
Math. Struct. in Comp. Science (2012), vol. 22, pp. 788–815. c© Cambridge University Press 2012

doi:10.1017/S0960129511000533

Adversarial scheduling in discrete models

of social dynamics†

GABRIEL ISTRATE‡, MADHAV V. MARATHE§ and S. S. RAVI¶

‡Center for the Study of Complexity, Babeş-Bolyai University,

Str. Fântânele 30, cam. A-14,

Cluj-Napoca, RO-400294, Romania

and

e-Austria Research Institute, C. Coposu 4, cam 045B,

Timişoara, RO-300223, Romania

Email: gabrielistrate@acm.org
§Network Dynamics and Simulation Science Laboratory,

Virginia Bio-Informatics Institute,

1880 Pratt Drive Building XV, Blacksburg, VA 24061, U.S.A.

Email: mmarathe@vbi.vt.edu
¶Computer Science Dept., S.U.N.Y. Albany,

Albany, NY 12222, U.S.A.

Email: ravi@cs.albany.edu

Received 2 November 2010

In this paper we advocate the study of discrete models of social dynamics under adversarial

scheduling. The approach we propose forms part of a foundational basis for a generative

approach to social science (Epstein 2007). We highlight the feasibility of the adversarial

scheduling approach by using it to study the Prisoners’s Dilemma Game with Pavlov update,

a dynamics that has already been investigated under random update in Kittock (1994), Dyer

et al. (2002), Mossel and Roch (2006) and Dyer and Velumailum (2011). The model is

specified by letting players at the nodes of an underlying graph G repeatedly play the

Prisoner’s Dilemma against their neighbours. The players adapt their strategies based on the

past behaviour of their opponents by applying the so-called win–stay lose–shift strategy.

With random scheduling, starting from any initial configuration, the system reaches the fixed

point in which all players cooperate with high probability. On the other hand, under

adversarial scheduling the following results hold:

— A scheduler that can select both game participants can preclude the system from

reaching the unique fixed point on most graph topologies.

— A non-adaptive scheduler that is only allowed to choose one of the participants is no

more powerful than a random scheduler. With this restriction, even an adaptive

scheduler is not significantly more powerful than the random scheduler, provided it is

‘reasonably fair’.

† This work has been supported by NSF PetaApps Grant OCI-0904844, DTRA R&D Grant HDTRA1-

0901-0017, NSF Netse CNS-1011769, and NSF SDCI OCI-1032677, by BMWF, and by a grant from and

a project on Postdoctoral programs for sustainable development in a knowledge-based society, contract

POSDRU/89/1.5/ S/60189, cofinanced by the European Social Fund through the Sectorial Operational

Program for Human Resource Development 2007-2013.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

Adversarial scheduling in discrete models of social dynamics 789

1. Introduction

The study of Computational Social Sciences (Lazer 2009) has greatly benefited in recent

years from viewing social dynamics from a discrete dynamical systems perspective.

This has opened the social realm to the class of models usually investigated in the

complex systems literature: cellular automata (Hegselmann and Flache 1998) and their

asynchronous counterpart, sequential dynamical systems (Mortveit and Reidys 2007;

Barrett et al. 2005), spin glasses and related models from the statistical physics literature

(see, for example, Castellano et al. (2009)), discrete game-theoretic models (see, for example,

Wilhite (2006)) and a myriad of computational and computational agent-based simulations

in the social sciences (Ballot and Weisbuch 2000; Tesfatsion and Judd 2006; Gilbert and

Troizch 2005). The discrete nature of these models has brought aspects of social dynamics

into the realm of computability theory, making them natural candidates for studying issues

such as computability (see, for example, Velupillai (2000)) or computational complexity.

The central problem of such models is, of course, their validation and validation: How

does one understand and interpret properties of such systems, be they obtained through

mathematical analysis or computational simulations, and how do we make sure that the

insights we derive from such models are ‘correct’? This question is as much philosophical

as it is practical, given that game theory and agent-based simulations are emerging as

tools for guiding political decision-making (see, for example, Barrett et al. (2005), Epstein

et al. (2004) and Eubank et al. (2004); the TRANSIMS project is also relevant†).

A possible answer to the issue described above is that results characterising the

dynamical properties of such models provide insights (and possible causal explanations)

for features observed in ‘real-world’ social dynamics. To give just one example, the

primary intuition behind the (mathematical) concept of stochastic stability in evolutionary

game theory (Young 1998) is that a small amount of ‘noise’ (or, equivalently, small

deviations from rationality) in game dynamics can solve the so-called equilibrium selection

problem by helping the system ‘focus’ on one particular equilibrium. Thus, deviations from

rationality provide a mechanism that can compensate for the apparent underspecification

of rational social behaviour provided by game-theoretic equilibrium concepts.

In a similar spirit to the possible answer outlined above, Epstein (see Epstein (1999;

2007); see also Axtell and Epstein (1996)) has advocated a generative approach to (agent-

based) social science. The goal is to explain a given social phenomenon by generating

it using multiagent simulations‡. Related concerns have been recently voiced throughout

so-called analytical sociology (Hedström and Bearman 2009), with a particular em-

phasis on mechanism-based explanations (Hedström 2005; Hedström and Swedberg 2006).

Mechanism-based explanations citeglennan1996mechanisms,bunge1997mechanism are

some of the more promising sociological approaches to ‘dissecting the social’ (Boudon 1998;

Elster 1998; Machamer et al. 2000; Craver 2006). Presumably, a more disciplined version

of the generative approach would aim to identify plausible social mechanisms underlying

† See http://code.google.com/p/transims/ for details.
‡ Compare this with Epstein (2007, Chapter 1), : ‘if you didn’t grow it [the social phenomenon, n.n.], you didn’t

explain its emergence’.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

G. Istrate, M. V. Marathe and S. S. Ravi 790

the social phenomena of interest, with mathematical results/computer simulations serving

as ‘virtual laboratories’.

The generative approach to social science is not without critics, such as a rather

large number of game theorists and other mathematically inclined social scientists who

are skeptical of the social simulation approach. However, even an economist generally

sympathetic to computational experiments could write (Mirowski 2002, page 531): ‘Forty

years on, the first complaint of a member of the audience for an economic simulation

is: Why didn’t you report that variant run of your simulation? Where is the sensitivity

analysis? How many simulations does it take to make an argument? One often finds

that such specific criticisms are often parried by loose instrumentalist notions, such as

“we interpret the question, can you explain it? as asking, can you grow it ?” ((Axtell

and Epstein 1996), p. 177). On those grounds there would never have been any pressing

societal need for molecular biology [. . .]’.

In any case, whatever ones opinion is of Epstein’s program and, more generally, of

what validating a discrete social model means, it is hard to deny the fact that generation

is at least necessary for mathematical/computational accounts of social phenomena, and

making the analysis of generative models more scientific is desirable. Such a task will

certainly involve making sure that the conclusions we derive are robust to small variations

in model specification.

The goal of this paper is to focus on one particular aspect of the robustness of agent-

based simulations and evolutionary game-theoretic models: agent scheduling, that is, the

order in which agents update their strategies. This is clearly a significant aspect of social

dynamics, one that crucially differentiates agent societies from discrete physical systems:

agents have free will and can decide to act in response to perceived characteristics of

social dynamics. As such, the activation order is often complex, most of the time being

endogenously coupled to the specification of the dynamics.

In contrast, many of the mathematical models in the literature take the update order

as exogenous. In fact, for reasons of mathematical tractability, the most two popular

alternatives seem to be:

— synchronous update: every player can update at every moment (in either discrete or

continuous time) – this is the model implicitly used by ‘large population’ models in

evolutionary game theory and by cellular automata.

— random activation: agents are vertices of a (hyper)graph. At each step, we choose a

(hyper)edge uniformly at random and all players corresponding to this hyperedge are

updated using the local update function.

Instead of postulating one of these two update mechanisms, we advocate the study of

social dynamics under an approach we call adversarial scheduling, which is inspired in

part by the theory of self-stabilisation of distributed systems from the computer science

literature. This approach takes the endogenising of the scheduler to its limits in a controlled

way, identifying the structural reasons that make the original result hold. The validity of

the original result then involves deciding whether the endogenous schedule satisfies these

structural reasons ‘in the real world’.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

Adversarial scheduling in discrete models of social dynamics 791

As an example of adversarial scheduling, we will study its application to the Iterated

Prisoner’s Dilemma game with a win–stay lose–shift strategy. This dynamics (originally

motivated by the colearning model in Shoham and Tennenholtz (1997)) has received

substantial attention in the game-theoretic literature(Kittock 1994; Dyer et al. 2002;

Mossel and Roch 2006; Dyer and Velumailum 2011).

We are, of course, far from being the first to recognise the crucial role of activation

order on the properties of social dynamics However, what we advocate is a (somewhat)

more systematic approach, based on the following principles:

(i) Start with a ‘base case’ result P , under a particular scheduling model.

(ii) Identify several structural properties of the scheduling model that impact the validity of

P . Ideally, these properties should be selected by a careful examination of the proof

of P , which should reveal their importance.

(iii) Of these properties, identify those that (alone or in combinations) are necessary

(sufficient) for the validity of P . Correspondingly, those that can be abstracted out

without affecting the validity of P .

(iv) The process outlined so far can be continued by recursively applying steps (i)-(iii).

