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Whistling behaviour of two geometrically periodic systems, namely corrugated pipes
and multiple side branch systems, is investigated both experimentally and numerically.
Tests are performed on corrugated pipes with various lengths and cavity geometries.
Experiments show that the peak-whistling Strouhal number, where the maximum
amplitude in pressure fluctuations is registered, is independent of the pipe length.
Experimentally, a decrease of the peak-whistling Strouhal number by a factor of two
is observed with increasing confinement ratio, i.e. the ratio of pipe diameter to cavity
width. A numerical methodology that combines incompressible flow simulations
with vortex sound theory is proposed to estimate the acoustic source power in
periodic systems. The methodology successfully predicts the Strouhal number ranges
of acoustic energy production/absorption and the nonlinear saturation mechanism
responsible for the stabilization of the limit cycle oscillation. The methodology
predicts peak-whistling Strouhal numbers in agreement with experiments and explains
the dependence of the peak-whistling Strouhal number on the confinement ratio.
Combined with an energy balance, the proposed methodology is used to estimate the
acoustic fluctuation amplitudes.
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1. Introduction
In thin walled pipes, corrugations make the structure locally stronger while keeping

its global flexibility. This unique characteristic makes corrugated pipes convenient for
various industrial utilizations. However, at critical conditions, the flow through these
pipes causes self-sustained oscillations that lead to high-amplitude sound generation,
called whistling. These noise problems are encountered in applications such as
domestic appliances, ventilation systems and heat exchangers (Petrie & Huntley 1980;
Elliott 2005). For applications at elevated operating pressures such as offshore natural
gas production systems, self-sustained oscillations also lead to dangerous structural
vibrations (Belfroid, Shatto & Peters 2007; Goyder 2009).

In corrugated pipes, sound generation is due to an oscillation driven by a flow-
acoustic interaction as pointed out by Burstyn (1922) and Cermak (1922). Flow
separation occurring at the upstream edge of each cavity generates a shear layer
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On the whistling of corrugated pipes 79

Figure 1. Schematic representation of a corrugated pipe, shear layers at the cavity openings
and acoustic field for the second longitudinal standing wave.

(see figure 1), which is a source of unsteadiness. This unsteady flow induces an
unsteady force on the walls bounding the flow. The reaction force of the walls to this
hydrodynamic force is the source of sound (Gutin 1948; Curle 1955).

Note that the flexibility of the tube is not a necessary facet for the sound generation
in corrugated tubes, as shown by Nakamura & Fukamachi (1991). However, a
mechanical vibration induced by the unsteady forcing on the walls can have a
significant effect. For water flow, Ziada & Bühlmann (1991) observed a strong coupling
of whistling with pipe wall vibrations.

A more frequently observed coupling of shear layers occurs with longitudinal
acoustic standing waves in the pipe, see figure 1 (Petrie & Huntley 1980; Nakamura
& Fukamachi 1991; Kristiansen & Wiik 2007; Kop’ev, Mironov & Solntseva 2008;
Nakiboğlu et al. 2010). The resulting high-amplitude oscillations control the vortex
shedding (Rockwell 1983; Bruggeman et al. 1991). These kinds of flow pulsations
are called self-sustained oscillations, which can be explained through a feedback
loop composed of a hydrodynamic and an acoustic subsystem (Nakamura &
Fukamachi 1991; Tonon et al. 2010). The shear-layer instability, which is the
hydrodynamic subsystem, acts as an amplifier and supplies acoustic energy to the
system. Longitudinal standing waves, which are the acoustic subsystem, act as a
band-pass filter and maintain the synchronization in this feedback mechanism. This
band-pass filter is the reason for stepwise increase of the whistling frequency at certain
flow velocities, which has been pointed out in numerous experimental studies (Binnie
1961; Crawford 1974; Silverman & Cushman 1989; Cadwell 1994; Elliott 2005;
Kristiansen & Wiik 2007; Kop’ev et al. 2008). Each step corresponds to the resonance
frequency of an acoustic mode. Another widely observed characteristic is that for
each corrugated pipe, the whistling frequencies are close to a single non-dimensional
frequency, called Strouhal number, which is discussed in detail in § 2.3.

Depending on the application, geometric parameters of corrugated pipes may vary
in a fairly large range and it is known that these parameters have a significant effect
on the whistling phenomena (Petrie & Huntley 1980; Nakiboğlu et al. 2010). Thus,
in the course of designing silent corrugated pipes, it is an asset for industry to be
able to estimate quantitatively the effect of modifications in geometric parameters on
the whistling. In figure 2, relevant geometric parameters are shown for two generic
corrugated pipe cross-sections. Corrugations form a periodic variation of the inner
diameter of the pipe. The wavelength of a corrugation is called pitch (P t). Depending
on structural requirements and manufacturing technique, the cavity geometries of
corrugated pipes can also vary in complexity. In the simplest case (see figure 2a), each
corrugation is a slit-shaped cavity with a width (W ) and a depth (H ). The radii of the
edges are denoted by rup and rdown for upstream and downstream edges, respectively.
The plateau (l) is defined as the length of the constant inner diameter (Dp) part
between two cavities. Another commonly used corrugated pipe with a simple cavity
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Figure 2. Typical cross-sections of corrugated pipes with geometric parameters:
(a) Nakiboğlu et al. (2010) and Tonon et al. (2010); (b) Binnie (1961) and Elliott (2005).

geometry is shown in figure 2(b) (Binnie 1961). There is no plateau between cavities
and since the cavity width changes continuously with the cavity depth, width (W ) is
defined at the mid-depth of the cavity (Elliott 2005).

