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This paper studies the relationship between rational herding and cross correlations in
security returns. It demonstrates analytically and numerically that herding, as a temporary,
fragile convergence of investment behavior, can endogenously induce asset dependency.
Furthermore, there exists a self-reinforcing process, in which market extreme events
amplify the herd effect, which further exacerbates asset dependency. Considering the
Taiwan and U.K. equity markets, we find that the simulated markets in the presence of
herding have results closer to the real patterns of asset dependency than a static model
with isolated, noninteracting individuals. Our findings cast doubts on the current view that
transparent financial regulation is always desirable. Moreover, this paper finds statistical
evidence of asymmetric correlation patterns in both the top 50 stocks in the U.K. and
Taiwan equity markets. This suggests that portfolio diversification as a means of managing
portfolio risk is unlikely to be effective in periods of extreme losses in these markets.
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1. INTRODUCTION

In conventional economic theory, fluctuations off the fundamental equilibrium
path are attributable to exogenous shocks; abnormal returns are associated with
exogenous characteristics specific to the event observation. This has an implication
on the cross correlations in security returns that the correlations are an inevitable
consequence of some external common factors. This implication, attributing the
empirically observed asset dependency to external common factors, however, is
built on the notion of market efficiency with homogeneous and perfectly ratio-
nal agents. The conventional notion of economic agency neglects the interactive
structure to which heterogeneous agents give rise. To gain a better understanding
of asset correlation, we need to take into account how participating agents behave
in the market.
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This paper studies the relation between herding (imitation) and asset depen-
dency. Imitation is one of the most common observations among human behaviour.
It can lead to systematic erroneous decision making and convergence of behavior
across individuals, often referred to as herding. Instead of viewing the market as
a static aggregation of isolated individuals, the development of this paper uses the
“individual-oriented” approach that emphasizes on interpersonal interactions to
explore the issue of interest. It sets out to explore whether herding endogenously
induces correlations in security returns. To what extent does herding account
for asset comovement? Is the pace of learning (or herding) relevant? What role
does the market condition play in this possible link between herding and asset
dependency? Can we identify empirically the herd effect on asset co-movements,
if any? These are the issues to be explored in this paper. A review of the related
literature is included, followed by a discussion of the present model and its possible
contributions.

There are empirical models in the literature for detecting the existence of
herding.1 Lakonishok, Schleifer, and Vishny (1992) develop a measure of herding
among mutual fund managers. They compare the actual number of fund man-
agers buying or selling particular stocks simultaneously relative to the expected
number if the managers were to make their decisions independently. Lakonishok
et al. (1992) examine quarterly portfolio holdings of 769 U.S. tax-exempt equity
funds and conclude that the fund managers in their sample do not exhibit herding
behavior. However, as pointed out by Bikhchandani and Sharma (2000), these
measures do not consider the quantity or the value of the assets traded. Following
the test of Lakonishok et al. (1992) and incorporating the factors of the direction
and intensity of trading activities, Wermers (1999) find weak evidence of herding
among mutual fund managers in average stocks, but stronger evidence of herding
in small, growth stocks.

Christie and Huang (1995) propose a novel approach to detect herding in U.S.
equity return data. They suggest that the market impact of herding can be measured
by considering the cross-sectional dispersion or volatility of equity returns. If the
dispersion is small during large price movements, then it is likely that herding
occurs. Using daily and monthly returns on U.S. equities, they find a high level of
dispersion around the market return during periods of market stress or high price
volatility, and conclude that during these periods herding in equity markets does
not occur. The model of Christie and Huang (1995) is extended by Chang, Cheng,
and Khorana (2000). Chang et al. (2000) first show that under rational asset pricing
models, the dispersion of stock returns is an increasing linear function of market
returns. Their model suggests that herding occurs when there exists a nonlinear
relationship between equity return dispersion and average market return during
large price movements. They investigate the existence of herding in the U.S., Hong
Kong, Japanese, South Korean, and Taiwanese equity markets. Individual equity
returns are examined in a monthly basis. Although no evidence of herding was
found to exist for the United States or Hong Kong, partial evidence was found for
Japan, and evidence in favor of herding was found for South Korea and Taiwan.
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Christie and Huang (1995) and Change et al. (2000) focus their analysis of
herding on periods of extreme market movements, in which the herding objective
is set as market portfolio. However, there are factors other than market portfolio
that can serve as herding objectives. Hwang and Salmon (2004) develop an ap-
proach to measure herding based on observing deviations from the equilibrium
beliefs expressed in the CAPM prices. Although similar to Christie and Huang
(1995), using information held in the cross-sectional movements of the market,
the focus of Hwang and Salmon (2004) is placed on the cross-sectional variability
of factor sensitivities rather than returns. Hwang and Salmon (2004) apply their
approach to the U.S., U.K., and South Korean stock markets. They found that the
Asian Crisis and Russian Crisis can be turning points in herding behavior so that
efficiency pricing may be helped by market stress. They also found that in the U.S.
market there were few periods that herding was a major concern and statistically
significant.

The present model in this paper contributes to the literature in that it considers
a multiple-asset model to investigate the herd effect on the cross-sectional corre-
lations in security returns. The effect of herding on financial markets traditionally
has been investigated in the single-asset model; such studies include Cont and
Bouchaud (2000), Corcos et al. (2002), Lux (1995), and Topol (1991). These
studies have placed their focus on whether the price time series exhibits the
stylized facts of financial data, such as excess volatility and fat-tail distribution.
A related empirical work has been conducted by MacKenzie (2003), a sociologist
who studied the fall of the Long Term Capital Management (LTCM) in 1998
and suggests that imitation among investors was the major cause to the crisis.
MacKenzie (2003) observes that imitation had developed an overlapping and un-
stable “superportfolio” in the markets within which LTCM operated. Furthermore,
triggered by an event in 1998 that LTCM itself in fact had only little exposure, the
rapid unraveling of the “superportfolio” led to the crisis.

In the exploration of the potential association between herding and asset de-
pendency, this study provides a theoretical analysis of a simpler but tractable
model, followed by simulation experiments based on more complex but realistic
assumptions. Furthermore, this study also contributes to the empirical literature
of the nonconstant, asymmetric patterns of return correlations by conducting
econometric tests2 of the symmetry between upside and downside correlations.
The return correlation patterns in two largely different equity markets, namely, the
top Taiwan and U.K. equity markets, are examined following the methodology of
econometric tests provided in Ang and Chen (2002), and Hong et al. (2004).

Last but not least, it is noteworthy that the study in this paper focuses on “ratio-
nal herding” as opposed to “irrational herding.” Devenow and Welch (1996) have
provided a comprehensive review on the studies of rational herding in financial
economics. Irrational herding is driven by factors unrelated to individuals’ well-
being defined in conventional economics. Rational herding is motivated by the
incentives of profits, lower search costs, or the belief that someone possesses
superior knowledge. Essentially, rational herding can be considered as “imitative
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learning.” In the current setting, heterogeneous investors are endowed with the
ability to update their investment strategies: they follow an imitative learning
process and imitate the winner according to their relative realized trading profits.
Herding results in a change in the market composition and the ratio of heteroge-
neous investors, which in turn affects the next period’s price formation and hence
the trading profits. The process repeats, and herding paves the market dynamics.

2. ASSET PRICING MODEL WITH MULTIPLE RISKY ASSETS

In this section, we present the formal details of our model. Consider a capital
market with S risky assets (securities) and one risk-free asset (bond). The bond
pays a fixed rate of return rf for each time period; the gross rate of risk-free
return is Rf = 1 + rf . Denote by Pt the S × 1 vector of the prices per share of the
securities at time t. Letters in bold denote vectors. We assume that each security
pays periodic dividends and denote by dt the S × 1 vector of the dividends paid
by the securities at time t. We further assume that the S × 1 dividend vector and
also the time-series dividend process of each security follow an IID process; for
convenience, we write dt ∼ IID(d, �d), where d is an S × 1 mean vector and �d

is an S × S diagonal covariance matrix. The vector of the gross risky payoffs from
time t to time t + 1 is given by Pt+1 + dt+1.