In doing this we may need to reformulate the original statement in a way that makes

it hold under larger classes of schedulers, thus making it more robust. The precise

reformulations normally arise from inspecting the cases when the proof of P fails in

an adversarial setting.

We do not pretend that the above program is always feasible. On the other hand, since

starting this research, we have found ever more central examples of game-theoretic models

where such a program can be accomplished. More importantly, we plan to argue in a

future paper that the program can be realised to a certain extent for some computational

agent-based models as well, which is the motivating goal of this research.

1.1. Organisation of the paper

The present paper does not do justice (nor does it pretend to) to the myriad philosophical

issues pertaining to our work (for example, emergence in social systems, the specification

and role of social mechanisms, the micro–macro link in social theory). We plan to discuss

these issues further in future research. Instead, this paper is primarily mathematically-

oriented, presenting a proof-of-concept of our approach Its intended benefits are multiple.

Our (modest) goal is to show that these benefits do not come at the expense of mathematical

tractability: at least in some cases, adversarial scheduling (as outlined in the four point

approach above) is feasible and can lead to interesting results.

In the next section, we review the basic model and its properties under random

scheduling. Our results and the related literature are presented in Section 3. In Section 4

we discuss the role of fairness in scheduling. Results for edge-schedulers (those that are

able to choose both players in the Prisoners’ Dilemma) are presented in Section 5. In

Sections 6 and 7, we consider the case of node-schedulers, which are only able to choose

one partner in the game. In Section 8, we present some experimental results on convergence

speed. Finally, in Section 9, we discuss the results and present our conclusions.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

G. Istrate, M. V. Marathe and S. S. Ravi 792

2. Preliminaries

We begin by defining two classes of graphs that we will frequently consider in this paper:

— The line graph Ln, n � 1 consists of n vertices v1, . . . vn and edges (vi, vi+1), 1 � i � n−1.

We will use Line to denote the set of all line graphs.

— A star graph Starn, n � 1, is the complete bipartite graph K1,n. We will use Star to

denote the set of all star graphs.

2.1. Basic model: the Prisoner’s Dilemma with Pavlov dynamics

In this section we describe the basic mathematical model for the Prisoner’s Dilemma with

Pavlov dynamics (PDPD). It first arose as a very simple case of Shoham and Tennenholtz’

colearning framework, which is a model for the emergence of social norms (conventions)

in artificial societies. In the interests of simplicity, we will omit a detailed discussion of the

motivation and the detailed game-theoretic formulation of the model (see Kittock (1994),

Mossel and Roch (2006) and Dyer et al. (2002) for information on these issues) and

simply specify it as a discrete dynamical system.

We are given an undirected graph G(V , E), |V | = n and |E| = m. Each vertex v ∈ V

represents an agent. Each agent has a label from the set {0, 1}. These labels denote the

strategies that the players follow: 0 can also be equivalently viewed as cooperation and

1 can be viewed as defection. Without loss of generality, we assume that G is connected,

otherwise the dynamics will reduce to independent dynamics on the connected components

of G. We will also assume that the graph contains at least two edges.

Time will be discrete. At time t = 0, all nodes are assigned a label from {0, 1}. At each

subsequent step, certain nodes/agents change their label (strategy) according to the rules

given below. We will use xt(v) to denote the label of node v. At each step t + 1 an edge

e = (u, v) is selected according to some rule and the states of u and v are updated as

follows:

x(t+1)(u)← (xt(u) + xt(v)) (mod 2)

x(t+1)(v)← (xt(u) + xt(v)) (mod 2)

We will use Xt to denote the vector (xt(v1), . . . xt(vn)) representing the states of the nodes

v1, . . . vn. This will sometimes be referred to as the global configuration, and we will

sometimes omit the subscript t for ease of exposition when its value is clear from context.

With this terminology, each step of the dynamics can be viewed as a global update

function F . It takes as input an element e = (vi, vj) ∈ E and a global configuration

X = (x(v1), . . . x(vn)), and returns the next global configuration Y = (y(v1), . . . y(vn)), which

is computed as follows:

— ∀vk , such that k �= i and k �= j, y(vk) = x(vk); and

— y(vi) = y(vj) = (x(vi) + x(vj)) (mod 2).

In this case, Y is said to be reachable from X in one step. A global configuration X

is said to be a fixed point if ∀e ∈ E, we have F(X, e) = X. It is easy to see that the

dynamical system studied here has a unique fixed point 0 = (0, . . . , 0). Following the

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

Adversarial scheduling in discrete models of social dynamics 793

dynamical systems literature, a configuration X is called a Garden of Eden configuration

if the configuration is not reachable from any other configuration. For the rest of this

paper, we will use X,Y, . . . to denote global configurations. An instance of PDPD can

thus be represented as (G, f), where G is the underlying interaction graph and f is the

local function associated with each node. Since f will always be fixed, in the rest of this

paper, we will simply specify an instance by G.

2.2. The base-case result

The following property of the PDPD is easily seen to hold under random matching: for

all interaction graphs G with no isolated vertices, the system converges with probability

1 − o(1) to the ‘all zeros’ configuration, which we will denote by 0 from now on. With

a slight abuse of convention, we will refer to this event as self-stabilisation. This is the

property we will study in an adversarial setting.

We will also be interested in the convergence time of the dynamics. Under random

scheduling, Dyer et al. (2002) proved that the number of steps needed to self-stabilise

is O(n log n) on Cn (the simple cycle on n nodes) and exponential in n on Kn (the

complete graph on n nodes). The convergence time was further investigated by Mossel

and Roch (Mossel and Roch 2006). Recently, the dynamics was generalised in Dyer and

Velumailum (2011) to ‘rational Pavlov dynamics’, and their results provide evidence for

the existence of a phase transition between polynomial and exponential mixing time on a

cycle.

2.3. Types of schedulers

A schedule S is specified as an infinite string over E, that is, S ∈ E∗. Given a schedule

S = (e1, e2, . . . , et, . . .), the graph G and an initial configuration I, the system evolves as

follows. At time t = 0 the system is in state I. At time t, we pick the tth edge from S, and

call this edge et. If the configuration at the beginning of time t is X, then the configuration

Y at the beginning of time t + 1 is given by Y ← F(X, et). The iterated global transition

function F∗ is defined as

F∗(I, (e1, e2, . . . , et, . . .)) ≡ F∗(F(I, e1), (e2, . . . , et, . . .)).

We say that a system G self-stabilises for a given initial configuration I and a schedule

S = (e1, . . . , et, . . .)
† if ∃t � 1 such that the system starting in I reaches the (unique

fixed-point) configuration 0 after t time steps, that is, 0 ← F∗(I, (e1, . . . , et)). G is said to

self-stabilise for a schedule S if G eventually reaches a fixed point when started at any

initial configuration I , that is, ∀I, F∗(I, S) → 0. Conversely, a schedule S can preclude

self-stabilisation of G if ∃I such that F∗(I, S) never reaches 0. Given a set of schedules,

a scheduler is simply an algorithm (possibly randomised) that chooses a schedule. The

schedulers considered here are all polynomial time algorithms and the set of feasible

schedules is described below.

† Note that ei and ej in the sequence need not be distinct.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

G. Istrate, M. V. Marathe and S. S. Ravi 794

Schedulers can be adaptive or non-adaptive. An adaptive scheduler decides on the next

edge or node based on the current global configuration. A non-adaptive scheduler decides

on a schedule in advance by looking at the graph (and possibly the initial configuration).

This schedule is then fixed for the rest of the dynamic process. One particularly restricted

class of non-adaptive schedules is a fixed permutation of nodes/edges repeated periodically

and independent of the initial state of the system. For node updates, this is the model

employed in sequential dynamical systems (Barrett et al. 2003; Barrett et al. 2005). There

are several distinctions that can be made with respect to the power of a scheduler. The

first concerns the number of players that the scheduler is able to choose. There are two

possibilities:

— An edge-daemon (or edge-scheduler) is able to choose both players of the interacting

pair. In other words, an edge daemon constructs S by selecting edges ei ∈ E in some

order.

— A node-daemon (or node-scheduler) can choose only one of the players. We can let this

player choose its partner. A natural model is to consider the case where the partner is

chosen uniformly at random among the neighbours of the first player. In such a case,

we say that the node-scheduler model has random choice, and that such a scheduler is

a random-choice node-scheduler.

3. Summary of results and related work

Our results can be summarised as follows:

— Unsurprisingly, some degree of fairness is necessary to obtain self-stabilisation in an

adversarial setting.

— The power given to the scheduler makes a big difference in determining whether the

system does or does not self-stabilise:

(i) if the scheduler can exogenously choose both participants in the game, then

(Theorems 4.5 and 5.1) it can preclude convergence on most graphs, even when

bounded by fairness constraints.

(ii) On the other hand, schedulers that allow a limited amount of endogeneity in agent

interactions†, by only choosing one of the participants, are no more powerful than

the random scheduler (Theorem 5.2) when non-adaptive, and are not significantly

more powerful (Theorem 6.1) when adaptive but ‘reasonably fair’.

We also investigate experimentally (in Section 8) the convergence time of the colearning

dynamics for a few non-adaptive schedulers for a case where the convergence time for the

random scheduler is known rigorously.

