x0, y0) (0.6, −0.3)

Fig. 6. Tracking desired trajectories in cartesian space for the trailer in presence of torsion spring and damper
at point P .

3.2. Lyapunov-PID control algorithm
As mentioned, now the effort is on modifying the designed control algorithm, in addition to the
control of the tractor, the control algorithm should also act as torsion spring and damper at point P .
To this end, following control law is proposed:

⎧⎨
⎩

v̄1 = v1d − α2e2 − α1
α2

(
e1 + e2

1
e2

)
+ α4e4γ

v̄2 = v2d − α4e4 − α3
α4

(
e3 + e2

3
e4

)
− α2e2γ

, (47)

where γ is defined as

γ = 1

α4e4 sin θ2 + α2e2 cos θ2

×
{

(−v1 sin θ2 + v2 cos θ2) − k

(
θ̈2d + kd

(
θ̇2d − θ̇2

) + kp (θ2d − θ2) + ki

∫
(θ2d − θ2) dt

)}
.

(48)

Theorem 3. The control law (47) guarantees asymptotic stabilization of the dynamic system
described by Eq. (31) to the origin as t → ∞ .
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Proof : Designed control algorithm (32) should be modified in order to act as a torsion spring and
damper. To this end, the same Lyapunov function candidate (33) is proposed. Then, two corrective
terms is added to the designed inputs (32). Note that these corrective terms should be obtained in
order that the closed loop system still remains stable. In fact, corrective terms are added to control the
orientation of the trailer as a torsion spring and damper. In other words, corrective terms are added as
a virtual spring and damper. Therefore, modified control inputs are as follows:

{
v̄1 = v1 + β1γ1

v̄2 = v2 + β2γ2
, (49)

where β1γ1 and β2γ2 are corrective terms. In addition to not effecting stability of the closed loop
system and controlling of the tractor, corrective terms must and act as a virtual spring and damper at
joint P in order to control the trailer. Substituting the new control inputs (49) into the derivative of
candidate Lyapunov function (34) yields

V̇ (e) = α1e1e2 + α2e2 (v̄1 − v1d ) + α3e3e4 + α4e4 (v̄2 − v2d ) . (50)

Substituting from Eq. (49) into (50) yields

V̇ (e) = α1e1e2 + α2e2 (v1 + β1γ1 − v1d ) + α3e3e4 + α4e4 (v2 + β2γ2 − v2d ) . (51)

Substitution v1 and v2 from Eq. (32) into (51) and simplifications yield

V̇ (e) = −α1e
2
1 − (α2e2)2 − α3e

2
3 − (α4e4)2 + α2e2β1γ1 + α4e4β2γ2 < 0. (52)

The idea is to eliminate the effects of the new terms appeared in Eq. (52) comparing to Eq. (36)
due to adding corrective terms. Therefore, we assume

α2e2β1γ1 + α4e4β2γ2 = 0. (53)

In order to fulfill Eq. (53), the following choices have been considered:

⎧⎨
⎩

β1 = +α4e4

β2 = −α2e2

γ1 = γ2 = γ

. (54)

Substituting Eq. (54) into Eq. (49) yields

{
v̄1 = v1 + α4e4γ

v̄2 = v2 − α2e2γ
. (55)

Now γ in Eq. (55) should be determined. To this end, the control inputs (55) are substituted in the
last equation of the state space Eq. (31) as

ż6 = (−v̄1 sin z5 + v̄2 cos z5) /k. (56)

Note that ż6 = θ̈2, therefore

θ̈2 = 1

k
(− (v1 + α4e4γ ) sin θ2 + (v2 − α2e2γ ) cos θ2) . (57)

Simplifications yield

θ̈2 = 1

k
{(−v1 sin θ2 + v2 cos θ2) + (α4e4 sin θ2 + α2e2 cos θ2) γ } . (58)
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Comparing Eq. (58) with Eq. (41), and noting that the corrective terms must act like a spring and
damper, it can be concluded that

− (α4e4 sin θ2 + α2e2 cos θ2) γ = kt (θ1 − θ2) + ct

(
θ̇1 − θ̇2

)
. (59)

Therefore, γ can be obtained as follows:

γ = −kt (θ1 − θ2) + ct

(
θ̇1 − θ̇2

)
(α4e4 sin θ2 + α2e2 cos θ2)

. (60)

We can use feedback linearization technique in Eq. (58), therefore γ can be obtained as follows:

γ = 1

α4e4 sin θ2 + α2e2 cos θ2

×
{

(−v1 sin θ2 + v2 cos θ2) − k

(
θ̈2d + kd

(
θ̇2d − θ̇2

) + kp (θ2d − θ2) + ki

∫
(θ2d − θ2) dt

)}
.