It should be noted that axisymmetry of the cavities is not a necessary feature of the
whistling phenomenon observed in corrugated pipes. Experiments performed with a
multiple side branch system, which is a non-axisymmetric system with a periodically
changing cross-section area along the pipe length, exhibit a whistling behaviour
similar to that of corrugated pipes (Nakiboğlu et al. 2009, 2010; Tonon et al. 2010).
Another important result obtained by Nakiboğlu et al. (2010) is that the whistling
amplitude is independent of the depth (H ) for 1.2 � H/W � 0.5. For shallow cavities
(H/W � 0.5), on the other hand, the whistling amplitude depends on the depth. In
this study, only the H/W � 0.5 range is addressed.

Experiments on the localization of the region of sound production in periodic
systems have shown that the contribution of each cavity or side branch to the sound
production is not the same (Golliard, Tonon & Belfroid 2010; Nakiboğlu et al. 2010;
Tonon et al. 2010). Their individual contributions depend on their positions with
respect to the shape of the coupling acoustic standing wave. It was demonstrated
that the sound production is dominant within the regions of high grazing acoustic
velocities, which are located around the acoustic pressure nodes of the coupling
standing wave along the main pipe.

Another outcome of earlier studies (Elliott 2005; Nakiboğlu et al. 2010; Tonon
et al. 2010) is that acoustic waves in periodic systems propagate at an effective speed
of sound (ceff ), which is lower than the speed of sound (c0). Assuming that the acoustic
compliance is determined by the pitch volume, πDp[(P t Dp/4) + HW ], and the inertia
is determined by the mass in the main pipe, ρP t πD2

p/4, the effective speed of sound
for low frequency, fP t/c0 � 1, acoustic waves along the pipe can be estimated as
follows:

ceff = c0/
√

1 + Vc/(SpP t), (1.1)

where Sp = πDp
2/4 is the cross-sectional area of the tube and Vc = πDpHW is the

cavity volume.
In this paper both experimental and numerical investigations of whistling in periodic

systems are reported. The first part of the paper is dedicated to the experimental
results. In § 2.1, experimental set-ups are presented, followed by § 2.2, where the
periodic systems that have been tested are introduced with the respective geometric
details. Before presenting the experimental results, § 2.3 is devoted to a detailed
discussion of Strouhal numbers in periodic systems. In §§ 2.4–2.6, the effects of
system length, helical configuration and confinement ratio on whistling are addressed,
respectively. In the second part of the paper, a numerical methodology is proposed
and appraised for the investigation of the aeroacoustic response of whistling periodic
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Figure 3. (Colour online) Experimental set-ups for (a) the corrugated pipe and (b) the
multiple side branch system.

systems (§§ 3.1–3.3). Then, in § 3.4, using the proposed methodology, the reason for
the broad range of Strouhal numbers observed in periodic systems is clarified.
In §§ 3.5 and 3.6, the capability of the method in predicting pressure fluctuation
amplitudes in whistling periodic systems is explored. In § 3.7, the limitations of the
proposed approach and the possible improvements are reviewed. In the last section,
the conclusions are stated.

2. Experiments
2.1. Experimental set-ups

Different experimental set-ups were employed to test corrugated pipes and multiple
side branch systems. Pressure fluctuations could easily be measured in the multiple
side branch system by means of flush-mounted microphones placed at the end
of side branches. For corrugated pipes, however, positioning microphones directly on
the walls is very difficult. Consequently, for a reliable installation of flush-mounted
microphones, straight pipe segments were used both upstream and downstream of
the corrugated pipes under investigation. These two experimental set-ups are briefly
described below (Nakiboğlu et al. 2010; Tonon et al. 2010).

The schema of the experimental set-up employed in corrugated pipe experiments
is shown in figure 3(a). From upstream to downstream, the set-up is composed of a
pressure vessel, a turbine flow meter, a flow control valve, a measurement section, a
corrugated pipe segment, a second measurement section and a pressure vessel. Using
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the downstream pressure control valve, the system can be pressurized up to 12 bar,
which allows the testing of the Reynolds number dependence of the system (Belfroid
et al. 2007). The constant diameter, D = 50.8 mm (2 in.), upstream and downstream
measurement sections are each 1.6 m long and equipped with five flush-mounted
microphones. By means of a multi-microphone method (Åbom & Bodén 1988;
Peters et al. 1993) travelling acoustic plane waves were reconstructed. Corrugated
pipe segments with various cavity geometries and lengths were tested between the
two measurement sections. To calculate the flow velocity in the test section from
the volume flow measurement, pressure (p) and temperature (T ) measurements were
recorded at three different locations, the first one close to the turbine flow meter (pmeter ,
Tmeter ), the second one upstream (pup , Tup) and the third one downstream (pdown , Tdown)
of the test section. By doing so the pressure drop and the change in temperature
through the pipe are taken into account. This becomes essential for corrugated pipes
longer than 10 m. The flow velocities at the upstream and downstream terminations
of the test section are determined as follows:

Uup =
Qmeter

Sp

Tup

Tmeter

pmeter

pup

, Udown =
Qmeter

Sp

Tdown

Tmeter

pmeter

pdown

, (2.1)

where Qmeter is the volumetric flow rate measured by the turbine flow meter and Sp

is the minimum cross-sectional area of the corrugated pipe. The flow velocity in the
test section is taken as the arithmetic average of the upstream and downstream flow
velocities, U = (Uup + Udown)/2.