Our approach is naturally related to the theory of self-stabilisation of distributed systems

(Dolev 2000). Multi-agent systems, like the ones considered in the evolutionary game

dynamics, have many of the characteristics of a distributed system: a number of entities

(the agents) capable of performing certain computations (changing their strategies) based

† The importance of this property has been recognised (Vriend 2006) in the agent-based simulation literature.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

Adversarial scheduling in discrete models of social dynamics 795

on local information. In fact, randomised models of this type (including the model we study

in this paper) have been considered recently in the context of self-stabilisation (Fribourg

et al. 2006). Also, Angluin et al.’s population protocol (see Aspnes and Ruppert (2007) for

a survey) is relevant to our work, though the focus of that theory is slightly different, its

main interest being computation by direct interaction in spite of unpredictable patterns of

scheduling. The system we study can indeed be viewed as a special case of a population

protocol. This connection with game theory recently became even stronger – see Jaggard

et al. (2000) and Bournez et al. (2009). Remarkably, Bournez et al. (2009) studied

computation in the population protocol model using two-person symmetric games, and

considered the case of Pavlov protocols, motivated in part by our base-case scenario from

Dyer et al. (2002).

There are, however, a number of differences. First, in self-stabilisation the computational

entities (processors) are capable of executing a wide-range of activities (subject to certain

constraints, such as the requirement that all processors run the same program in the

context of so-called uniform self-stabilising systems). The aim of such systems is to achieve

a certain goal (legal state) in spite of transient errors and malicious scheduling. In contrast,

in our setup, there is no ‘goal’, the computations are fixed, and restricted to steps of the

evolutionary dynamics. The only source of uncertainty arises from the scheduling model.

A second difference is in the nature of the update rule. Usually, in self-stabilising systems

there is a difference between enabled processors, which intend to take a step, and those

that actually take it. Such a notion is not as natural in the context of game-theoretic

models.

As mentioned earlier, the dynamics can be easily recast in the context of the Prisoner’s

Dilemma: let 1 encode ‘defection’ and 0 encode ‘cooperation’. Then the update rule

corresponds to the so-called win–stay lose–shift (Posch 1997), or Pavlov’s strategy. This

rule specifies that agents defect on the next move precisely when the strategy they used

in the last interaction was different from the strategy used by the other player. It was the

object of much attention in the context of the Iterated Prisoner’s Dilemma (Axelrod 1984;

Nowak and Sigmund 1993; Axelrod 1997). Related versions of the dynamics have an

even longer history in the Psychology literature, where they were proposed to model the

emergence of cooperation in situations where players do not have precise knowledge of

the payoffs of the game in which they are participating, and might even be unaware

they are playing a game. Sidowski (1957) proposed the ‘minimal social situation’ (MSS),

which is a two-person experiment representing an extremely simple form of interaction

between two agents. MSS was first viewed as a game in Thibaut and Kelley (1959), where

it was called ‘Mutual Fate Control’. An explanation for the empirical findings in Thibaut

and Kelley (1959) was proposed in Radloff et al. (1962), which raised the possibility that

players act according to Pavlov dynamics. MSS was generalised to multiplayer games in

Coleman et al. (1991) and Colman (2005), which gave a mathematical characterisation of

the emergence of cooperation.

Last, but not least, we should note that in addition to the social science interpretations,

our model is naturally related to the spin systems studied in statistical physics, and

particularly to kinetic population models (Krapivsky et al. 2010); in fact, it can be mapped

directly onto such a model (we thank Eli Ben-Naim for this comment). In the same spirit,

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

G. Istrate, M. V. Marathe and S. S. Ravi 796

Mossel and Roch (2006) remarked that the IPD dynamics behaves heuristically like the

closely related contact process. So our results can be interpreted as studying the impact of

update dynamics in such (physically motivated) systems.

4. Fairness in scheduling

A necessary restriction on the schedulers we will be concerned with is fairness. In self-

stabilisation this is usually taken to mean that each node is updated infinitely often in

an infinite schedule. We will also consider notions of bounded fairness, for which the

following is a natural definition.

Definition 4.1. Let b � 1. A scheduler that can choose one item among a set of m elements

is (worst-case) b-fair if for every agent x, no other agent is scheduled more than b times

between two consecutive schedulings of x.

It is easy to see that a 1-fair edge-scheduler chooses a fixed permutation of edges and

uses this as a periodic schedule. A 1-fair node daemon selects a fixed permutation of

nodes, and for each node, selects a random neighbour and repeats the same permutation

(with possibly different partners) periodically.

To investigate the properties of random schedulers, a natural starting point is to

consider the fairness of probabilistic schedulers. For such schedulers, the worst-case

fairness in Definition 4.1 is far too restrictive.

Definition 4.2. A probabilistic scheduler is weakly fair if for any node x and any initial

schedule y, the probability that x will eventually be scheduled, given that the scheduler

selected nodes according to y, is positive.

The random scheduler is weakly fair. Not every scheduler is weakly fair, and a scheduler

need not be weakly fair to make the system self-stabilise. On the other hand, the base-case

result does not extend to the adversarial setting when weak fairness is not required.

Theorem 4.3. The following are true:

(i) There exists an edge-scheduler that is not weakly fair and that makes the system

self-stabilise no matter what its starting configuration is.

(ii) For any graph G, there exists an edge/node-scheduler that is not weakly fair and that

prevents the system from self-stabilising on some initial configuration.

A restatement of Theorem 4.3 is that weak fairness is necessary to preclude some

‘degenerate’ schedulers, like the ones we construct for the proof of part (ii).

Proof.

(i) Consider an edge-scheduler that works as follows:

— Choose an edge e that has not yet self-stabilised, that is, at least one of its

endpoints is 1.

— Turn nodes of e to 0 by playing e twice.

— The scheduler never schedules e subsequently.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

Adversarial scheduling in discrete models of social dynamics 797

(ii) Consider a node(edge)-scheduler that repeatedly schedules the same node (edge). It is

easy to see that the system does not self-stabilise unless the graph consists of a single

edge (a star in the case of a node-scheduler when the centre node is the scheduled

one).

Definition 4.4. A probabilistic scheduler is O(f(n))-node fair with high probability if the

following condition is satisfied while the system has not reached the fixed point:

— For any schedule W , with last scheduled node x, and every node y and every ε > 0,

there exists Cε > 0 such that, with probability at least 1− ε, node y will be scheduled

at most Cε · f(n) times before x is scheduled again.

A scheduler is boundedly node fair with high probability if it is O(f(n))-node fair with high

probability for some function f(n).

We should emphasise the fact that Definition 4.4 also applies to edge-schedulers, where

a node x is considered to occur at stage t if some edge containing x is scheduled at that

step. With these definitions we now have the following theorem.

Theorem 4.5. Let S be a (node or edge) weakly fair probabilistic scheduler such that for

any initial configuration, the probability that the system self-stabilises tends to one. Then

the scheduler is boundedly node fair.

Proof. We will consider node and edge-schedulers at the same time. Let ε > 0 and

T = T (ε, n) be an integer such that, no matter what configuration I we start the system

in, the probability that the system does not self-stabilise (taken over all the scheduler’s

random choices) is at most ε.

We consider any configuration I ′ of the system after a node x has been scheduleded, and

assume that I ′ is not the absorbing state 0. Run the system for T steps. The probability

that the system does not self-stabilise is at most ε. On the other hand, if some node y is

not played at all during the T steps, then the system has no chance to self-stabilise. It

follows that the maximum number of times a given node can be scheduled before x is

scheduled again is at most T − 1.

5. The power of edge-schedulers

From now on we will restrict ourselves to boundedly fair schedulers. In this section we

show that edge-schedulers are too powerful. Indeed, it is easy to show that there exist

graphs on which even 1-fair edge-schedulers can prevent self-stabilisation. The following

two results provide a modest improvement, showing that even 2-fair edge-daemons on

any graph are too strong.

Theorem 5.1. Let G be an instance of PDPD. Then there exists an initial configura-

tion I and a 2-fair edge-scheduler S that precludes self-stabilisation on G starting in

configuration I .

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

G. Istrate, M. V. Marathe and S. S. Ravi 798

Proof. Consider a sequence of edges e0, . . . ek (with repetitions allowed) such that all

the following properties hold:

— every edge of G appears in the list;

— for every i = 0, . . . , k, we have ei and ei+1 have exactly one vertex in common (where

ek+1 = e0); and

— every edge appears in the sequence at most twice.

We will show that an enumeration F(G) with these properties can be found for any

connected graph with more than one edge. Such a sequence specifies in a natural way

(through its periodic extension) a 2-fair edge daemon. It is easy to see that the only states

that can lead to the fixed point are the fixed point and states leading to it in one step:

such a state has exactly two (adjacent) ones. But such a state cannot be reached from any

other state according to the previously described scheduler, since the edge that would have

been ‘touched’ immediately before has unequal labels on its extremities, which cannot be

the case after updating it.

We now have to show how to construct the enumeration F(G). First we give the

enumeration for the case when the graph G is a tree. In this case we perform a walk on

G, listing the edges as follows: suppose the root r is connected via vertices v1, . . . , vk to

subtrees T1, . . . , Tk . We then define recursively

F(G) = (v, t1)F(T1)(t1, v)(v, t2)F(t2)(t2, v) . . . (tk−1, v)(v, tk)F(Tk)(tk, v), (1)

where, if the list of edges thus constructed contains two consecutive occurrences of the

same edge, we eliminate the second occurrence.