Let Et [·] and Vt [·] denote the conditional mean and conditional (co)variance;
they are the mean and (co)variance of some variable (vector), conditional on the
information at time t. Denote by Yt the S × 1 vector of the number of security
shares purchased by an investor at time t. The investor’s wealth level at time t + 1
is given by

Wt+1 = Rf (Wt − Yt
′Pt ) + Y′

t (Pt+1 + dt+1). (1)

Investors are assumed to be myopic3 mean-variance maximizers. That is, investors
trade off mean and variance in a linear fashion:

Max
Yt

Et [Wt+1] − a

2
Vt [Wt+1], (2)

where a is the risk aversion parameter. This classic mean-variance problem with
multiple risky assets yields the vector of the optimal risky portfolio given by

Yt = 1

a
(Vt [Pt+1 + dt+1])−1 (Et [Pt+1 + dt+1] − Rf Pt ). (3)

The result states that the vector of the optimal demand for the number of risky
shares can be obtained by the vector of the expected excess risky payoffs times
the inverse of the conditional covariance matrix, divided by the risk aversion
coefficient.

We assume heterogeneous investors and add superscript i for investor type
i. Investors differ in their forecasting strategies (or beliefs) on the payoffs of
the securities. However, the conditional covariance matrix of the risky payoffs is
assumed to be a constant diagonal matrix and equal4 for all investor types i, that is,
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V i
t [Pt+1 +dt+1] = �, where � is an S × S diagonal matrix. The assumption of the

diagonal covariance matrix implies no cross-asset correlation. It is crucial to isolate
the ex-ante correlation factors, as our focus here is to investigate the correlation
structure in security returns arising from the dynamic interaction among agents.

Let θ i
t denote the fraction of investor type i in the investor population at time

t, representing the popularity of strategy i at time t and satisfying
∑N

i = 1 θ i
t = 1,

where N is the number of different investor (or strategy) types. For simplicity,
we assume any investor i follows only one strategy at any time t. Denote by YS

the S × 1 vector of the supply of the security shares per investor, assumed to be
constant. Market equilibrium requires

N∑
i=1

θ i
t Yi

t = YS. (4)

Substituting in the optimal risky portfolio (3) with superscript i, the market equi-
librium equation can be rewritten as

Rf Pt =
N∑

i=1

θ i
tE

i
t [Pt+1 + dt+1] − a� Ys . (5)

The term a�Ys can be viewed as measuring the vector of the expected excess
amount of the risky payoffs and therefore may be interpreted as the risk premium
vector. In the asset pricing model with heterogeneous investors, the equilibrium
price is the discounted weighted average of heterogeneous payoff expectations
minus the risk premium, with the weights being the fractions of different investor
types.

Therefore, market equilibrium yields the equilibrium price dependent on not
only economic fundamentals, but also those factors influenced by investor psy-
chology and emotion: the fraction (based on the popularity) of investor types and
their conditional forecasts. In the following sections, we will discuss how investors
form their forecasts and also how the dynamic change of the investor fractions
takes place.

In a conventional economic world of homogeneous, perfectly rational investors,
equation (5) and the transversality condition will lead to the expression5 known as
the fundamental value: the equilibrium price equals the discounted sum of future
dividends minus the risk premium. Furthermore, for an IID dividend process, the
S × 1 fundamental price vector can be written as

PF = 1

rf

(d − a�Ys). (6)

In the world of homogeneous, perfectly rational investors, the equilibrium price is
the fundamental value of the security, independent of investment behavior. Market
fluctuations are due to exogenous shocks rather than endogenous causes.
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3. HETEROGENEOUS EXPECTATIONS

In the asset pricing model with heterogeneous investors, the equilibrium price (5) is
the discounted weighted average of heterogeneous payoff expectations minus the
risk premium. In this section, we will discuss how investors form their conditional
expectations.

We will mainly focus on three types of investment strategies6 within two major
classes of investors, namely, value investors and technical traders. Value investors
believe that the price of the security should reveal its fundamental value, indepen-
dent of the price and trading histories. They base their demand on the discrepancy
between the price Pt and the asset valuation PF ; as such, it is claimed that the
strategy does not require the need for forecasting. In contrast, technical analysts’
demand is entirely driven by forecasts that involve analysing statistics generated
by market activity. Technical analysis uses the price and trading histories to seek
to identify patterns in price movement and to forecast future market activity.

Although technical trading strategies can take many different forms, generally
they are classified as trend following or contrarian. The trend following strategy
buys into a rising market and sells into a falling one, whereas the contrarian
strategy buys low, sells high, and trades against the trend signal.

We define the information set by �t = {PF ; Pt , Pt−1, . . . ; dt , dt−1, . . .}. It is
assumed that the fundamental value of the risky asset and the historical price
and dividend information are both accessible. Although the information set is
assumed to be common for all agents, different groups of traders based on their
beliefs can choose different sources of information to form their forecasts. Based
on the specified information set, the price and dividend forecast vectors made by
agent i at time t are given by

Ei
t [dt+1] = d, (7)

Ei
t [Pt+1] = (1 − βi)PF + βiPTA,i

t + εi
t . (8)

The error term εi
t represents the random noise vector in agent i’s price forecast

vector at time t. PTA,i
t is the S × 1 vector of investor i’s technical forecasts made

at time t on the next-period prices of the securities.
Equation (7) assumes, for simplicity, a common dividend expectation equal

to the unconditional mean of the stochastic IID dividend process. In the price
forecasts, the fundamental price vector PF is assumed as common knowledge.
Equation (8) expresses the price forecast as a weighted sum of the fundamental
price and technical forecast, plus some random noise. The noise εi

t is to capture
the effect of all other sources that may influence the price forecasts made by agent
i at time t.

The weight βi reveals the investor type. 1 − βi and βi are investor i’s fore-
casting weights on the fundamental price and technical forecast, respectively.
Value investors are considered to be using only fundamental analysis (βi = 0) and
technical traders to be using only technical analysis (βi = 1), although the mixture
of both analyses is possible.
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Assumptions (7) and (8) are consistent with the asset pricing model discussed
in the previous section; if all investors are value investors, assumptions (7) and (8)
will lead7 to the equilibrium price being the fundamental price (6).

We propose that the formation of the technical forecast function PTA,i
t satisfies

the following properties:

(i) It is a function of past prices. More precisely, it is a function of a trend indicator,
which is a function of past prices.

(ii) In order to be self-consistent, the technical forecast is considered to be either
monotonically increasing or decreasing in its trend indicator.

(iii) It is bounded between two real numbers.
(iv) When the trend indicator is neutral, the technical forecast becomes the fundamental

price. That is, when past prices provide no information on future price movements,
the average predicted asset value by technical traders coincides with the asset’s
fundamental value.

Properties (ii) and (iii) make any cumulative distribution function8 (CDF) a good
choice without loss of generality. The technical forecast is defined by

PTA,i
t = PF � [

CDF
(
ηiτP

t

)� CDF(0S)
−1

]
, (9)

where � denotes the element-by-element multiplication of vectors, and 0S is an
S × 1 vector of zeros. The term CDF(0S)

−1 represents the element-wise inverse
of the vector CDF(0S). Throughout this thesis, we use the inverse operation on a
vector A= (a1, a2, a3)

′ to denote the vector of its element-wise inverse, that is,

A−1 =
(

1

a1
,

1

a2
,

1

a3

)′
.

τ P
t denotes the S × 1 trend indicator vector at time t, and is given by

τP
t = f (Pt−1, Pt−2, . . . , Pt−M), a function of past prices of M lags. ηi is the

sensitivity parameter to the trend indicator, and its sign varies with the investor
type: for the trend following strategy, the forecast is monotonically increasing in
the trend signal, i.e. ηi > 0; for the contrarian strategy, the forecast is monotonically
decreasing in the trend signal, that is, ηi < 0.

Definition (9) approximates technical forecasts using CDFs. It satisfies all the
above properties. However, it makes an oversimplifying assumption of a common,
dominant trend indicator function, and differentiates technical traders by asking
one key question: whether they trade following or against the trend. Although far
from being realistic, this design of technical forecasts makes the model tractable,
free from the complication of some variables differing in a way that can grow out
of control.