(61)

Now PID-action gains should be obtained. In order to do this, substitution Eq. (61) into Eq. (58)
and simplifications yield

θ̈2 = θ̈2d + kd

(
θ̇2d − θ̇2

) + kp (θ2d − θ2) + ki

∫
(θ2d − θ2) dt. (62)

The error signal for θ2 is as follows:

e5 (t) = θ2 − θ2d . (63)

Therefore, substitution from Eq. (63) into Eq. (62) leads to

ë5 + kd ė5 + kpe5 + ki

∫
e5 dt = 0. (64)

By taking the Laplace transform of Eq. (64), we will have

E5 (s)
(
s3 + kds

2 + kps + ki

) = 0. (65)

Now using pole placement, for example in −1, controller gains will be obtained as

(s + 1)3 = s3 + 3s2 + 3s + 1 = 0, (66)

⎧⎨
⎩

kd = 3
kp = 3
ki = 1

. (67)

3.3. Singularity avoidance of the controller
In order to avoid the closed loop system from singularity, some modifications have been considered.
The main reason for singularity of the system is the errors in the denominator of the Eq. (48). If the
errors go toward zero, the expression (48) will tend to infinity.

Since the error values are in the vicinity of zero and have small variations, the following
approximation can be considered:

α4e4 sin e5 + α2e2 cos e5 = const + ε. (68)
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The value of ε is negligible, therefore it can be ignored. Since the small value is located in the
denominator, it generates a large amount; this great value is also considered to be a constant.

1

α4e4 sin e5 + α2e2 cos e5
= 1

const + ε
= ρ. (69)

In other words, the control inputs are as follows:

⎧⎨
⎩

v̄1 = v1d − α2e2 − α1
α2

(
e1 + e2

1
e2

)
+ α4e4γ

v̄2 = v2d − α4e4 − α3
α4

(
e3 + e2

3
e4

)
− α2e2γ

, (70)

where γ is defined as

γ = ρ

[
(−v1 sin θ2 + v2 cos θ2) − k

(
θ̈2d + kd

(
θ̇2d − θ̇2

) + kp (θ2d − θ2) + ki

∫
(θ2d − θ2) dt

)]
,

(71)
where ρ is a constant value.

3.4. Simulation results
In this section, obtained results for tracking of the reference trajectories are shown in Figs. 7 and 8.
A circular path in Cartesian space with a specified timing law is used as the reference trajectories
which is defined as

xd = 0.43 cos

(
t

8
+ 0.35

)
, (72)

yd = 0.43 sin

(
t

8
+ 0.35

)
. (73)

Controller parameters are given in Table II. System controller gains have the same values both in
simulation and experimental results. Positive values for controller gains support system closed loop
stability, but in order to avoid unreasonable control inputs and also having appropriate performance
of the closed loop system, they have selected using simulation studies. Higher controller gains lead
to higher control inputs and better performance of the closed loop system; however, lower controller
gains results in lower control inputs and degraded performance of the closed loop system (oscillating
responses, higher settling times, overshoot, and so on). These gains have been tuned manually using
trial and error method through simulations and simultaneously checking the control inputs and
performance of the closed loop system.

Obtained simulation results reveal the performance of the designed controller. Both tractor and
trailer has tracked desired trajectories (Figs. 7 and 8) appropriately. Therefore, next step is the
experimental implementation of the proposed approach.

4. Experimental Implementation
In this section, implementation and experimental results are presented.

As shown in Figs. 1 and 9, Colored labels were used to provide the position and orientations of
the TTWMR for tracking reference trajectory. DC servo motors are used as system actuators which
are mounted on the wheels of the tractor. DC servo-motors have 1.62 N.m holding torque, and 12 V
operating voltage. The servo motors are controlled by the PWM signals. An I/O card is employed
to generate PWM signals, and to drive the DC servo motors. A real-time image processing module
estimates the posture information of the TTWMR by installing a camera above the motion plane; Fig.
9, and transmits it to the host computer. This module consists of a camera with resolution of 640 ×
480 pixels. Since the localization of the robot is made only by the vision system, the processing rate
of the vision system limits the sampling time for the controller. In the experiments, the sampling time
is set to be 33 ms, which is identical to the processing rate. An image taken by the camera in gray
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Fig. 7. Tracking desired trajectories in cartesian space for the tractor (simulation result with Lyapunov-PID
controller).

Fig. 8. Tracking desired trajectories in cartesian space for the trailer (simulation result with Lyapunov-PID
controller).

scale is shown in Fig. 10. The host computer is using an Intel Core i5, 3.60GHz processor. Control
commands are generated from the host computer and sent to the robot through the communication
system, which is a cable with USB connections. Here is the list of some necessary compensations
have been done in order to obtain higher precisions.