We now consider the general case of a connected graph G, and let S(G) be a spanning

tree of G. Edges of G belong to two categories:

(i) Edges of the spanning tree S(G).

(ii) Edges in E(G) \ E(S(G)).

Define F(G) as the list of edges obtained from F(S(G)) as follows: whenever F(S(G))

first touches a new vertex w in G, insert the edges in E(G) \ E(S(G)) adjacent to w (in

some arbitrary order); continue then with F(S(G)). We now claim that each edge e is

listed at most twice in F(G). To prove this, consider the two cases:

— e ∈ E(S(G)):

The statement follows in this case from the recursive definition (1).

— e ∈ E(G) \ E(S(G)):

The statement follows in this case by construction since a non-tree edge is visited only

when one of its endpoints is first touched in E(S(G)).

Even the most restricted edge-schedulers, 1-fair edge-schedulers, are able to preclude

self-stabilisation on a large class of graphs. To see this, we define:

(i) G1 to be the class of graphs G that contain a cycle of length at least four.

(ii) G2 to be the class of graphs G that contain no cycles of length at least four and m,

the number of edges of G is even.

(iii) G3 to be the class of trees with n = 4k vertices.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

Adversarial scheduling in discrete models of social dynamics 799

Theorem 5.2. Let G be a connected graph in G1 ∪ G2 ∪ G3. Then there exists an initial

configuration on G and a 1-fair edge-schedule S that is able to preclude self-stabilisation

on G for ever.

In other words, connected graphs for which the system self-stabilises for all 1-fair

schedulers have an odd number of edges and all their cycles (if any) have length 3.

Proof. We define ∆i,j = (d(i,j)
k,l), as an n× n matrix over Z2 with

d
(i,j)
k,l =

{
1 if (k, l) = (i, j)

0 otherwise.
(2)

Suppose we represent configurations of the system as vectors in Zn
2. Taking one step of

the dynamics on an arbitrary configuration X with the scheduled edge being (i, j) leads

to configuration X = Ai,j · X, where matrix Ai,j is given by

Ai,j = In + ∆i,j + ∆j,i. (3)

Indeed, the only non-diagonal elements of matrix Ai,j that are non-zero are in positions

(i, j) and (j, i). This means that all elements of a configuration X in positions other than

i, j are preserved under multiplication with Ai,j . It is easy to see that labels in positions

i, j change according to the specified dynamics.

Consider a graph G with m edges, E(G) = {(i1, j1), . . . , (im, jm)}. The action of a 1-

fair edge schedule S (specified by permutation π of {1, . . . , m}) on a configuration X

corresponds to multiplication of X by

π(S) = Aiπ[1] ,jπ[1]
· Aiπ[2] ,jπ[2]

· . . . · Aiπ[m] ,jπ[m]
. (4)

When an edge-scheduler cannot prevent self-stabilisation, the system starting from any

initial configuration reaches a fixed point. In other words, ∀I ∈ Zn
2 ∃k ∈ N such that

[π(S)]k · I = 0. Since the number of vectors I is finite, this is equivalent to saying that

∃k1 ∈ N, ∀I, [π(S)]k1 · X = 0. Equivalently, this means that [π(S)]k = 0; in other words,

matrix π[S] is nilpotent. Thus, what we want to show is the following.

Lemma 5.3. For any graph G there exists a schedule S such that the corresponding matrix

π[S] is not nilpotent.

We now consider an arbitrary ordering of vertices in G and let π be the permutation

corresponding to the induced lexicographic ordering of edges of G (where an edge is

viewed as an ordered pair, with the vertex of lower index appearing first).

It is easy to see that

∆i,j · ∆k,l =

{
∆i,l if j = k

0 otherwise.
(5)

Indeed, if ∆i,j = (a(i,j)
m,n)m,n�1, then the only way for some element cm,n of the product

∆i,j · ∆k,l to be non-zero is that there exists at least one term d(i,j)
m,p · d(k,l)

p,n that is non-zero.

But this is only possible for (i, j) = (m, p) and (p, n) = (k, l); in other words, for m = i,

n = l and p = j = k, which immediately yields Equation (5).

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

G. Istrate, M. V. Marathe and S. S. Ravi 800

Let us now consider the integer matrix Π[S] obtained by interpreting Equations (3)

and (4) as equations over integers. Because integer addition and multiplication commute

with taking the modulo 2 value, matrix π[S] can be obtained by applying reduction

modulo 2 to every element of Π[S].

Let Pi,j = ∆i,j+∆j,i. From the definition of matrix π(S) in Equation (4) and the definition

of matrices Ai,j in Equation (3), we see that π[S] is a sum of products, with each term in

a product corresponding to either a Pi,j or to the identity matrix. Thus

Π[S] = I +
∑

� �=S⊆{1,...,m}

(∏
k∈S

Piπ[k] ,jπ[k]

)
. (6)

Consider the directed graph G obtained from G by replacing every edge {i, j} of G by

two directed edges (i, j) and (j, i). Label every edge e ∈ E(G) by the (unique) integer k such

that e = {iπ[k], jπ[k]}, and apply the same labelling to the two oriented versions of edge e

in G. Then Equation (5) shows that the non-zero products of matrices ∆ are in bijective

correspondence with directed paths of length two with increasing labels when read from

the start to the end node of the path. Inductively generalising these observations to all

sets S , we see that products in (6) are non-zero exactly when they specify a directed path

in G (that is, a path in G) from a vertex k to a vertex l with increasing labels when read

from k to l, in which case they are equal to ∆k,l .

Therefore, Π[S] = I + C , where C = (ci,j) is given by

ci,j =

{
of paths from i to j with increasing labels if such paths exist

0 otherwise.
(7)

The matrix π[S] is, of course, obtained by reducing modulo 2 the elements of Π[S]. A

well-known result in linear algebra† is that the the characteristic polynomial of a non-zero

nilpotent n× n matrix A is xn. Thus, one strategy to show that a given matrix π[S] is not

nilpotent is to make sure that for some p, 0 � p � n, the sum sp of its principal minors of

order p is non-zero. This is equivalent to making sure that the sum of the corresponding

minors of the associated integer matrix is odd. The proof consists of three cases, which

we will consider in turn.

Case (a) G ∈ G1:

We will prove the following lemma.

Lemma 5.4. There exist two permutations σ1 and σ2 with corresponding matrices over

integers A1 = Π[σ1] and A2 = Π[σ2] such that

trace(A2) ≡ (trace(A1) + 1)(mod 2).

† This result justified as follows. A classical result states that the characteristic and the minimal polynomial of

a matrix have the same roots (with different multiplicities). But it is easy to see that the minimal polynomial

of a nilpotent matrix is xk for some k � n.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

Adversarial scheduling in discrete models of social dynamics 801

Given Lemma 5.4, the proof of Lemma 5.3 for Case (a) follows since matrices π[σ1] and

π[σ2] cannot both be nilpotent. This is true since trace(A1) and trace(A2) have different

parities. We will prove Lemma 5.4 using a multistep argument, combining the conclusions

of Lemmas 5.5-5.7 below. Consider first the following ‘basic’ graphs: K4, K3
 K3 (the

graph obtained by merging two triangles on a common edge), and Cn, n � 4.

Lemma 5.5. The conclusion of Lemma 5.4 is valid for the ‘basic’ graphs.

Proof. By the previous result on the value of coefficients ci,j , the value of the trace of a

matrix A can be easily computed from the number of cycles with increasing labels. Also,

note the following:

— Any cycle C contributes a one to at most one ci,i, for some vertex i appearing in C .

This is because of the restriction on the increasing labels, which may be satisfied for

at most one node of the cycle.

— Moreover, any triangle contributes a 1 to exactly one ci,i. Therefore, in considering the

trace of matrix A, triangles add the same quantity irrespective of the permutation, and

can thus be ignored.

This observation leads to a straightforward solution when the underlying graph is

a simple cycle Cn, n � 4, or the graph K3
 K3. Note that these graphs contain a

unique cycle C of length at least 4. Consider an ordering of the edges of this cycle,

corresponding to moving around the cycle. We will create two labellings corresponding

to this ordering. The first assigns labels 1 to |C| in that order. The other labelling assigns

labels 1, 2, . . . , |C| − 2, |C|, |C| − 1 in that order. It is easy to see that the first ordering

contributes a 1 to exactly one diagonal element, while the second does not contribute a 1

to any element. Hence the traces of the corresponding matrices differ by exactly 1.

For graph K4, we first label the diagonal edges by 5 and 6. There are three cycles of

length 4 in the graph K4 – one that uses no diagonal edges, and the other two using

them both. For the outer cycle consisting of no diagonal edges, we consider the two

orderings described in the previous case on the outer cycle C4. As before, this shows that

the traces of the corresponding matrices differ exactly by 1. Next, note that irrespective

of the labelling of the non-diagonal edges, the two cycles containing the diagonal edges

cannot be traversed in increasing label order, so they do not contribute to the trace of the

associated matrix. Therefore, the result follows for graph K4 as well. This completes the

proof of Lemma 5.5.

Lemma 5.6. Let G be a graph and G2 be a subgraph of G induced by a subset of the

vertices in G. If the conclusion of Lemma 5.5 holds for G2, then it holds for G.