Note that the choices of the CDF and the trend indicator function are arbitrary.
In the later simulation experiments, we will proceed with the logistic CDF and
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also the commonly practiced moving-average trading rule as the trend indicator:

τP
t = Pt−1 − 1

M

M∑
j=1

Pt−j . (10)

4. IMITATIVE LEARNING PROCESSES

As market equilibrium (5) suggests, the dynamics of the fractional change of
investor types θ i

t influences price formation in the asset pricing model with het-
erogeneous investors. This section models investors’ imitative learning that shapes
the ratio of investor types.

An investor decides whether to update his investment strategy according to his
trading performance. We use the performance criterion based on the net realized
risky payoff. Investor i’s net realized risky payoff from time t to time t + 1 is
given by

πi
t+1 = (

Yi
t

)′
(Pt+1 + dt+1 − Pt ). (11)

It is common that investors update their strategies based on the performance of
risky investment. Risk-free investment pays a fixed anticipated return, and the
gain is simply proportional to the amount invested. The criterion is not based on
risk-free investment, but, given a fixed amount of capital, the risk-free share does
affect the available risky share. A larger risky share, however, does not guarantee
more risky payoffs. A good performance in (11) implies a good balance between
risky and risk-free investments.

We consider two types of imitation which we call cautious learning (CL) and
winner takes all (WTA). In the CL type of imitation, investors revise their strategies
with caution and do not change abruptly. The WTA type of imitation corresponds
to a more drastic imitation process. These two types of imitation are given in the
following definitions.9

CL: If πi
t ≥ 0, remain as type i.

If πi
t < 0, switch to type j with a probability 1 − e−α
πt , (12)

where 
πt = π
j
t − πi

t and π
j
t = Max

∀ k
πk

t .

WTA: Always imitate type j, where π
j
t = Max

∀ k
πk

t . (13)

The definition of CL given in (12), using a threshold in positive profitability, states
that imitation may only occur in response to a net loss in the realized risky payoff.
Besides, the loss-making investor will imitate the strategy that reaps the maximum
trading gain, with a probability depending on their relative performance 
πt . The
probability function (1 − e−α
πt ) is bounded between 0 and 1 as 
πt ≥ 0, and is
monotonically increasing in 
πt but with a diminishing increase. Figure 1 depicts
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FIGURE 1. 1 − e−α
π with different values of α.

the probability function with different values of α; a greater α means a higher
probability to imitate when a loss occurs.

Following the WTA rule given in (13), regardless of the profitability of his
original strategy, the investor always makes a move as long as there exists an
outperforming strategy. The design of the WTA rule is for comparison purposes
and is not a close description of human behavior, although it is similar in many
ways to the investment strategy outlined in Pesaran and Timmermann (1995).
[“Human behaviour, even rational human behaviour, is not to be accounted for by
a handful of invariants. It is certainly not to be accounted for by assuming perfect
adaptation to the environment” Simon (1979).] The CL rule, with first a threshold
and second a probability function, appears to be more plausible.10

The imitative learning processes determine the dynamics of investor ratios θ i
t in

the equilibrium price equation (5). The winning strategy will surely attract more
market participants to put it into practice. However, more investors practicing the
same strategy would probably mean that a deviant may well exploit this situation.
Here is when a winning strategy loses its lead. The best strategy in the current
period by no means guarantees its future success. The winning investor type
changes through time with market conditions and capital reallocation, and so does
the investor ratio.

5. THEORETICAL ANALYSIS IN A SIMPLIFIED MODEL

This section solves analytically whether agents’ interaction, including herding,
leads to asset dependency. It considers a simplified model for tractability. The
results are summarized in the following propositions.

PROPOSITION 1. Assume Rf = 1, YS = 0S , and zero dividends. Consider a
simple case of two investor types: value investors with a fraction of 1 − θt , and
technical traders with a fraction of θt ; the S × 1 vector of price forecasts made at
time t by investor i is given by ET A

t = PF � Ãt and EF
t = PF , consistent with (7),

(8) and (9). Then, the market equilibrium equation (5) can be rewritten as

qt = θtAt ,
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where qt = D−1
F (Pt −PF ) is the S × 1 vector of transformed prices, and At = (Ãt −

1S) is the S × 1 vector of transformed forecast functions. DF = diag(PF ) is an
S × S diagonal matrix with the diagonal entries from PF .

Proof. See Appendix A.

Proposition 1 states that, under certain assumptions, the market equilibrium price
equation (5) can be expressed in terms of the transformed prices, which are a simple
product of the investor ratio and transformed forecast functions. This transforma-
tion will largely facilitate the analysis of the herd effect on asset dependency. The
focus now is on the investigation of the relation between the dynamic change in
the investor ratio θt and the dependency of the transformed prices qt .

PROPOSITION 2. Based on Proposition 1, let θt = fθ (qt−1) where fθ : RS →
R1 indicating that function fθ takes S different real numbers and calculates one
new real number, and let At = fA(qt−1), where fA : RS → RS Both functions
fθ and fA are assumed to be continuously differentiable. Assuming that the S
transformed prices in qt−1 are independent and the Jacobian matrix of At is
diagonal, we can obtain the following results:

(i) The covariance matrix of At , cov[At ], is diagonal. Therefore, when θt is fixed at θ ,
the covariance matrix of qt , cov[qt ], is also diagonal.

(ii) Let µ = ∂ θt

∂ q′
t−1

|q∗ ,where q∗ = E[qt−1].
a. When µ = 0S , then cov[qt ] is diagonal (note that this part of result (ii) is consistent

with (i)).
b. When µ 	= 0S , then cov[qt ] is nondiagonal.

Proof. See Appendix B.

Here, the definitions of the investor ratio θt and transformed forecast functions
At are consistent with the discussions in the previous sections. θt changes due to
herding. Investors decide whether to imitate according to their realized trading
profits, which is a result of past prices. Also, the technical forecast is a function
of past prices. The only restriction here is that Proposition 2 assumes an influence
of only one-period lag.

To isolate the ex-ante correlation effects, the S transformed prices in qt−1 are
assumed to be uncorrelated. Similarly, the Jacobian matrix of At is assumed
to be diagonal. The diagonal Jacobian matrix of At implies no prior belief in
asset dependency in the forecast function At . That is, when forecasting the future
movement of one particular security, the investor uses only the information of that
security, not the information of other securities.

Essentially, µ measures the change in the investor ratio due to a change in the
realized profits, evaluated at the average profit level. It in fact reflects herding.
Imitation motivated by the comparison of realized trading profits leads to nonzero
µ, whereas a static model of no interaction among investors has a fixed investor
ratio and, hence, µ = 0S . Proposition 2 states that, given the assumptions discussed
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above, a fixed investor ratio (in the absence of herding) will guarantee no asset
dependency. By contrast, a changing investor ratio, driven by profit motives, will
lead to asset dependency. Overall, this section provides the analytical results that
show, under some commonly used assumptions, that herding shapes the dynamics
of the investor ratio and is the major driving force to cross-asset comovements.11

6. RETURN CORRELATIONS AND SIMULATION RESULTS

We wish to identify the association between imitative learning and asset co-
movement. The approach using numerical simulations is to compare the cross-
sectional correlation of security returns arising from three models:12 the model
with nonadaptive (NA) investors, CL, and WTA. The vector of security returns is
defined by

Rt+1 = P−1
t � (Pt+1 + dt+1). (14)

Notice that the inverse of price vector again denotes the vector of element-wise
inverse. Security returns are calculated from the IID dividend process and the
equilibrium price. It must be clarified that the equilibrium price is obtained from
equation (5), using investors’ forecasts Ei

t [Pt+1 + dt+1] given in Section 3 and
investor fractions θ i

t determined by the imitation processes given in Section 4. Im-
itation determines θ i

t , and, hence, influences the price formation and consequently
the return correlation.