The set-up used for the multiple side branch system experiments is shown in
figure 3(b). The upstream termination of the multiple side branch system is connected
to the high-pressure air supply system, which is composed of, from upstream to
downstream, a compressor, a vessel, a control valve, a buffer vessel, a turbine flow
meter and an expansion chamber muffler. The downstream termination is open to the
laboratory, a large room of 15 m × 4 m × 4 m. Even the longest multiple side branch
system which was employed in the experiments (≈2 m), is short enough to neglect
changes in flow velocity through the system due to pressure drop. Thus, it was not
necessary to make pressure and temperature measurements at multiple locations as
in corrugated pipe experiments.

In both set-ups, the microphones (PCB 116A) are connected to charge amplifiers
(Kistler 5011). These amplifiers are connected to a PC through an AC/DC converter
acquisition board (National Instruments NI SCXI-1000). A turbine flow meter
(Instromet SM-RI-X-KG250) is used to measure the volumetric flow rate. The
turbine flow meter is connected to a pulse shaper and a counter. In the set-up
for the multiple side branch system, the turbine flow meter and the piezo-electric
pressure transducers are synchronized by means of a trigger. The simultaneous
measurement of flow velocity and pressure allows a waterfall representation of the
data, in which the frequency spectra of the whistling at different flow velocities are
presented in a single graph. This interpretation can capture consecutive modes that
appear simultaneously with the dominant hydrodynamic mode, as observed in the
literature for single axisymmetric cavities (Rockwell et al. 2003; Oshkai, Rockwell &
Pollack 2005). However, during the experimental campaign, secondary modes were
not observed.

2.2. Corrugated pipes and multiple side branch system

Throughout the experimental campaign both commercially available corrugated pipes
and corrugated pipes manufactured from polyvinyl chloride (PVC) tubes were used,
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W H rup rdown l W H rup rdown l
Sample (mm) (mm) (mm) (mm) (mm) Sample (mm) (mm) (mm) (mm) (mm)

Geo 1 8.0 4.0 2.0 2.0 0 Geo 7 4.0 4.0 0.0 0.0 8.0
Geo 2 4.0 4.0 2.0 2.0 4.0 Geo 8A 2.0 2.0 2.0 0.5 5.5
Geo 3A 4.0 4.0 3.0 1.0 4.0 Geo 8B 2.0 2.0 0.5 2.0 5.5
Geo 3B 4.0 4.0 1.0 3.0 4.0 Geo 9 2.0 4.0 2.0 2.0 4.0
Geo 4 4.0 4.0 2.0 2.0 0 Geo 10 2.0 2.0 2.0 2.0 4.0
Geo 5 4.0 4.0 2.0 2.0 8.0 Com 1 0.6 1.7 1.1 1.4 5.2
Geo 6A 4.0 4.0 4.0 0.0 4.0 Com 2 0.6 1.8 1.6 1.3 4.7
Geo 6B 4.0 4.0 0.0 4.0 4.0 Com 3 7.0 5.0 1.5 1.5 0

Table 1. Geometric parameters of tested corrugated pipes (Geo, PVC corrugated pipes;
Com, commercial corrugated pipes).

(a) (b)

Figure 4. Samples of corrugated pipes manufactured from PVC (a) and multiple side
branch system (b).
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Figure 5. Schematic drawing of commercially available corrugated pipes: (a) Com 1 and
Com 2 and (b) Com 3 in table 1.

see figure 4(a). The geometric parameters of the tested pipes are specified in table 1.
The pipes with asymmetric cavity geometries are tested in both flow directions and
corresponding samples denoted configurations A and B of the same pipe. The cavity
geometries of the commercial corrugated pipes (Com 1 and Com 2) are quite different
from those of PVC pipes (Geo), see figure 5(a). The technical specifications of the
pipes obtained from the manufacturers are also presented in table 1. Com 3 is another
commercially available corrugated pipe. It has a relatively simple cavity shape (see
figure 5b) similar to that of the PVC corrugated pipes. For all geometries, the inner
diameter of the pipe (Dp) is 50 ± 1 mm.