Proof. We extend a permutation of the edges in G2 to a permutation of the edges in G

through a fixed labelling of the edges in E(G) \ E(G2) such that the following conditions

hold:

(i) The index of any edge with both end points in G2 is strictly smaller than the index

of all edges not in this class.

(ii) The index of any edge with exactly one end point in G2 is strictly larger than the

index of any edge not in this class.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

G. Istrate, M. V. Marathe and S. S. Ravi 802

The trace of the resulting matrix is determined by the cycles with strictly increasing

labels. There are several types of cycles like this:

(i) Cycles in G \ G2.

Whether such a cycle can be traversed in increasing label order does not depend on the

precise labelling on edges of G2 as long as the conditions of the extension are those

described earlier.

(ii) Cycles containing some edges in G2, as well as additional edges from G \ G2.

Because of the restriction we placed on the labellings, the only such cycles that can

have increasing labels are the triangles with two vertices in G2 and one vertex in

G \ G2. Since there is a unique way to ‘read’ a triangle in the increasing order of

the edge labels, their contribution to the total trace is equal to the number of such

triangles, and does not depend on the precise labelling of edges in G2, as long as the

restriction on the labelling is met.

(iii) Cycles entirely contained in G2.

We now let σ1, σ2 be labellings on G2 satisfying the conclusion of Lemma 5.4 and let

σ1, σ2 be extensions to G satisfying the stated restriction. The conclusion of the previous

analysis is that a difference in the parity of the traces of matrices corresponding to the

labellings σi on G2 translates directly into a difference in the parity of the traces of

matrices corresponding to labellings σi on G.

Finally, we reduce the case of a general graph to that of a base case graph using the

following result.

Lemma 5.7. Let G be a graph that contains a cycle of length � 4 and is minimal (that is,

any induced subgraph H of G does not contain a cycle of length � 4). Then G is one of

the ‘basic’ graphs from Lemma 5.5.

Proof. Let G be minimal with the property that it contains a cycle of length � 4 and

n be the number of nodes in G, and let C be a cycle of length � 4 in G. Because of

minimality, C contains all the vertices of G (otherwise G would not be minimal since

one could eliminate nodes outside C). Thus C is a Hamiltonian cycle. If no other edge

is present, we get the cycle Cn. Moreover, no other edge can be present unless n = 4

(otherwise G would contain a smaller cycle of length � 4 and thus would not be minimal).

In this case the two possibilities are K4 and K3
K3.

Case (b) G ∈ G2:

Consider the ordering <sum on the edges of G such that {i, j} <sum {k, l} when either

i + j < k + l

or

i + j = k + l and min{i, j} < min{k, l}.
In this case, ck,k = 0 for every k except when k is the middle-index vertex of a triangle

(that is, a triangle with vertex labels i, j, k such that i < k < j).

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

Adversarial scheduling in discrete models of social dynamics 803

We infer that s1 = trace(A) is congruent (mod 2) to n plus the number of triangles in

G, that is, to m + 1 (mod 2) (where m is the number of edges of G).

Case (c) G ∈ G3:

Consider the sum s2 of principal minors of size 2 of A. In a tree, there can be only

one path between a pair of nodes. Since we are counting paths with increasing labels,

the only way for ai,j = aj,i = 1 to hold is that vertices i and j are adjacent. But in this

case the corresponding minor is zero. It follows that s2 is the number of sets of different

non-adjacent vertices in G, that is

s2 =

(
n

2

)
− (n− 1) =

(n− 1)(n− 2)

2
= 1 mod 2

if n = 4k.

One might suspect that Theorem 5.2 extends to all graphs, thus strengthening the

statement of Theorem 5.1 to 1-fair daemons. However, this is not the case. To see

this, let the line graph L6 be an instance of PDPD. Then for all 1-fair edge-schedulers

S and for all initial configurations I the system self-stabilises starting at I . We verified

this statement using computer simulations by running PDPD for all 6! 1-fair daemons.

A result that rendered this experiment computationally feasible is the state-reduction

technique highlighted in the proof of (ii): to prove self-stabilisation, we only needed

to consider those initial configurations with exactly one 1. Thus we had to run 6 × 6!

simulations. It is an open problem to find all graphs for which this happens. However,

Theorem 5.2 shows that the class of such graphs is really limited.

6. Non-adaptive node-schedulers

As we saw in the previous section, even 1-fair edge-schedulers are able to prevent self-

stabilisation. What if we only allow the scheduler to choose one of the nodes? In this

section we study PDPD when adversaries are 1-fair node-schedulers. Because only one

of the nodes of the scheduled edge is chosen by the adversary and the other is chosen

randomly, the self-stabilisation of the system is a stochastic event.

Theorem 6.1. Let Starn be an instance of PDPD. Then Sn self-stabilises with probability

1 against any 1-fair scheduler.

Proof. We can assume, without loss of generality, that the first node to be scheduled

is the centre (labelled 0) and the rest of the nodes are scheduled in the order 1, 2, . . . , n.

Indeed, if the centre was scheduled later in the permutation of nodes, it is enough to prove

self-stabilisation from the configuration that corresponds to first running the system up

to just before the centre is scheduled, and then viewing the run as initialised at the new

configuration, and with a new periodic schedule (that now starts with node 0). As for the

order in which the other nodes get scheduled, by relabelling the nodes, we may assume

without loss of generality that this is 1, 2, . . . , n.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

G. Istrate, M. V. Marathe and S. S. Ravi 804

Let a0, a1, . . . , an be the labels of nodes at the beginning of the process. It is useful

to consider first a deterministic version of the dynamics in question specified as a game

between two players:

— The first player chooses one node to be scheduled. It is required that the sequence of

nodes chosen by this player forms a periodic sequence π. The goal of the first player

is to prevent self-stabilisation.

— Given a node choice by the first player, the second player responds with a choice

of the second node to be scheduled. Unlike the first player, the sequence of nodes

chosen by the second player can potentially vary between successive repetitions of the

permutation π. The goal of the second player is to make the system converge to state

0.

The game above is an example of scheduler-luck games in the self-stabilisation literature

(Dolev et al. 1995). We will provide a strategy for the second player that (when applied)

will turn any configuration into the ‘all zeros’ configuration. But a winning strategy for

the second player in the scheduler-luck game will be played with positive probability in

any round of the scheduler. Thus with probability going to one (as the number of rounds

goes to infinity) this strategy will be played at least in one round, making the system

converge to state 0.

The crux of the strategy is to use the ‘partner node’ of node 0 carefully, when it is

scheduled, to create a segment of nodes 1, 2, . . . i (with i non-decreasing, and eventually

reaching n) with labels zero at the beginning of a round of scheduling.

This is simple to do at the very beginning: if node 0 plays node 1 (when 0 is scheduled),

then the labels of the two node will be identical, thus when node 1 is scheduled (and plays

node 0 again) the label of node 1 will be zero.

If at the beginning of a round the label of node 0 is 1, we make it play (when scheduled

at the beginning of a round) the node of smallest positive index (i + 1) that is still

labelled 1. This will turn the labels of both nodes to 0. Further scheduling of nodes 1

to i + 1 will not change this, and at the end of the round, nodes 1 to i + 1 will still be

labelled 0.

If, on the other hand, at the beginning of the round node 0 is labelled 0, we make it

keep this label (so it does not affect the zero labels of nodes 1 to 1) by making it play

(when scheduled) against another node labelled 0 (say node 1).

To complete the argument, we still need to show that for any configuration x0, . . . xn,

different from the ‘all zeros’ configuration, we will reach a configuration where the first

case applies in a finite number of rounds, and thus the length of the ‘all zero’ initial

segment increases.

Indeed, we assume that x(0) = 0 and that it stays that way throughout the process.

Then, using Yt = (x(1)t, . . . x(n)t)
T to denote the labels of the nodes 1 to n at the beginning

of the tth round, it is easy to see that the dynamics of the system is described by the

recurrence

Yt+1 = B · Yt,

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

Adversarial scheduling in discrete models of social dynamics 805

where B = (bi,j) is an n× n over Z2 specified by

bi,j =

{
1 if i � j

0 otherwise.

We now consider B as a matrix over Z, rather than Z2. It is easy to show by induction

that Bk = (b(k)
i,j) where

b
(k)
i,j =

{(
i−j+k−1

k−1

)
if i � j

0 otherwise.

The kth power over Z2 is obtained, of course, by reducing these values mod 2. In

particular, if we define St to be the sum x(1)t + . . . x(n)t, it is easy to see that St = x(0)t+1,

and thus, by our hypothesis, St has to be zero. On the other hand, a consequence of the

previous result is that

St =

[
n∑

i=1

(
n− i + t− 1

t− 1

)
· xi

]
(mod 2).

In particular,

∆xt := St+1 − St =

[
n−1∑
i=1

(
n− i + t− 1

t

)
· xi

]
(mod 2).

By induction and algebraic manipulation, we can generalise this to a higher order of

iterated differences ∆kxt = ∆(∆k−1xt) as

∆kxt =

[
n−k∑
i=1

(
n− i + t− 1

t + k − 1

)
· xi

]
(mod 2).

Let i0 be the smallest index such that x(i0) = 1. Then, by the previous relation,

∆n−i0xt =

[
i0∑
i=1

(
n− i + t− 1

t + k − 1

)
xi

]
=

(
n− i0 + t− 1

n− i0 + t− 1

)
· xi0 = xi0 = 1 (mod 2).