Let ρNA, ρCL, and ρWTA denote the respective correlation of security returns
under the models of NA, CL, and WTA. We extend to take into account market
conditions. Let ρL, ρM , and ρU denote the conditional correlations of security
returns; they are the correlations conditional on the downside, normal, and upside
markets, respectively. The market is said to be in a downside (upside) condition
when the market index price is below (above) the δ quantile [(1 − δ) quantile]
of its distribution; the market condition is normal otherwise. The conditional
correlations can be written as

ρL = ρ | F(Pindex) < δ,

ρM = ρ | δ ≤ F(Pindex) ≤ 1 − δ, (15)

ρU = ρ | F(Pindex) > 1 − δ,

where F(Pindex) is the CDF of the market index price, and 0 < δ < 1.
To investigate the association between imitative learning and asset co-

movement, we examine the following inequalities on both unconditional and
conditional correlations:

ρWTA > ρCL > ρNA. (16)

ρU
WTA > ρU

CL > ρU
NA,

ρM
WTA > ρM

CL > ρM
NA, (17)

ρL
WTA > ρL

CL > ρL
NA.
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The inequality given by (16) implies that asset dependency can be endogenously
induced by herding, and that hasty imitation is likely to have a significant effect.
This implication can be of great relevance in understanding the making of extreme
market events.

Essentially, the inequalities given in (17) further test the inequality (16) under
each market condition. Conditional correlation bridges the possible effect of herd-
ing on asset co-movement with changing market conditions. Will the herd effect
on asset dependency, if any, remain unchanged across different market states? Are
market conditions irrelevant when hasty imitation is present? We hope to unravel
these issues using the conditional correlation results.

The cross comparison of the inequalities given by (17) is further conducted:

ρU
NA > ρM

NA, ρL
NA > ρM

NA (18-1)

ρU
CL > ρM

CL, ρL
CL > ρM

CL (18-2)

ρU
WTA > ρM

WTA, ρL
WTA > ρM

WTA (18-3)

The issue of whether cross-asset correlations tend to increase in volatile market
conditions has provoked great research interest, and this pattern of nonconstant
correlations has been reported in many empirical studies [e.g., Silvapulle and
Granger (2001)]. The test specified by (18-1) is to confirm this pattern in the
simple benchmark NA model. Inequalities given in (18-2) and (18-3) are to test how
investors’ learning processes interact with the market condition. The implication
of (18-2) and (18-3) is that, given the same learning model, its effect on asset
co-movements will depend on the market condition, in a way consistent with the
empirical pattern of nonconstant correlations.13 The implication may shed the light
on how investment behavior is associated with market conditions. It is provided the
numerical simulation results of the unconditional and conditional cross-sectional
correlations of security returns for the models of NA, CL, and WTA.

There are 1,250 time periods (approximately five years of trading days); 50
securities and, hence, 1,225 pairs of cross correlations of security returns. The
parameter values used for numerical simulations are given in Appendix C. The
summary statistics of the unconditional and conditional cross-correlation results14

are given in Table 1. Figure 2 presents the distributions of the correlation results.
From the results of the unconditional correlation coefficients, it is clear that the

NA model has the lowest correlation level, with an average of 0.028 and more
than 99% of ρNA lower than 0.1. The correlation level increases dramatically in the
presence of herding, but the difference between ρCL and ρWTA is not as striking;
the respective average values of ρCL and ρWTA are 0.251 and 0.319. The simulation
results also suggest that a higher level of return correlations is accompanied by a
higher level of standard deviations. The unconditional correlation outcomes lead
us to confirm the inequality given by (16). Furthermore, the conditional correlation
results15 show that all the inequalities given by (18) hold. This finding suggests
that the impact of herding or imitative learning on asset comovements in a specific
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TABLE 1. Summary statistics of the unconditional and conditional cross correlations of security returns for the models of
NA, CL, and WTA

Full sample Upper tail Middle Lower tail

Maximum Minimum Maximum Minimum Maximum Minimum Maximum Minimum
Average Average Average Average

(Standard Deviation) (Standard Deviation) (Standard Deviation) (Standard Deviation)

ρNA ρU
NA ρM

NA ρL
NA

0.1188459 2.70392e-05 0.285115 9.74418e-05 0.112482 9.18909e-05 0.292311 8.99925e-05
0.0282156 0.0733302 0.0273755 0.0727321

(0.0216731) (0.0578932) (0.0209469) (0.0529507)

ρCL ρU
CL ρM

CL ρL
CL

0.998841 0.00102167 0.998021 0.00189254 0.99885 5.72659e-05 0.997393 0.000291617
0.250795 0.300233 0.244823 0.323284

(0.178549) (0.213958) (0.176036) (0.2297)

ρWTA ρU
WTA ρM

WTA ρL
WTA

0.995347 0.000428903 0.998748 0.00161222 0.99495 0.00107986 0.999256 0.000335208
0.31851 0.437796 0.279749 0.529907

(0.203102) (0.225886) (0.205693) (0.273672)

https://doi.org/10.1017/S1365100507060270 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1365100507060270


ENDOGENOUS CROSS CORRELATIONS 137

0.996564

0

0.1

0.2

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NA CL WTA

0.717728

0

0.1

0.2

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

correlation

NA(U) CL(U) WTA(U)

(a) Full sample (b) Upper tail

0.9960707

0

0.1

0.2

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

correlation

NA(M) CL(M) WTA(M)

0.721562

0

0.1

0.2

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

correlation

NA(L) CL(L) WTA(L)

(c) Middle (d) Lower tail 

correlation

FIGURE 2. Distributions21 of unconditional and conditional cross-correlations of security
returns under the models of NA, CL, and WTA.

market will significantly depend on the underlying market condition. The pattern
of this dependency is found in this study to be consistent with the pattern of
nonconstant, asymmetric correlations found in previous empirical studies.

The conditional correlations show consistent outcomes with the unconditional
correlations. These results confirm the inequalities given by (17). It is found
a persistent evidence of higher return correlations across different states of the
market in the presence of herding. Furthermore, the difference is more pronounced
in the upside and downside markets than in the normal. Taken together, these
observations have a crucial implication. They imply a situation in which abnormal
market conditions, such as a bear market, can amplify the herd effect, which in turn
exacerbates asset dependency. The herd effect on asset dependency thus engages
in a self-reinforcing process that can eventually lead to disastrous phenomena such
as crashes.

7. EMPIRICAL STUDY AND CORRELATION SYMMETRY TEST

The empirical investigation on the connection between herding and asset depen-
dency is impeded by the difficulty in measuring the size of herding in the market
and the complexity of many interacting factors that may or may not include herd-
ing. This is a typical problem that faces many researchers in identifying the true
causes of a certain phenomenon; the real world is of such complexity that mostly
we are not able to study the effect of interest in isolation of others. Moreover,
detailed data on the strategies followed by investors across global equity markets
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FIGURE 3. Distributions of unconditional and conditional cross correlations of security
returns of the top 50 stocks of the FTSE 100 and TWSI, from 1 November 1997 to 31
October 2002.

are not readily available. Thus, our empirical study in this section does not intend
to identify the herd effect as a cause of asset dependency in the real world. Instead,
using data from two diverse markets, namely, the U.K. and Taiwan equity markets,
it intends to show the real patterns of cross-sectional correlation in security returns
and to compare them with the simulation results presented in the previous section.

Data are collected from the daily closing price series16 of the top 50 stocks of
the FTSE 100 and their counterpart of the Taiwan Weighted Stock Index (TWSI)
from 1 November 1997 to 31 October 2002, with 1,258 trading days for the FTSE
and 1,308 trading days for the TWSI. Note that the number of the sample trading
periods is close to that in the simulation. Security returns are simply computed as
the one-period lag price ratio.17 Again, there are 1,225 pairs of cross correlations in
security returns in each data set. Table 2 reports the unconditional and conditional
correlation results; they are set out in the same style as Table 1. Figure 3 presents
the correlation distributions.

For the period concerned, the top 50 stocks of the TWSI are found to have
persistently higher levels of correlation than the top 50 stocks of the FTSE 100;
their average unconditional correlations, for instance, are 0.338 and 0.181, respec-
tively. The correlation standard deviation of the top 50 Taiwan equity market is
nevertheless not much higher than that of the United Kingdom. Furthermore, when
the comparison is conducted across different market conditions, both U.K. and
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TABLE 2. Summary statistics of the unconditional and conditional20 cross-correlations of security returns of the
top 50 stocks of the FTSE 100 and TWSI, from 1 November 1997 to 31 October 2002

Full sample Upper tail Middle Lower tail

Maximum Minimum Maximum Minimum Maximum Minimum Maximum Minimum
Average Average Average Average

(Standard Deviation) (Standard Deviation) (Standard Deviation) (Standard Deviation)

ρFTSE 50 ρU
FTSE 50 ρM

FTSE 50 ρL
FTSE 50

0.736083 5.87055e-3 0.722024 4.38147e-4 0.730307 0.000404838 0.792695 0.0438082
0.180575 0.154868 0.168706 0.382183

(0.0891813) (0.1279) (0.0889582) (0.119405)

ρTaiwan Top 50 ρU
Taiwan Top 50 ρM

Taiwan Top 50 ρL
Taiwan Top 50

1 0.0944918 1 0.0470461 1 0.0777478 1 0.063036
0.337906 0.365962 0.33583 0.43357

(0.113236) (0.133239) (0.115286) (0.136704)
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Taiwan top equity markets are found to exhibit a common pattern of a markedly
higher level of return correlations particularly in the downside market.18 This
result is striking given the fact that one is regarded as developed whereas the other
is regarded as emerging.