The multiple side branch system is made of a series of identical T-joints connected
to each other, forming a row of equally spaced side branches along a main pipe, see
figure 4(b). The T-joint elements are standard vacuum appliances (ISO-KF) cast in
aluminium. The main pipe of the T-joint has a diameter (Dp) of 33 mm, which is
equal to the diameter of the side branch (Dsb). The length of the main pipe of each
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T-joint is 100 mm and the side branch, located half way along this segment, has a
length (Lsb) of 33 mm. The upstream edge of the side branch, which is connected to
the main pipe, has a radius of curvature of rup = 3 mm, which is approximately one
tenth of the side branch diameter (rup/Dsb ≈ 0.1). T-joints are connected to each other
using standard ISO-KF clamps which incorporate O-rings for sealing.

2.3. Definition of Strouhal number for whistling periodic systems

The Strouhal number is a commonly used dimensionless parameter for oscillating
flows, as in the case of whistling. The Strouhal number is defined as

Sr =
f L

U
, (2.2)

where f is the frequency of the oscillation, L is the characteristic length and U is
the average flow speed inside the corrugated pipe. Average flow speed U is defined
in terms of the volumetric flow rate (Q) and the inner diameter of the pipe as

U = 4Q
/(

πD2
p

)
(2.3)

The wavelength of the corrugations, the pitch, has been a commonly used
characteristic length (Binnie 1961; Crawford 1974; Nakamura & Fukamachi 1991;
Serafin & Kojs 2005; Popescu & Johansen 2008). However, testing pipes with more
marked differences between cavity width and pitch showed that the peak-whistling
Strouhal number depends on the cavity width rather than on the pitch (Elliott 2005;
Belfroid et al. 2007; Kristiansen & Wiik 2007; Nakiboğlu et al. 2010; Tonon et al.
2010). It was also concluded that the characteristic length used in the Strouhal number
definition should include the upstream edge radius (rup) because of the increase in
the distance travelled by the vorticity perturbation due to rounding off the upstream
edge. The downstream edge radius is less critical because vortical perturbations at the
upstream edge of the cavity diffuse as they are swept along the cavity mouth. When
they reach the downstream edge, they are less localized than when they are close to
the upstream edge. As a consequence, the radius of the downstream edge (rdown) does
not affect the travel time of the perturbations (Bruggeman et al. 1991; Belfroid et al.
2007; Nakiboğlu et al. 2009) as significantly as that of the upstream edges. Following
this, the sum of the cavity width and the upstream edge radius, W + rup , appears
to be the most suitable characteristic length, which is used in the remainder of this
paper.

It is important to realize that since the peak-whistling Strouhal number is
independent of the pitch length, the distance between the cavities, plateau length (l),
is not important for the sound production (Nakiboğlu et al. 2010). This implies that
sound production is a local effect which can be, in a first-order approximation, studied
for a single cavity. In the present analysis the possible hydrodynamic interaction
between successive cavities is neglected.

Another point that should be highlighted is that within a specific resonant mode
with increasing flow velocity, the whistling frequency shows a slight increase (Sarohia
1977; Bruggeman et al. 1991; Ziada, Ng & Blake 2003). Thus, within the same
resonant mode, as the flow velocity in the main pipe increases, the Strouhal number
decreases. As a result, for each resonant mode there is a range of Strouhal numbers
in which the whistling phenomenon is observed. The highest Strouhal number for a
resonant mode is called the critical Strouhal number (Srcr ), because it indicates the
onset of oscillations for that particular acoustic mode. After the onset of resonance,
within the same resonant mode, increasing the flow velocity increases the amplitude
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of pressure oscillations till it reaches a peak value. Further increase of the flow
velocity decreases the amplitude of pressure fluctuations. The Strouhal number which
corresponds to the maximum pressure fluctuation amplitude for a given acoustical
mode is called peak-whistling Strouhal number (Srp-w). The former is crucial in
developing design charts to avoid acoustic resonances by predicting the critical flow
velocities (Ziada & Shine 1999). The latter is also important in the estimation of
the maximum amplitudes that the system will experience (Tonon et al. 2010). The
peak-whistling Strouhal number of a corrugated pipe is determined through a linear
least-squares fit of consecutive excited acoustic modes (Nakiboğlu et al. 2010).

The definition of the Strouhal number in multiple side branch systems is similar
to that of corrugated pipes. Instead of using the sum of cavity width and upstream
edge radius (W + rup) as characteristic length, the sum of the effective cavity width
and upstream edge radius (Weff + rup) is used. This distinction in the characteristic
length is due to a geometric difference between corrugated pipes and multiple side
branch systems. The cross-section of a corrugation cavity is a slit whereas the side
branches have circular cross-sections, see figure 4(b). Thus, the side branch diameters
are converted to an effective cavity width (Weff = πDsb/4) as proposed by Bruggeman
et al. (1991), which is the average width of the side branch cross-section.

There is also a difference in the determination of peak-whistling Strouhal number
between corrugated pipes and multiple side branch systems. The corrugated pipes
(Geo, table 1) used in this study have typically 2 × 102 corrugations, whereas the
multiple side branch systems used in the experiments are composed of 14–19 T-
joints. Whistling frequencies that are observed with corrugated pipes are rather high
compared with those in the multiple side branch system. Thus, the typical number of
corrugations per wavelength in corrugated pipes at high frequencies (f L/ceff = O(10))
is close to that of the multiple side branch systems at low frequencies (f L/ceff = O(1))
(Nakiboğlu et al. 2010; Tonon et al. 2010). Correspondingly, in the multiple side
branch systems, attention is only paid to the lowest acoustical modes.