But this contradicts the fact that St = 0 for every value of t and completes the proof.

A 1-adaptive scheduler keeps repeating the nodes to choose according to a fixed

permutation. Thus, for a fixed scheduler and interaction graph, we can talk about the

probability of stabilisation in the limit. Also, for a given fixed scheduler, the event that this

limit is one is a deterministic statement. Consequently, we can talk of the probability that

this event happens when the interaction graph is sampled from a class of random graphs.

As noted, for a random scheduler, the condition that G has no isolated vertices is necessary

and sufficient to guarantee self-stabilisation with probability 1. This is also true for the

adversarial model in the case of non-adaptive (1-fair) daemons. This is similar to the case

of an edge daemon, where even non-adaptive daemons could preclude stabilisation.

Theorem 6.2. Let G be an instance of PDPD such that G has no isolated vertices. Then

for any 1-fair node-scheduler and any initial configuration, the system G reaches state 0

with probability 1.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

G. Istrate, M. V. Marathe and S. S. Ravi 806

The results of Theorem 6.2 should be contrasted with the corresponding result for

edge-schedulers, for which, as we showed, even non-adaptive daemons could preclude

stabilisation.

The proof consists of the following three components:

(i) our earlier result that guarantees a winning strategy for the scheduler-luck game

associated with the dynamics when the underlying graph is Sn;

(ii) the partition of a spanning forest of G into node disjoint stars; and

(iii) the fact that the existence of such a winning strategy is a monotone graph property

with respect to edge insertions. This is formally stated in the following lemma.

Lemma 6.3. Suppose H is a graph such that a winning strategy W exists for the scheduler-

luck game on H . Let e �∈ E(H) and L = H ∪ {e}. Then W is also a winning strategy for

graph L.

Proof. Given any node choice by the first player, the second player can choose the

corresponding node according to strategy W (thus never scheduling the additional edge e).

The outcome of the game is, therefore, identical on H and L.

Proof of Theorem 6.2. In view of Lemma 6.3, it is enough to show the existence of a

winning strategy for the second player in the scheduler-luck game on a graph G, when G

is a tree. We decompose tree G into a set {S1, . . . , Sp} of node-disjoint stars as follows:

— Root G at an arbitrary node r.

— Consider the star formed by the root and its children. Call it S1.

— Remove the nodes in S1 and all edges with one end point incident on nodes in S1

— Recursively apply the procedure on each forest created by the above operation.

Now consider a 1-fair schedule π on graph G, which corresponds to a strategy of the

first player in the schedule-luck game on G. For every star Si, the projection πi of the

schedule on the nodes of Si (which amounts to only considering scheduled nodes that

belong to Si) specifies a 1-fair schedule on Si. According to Theorem 6.1, the second player

has a winning strategy Wi for the scheduler-luck game on Si when the first player acts

according to the schedule πi.

Next, we devise a strategy W for the scheduler-luck game on graph G, by ‘composing’

the winning strategies Wi. Specifically, if the node chosen by the first player belongs to

star Si, strategy W will employ Wi to choose the corresponding second node. Since on

each star Si the labels of the node will eventually be 0, W is a winning strategy for the

second player in the scheduler-luck game on G.

7. Adaptive node-schedulers

In the previous section we showed that non-adaptive schedulers cannot preclude self-

stabilisation. In contrast, as the following theorem shows, 3-fair non-adaptive node-

schedulers are still powerful enough to preclude self-stabilisation with complete certainty,

and so are 2-fair adaptive† schedulers.

† Obviously, there are no 1-fair adaptive schedulers.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

Adversarial scheduling in discrete models of social dynamics 807

State scheduled node possible partner resulting state

111 1 2 001

111 1 3 010

001 3 1 101

001 3 2 011

010 2 3 011

010 2 1 110

101 2 1,3 111

011 1 2,3 111

110 3 1,2 111

Fig. 1. A round of the 2-fair adaptive scheduler

Theorem 7.1. The following statements are true:

(i) Let the star graph Starn (K1,n) be an instance of PDPD. Then there exists an initial

configuration I and a 3-fair non-adaptive scheduler that precludes self-stabilisation

on Starn starting in I .

(ii) Let the triangle K3 be an instance of PDPD. Then there exists an initial configuration

I and a 2-fair adaptive scheduler that precludes self-stabilisation on K3 starting in I .

Proof.

(i) Consider the star graph Starn (K1,n), with its centre labelled 0 and the rest of the nodes

labelled 1, 2, . . . , n. We have to provide an example of a 3-fair scheduler that precludes

self-stabilisation on some initial configuration. This initial configuration has two 1’s, at

nodes 1 and 2. The scheduler repeats the schedule [0, 1, 1, 3, 4, . . . n−2, 2, 1, n−1, n−1].

After the scheduling of the initial subsequence [0, 1, 1], the effect is that both nodes

have label 0. Thus the scheduling of nodes 3, 4, . . . , n − 2 does not change any label.

With node 2, the label of node 0 will change to 1, thus changing in the next step the

label of node 1 back to 1. Finally, scheduling the node n − 1 twice turns back

the label of node 0 to 0, thus yielding the initial configuration. It is easy to see that

the scheduler is 3-fair.

(ii) Start with configuration I consisting of all ones. The scheduler will adaptively schedule

the nodes in sequences of three so that at the end of such a 3-block, the system is

guaranteed to be in configuration I again. Figure 1 describes the strategy of the

scheduler, assuming that node 1 is scheduled first.

The table illustrates a round (denoted S1) of three scheduled nodes, with the first

scheduled node being 1. We can define schedules S2 and S3 similarly, starting with 2 and

3, respectively. The columns in the table first list the global state, then the scheduled

node in that state. The third column corresponds to the possible probabilistic choices

of the partner node, with multiple (inconsequential) choices separated by a comma. A

schedule of S1 starts in state 111, first scheduling node 1. Depending on the outcome,

he will get into state 001 or 010. Possible moves out of these states bring the system

into state 101, 011 or 110, and one more move brings the system back to state 111

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

G. Istrate, M. V. Marathe and S. S. Ravi 808

again. Note that a 3-block of S1 consists of either a permutation of nodes (schedules

132, 123), or two nodes, with the initial and the final node in the block being identical

(schedules 121, 131). Similar descriptions hold for 3-blocks of S2, S3.

The scheduler now proceeds to create an infinite schedule consisting of 3-blocks

according to the following rule:

(a) If a given block B of Sa, the last schedule employed, is a permutation, then the

start of the next block will also be a block of Sa.

(b) Otherwise, if block B is missing node z, the next block will come from Sz .

It is easy to see that the scheduler we have constructed is 2-adaptive and precludes

self-stabilisation.

Although a formal definition of the probability of self-stabilisation is more complicated

in this case, we can still talk of the probability of self-stabilisation for adaptive daemons.

However, as we have seen, the result of Theorem 6.1 is no longer true: on stars, 1-fairness

is stronger than 2-fair adaptive scheduling. It would seem that this result shows that

non-adaptiveness is important for self-stabilisation. However, we will see that the class of

network topologies where this happens is reasonably limited. Indeed, we will next study

self-stabilisation on Erdős–Renyi random graphs G(n, p). We will choose p in such a way

that with high probability a random sample from G(n, p) has no isolated vertices†. In

other words, we require that the necessary condition on the topology of G holds with

probability 1− o(1). We will say a graph G is good if for any scheduler of bounded fairness

and any starting configuration I , we have G starting at I converges to 0 with probability

1− o(1) as the number of steps goes to infinity.

Theorem 7.2. Let p be such that np− log n→∞. Then with probability 1−o(1), a random

graph G ∈ G(n, p) is good.

Of course, a natural question is whether such a weakening of the original result, from

any graph topology satisfying a given condition to a generic random graph satisfying the

same condition, is reasonable. We are, however, not the first to propose such an approach.

Indeed, apart from a handful of cases, the network that a given social dynamics takes

place on is not known in its entirety. Instead, a lot of recent work (see, for example,

Pastor-Santorras and Vespigniani (2007), Newman et al. (2006) and Durrett (2006)) has

resorted to the study of generic properties of random network models that share some

of the observable properties of a fixed network (such as the Internet or the World Wide

Web).

Proof. The plan of the proof is similar to that for 1-fair schedulers. We define a round

of a b-fair scheduler to consist of a consecutive sequence of b(n− 1) + 1 steps.

(i) We prove that for graphs from a class B of ‘base case’ graphs (see Lemma 7.3 below),

the second player has a winning strategy in the scheduler-luck game associated with

† A random sample from G(n, p) has no isolated vertices with probability 1−o(1) when np− log n→∞ (Janson

et al. 2000).

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

Adversarial scheduling in discrete models of social dynamics 809

any scheduler of bounded fairness, where the game corresponds to a finite number of

rounds of the scheduler.

(ii) We use the monotonicity of the existence of a strategy.

(iii) We show that with probability 1 − o(1), the vertices of a random sample graph G

from the graph process can be partitioned such that all the induced subgraphs are

isomorphic to one graph in G.

Lemma 7.3. The following are true:

(i) Let G be a graph with a perfect matching. Then for any scheduler S of bounded

fairness and any initial configuration on G, the second player has a winning strategy

for the scheduler-luck game corresponding to one round of the scheduler.