What are the implications of the above two observations? Given these empirical
results of return correlations from one developed and one emerging markets, it
is still difficult to draw any direct implications on the relations between the herd
effect and asset dependency. However, there are observations of interesting patterns
when comparing these empirical results with the simulation outcomes reported in
the previous section. First, a comparison between the correlation patterns of the
real data and of the simulated markets suggests that the models characterized by
herding behaviour will generate simulation results closer to the real patterns of
asset dependency than the static artificial market of isolated agents. Second, both
of the top 50 U.K. and Taiwan equity markets exhibit the patterns of asymmetric
conditional correlations. This finding shows consistency with the finding in many
previous empirical studies. To be more rigorous, a set of econometric tests fol-
lowing Hong et al. (2004) is introduced and conducted here in order to examine
whether or not the observed pattern of asymmetric return correlations holds true
in both of these two greatly different equity markets.

7.1. Testing Symmetry of Exceeding Correlations

Hong et al. (2004) following Ang and Chen (2002) consider a test of the sym-
metry of return correlations when returns are both very large and very small.
The idea is simple. Let r1 and r2 be two returns standardized to have mean zero
and variance one. Based on the sample observations, for r1t and r2t that are
greater than the threshold level c, we can compute a correlation coefficient, that
is, the correlation for exceedingly large returns. For those r1t and r2t that are less
than the threshold level −c, we can compute another correlation coefficient, that
is, the correlation for exceedingly small returns. These correlation coefficients
are the “exceedance” correlations in Hong et al. (2004) but will be referred to as
the exceeding correlation at the level c in the section. A test of return correlation
symmetry now can be constructed by comparing these two exceeding correlations.

Formally, the exceeding correlation at the level c is defined as the correlation of
the standardized returns r1 and r2, conditional on both returns exceeding c standard
deviations from their respective means. For example, for c = 0, the correlation
coefficient is computed conditional on the pair of returns both greater (or less)
than their respective means; for c = 1, the correlation coefficient is computed
conditional on the pair of returns both deviating from their respective means by
one standard deviation. The exceeding correlations at the level c is defined by

ρ+(c) = corr(r1, r2 | r1 > c and r2 > c), (19)

ρ−(c) = corr(r1, r2 | r1 < −c and r2 < −c). (20)
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The null hypothesis for the symmetric correlation test is given by

H0 : ρ+(c) = ρ−(c) for all c ≥ 0. (21)

Let T +
C denote the number of observations that both r1t and r2t are greater than c.

The sample average of those r1t such that r1t and r2t are greater than c at time t is
then calculated by

µ̂+
1 (c) = 1

T +
C

T∑
t=1

r 1t1{r 1t ,r 2t>c}, (22)

where 1A is the indicator function of the event A. Similarly, T −
C is the number of

observations for which both r1t and r2t are less than −c at time t , and the sample
average of those r1t such that r1t and r2t are both less than −c at time t is given
by

µ̂−
1 (c) = 1

T −
C

T∑
t=1

r 1t1{r 1t ,r 2t<−c}. (23)

The corresponding sample variances are, respectively,

σ̂+
1 (c)2 = 1

T +
C − 1

T∑
t=1

[r1t − µ̂+
1 (c)]21{r 1t ,r 2t>c},

(24)

σ̂−
1 (c)2 = 1

T −
C − 1

T∑
t=1

[r1t − µ̂−
1 (c)]21{r 1t ,r 2t<−c}.

Analogous notations µ̂+
2 (c), µ̂−

2 (c), σ̂+
2 (c)2, and σ̂−

2 (c)2 are defined for r2t in the
same fashion.

Consider now further standardization of r1t using the sample averages and
sample variances given earlier:

x+
1t (c) = [r1t − µ̂+

1 (c)]/σ̂+
1 (c),

(25)
x−

1t (c) = [r1t − µ̂−
1 (c)]/σ̂−

1 (c).

Similarly, r2t can also be standardized as x+
2t (c) and x−

2t (c). Based on these stan-
dardized returns, the sample exceeding correlations are defined as

ρ̂+(c) = 1

T +
C − 1

T∑
t=1

x+
1t (c)x

+
2t (c)1{r 1t ,r 2t>c},

(26)

ρ̂−(c) = 1

T −
C − 1

T∑
t=1

x−
1t (c)x

−
2t (c)1{r 1t ,r 2t<−c}.
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A test of the null hypothesis can be constructed by checking whether ρ̂+(c) is
sufficiently close to ρ̂−(c) for various choices of c. Given m levels of c1, . . . , cm,
let

ρ̂+
m = [ρ̂+(c1), . . . , ρ̂

+(cm)]′,
(27)

ρ̂−
m = [ρ̂−(c1), . . . , ρ̂

−(cm)]′.

Hong et al. (2004) proposed the following joint test statistic for the null hypothesis
of symmetric correlations.

Jm = T (ρ̂+
m − ρ̂−

m)′ �̂−1(ρ̂+
m − ρ̂−

m), (28)

where �̂ is a consistent estimator of the asymptotic variance-covariance matrix
�. It is shown in Hong et al. (2004) that the asymptotic null distribution of Jm is
the chi-square distribution of degrees of freedom m, χ2(m).

When implementing the symmetry test of return correlations, several steps need
to be clarified. The standardized returns are first computed using the full-sample
means and variances. In order to compute the joint statistic Jm, m levels of c1, . . . ,

cm need to be chosen. Note that in Hong et al. (2004) following Ang and Chen
(2002), m = 4 with the levels of c1 = 0, c2 = 0.5, c3 = 1, and c4 = 1.5 are
chosen. Here the computation of the test statistic also will be based on these four ex-
ceedance levels. The vectors of sample exceeding correlations are thus computed as
ρ̂+

4 = [ρ̂+(c1), . . . , ρ̂
+(c4)]′ and ρ̂−

4 = [ρ̂−(c1), . . . , ρ̂
−(c4)]′. The Newey-West

(1987) estimator �̂, consistent with the asymptotic variance-covariance matrix �,
is computed. Note that �̂ is a 4 × 4 matrix in this application. Specifically, let

γk(ci, cj ) = 1

T

T∑
t=|k|+1

ξt (ci)ξt−k(cj ), i, j = 1, . . . , 4, (29)

where

ξt (c) = T

T +
C

[x+
1t (c)x

+
2t (c) − ρ̂+(c)]1{r 1t ,r 2t>c} (30)

− T

T −
C

[x−
1t (c)x

−
2t (c) − ρ̂−(c)]1{r 1t ,r 2t<−c}. (31)

The Newey-West estimator, for a chosen truncation lag p (a positive integer), is

�̂ =
p−1∑

k=−p+1

(
1 − |k|

p

)
�k, (32)

where the (i, j)th element of �k is γk(ci, cj ). There are different ways to determine
the truncation lag p. Instead of using a data-dependent method, here the lag is set
as p ≈ T 1/3, which is also a common choice in applications.
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The results of symmetry tests for exceeding return correlations of the top
50stocks from FTSE 100 are not reported for lack of space but are available from
the authors on request. We present here a sketch of our findings. We calculate the
results when there are at least 15 observations such that the pair of stock returns
both satisfies the condition of exceeding one standard deviation of their respective
means. Recall that there are 1,225 pairs of return correlations from the top 50
stocks of FTSE 100. A total of 473 correlation pairs are reported, and their sample
correlation coefficients, test statistic, and associated are computed. Among these
473 test results, it is found that 140 pairs of stock returns have less than 5%. Hence,
the null hypothesis of symmetric exceeding correlations is rejected statistically
for these 140 stock pairs at 5% significance level. This amounts to nearly 30% of
all the results. By contrast, at 10% significance level, it is found that the symmetry
null hypothesis is rejected for 182 stock pairs, which amounts to 38% of the total
results reported.