• Image acquisition Device – Digital image is produced by a camera with 30 frame/second frame
rate. The frame rate of the camera is an important factor in precision of the real time image
processing module.

• Camera Calibration – In order to estimate the position of a specific colored label relative to an
inertial frame camera calibration is performed.

• Image restoration – The aim of image restoration is the removal of noise (sensor noise, motion
blur, etc.) from images. The simplest possible approach for noise removal is various types of filters.
Image restoration is used in order to remove colored areas larger or smaller than colored labels.

• Detection – Detection of colored labels is performed based on relatively simple and fast
computations for finding a specific colored label around multiple expected image regions to
produce a correct result.

• Tracking – Following the movements of colored points in the image sequence.
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Fig. 9. Experimental setup.

Fig. 10. Gray scale image taken by camera.

In order to increase the speed of image processing algorithm, MEX-file is used in MATLAB/Simulink
environment.

A circular path in Cartesian space with a specified timing law is used as reference trajectories
which is the same as simulation path (72) and (73). Experimental implementation results verify the
simulation results and performance of Lyapunov-PID control algorithm. Implementation results are
shown in Figs. 11-18. In Figs. 11 and 12, tractor and trailer start tracking desired trajectories in
Cartesian space from initial condition.

As can be seen from obtained results (in Figs. 11 and 12), tractor and trailer tracked the trajectories
appropriately, similar to the simulation results. In order to analyze the behavior of the system, tracking
results for each coordinate is shown separately in Figs. 13–16.

In Fig. 19, tracking of an 8 type trajectory using the proposed control algorithm can also be seen.
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Fig. 11. Tracking desired trajectories in cartesian space for the tractor; experimental implementation results.

Fig. 12. Tracking desired trajectories in cartesian space for the trailer; experimental implementation results.

Obtained results show that all generalized coordinates track reference trajectories appropriately.
In Figs. 17 and 18, kinematic inputs are shown. Kinematic inputs are angular velocities of tractor
wheels, which are produced by actuators (servo motors).

As can be seen, experimental and simulated results are in reasonable agreement. The basic trends in
experimental results are similar to those predicted by theoretical simulations. Only, some deviations
from the reference signals also exist in the experimental results which is realistic due to the external
disturbances, uncertainties and other unknown and unpredictable features exist in real systems. The
proposed algorithm reveals the characteristic of finite-time convergence of tracking errors under the
effects of unpredictable uncertainties in real systems. As it can be seen, the system follows the desired
reference path with very low efforts of actuators. It is seen that tracking of reference trajectories is
effectively achieved using the proposed method. Obtained results indicate that the proposed algorithm
is remarkably effective, which may be employed for other non-holonomic underactuated systems.

Some of the future works of this study include control of multiple trailer systems similar to the
snake-like robots in order to evaluate the agility of the system in different maneuvers or clumsy
environments. Control of such a system is a challenging problem that needs more investigations, and
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Fig. 13. Trajectory tracking for x variable of the location of the tractor; experimental implementation results.

Fig. 14. Trajectory tracking for y variable of the location of the tractor; experimental implementation results.

makes the trend of our future works. Implementations in outdoor wheeled vehicles and proposing
controllers with better capabilities are also the next future works of this study.

Existence of first- and second-order non-holonomic constraints could also arise in different
engineering systems (such as underwater vehicles, free floating spatial systems, robotic manipulators
and so on) that obtained results in this study could be also helpful for those applications.

5. Conclusions
In this paper, the problem of controlling a TTWMR consisted of a differential drive wheeled robot
towing a spherical wheeled trailer, as a highly underactuated system with severe non-linearities
with non-holonomic constraints, was discussed. First, the robot was introduced and the structure of
the system was described. Next kinematics and kinetics models, were combined. Then, based on a
physical intuition a new controller was developed for the robot as Lyapunov-PID control algorithm.
Subsequently, singularity avoidance and stability of the system were analyzed. Finally, simulation
and experimental implementation results revealed the effectiveness of the proposed algorithm.
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Fig. 15. Trajectory tracking for θ1 variable, orientation of the tractor; experimental implementation results.

Fig. 16. Trajectory tracking for θ2 variable, orientation of the trailer; experimental implementation results.

Fig. 17. Kinematic input (ωr ), rotational velocity of the right wheel of the tractor; experimental implementation
results.
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Fig. 18. Kinematic input (ωl ), rotational velocity of the left wheel of the tractor; experimental implementation
results.

Fig. 19. Tracking desired 8 type trajectories in cartesian space for the trailer; experimental implementation
results.
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