(ii) Let the line Ln, n � 6 be an instance of PDPD. Then for any node-scheduler S

of bounded fairness and any initial configuration, the second player has a winning

strategy in the scheduler-luck game associated with two consecutive rounds of S.

Proof.

(i) A perfect matching M of G specifies a winning strategy in a scheduler-luck game: each

node plays (when scheduled) against its partner in M. Since every node is scheduled

at least once in a round of scheduling, every edge of M is played at least twice.

Therefore, irrespective of the initial configuration, the final configuration is 0.

(ii) The lemma only needs to be proved in the case when n is odd (in the other case,

the strategy based on perfect matchings applies). In this case the winning strategy is

specified as follows:

(a) In the first round, turn the leftmost L4 portion of Ln into the all zero state by

playing the matching based winning strategy.

(b) In the second round, nodes in the leftmost L3 will only choose to play against

each other when scheduled, and thus stay at 0. The remaining nodes form a

graph isomorphic to Ln−3, and in this round we use the perfect matching based

strategy for this graph.

Note that the statement of Lemma 6.3 extends to scheduler-luck games associated with

node daemons of bounded fairness. The proof is similar (a strategy for the game on G

is also a strategy for the game on a graph with a larger set of edges). Theorem 7.2

immediately follows if n is even: a classical result in random graph theory (see, for

example, Janson et al. (2000, pages 82–85)) asserts that with probability 1− o(1), G will

have a perfect matching.

To complete the proof of Theorem 7.2, we only need to deal with the case when n is

odd. For a graph G and a set of vertices V denote by G|V the subgraph induced by vertex

set V .

Lemma 7.4. With probability 1 − o(1), G can be partitioned into V = V1 ∪ V2 such

that:

(i) G|V1
contains L7 as an edge-induced subgraph.

(ii) G|V2
is a graph with a perfect matching.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

G. Istrate, M. V. Marathe and S. S. Ravi 810

Fig. 2. A cherry in a graph (with bold lines)

Theorem 7.2 follows from Lemma 7.4, since for both G|V1
and G|V2

the second player has

a winning strategy in the scheduler-luck game. A winning strategy for the corresponding

game on G proceeds by using the winning strategy for G|V1
, when the scheduled node is

in V1, and the winning strategy for G|V2
when the scheduled node is in V2.

Proof of Lemma 7.4. The proof goes along lines similar to the proof of the existence of

a perfect matching in a random graph (see Janson et al. (2000, pages 82–85)). The first

step is to show that with high probability G does not contain a set of distinct vertices

x0, x1, x2, x3, x4 such that:

— degG(x0) = degG(x4) = 1.

— For every i = 0, . . . , 3, we have xi and xi+1 are adjacent.

This is easy to see, since the expected number of such structures is

O
(
n5p4(1− p)2(n−1)

)
= O

(
n5p4e−2np

)
= o(1),

since

p = Θ

(
log(n)

n

)
.

We now consider a random graph G, conditioned on not containing such a structure,

and a vertex x0 in G of degree one. Since this information only exposes information on

the edges with one endpoint at x0, with probability 1 − o(1), graph H = G \ {x0} has a

perfect matching. Let x1 be the node in G \ {x0} adjacent to x0 and let x2 be the node

matched to x1 in H . With probability 1 − o(1), we get that x2 has another neighbour x3

in H , since otherwise G would contain a cherry, that is, two vertices of degree one at

distance exactly 2 in G (see Figure 2), and a random sample from G(n, p) only contains a

cherry with probability o(1) (see Janson et al. (2000, page 86)). Let x4 be the node x3 is

matched to in H . Again, with probability 1 − o(1), we get that x4 has a neighbour x5 in

H different from x3 (otherwise the five vertices x0 to x4 would form a structure we have

conditioned on not occurring in G). Finally, let x6 be the node matched to x5 in H . Then

the restriction of G to the set V1 = {x0, . . . , x6} contains a copy of L7, and G restricted to

V2 = V \ V1 contains a perfect matching (induced by the perfect matching on H).

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

Adversarial scheduling in discrete models of social dynamics 811

π|n 4 8 16 32 64 128

id 2.486 4.225 6.401 8.33 10.498 13.135

p3 2.469 4.039 5.807 7.662 9.639 11.718

rd 2.289 4.499 6.527 8.781 11.161 14.151

(13) 2.168 4.656 7.069 9.837 12.653 14.859

π|n 256 512 1024

id 16.091 17.954 20.331

p3 14.323 16.054 19.826

rd 17.342 20.518 22.336

(13) 18.504 20.346 20.392

Fig. 3. Rounds on Cn under 1-fair scheduling.

This completes the proof of Theorem 7.2.

8. Speed of convergence

The previous theorems have shown that results on the convergence to a fixed point can be

studied in (and extended to) an adversarial framework. Perhaps what is not preserved as

well in the adversarial framework are results on the computational efficiency of convergence

to equilibrium. Such results include, for instance, the above mentioned O(n log n) bound of

Dyer et al. (2002). The proof of this theorem displays an interesting variation on the idea

of a potential function. It uses such a function, but in this case the value of the function

only diminishes ‘on the average’, rather than for every possible move. Therefore, bounding

the convergence time seems to critically use the ‘global’ randomness introduced in the

dynamics by random matching, and does not trivially extend to adversarial versions. On

the other hand, the proof of Theorem 5.2 only guarantees an exponential upper bound

on the expected convergence time.

We have investigated experimentally the convergence time on Cn for some classes of

1-fair schedulers (permutations). Some of our results are presented in Figure 3, where

we present the average number of rounds, rather than steps, over 1000 samples at each

point. The symbol id denotes the identity permutation (12 . . . n), p3 is the permutation

σ[i] = 3i(mod n), (13) refers to permutations with the pattern (13245768 . . .), and rd refers

to the maximum average number of rounds, taken over 10 random permutations. In all

cases, the convergence time is consistent with the above-mentioned O(n log n) result.

We have been unable to prove such a result formally (and leave it as an interesting

open problem)†. It is even more interesting to study the dependency of the mixing time

† A promising approach is outlined in Fribourg and Messika (2005).

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

G. Istrate, M. V. Marathe and S. S. Ravi 812

of the dynamics (Dyer et al. 2002) on the underlying network topology. While there are

superficial reasons for optimism (for some models in evolutionary game theory, see, for

example, Morris (2000), the impact of network topology on the convergence speed of a

given dynamics is reasonably well understood) – see Mossel and Roch (2006) (especially

the concluding remarks) for a discussion on the difficulties of connecting network topology

and convergence speed for the specific dynamics we study.

9. Discussion of results and conclusions

We have advocated the study of evolutionary game-theoretic models under adversarial

scheduling similar to the ones in the theory of self-stabilisation. As an illustration, we

have studied the Iterated Prisoner’s Dilemma with the win–stay lose–shift strategy.

Our results are an illustration of the adversarial approach as follows:

(i) Start with some result P that is valid under random scheduling.

The original statement is presented in Section 2.2.

(ii) Identify several structural properties of a random scheduler that impact the validity of

P .

The random scheduler is:

— fair, even O(n log n) fair with high probability by the Coupon Collector Lemma;

— endogenous, since the next scheduled edge is not fixed in advance;

— non-adaptive, since the next edge to be scheduled does not depend on the

configuration of the system.

(iii) Identify those properties (or combinations of properties) that are necessary/sufficient

for the validity of P .

Theorem 4.3 shows that fairness is a necessary condition for the extension of the

original result to adversarial settings. Next, the definition of node- and edge-

schedulers illustrates another important property of random schedulers, namely, the

endogeneity of agent interactions: an edge-scheduler completely specifies the dynamics

of interaction. In contrast, node-schedulers provide perhaps the weakest possible form

of endogeneity: the underlying social network is still fixed, but agents can choose one

of their neighbours to interact with (or simply play a random one).

Theorems 6.1 and 6.2 show that, in contrast with the case of edge-schedulers, even

this limited amount of endogeneity is sufficient to recover the original result for the

random scheduler. Moreover, the proofs illuminate the role of endogeneity, which was

somewhat obscured in the (trivial) original proof that the Pavlov dynamics (under

random matching) converges with high probability to the ‘all zeros’ fixed point. This

proof relies implicitly on the fact that from every state there exists a sequence of

‘correct’ moves that ‘funnels’ the system towards the fixed point. For node-schedulers,

the existence of a such a set of correct moves is proved by explicit construction, and

is more difficult in the adversarial setting. The existence of such a set of moves is

precisely what the exogenous choice of agents is able to preclude.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

Adversarial scheduling in discrete models of social dynamics 813

(iv) Correspondingly, identify those properties that are inessential to the validity of P . In

the process one can reformulate the original statement in a way that makes it more

robust.

Theorem 7.1 shows that if we allow schedulers to be adaptive, then network topology

becomes important, and can invalidate the original result in an adversarial setting.

However, adaptiveness (or, equivalently, the amount of fairness) is inessential if we

require the convergence result to only hold generically with respect to the class of

network topologies described by Erdős–Renyi random graphs.

The results we have proved also highlight a number of techniques from the theory

of self-stabilisation that might be useful in developing a general theory: the concept of

scheduler-luck games, composition of strategies by partitioning the interaction topology,

monotonicity and ‘generic preservation’ using threshold properties. Obviously, a reconsid-

eration of more central game-theoretic models under adversarial scheduling is required

(and would be quite interesting).