We repeat these calculations using a higher exceedance level c = 1.5 for the
returns but a lower threshold level, 10, for the number of observations. We compute
the test results when there are at least 10 observations such that the pair of stock
returns both satisfies the condition of exceeding 1.5 standard deviations of their
respective means. Based on the criteria, the number of relevant correlation pairs
has reduced markedly to 31. Among these 31 correlation pairs, it is found that
six of them have p-values less than 5%. Hence, the symmetry null hypothesis is
rejected at the 5% significance level for six correlation pairs of a total number of
31 pairs. The rejection rate of symmetric exceeding correlations is approximately
20% in this case. By contrast, at the10% significance level, the rejection rate is
nearly 30% as there are nine return pairs of 31 that reject the null hypothesis of
correlation symmetry.

Comparing the first result with the second results, the rejection rates obtained
suggest that, when the threshold exceedance level is higher up (from c = 1 to
c = 1.5), the tendency of observing asymmetric correlations is in fact lower using
the FTSE 100 data (from approximately 30% to 20% at the 5% significance
level, and from approximately 38% to 30% at the 10% significance level). The
drop in the symmetry rejection rate is about 10% at both significance levels.
This has an important implication. In the event of extreme stock returns, up-
side and downside correlations are less likely to be asymmetric in the top 50
U.K. equity market. However, it also should be clarified that, in either case,
there is nontrivial evidence of asymmetric correlation patterns found in the top
50 U.K. equity market. We shall come back to this point in the conclusion
section.

We also compute the results of symmetry tests for exceeding return correlations
of the top 50 stocks from TWSI. The test results are when there are at least 15
observations such that the pair of TWSI stock returns both satisfies the condition of
exceeding one standard deviation of their respective means, that is, c = 1. Among
the 1,225 pairs of return correlations from the top 50 stocks of TWSI, there are a
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total of 672 pairs. Among these 672 correlation pairs, 189 pairs are found to have
p-values less than the 5%. Hence, the symmetry hypothesis is rejected statistically
for these 189 correlation pairs at the 5% significance level. This amounts to a
rejection rate of 28%. By contrast, at the 10% significance level, the symmetry
hypothesis is rejected for 247 pairs, which amounts to approximately 37% of the
results reported.

Again, results are obtained using a higher exceedance level c = 1.5 for the
returns but a lower threshold level, 10, for the number of observations. Thus, we
compute the test results when there are at least 10 observations such that the pair
of stock returns both satisfies the condition of exceeding 1.5 standard deviations
of their respective means. The number of relevant correlation pairs now reduces
markedly from 672 to 29. The symmetry hypothesis is rejected statistically at
the 5% significance level for 11 correlation pairs out of a total number of 29
in this case. The rejection rate amounts to nearly 38%. By contrast, at the 10%
significance level, the symmetry hypothesis is rejected for 15 pairs of 29, which
gives a rejection rate of a little more than 48%.

The test results obtained from the top 50 stocks of the Taiwan equity market
show statistically clear evidence of considerable levels of asymmetric exceeding
correlations at both the 5% and the 10% significance levels. Furthermore, a
comparison between the results of the U.K. and Taiwan markets demonstrates
similar rejection rates of correlation symmetry, when the exceedance level is
c = 1 and the threshold observation number is 15. More specifically, both markets
have a rejection rate of approximately 30% at the 5% significance level and a rate
of approximately 40% at the 10% significance level. This similarity regarding the
statistical rejection of symmetric correlations is indeed a surprising observation,
as these two markets are different in many ways; in particular, one is a developed
market while the other is an emerging market, and their association is far weaker
than those in the same geographical region where immediate financial contagion is
possible.

Nevertheless, the test results of these two markets do differ largely when the
exceedance level is c = 1.5 and the threshold observation number is 10. As dis-
cussed earlier, the symmetry rejection rate reduces by nearly 10% in the top 50
U.K. equity market with a higher exceedance level c = 1.5 and a lower threshold
observation number 10. On the contrary, for its counterpart results from the Taiwan
market, it is seen an increase in the symmetry rejection rate by around 10% instead
(from 28% to 38% at the 5% significance level, and from 37% to 48% at the 10%
significance level). Therefore, unlike its U.K. counterpart, the top 50 Taiwan equity
market in fact is more likely to have asymmetric upside and downside correlations
in the events of extreme stock returns. Finally, Table 3 provides a summary of the
results given earlier. The count number of relevant correlation pairs satisfying the
prespecified exceedance level and threshold observation number is summarized,
together with the number of statistical rejections of the null hypothesis and its
ratio out of the relevant total count.
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TABLE 3. Statistical summary of the results for testing asym-
metric correlationa

N NR
0.05 NR

0.05/N NR
0.10 NR

0.10/N

Top 50 equities of FTSE 100 when c = 1 and T +
C , T −

C > 15

473 140 29.60% 182 38.48%

Top 50 equities of FTSE 100 when c = 1.5 and T +
C , T −

C > 10

31 6 19.35% 9 29.03%

Top 50 equities of TWSI when c = 1 and T +
C , T −

C > 15

672 189 28.13% 247 36.76%

Top 50 equities of TWSI when c = 1.5 and T +
C , T −

C > 10

29 11 37.93% 15 48.39%

a The first column N calculates the number of return pairs satisfying the prespecified
exceedance level and threshold observation number. The second column NR

0.05 calculates,
among these relevant return pairs, the number of rejections of the symmetry null hypothesis
at the 5% significance level. The third column then reports its rejection ratio out of the
total number of relevant correlation pairs. The fourth column NR

0.10 calculates the number
of rejections of the symmetry null hypothesis at 10% significance level. The final column
gives the rejection ratio at the 10% significance level.

8. CONCLUDING REMARKS

This paper investigates the herd effect on asset dependency. The level of cross
correlations in security returns is examined through the dynamic impact of rational
imitative learning among agents endowed with heterogeneous expectations in
price forecasts. The static model with isolated noninteracting agents is set as
the benchmark model for comparison. In a simple but tractable setting, it is
demonstrated analytically that imitation driven by profit motives indeed leads to
asset dependency. The simulation results, based on more complex but realistic
assumptions, also support the theoretical analysis. The results show that, unlike
the benchmark model that generates virtually zero cross correlations in security
returns, herding endogenously induces a significant level of asset co-movements.

This work contributes to the literature in that it demonstrates, both analyti-
cally and numerically, a sustainable causality relation between herding and asset
dependency. This relation is further established unexpectedly in the reverse di-
rection, by another major observation in this study that herding is found to be
most pronounced under abnormal market conditions. More specially, the present
study uncovers a self-reinforcing process, in which herding by the vast majority
induces dependency across assets, which leads to abnormal market conditions and,
hence, amplifies the herding phenomenon, which again further exacerbates asset
dependency. Therefore, the implications of the present model are of significant
relevance in understanding the making of extreme market events.
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It is noteworthy that this observation, namely, a higher level of asset dependency
in extreme markets, is consistent with the finding by several empirical studies,
such as that of Silvapulle and Granger (2001) and a more recent work by Sancetta
and Satchell (2003). Using daily returns on 30 Dow Jones Industrial stocks for the
period 1991–1999, Silvapulle and Granger (2001) adopt the value-at-risk approach
to investigate the validity of portfolio diversification when there are negative large
movements in the stock returns. They find that the average conditional correlation
of 30 stocks is much higher when the market is bearish and therefore suggest that
the benefits of portfolio diversification would be eroded consequently. Sancetta
and Satchell (2003) use Sharpe’s factor model to provide an explanation to the
observed higher level of cross correlations in large market falls. They argue that
this pattern of nonconstant correlations is due to the fact that one crucial factor,
namely, the market, has become increasing important in extreme conditions.