2.4. Effect of pipe length on the whistling behaviour of periodic systems

Though there is an extensive literature on corrugated pipes, in many instances it is
limited to short pipe segments (Binnie 1960, 1961; Crawford 1974; Cadwell 1994;
Elliott 2005; Popescu & Johansen 2008). Ziada & Bühlmann (1991) investigated long
corrugated pipes with water flow. They observed a strong coupling between whistling
and pipe wall vibrations. For gas flows such an effect of wall vibration has not
been observed. Here the effect of pipe length (Lp) on the whistling phenomenon
is addressed, which has been a subject of limited consideration. Experiments have
been performed with commercially available corrugated pipes (Com 3 in table 1) with
lengths of 20, 40, 60, 100 and 200 pipe diameters. The whistling frequencies are plotted
as a function of Mach number (M) in figure 6(a). Linear least-square fits used for the
determination of peak-whistling Strouhal numbers for Lp/Dp =20 and Lp/Dp = 200
are also shown. It is seen that the peak-whistling Strouhal number is independent
of the length of the pipe segment, with the value Srp-w =0.49 ± 0.04. In figure 6(b),
the dimensionless pressure fluctuation amplitude as a function of Mach number
is given for the same five corrugated pipe segments. The dimensionless amplitude,
|p′

max |/ρc0U = |u′
max |/U , is defined as the amplitude of the standing pressure wave at

a pressure anti-node inside the main pipe |p′
max |, divided by the air density ρ, the

speed of sound c0 and the main flow velocity U ; it is equal to the amplitude of
the acoustic velocity at a pressure node inside the main pipe |u′

max | divided by the
main flow velocity U . An increase in pressure fluctuation amplitude is observed with
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Figure 6. Experiments performed with a commercial corrugated pipe (Com 3 in table 1)
with five different pipe lengths between Lp/Dp = 20 and Lp/Dp = 200. (a) Whistling
frequency plotted against Mach number and (b) dimensionless pressure fluctuation amplitude
|p′

max |/ρc0U plotted against Mach number.

F
re

qu
en

cy
 (

H
z)

500

1000

1500

(a)

Mach number, M = U/c0

0.02 0.04 0.06 0.080

Mach number, M = U/c0

0.02 0.04 0.06 0.080

Srp-w = 0.53

Srp-w = 0.51

Lp /Dp = 200

Lp /Dp = 400

Lp /Dp = 600

Lp /Dp = 800

(b)

|p
′ m

ax
|/(

ρ
c 0

U
)

100

10–1

10–2

10–3

Figure 7. Experiments performed with a commercial corrugated pipe (Com 3 in table 1)
with four different pipe lengths between Lp/Dp =200 and Lp/Dp = 800. (a) Whistling
frequency plotted against Mach number and (b) dimensionless pressure fluctuation amplitude
|p′

max |/ρc0U plotted against Mach number.

increasing corrugated pipe length until Lp/Dp of 100. Further increase of the pipe
length to Lp/Dp =200 does not change the amplitude. A saturation of dimensionless
pressure fluctuation amplitude is observed at |p′

max |/ρc0U ≈ 0.1.
Experiments were also performed with corrugated pipe segments (Lp/Dp) of 400,

600 and 800, as shown in figure 7. It is also clear that for these long corrugated pipe
segments (up to 4000 pitch lengths), the peak-whistling Strouhal number does not
depend significantly on the length of the pipe segment. It is evident that the saturation
level of pressure fluctuation amplitude |p′

max |/ρc0U ≈ 0.1 is also independent of the
pipe length.
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Figure 8. Dimensionless pressure fluctuation amplitude |p′
max |/ρc0U plotted against Mach

number for a PVC corrugated pipe (Geo 4 in table 1) with four different pipe lengths between
Lp/Dp =40 and Lp/Dp = 100.

The saturation in pressure fluctuation amplitude is also observed with corrugated
pipes manufactured from PVC, with simple cavity geometries. As demonstrated in
figure 8 for Geo 4 (table 1), pressure fluctuations have already reached a saturation
amplitude of |p′

max |/ρc0U ≈ 0.1 by Lp/Dp of 60. Testing longer pipes Lp/Dp =80
and Lp/Dp = 100 does not further increase the fluctuation amplitude. This saturation
amplitude in corrugated pipes is considerably lower than those observed for deep
closed side branches in the crossflow direction |u′

max |/U ≈ O(1) (Kriesels et al. 1995;
Ziada & Shine 1999; Dequand, Hulshoff & Hirschberg 2003a) and along the main
flow direction |u′

max |/U ≈ 0.6 (Bruggeman et al. 1991) as well as Helmholtz resonators
|u′

max |/U ≈ 0.6 (Dequand et al. 2003b).
Multiple side branch systems with different numbers of T-joints were constructed

for the study, from 14 for the shortest system to 19 for the longest. In figure 9,
measured dimensionless pressure fluctuation amplitudes for the third acoustic mode
are plotted as a function of Strouhal number. Similar to corrugated pipes, the peak-
whistling Strouhal number remains unaltered with changing system length and is
0.62 ± 0.01. Also, a saturation in the pressure fluctuation at |p′

max |/ρc0U ≈ 0.035 is
reached for 19 side branches. This is close to the level found for corrugated pipes of
equal length (Lp/Dp = 40).