We conclude this section with one (simple) observation concerning the robustness of the

convergence time under adversarial models. The Θ(n log(n)) mixing time is a particular

case of the ‘colearning’ model in Shoham and Tennenholtz (1997), for which the Ω(n log(n))

simple lower bound on the convergence time is matched. This lower bound is based simply

on the Coupon Collector problem. For a b-fair scheduler, this immediately translates into

a Ω(b) lower bound for the adversarial model.

Acknowledgments

We are grateful to an anonymous referee for extremely insightful comments.

References

Aspnes, J. and Ruppert, E. (2007) An introduction to population protocols. Bulletin of the European

Association for Theoretical Computer Science 93 98–117.

Axelrod, R. (1984) The Evolution of Cooperation, Basic Books.

Axelrod, R. (1997) The Complexity of Cooperation. Agent-Based Models of Competition and

Cooperation, Princeton Studies in Complexity, Princeton University Press.

Axtell, R. and Epstein, J. (1996) Growing Artificial Societies: Social Science from the Bottom Up, The

MIT Press.

Ballot, J. and Weisbuch, G. (2000) Introduction: Why simulation in the social sciences. Advances in

Complex Systems 3 (1-4) 9–16.

Barrett, C., Eubank, S. and Marathe, M. (2005) Modeling and simulation of large biological,

information and socio-technical systems: An interaction based approach. In: Goldin, D.,

Smolka, S. and Wegner, P. (eds.) Interactive Computation: The New Paradigm, Springer Verlag

353–394.

Barrett, C., Hunt, H., Marathe, M.V., Ravi, S. S., Rosenkrantz, D. and Stearns, R. (2003) Reachability

problems for sequential dynamical systems with threshold functions. Theoretical Computer Science

295 (1-3) 41–64.

Boudon, R. (1998) Social mechanisms without black boxes. In: Hedström, P. and Swedberg, R.

(eds.) Social mechanisms: An analytical approach to social theory, Cambridge University Press.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

G. Istrate, M. V. Marathe and S. S. Ravi 814

Bournez, O., Chalopin, J., Cohen, J. and Koegler, X. (2009) Population protocols that correspond

to symmetric games. (Preprint available at arXiv:0907.3126v1 [cs.GT].)

Bunge, M. (1997) Mechanism and explanation. Philosophy of the Social Sciences 27 (4) 410.

Castellano, C., Fortunato, S. and Loreto, V. (2009) Statistical physics of social dynamics. Reviews

of modern physics 81 (2) 591–646.

Coleman, A., Colman, A. and Thomas, R.M. (1991) Cooperation without awareness: A multiperson

generalization of the minimal social situation. Behavioral Science 35 115–121.

Colman, A. (2005) Cooperation in multi-player minimal social situations: An experimental

investigation. British Academy Larger Research Grants Scheme Grant No. LRG-37265, 2004–

2005.

Craver, C. F. (2006) When mechanistic models explain. Synthese 153 (3) 355–376.

Dolev, S., Israeli, A. and Moran, S. (1995) Analyzing expected time by scheduler-luck games. I.E.E.E.

Transactions on Software Engineering 21 (5) 429–439.

Dolev, S. (2000) Self-stabilization, M.I.T. Press.

Durrett, R. (2006) Random Graph Dynamics, Cambridge University Press.

Dyer, M., Greenhill, C., Goldberg, L., Istrate, G. and Jerrum, M. (2002) The Convergence of Iterated

Prisoner’s Dilemma Game. Combinatorics, Probability and Computing 11 135–147.

Dyer, M. and Velumailum, M. (2011) The Iterated Prisoner’s Dilemma on a cycle. (Available at

arXiv:1102.3822v1 [cs.GT].)

Elster, J. (1998) A plea for mechanisms. In: Hedström, P. and Swedberg, R. (eds.) Social Mechanisms:

An Analytical Approach to Social Theory, Cambridge University Press.

Epstein, J.M., Cummings, D., Chakravarty, S., Singa, R. and Burke, D. (2004) Toward

a Containment Strategy for Smallpox Bioterror. An Individual-Based Computational Approach,

Brookings Institution Press.

Epstein, J. (1999) Agent-based computational models and generative social science. Complexity

4 (5) 41–60.

Epstein, J. (2007) Generative Social Science: Studies in Agent-based Computational Modeling,

Princeton University Press.

Eubank, S., Guclu, H., Kumar, V. S.A., Marathe, M.V., Srinivasan, A., Toroczkai, Z. and Wang, N.

(2004) Monitoring and mitigating smallpox epidemics: Strategies drawn from a census data

instantiated virtual city. Nature 429 (6988) 180–184.

Fribourg, L. and Messika, S. (2005) Brief Announcement: Coupling for Markov Decision Processes –

Application to Self-Stabilization with Arbitrary Schedulers. In: Proceedings of the Twenty-Fourth

Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC’05)

322.

Fribourg, L., Messika, S. and Picaronny, C. (2006) Coupling and self-stabilization. Distributed

Computing 18 (3) 221–232.

Gilbert, N. and Troizch, K. (2005) Simulation for social scientists (second edition), Open University

Press.

Glennan, S. S. (1996) Mechanisms and the nature of causation. Erkenntnis 44 (1) 49–71.

Hedström, P. (2005) Dissecting the social: on the principles of analytical sociology, Cambridge

University Press.

Hedström, P. and Bearman, P. (2009) The Oxford handbook of analytical sociology, Oxford University

Press.

Hedström, P. and Swedberg, R. (eds.) (2006) Social Mechanisms: An Analytical Approach to Social

Theory, Cambridge University Press.

Hegselmann, R. and Flache, A. (1998) Understanding complex social dynamics: A plea for cellular

automata based modelling. Journal of Artificial Societies and Social Simulation 1 (3) 1.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

Adversarial scheduling in discrete models of social dynamics 815

Jaggard, A., Schapira, M. and Wright, R. (2000) Distributed Computing with Adaptive Heuristics.

Proceedings of the Innovations in Computer Science Conference (ICS 2011), Tsinghua University

Press 417–443.

Janson, S., Luczak, T. and Ruczinski, A. (2000) Random Graphs, Wiley.

Kittock, J. (1994) Emergent conventions and the structure of multi-agent systems. In: Nadel, L.

and Stein, D. (eds.) 1993 Lecture Notes in Complex Systems: the proceedings of the 1993 Complex

Systems Summer School Santa Fe Institute Studies in the Sciences of Complexity, Volume VI,

Addison Wesley Publishing Co.

Krapivsky, P. L., Redner, S. and Ben-Naim, E. (2010) A kinetic view of statistical physics, Cambridge

University Press.

Lazer, D. (2009) Life in the network: the coming age of computational social science. Science

323 (5915) 721.

Machamer, P., Darden, L. and Craver, C. F. (2000) Thinking about mechanisms. Philosophy of

Science 67 (1) 1–25.

Mirowski, P. (2002) Machine dreams: Economics becomes a cyborg science, Cambridge University

Press.

Morris, S. (2000) Contagion. The Review of Economic Studies 67 (1) 57–78.

Mossel, E. and Roch, S. (2006) Slow emergence of cooperation for win–stay lose–shift on trees.

Machine Learning 7 (1-2) 7–22.

Mortveit, H. and Reidys, C. (2007) An Introduction to Sequential Dynamical Systems, Springer Verlag.

Newman, M., Barabási, A. L. and Watts D. (eds.) The Structure and Dynamics of Networks, Princeton

University Press.

Nowak, M. and Sigmund, K. (1993) A strategy of win–stay, lose–shift that outperforms tit-for-tat

in the prisoner’s dilemma game. Nature 364 56–68.

Pastor-Santorras, R. and Vespigniani, A. (2007) Evolution and Structure of the Internet: A Statistical

Physics approach, Cambridge University Press.

Posch, M. (1997) Win stay–lose shift: An elementary learning rule for normal form games. Technical

Report 97-06-056, the Santa Fe Institute.

Radloff, R., Kelley, H., Thibaut, J. and Mundy, D. (1962) The development of cooperation in the

minimal social situation. Psychological Monographs 76.

Shoham, Y. and Tennenholtz, M. (1997) On the emergence of social conventions: modelling, analysis

and simulations. Artificial Intelligence 94 (1-2) 139–166.

Sidowski, J. (1957) Reward and punishment in the minimal social situation. Journal of Experimental

Psychology 54 318–326.

Tesfatsion, L. and Judd, K. L. (eds.) (2006) Handbook of Computational Economics. Volume 2: Agent-

based computational economics, North Holland.

Thibaut, J. and Kelley, H. (1959) The social Psychology of Groups, Wiley.

Velupillai, K. (2000) Computable economics: the Arne Ryde memorial lectures, Oxford University

Press.

Vriend, N. (2006) ACE models of endogenous interaction. In: Tesfatsion, L. and Judd, K. L. (eds.)

Handbook of Computational Economics. Volume 2: Agent-based computational economics, North

Holland.

Wilhite, A. (2006) Economic activity on fixed networks. In: Tesfatsion, L. and Judd, K. L. (eds.)

Handbook of Computational Economics. Volume 2: Agent-based computational economics, North

Holland.

Young, H. P. (1998) Individual Strategy and Social Structure: an Evolutionary Theory of Institutions,

Princeton University Press.

https://doi.org/10.1017/S0960129511000533 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000533