The levels of return correlations in the U.K. and Taiwan equity markets are also
studied in this paper. In particular, the present work contributes to the literature
of the asymmetric patterns of return correlations by conducting empirical econo-
metric tests of correlation symmetry, based on the methodology provided in Ang
and Chen (2002), and Hong et al. (2004). Using the datasets of the top 50 stocks
in Taiwan and U.K. equity markets, the test results show statistically nontrivial
rejection rates of correlation symmetry in the event of extreme returns. This is
particularly true in the case of Taiwan where considerable evidence of asymmetric
exceeding correlations is found at both 5% and 10% significance levels. This
finding of asymmetric correlation patterns in the top 50 stocks in both Taiwan
and U.K. equity markets has implications for risk management. In both cases,
diversification as a means of managing portfolio risk is unlikely to be effective in
periods of extreme losses. Moreover, it is likely to be less effective for Taiwan than
for the United Kingdom, given the results of our econometric tests. However, there
are means other than portfolio diversification for risk management; for instance,
one could use Index Puts to provide a means of downside protection for equity
portfolios. It is also noteworthy that when comparing the empirical results with the
simulation outcomes, one important observation emerges. It is found that models
in the presence of herding generate results closer to the real patterns of asset
dependency than the static benchmark model with isolated agents. Nevertheless,
whether the observations have any implication on the level of herding in these
two much different markets, or any implication on the effects of other charac-
teristics, such as localness19 versus globalization, or emerging versus developed
markets, requires a more detailed investigation into the markets and is certainly
an interesting future topic.

There is an important social aspect closely related to the investor behavior
modeled in this study; to quote MacKenzie (2003), the financial markets are not
an imperfectly insulated sphere of economic rationality, but a sphere in which
the “economic” and the “social” interweave seamlessly . . . the key “social risks”
seem to come from inside the financial markets rather than from outside. Herd-
ing, even if rational, can be viewed as a key internal social risk, following the
terminology of MacKenzie (2003). This form of social risk enters the sphere by
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reshaping the investor ecology, most of the time uneconomically. In the present
model, imitative learning results in a temporary, fragile convergence on the out-
performing investment strategy. The stability depends on the learning pace, which
is in reality influenced by institutional conditions. The nature of instability and
fragility is partly what brings about the internal risk. By contrast, convergence,
even a temporary one, implies a certain degree of homogeneity which has a coun-
terintuitive implication on stability. The idea can be grasped by that a small error
can snowball due to the lack of offsetting effects that could otherwise arise with
heterogeneity. When information is incomplete and agents are boundedly rational,
homogeneity may not be superior to heterogeneity in stabilizing the market.

It might be thought that it is obvious that herding/imitation in investment strate-
gies leads to asset correlations. We disagree with this position, and the logic is
described as follows. The issue here concerns whether herding, as a temporary,
fragile convergence of investment behavior, can indeed lead to a significant level
of asset dependency over a relatively long horizon. It is a danger to presume that
a current winning investment strategy will remain successful in future trading
periods and continue to attract investors. The market is not static but dynamically
changing, and so is the winner. Indeed, as unfolded later in this study, the market
dynamics is a result of complex interaction between changing forecasts and in-
vestor ratios. Current success by no means guarantees future success. In fact, more
people practicing the same strategy will give a higher incentive for a deviant to
exploit the situation. This is where the winner loses its lead. Therefore, it should be
noted that herding/imitation among market participants in no way automatically
implies asset dependency.

The present study is of considerable relevance for financial regulators. Previous
studies, including those of Grinblatt, Titman, and Wermers (1995), Scharfstein
and Stein (1990), and Welch (2000), have documented significant evidence of
herding among mutual fund managers and financial analysts. Indeed, one of the
standard features of institutional investment, at least in the United Kingdom, is
to use the median fund manager of a given universe as a benchmark; two such
manager universes are the Combined Actuarial Performance Services (CAPS)
and World Markets (WM) whose members together hold approximately 40% of
U.K. equities. It is widely thought that peer-group benchmarks are systematically
flawed. An in-depth related investigation was conducted in producing part of
the Myner’s Report (2001); in Sections 3 and 5 of the Report, it is specifically
recommended that the use of peer-group benchmarks should be discouraged. In
addition, the concern presented in this study can be broadened to the level of
international finance, in that the models may be modified to be utilized for testing
contagion in the international financial markets.

There are efforts in progress to prohibit mediocrity such as the discontinuance
of peer-group benchmarks and to discourage herding behavior in financial mar-
kets. Nevertheless, by contrast, much literature has argued for a higher level of
transparency in financial systems. These two perspectives would evidently bring
about conflict. The benefits of a transparent financial system have been widely
studied, but there are relatively few studies that inquire into its potential costs.
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Hasbrouck (1988, 1991), Gemmill (1996), Madhavan (1996), and Pagano and
Roell (1996), respectively, support the viewpoint that transparency is socially
desirable in light of the following issues: fairness, efficiency, and adverse selec-
tion problems. However, regulatory changes that make investment behavior more
transparent and make individual investors more aware of other investors’ actions
can enhance uniformity of action and bring about the opposite of the intended
purpose. A good balance needs to be obtained by taking into account both the
desirable features of transparency and the potential risk in information exposure
and the public’s spurious response.

NOTES

1. Suggestions given by Mark Salmon pointing to this related group of literature is acknowledged.
2. The suggestions provided by Mark Salmon and Shaun Bond to conduct these econometric tests

are gratefully acknowledged.
3. The setting of myopic investors assumes single-period utility maximization, and it has the benefit

of making the computation tractable. Another approach is by the overlapping generation model (e.g.,
Brock and Hommes, 2002). Alternatively, for the analysis of the rational expectations equilibrium in
an non-myopic investor setting, see Brown and Jennings (1989) and the generalization by He and
Wang (1995).

4. This is an approximation in a world where volatility forecasts are well established and agreed
but mean forecasts are not; such a situation arises when there is a dominant risk management system
or a implied volatility methodology that is universally accepted. See Merton (1980), who argues that
means are much harder to forecast than variances.

5. For a detailed derivation of a similar expression, see for example, Brock, Hommes, and Wagener
(2001).

6. The attributes to investors’ heterogeneity can go beyond the conventional paradigm of asymmet-
ric information to include diversity in prior beliefs Kurz (1997) argues that the center of individuals’
disagreement lies in their diverse prior beliefs instead of information asymmetry; diverse beliefs explain
why different interpretations arise given the same information. By contrast, prior beliefs also influence
information selection. Investors with different beliefs are likely to pick up dissimilar sources for their
forecasts.

7. For a detailed derivation for the case of one risky asset, see Yang and Satchell (2003).
8. Alternatively, for a linear technical forecast function, see Sentana and Wadhwani (1992).
9. Although we consider strategy updating each period based on the performance of one-period

payoff, a natural extension would be strategy updating in a longer horizon based on multiple-period
payoff.

10. The pace of learning is influenced, though not fully determined, by institutional factors; we
consider that this influence is better reflected by the CL rule rather than the WTA rule.

11. Note that although the analytical results are derived in price context, for correlations conditional
on past information, price correlations will equal return correlations. This can be simply illustrated by
corrt−1(xt , yt )= corrt−1(

xt
xt−1

,
yt

yt−1
).

12. For tractability, we only consider the results of these three models. Of course, an advanced
approach could be a combination, or even a regime switching, of various learning processes.

13. It must be clarified that, even if the inequalities given by (18–2) and (18–3) hold, it by no means
implies that the pattern of nonconstant correlations is caused by imitation; one can only conclude that
the effect of imitation on asset dependency is consistent with the pattern of non-constant correlations.

14. Only the results of positive correlations that correspond to asset co-movement in the same
direction will be reported. The study of negative correlation has a different focus. Positive and negative
correlations contain separate information; taking average of them may omit useful information.
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15. There is also a minor observation that the level of the correlations conditional on a normal
market condition is, among all the conditional ones, most close to the level of the unconditional
correlations. This is not surprising, as the condition of ρM , on the market index price being between
10% to 90% quantiles, captures the majority of the sample distribution.

16. The market indices of the FTSE 100 and TWSI over a slightly longer period are given in
Appendix D for reference.

17. Note that, here, the computation of security returns is consistent with (14) by assuming zero
dividends.

18. However, unlike the simulation results, here we do not observe a significantly higher level of
return correlations in the upside market.