2.5. Effect of helical corrugations

Experiments have been performed to investigate the whistling behaviour of helical
(spiral wound) corrugated pipes. A corrugated pipe is manufactured with the same
cavity geometry as Geo 4 (table 1) but with a helical configuration, instead of a
periodic arrangement of cavities as shown in figure 2. The pitch, which is the width
of one complete helix, is also the same as the pitch length of Geo 4.

Introducing helical corrugations in this case has no significant effect on the whistling
behaviour. Observed fluctuation amplitudes and respective saturation level remain
the same. A slightly lower peak-whistling Strouhal number Stp-w = 0.34 is recorded
with the helical configuration compared with the periodic configuration Stp-w = 0.38.
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Strouhal number, SrWeff + rup
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Figure 9. Dimensionless pressure fluctuation amplitude |p′
max |/ρc0U plotted against the

Strouhal number SrWeff +rup
for the third acoustic mode for multiple side branch systems

that are composed of different numbers of T-joints.

Experiments on helical corrugated pipes reported by Kop’ev et al. (2008) also indicate
a behaviour analogous to that of non-helical (periodic) corrugated pipes.

2.6. Effect of confinement ratio on the Strouhal number in periodic systems

In periodic systems, a broad range of peak-whistling Strouhal numbers has been
observed. For corrugated pipes, a range between 0.3 � Srp-w � 0.5 has been found
(Binnie 1961; Petrie & Huntley 1980; Nakamura & Fukamachi 1991; Nakiboğlu
et al. 2010). For multiple side branch systems, a relatively high peak-whistling
Strouhal number Srp-w = 0.6 has been recorded (Tonon et al. 2010). Binnie (1961)
explained this wide range of Strouhal numbers as an outcome of the confinement
ratio, which is defined as the ratio of pipe diameter to cavity width (Dp/W ). He
used a single corrugated pipe but by using rods of different diameters (Dr ) placed
coaxially inside the pipe, he was able to vary the confinement ratio. In the presence
of a rod, the confinement ratio is defined as ((Dp − Dr )/W ). As mentioned in
§ 2.3, in the case of rounded cavity edges, it is essential to include the value of
rup in the characteristic length. Thus, here the confinement ratio is modified as
(Dp − Dr )/(W + rup). Unfortunately, Binnie (1961) did not provide any explicit
information on the edge geometry of the cavities. However, by comparing commercial
corrugated pipes (see figure 2b) similar to those mentioned in his paper, the edge
radius is estimated as 25 % of the cavity width. Then, it is concluded that Binnie
(1961) observed a shift in the peak-whistling Strouhal number from 0.53 to 0.34 with
an increasing confinement ratio (Dp − Dr )/(W + rup) from 2.8 to 9.6. In figure 10,
peak-whistling Strouhal number data are presented as a function of confinement
ratio for the corrugated pipes (table 1) and the multiple side branch system, together
with the measurements of Binnie (1961) and Elliott (2005). A decrease in the peak-
whistling Strouhal number with increasing confinement ratio is found. Though these
experiments clearly demonstrate the shift of the peak-whistling Strouhal number
due to confinement, the reason for the shift remains elusive. In experiments with a
tandem side branch configuration, Ziada & Shine (1999) observed a similar shift in
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Figure 10. Peak-whistling Strouhal number plotted against confinement ratio,
(Dp − Dr )/(W + rup), for various periodic systems (Binnie 1961; Elliott 2005)

the peak-whistling Strouhal number with increasing ratio of the main pipe diameter
to side branch diameter (Dp/Dsb). Ziada & Shine (1999) suggested that the shift in
the peak-whistling Strouhal number was due to a decrease in the ratio of cavity width
to gradient length of the velocity profile of the approach flow. This will be addressed
in detail in § 3.4.

3. Numerical methodology
In this section, a new numerical technique is introduced to investigate the whistling

in periodic systems. As mentioned in § 1, the self-oscillations observed in periodic
systems are due to a feedback loop, in which the shear-layer instability and the
longitudinal standing wave act as an amplifier and a filter, respectively. The proposed
technique is developed to study only the amplifier of this feedback loop and the
velocity fluctuations controlling the shear-layer oscillations are imposed as inlet
boundary conditions. As explained in § 2.3, by neglecting a possible hydrodynamic
interaction between successive cavities, sound generation in periodic systems can be
studied, in a first-order approximation, on a single cavity. The method combines
incompressible flow simulations with vortex sound theory to estimate the strength
of an acoustic source due to the interaction of a single cavity in a pipe flow at
high Reynolds number with a low frequency acoustic field. In the following two
sections, these two parts of the approach are explained. Then, the proposed numerical
methodology is used to explain some of the phenomena observed in whistling periodic
systems such as the nonlinear saturation of the amplitude and the effect of confinement
ratio on the peak-whistling Strouhal number.