19. Compared with many international corporations in the U.S. or the U.K. markets, most Taiwanese
companies are “local” in the sense that they are small and medium enterprises (SMEs).

20. The market index price for the computation of market conditions is computed as the average
price of the 50 equities. Alternatively, one can use directly the published market indices that take into
account the relative equity weights.

21. Note that the x axis starts from 0.1 because the labels on the x axis indicate the ending numbers
of the category; for example, 0.1 indicate the category (0, 0.1).
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APPENDIX A

Following the market equilibrium equation (5), we assume Rf = 1, YS = 0S , and zero
dividends, and consider a simple case of two investor types: value investors with a fraction
of 1 − θt , and technical traders with a fraction of θt . (5) can be rewritten as

Pt = θtE
TA
t + (1 − θt )E

F
t , (A.1)

where Ei
t denotes the S × 1 vector of price forecasts made at time t by investor i, and it is

defined in a way consistent with (7), (8), and (9):

ETA
t = PF � Ãt ,

(A.2)
EF

t = PF .
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The equilibrium price (A.1) now becomes

Pt = θtP
F � Ãt + (1 − θt )P

F . (A.3)

Define DF = diag(PF ). It is an S × S diagonal matrix whose diagonal entries are the entries
of PF so that DF 1S = PF . (A.3) can be rewritten as

Pt = θtDF Ãt + (1 − θt )DF 1S . (A.4)

Multiplying both sides by D−1
F (by definition, we know that D−1

F exists), (A.4) can be
rearranged as D−1

F (Pt − PF ) = θt (Ãt − 1S). (A.5)
Let qt = D−1

F (Pt − PF ) and At = (Ãt − 1S). (A.5) is then given by qt = θtAt .

APPENDIX B

Let θt = fθ (qt−1), θ : RS → R1, and At = fA(qt−1), A : RS → RS .
To isolate the ex-ante correlation effects, we assume that the S transformed prices in qt−1

are independent, so that cov[qt−1] is a diagonal matrix. For convenience, write E[qt−1] = q∗,
cov[qt−1] = �q .

Define DS = [sij ], where sij = skewness(qi
t−1) for i = j , and sij = 0 for i 	= j . DS is an

S × S diagonal matrix. Similarly, DK is an S × S diagonal matrix defined by DK = [kij ],
where kij = kurtosis(qi

t−1) for i = j , and kij = 0 for i 	= j .
We approximate θt and At using the first-order Taylor’s expansion.

θt
∼= θt |q∗ + ∂θt

∂q′
t−1

∣∣∣∣
q∗

· (qt−1 − q∗) (B.1)

At
∼= At |q∗ + ∂At

∂qt−1

∣∣∣∣
q∗

· (qt−1 − q∗) (B.2)

Thus, E[θt ] = θt |q∗ = θ∗, and E[At ] = At |q∗ = A∗.

Let µ= ∂θt

∂q′
t−1

|q∗ and Dµ = diag(µ); J = ∂At

∂qt−1

|q∗.

The Jacobian matrix J is assumed to be diagonal, that is, no prior belief in asset depen-
dency in the forecast function At .

The covariance of At is calculated by

cov[At ] = E[(At − A∗)(At − A∗)′] = E[J (qt−1 − q∗)(qt−1 − q∗)′J′] = J �qJ′. (B.3)

Since J and �q are diagonal matrices, it is easy to show that cov[At ] is also a diagonal
matrix. Therefore, when θt is fixed at θ , the covariance matrix of qt , cov[qt ], is also a
diagonal matrix.

Now we proceed to prove the result (ii) in Proposition 2.
The expectation of qt is given by

E [qt ] = θ∗A∗ + J�qµ. (B.4)
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The covariance of qt is given by

cov[qt ] = E[(qt − E[qt ])(qt − E[qt ])
′] = E

[
θ2
t AtA′

t

] − E[qt ]E[qt ]
′. (B.5)

We now calculate the first term on the right-hand side (RHS) of (B.5).

E
[
θ 2
t AtA′

t

] = E
[
θ2
t

]
A∗(A∗)′ + A∗E

[
θ2
t (qt−1 − q∗)′] J′ + JE

[
θ2
t (qt−1 − q∗)

]
(A∗)′

+ J E
[
θ2
t (qt−1 − q∗)(qt−1 − q∗)′] J′ (B.6)

The constituent terms in (B.6) are calculated here.

E
[
θ 2
t

] = E[(θ∗)2 + 2θ∗µ · (qt−1 − q∗) + (µ · (q−
t−1 − q∗))2]

= (θ∗)2 + E[(µ · (qt−1 − q∗))2] (B.7)

= (θ∗)2 + µ′ �qµ

E
[
θ 2
t (qt−1 − q∗)′] = (θ∗)2E[(qt−1 − q∗)′] + 2θ∗E[(µ · (qt−1 − q∗))(qt−1 − q∗)′]

+ E[(µ · (qt−1 − q∗))2(qt−1 − q∗)′]

E
[
θ2
t (qt−1 − q∗)′] = 2θ∗ µ′ �′

q + µ′DµDs (B.8)

E
[
θ 2
t (qt−1 − q∗)(qt−1 − q∗)′] = (θ∗)2E[(qt−1 − q∗)(qt−1 − q∗)′]

+ 2θ∗E[(µ · (qt−1 − q∗))(qt−1 − q∗)(qt−1 − q∗)′]

+ E[(µ · (qt−1 − q∗))2(qt−1 − q∗)(qt−1 − q∗)′]

E
[
θ 2
t (qt−1 − q∗)(qt−1 − q∗)′] = (θ∗)2�q + 2θ∗Dµ Ds + D2

µ Dk (B.9)

Thus, (B.6) is given by the following:

E
[
θ 2
t AtA′

t

] = ((θ∗)2 + µ′ �qµ)A∗(A∗)′ + A∗(2θ∗ µ′ �′
q + µ′Dµ Ds )J′

+ J(2θ∗ �qµ + DsDµ µ)(A∗)′ + J( (θ∗)2�q + 2θ∗Dµ Ds + D2
µ Dk)J′ (B.10)

Substituting (B.10) into (B.5) and from E[qt ] given by (B.4), we finally obtain cov[qt ].

cov[qt ] = µ′ �qµA∗(A∗) ′ − θ∗A∗µ′ �′
qJ′ − θ∗J�qµ (A∗) ′ − J�qµµ′ �′

qJ′

+ 2θ∗A∗(µ′ �′
q)J

′ + 2θ∗J �qµ (A∗) ′ + J DsDµµ (A∗) ′ + A∗µ′Dµ DsJ′

+ (θ∗)2J �qJ′ + 2θ∗J Dµ DsJ′ + J D2
µDkJ′ (B.11)

Recall that J, �q , Ds , Dµ, and Dk are all diagonal matrices, and A∗ is a vector. First,
it is straightforward to show that the sum of the terms on the third line on the RHS of
(B.11) is diagonal. Second, when µ= 0S , all the terms on both the first and second lines on
the RHS of (B.11) vanish. Therefore, when µ= 0S , cov[qt ] is a diagonal matrix given by
cov[qt ] = (θ∗)2J �qJ′ + 2θ∗J Dµ DsJ′ + J D2

µDkJ′.
When µ 	= 0S , it is clear that the fourth term (J�qµµ′ �′

qJ′) on the RHS of (B.11)
is a nondiagonal symmetric matrix. Also, all the other terms on both the first and second
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lines on the RHS of (B.11) are nondiagonal matrices as long as A∗ 	= 0S . Therefore when
µ 	= 0S , cov[qt ] is a nondiagonal matrix.

APPENDIX C

IS is the S × S identity matrix and 1S is the S × 1 vector of 1s. θ i
NA = 1

/
3 denotes the equal

fractions of investor types in the NA model. Also, dt ∼ U(0S, 1S) means that the dividend
process of each security is uniformly distributed between 0 and 1.

TABLE C.1. Parameter values
used for numerical simulations

Parameter values

δ = 0.1 α = 0.05
rf = 0.01 θ i

NA = 1/3
a = 1 YS = 0S

M = 20 εt ∼ N(0S, IS)

η = ±1 dt ∼ U(0S, 1S)
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FIGURE D.1. The market indices of the FTSE 100 and TWSI from 1 January 1997 to 31
October 2002.
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