3.1. Incompressible simulations

In corrugated pipes, the cavity width of the corrugations and respectively in multiple
side branch systems the diameter of the side branches are usually small compared
with the wavelength (λ) of the standing waves (P t/λ< 10−1). The flow in such a
cavity/side branch can be assumed to be locally incompressible. Accordingly, unsteady
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Figure 11. The domain and the relevant geometric parameters, axis of symmetry
(cylindrically symmetric flow) or upper wall (plane flow) (— - —).

incompressible flow simulations are performed (Martı́nez-Lera et al. 2009) for a single
cavity in a confined flow. All the simulations are performed in two-dimensional (2D)
domains. The domain and the relevant geometric parameters are shown in figure 11. In
some simulations, cylindrical symmetric domains are used to mimic a circumferential
cavity as found in corrugated pipes. In those simulations, the upper wall of the
confining pipe is replaced by an axis of symmetry. The inner diameter of the pipe
is denoted by Dp , the depth of the cavity by H , the width of the cavity by W and
the radius of curvature of the upstream cavity edge by rup . The inlet is located at
0.5W upstream of the cavity; such a short inlet pipe section is chosen to make sure
that the imposed inlet velocity profiles do not evolve significantly before reaching the
cavity. The outlet is placed at a reasonably far location, 9W downstream, from the
cavity. In all the simulations, the cavity depth is taken equal to the cavity width. A
previous experimental study (Nakiboğlu et al. 2010) showed that H/W = 1 is in the
range (0.5 � H/W � 1.2) where a saturation behaviour is observed in the amplitude
of pressure fluctuations. In this range, variations in the H/W ratio neither influence
the amplitude nor the peak-whistling Strouhal number. Unless mentioned otherwise,
in all the simulations the upstream cavity edge radius is taken as rup = 0.25W , which
is a typical value for corrugated pipes, see figure 2(b).

A finite volume commercial code, Fluent 6.3, is used. A pressure-based segregated
solution algorithm, SIMPLE (Patankar & Spalding 1972) is employed. The second-
order implicit time discretization scheme together with the second-order upwind space
discretization for convective terms is chosen. No turbulence modelling is applied. For
each simulation, initially a steady flow solution is performed with an unexcited fully
developed turbulent velocity profile u(y, t) = u(y) which has an average velocity of
U . These inlet velocity profiles are determined through Reynolds-averaged Navier–
Stokes (RANS) simulations at a Reynolds number of 5 × 104 for each different pipe
diameter (Dp). The iterations are continued until all the residuals drop below 10−12.
Then, a velocity perturbation u′(t) with a frequency (f ) and an amplitude (|u′|/U ),

u′(t) =
|u′|
U

sin(2πf t), (3.1)

is superposed on the inlet velocity profile (u(y, t) = u(y) + u′(t)), where |u′| is the
amplitude of the acoustic velocity induced by the longitudinal standing wave at the
position of the cavity considered. This amplitude can be much lower than |u′

max |, if
the cavity considered is close to a velocity node of the standing wave. The outlet
boundary condition ∂ux/∂x =0 is used. After checking different computation times,
a typical time of 5 periods of the excitation frequency appeared to be sufficient;
simulations with longer computation times provide the same results. The time step
size is chosen as �t = 0.01W/U .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

58
84

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010005884


On the whistling of corrugated pipes 91

The computational domain contains approximately 70 000 quadrilateral cells which
are clustered close to the opening of the cavity and to the walls, where there are high
gradients of velocity due to shear layer and boundary layer, respectively. In the domain
between 6W and 9W downstream of the cavity, shown as sponge zone in figure 11,
cells with high aspect ratio (�x/�y � 1) are employed. By doing so, problems that
can arise due to reverse flow at the outlet boundary condition are minimized. A study
on mesh dependence has been carried out. The same computation was performed
with 2 times and 4 times more densely meshed domains, producing differences in the
calculated acoustic source power of less than 5 %.

3.2. Calculation of acoustic source power

Using the theory of vortex sound, the strength of the acoustic source for high-
Reynolds-number flows is calculated from enthalpy differences, which are acquired
from relatively low-Reynolds-number simulations (Re = O(103)). This is achieved by
means of an extrapolation method. The effect of friction on the enthalpy losses is
estimated by considering a reference flow through a straight smooth pipe (without a
cavity). In this subsection, this approach is explained in detail.

The acoustic field can be defined by using a Helmholtz decomposition of the flow
field u, as proposed by Howe (1980):

u = ∇(φ0 + φ′) + ∇ × Ψ , (3.2)

where Ψ is the streamfunction, φ0 and φ′ are the steady and unsteady components
of the scalar potential, respectively. Recognizing that the solenoidal vector field is
incompressible ∇ · (∇ × Ψ ) = 0, the acoustic field corresponds to the unsteady potential
component of the flow ∇φ′, which is compressible. The acoustical flow velocity (u′) is
defined by Howe (1980) as

u′ = ∇φ′. (3.3)

For a subsonic flow with sufficiently high Reynolds number, the effect of friction can
be neglected in the bulk of the flow. Assuming a homentropic flow, the momentum
equation (Crocco’s equation) can be written as follows:

∇B = −∂u
∂t

− ω × u, (3.4)

where ω = ∇ × u is the vorticity and B is the total enthalpy:

B = 1
2
|u|2 + i, (3.5)

where i is the specific enthalpy. Here, it can be noted that the first term on the right-
hand side of the momentum equation (3.4) is related to the potential flow solution and
the second term corresponds to the Coriolis force density, fc = −ρ(ω × u), experienced
by an observer moving with the flow velocity (u). The latter is interpreted as the source
of the sound.

Using the energy corollary of Howe (1998), the time-averaged acoustic source power
〈Psource〉 due to the Coriolis force can be estimated for low Mach number flows as
follows:

〈Psource〉 = −ρ

〈∫
V

(ω × u) · u′ dV

〉
, (3.6)
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where V is the volume in which ω is non-vanishing and 〈 · 〉 denotes the time averaging.
Combining (3.6) with (3.4), 〈Psource〉 can be determined as follows:

〈Psource〉 = ρ

〈∫
V

∇B ′ · u′ dV

〉
+ ρ

〈∫
V

∂u
∂t

· u′ dV

〉
, (3.7)

where B ′ is the fluctuating total enthalpy. Knowing that in a compact source region,
∇ · u′ is negligibly small, the source term ∇B ′ · u′ can be replaced by ∇ · (u′B ′).
Neglecting the contribution of the second integral in (3.7) and using the divergence
theorem, 〈Psource〉 reads as

〈Psource〉 = ρ

〈∫
S

(B ′u′) · n dS

〉
. (3.8)

It is seen from (3.8) that the acoustic source power generated in a control volume
can be calculated through the surface integral of fluctuating total enthalpy over the
boundary of the control volume.

In this derivation, attention should be drawn to two points. Firstly, it is assumed
in the momentum equation (3.4) that the effect of friction in the bulk of the fluid is
small enough to be neglected. Secondly, it is assumed that the second integral in (3.7)
has no contribution to the sound generation. The same conclusion can be deduced
using as starting point the exact energy corollary of Myers (1986, 1991):

〈Psource〉 =

〈∫
S

(B ′m′) · n dS

〉
, (3.9)

where

B ′ =
p′

ρ
+ u0 · (u′ + u′

h), m′ = ρ(u′ + u′
h) + ρ ′u0,

where u0 is the time-averaged velocity and the fluctuations are split into the acoustical
(potential) part u′ and the hydrodynamical (rotational) part u′

h. When ρ ′ is neglected
(in agreement with the use of an incompressible flow model) and the contribution
of the hydrodynamic velocity fluctuations (u′

h) to the integral is also neglected, (3.8)
is recovered. The contribution of the hydrodynamic velocity fluctuations is expected
to depend on the spatial location of the control surface. It has been verified that by
choosing a large enough control volume, such a dependence can be avoided.

The recent study of Martı́nez-Lera et al. (2009) has shown that after the time
averaging, what they called the potential term, the second integral in (3.7) could
still have a non-zero contribution to 〈Psource〉. These authors concluded that it is
essential to remove the term (−∂u/∂t) from the enthalpy difference (�B ′) before
taking the time averaging. Their technique is based on successive linear least-squares
fits of the total pressure jumps considering many measuring planes both upstream
and downstream of the cavity. This procedure provides promising results. However,
the drawback is that the bounds of the source region cannot be determined. Because
of the uncertainty in the spatial linear fit, 〈Psource〉 appears to depend significantly on
the arbitrary choice of the position of the measuring planes. This is an indication that
this approach is not able to completely remove the contribution of the hydrodynamic
velocity fluctuations to the source power.

Here an alternative method is proposed in which the contribution of hydrodynamic
velocity fluctuations is effectively removed from the source power. This is done by
means of a reference flow simulation in a straight pipe with identical boundary
conditions with the respective cavity simulation and using the same measurement
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Figure 12. Normalized vorticity contours for (a) a confined cavity flow and (b) a reference flow
in a straight pipe (Re = 4000, Sr = 0.6 and |u′|/U = 0.2). White lines represent the measurement
sections where area-averaged total enthalpy is recorded.

sections in the duct. Then, 〈Psource〉 between any two measurement sections located at
x1 and x2 in the duct, which e.g. correspond to two vertical white lines in figure 12,
can be estimated as follows:

〈Psource〉 = ρ

〈
1

4

[(
B ′

x2
− B ′

x1

)
cav

−
(
B ′

x2
− B ′

x1

)
ref

]
u′πD2

p

〉
. (3.10)

The proposed approach is an extrapolation method for high-Reynolds-number
flows, in which the solution is expected to be Reynolds number independent. For a
simulation with a perturbation amplitude of |u′|/U =0.1, from figure 13 it is seen
that calculated average acoustic source powers are converging to a Reynolds number
independent limit.

Other simulations that are considered here have also similar characteristics in
which above a certain Reynolds number 〈Psource〉 can be assumed to weakly depend
on the Reynolds number. Within the accuracy of the proposed approach (5 %), this
limit is determined as Re = 4000, which is used in all the simulations. By increasing
the number of cells in the computational domain, simulations with higher Reynolds
numbers can be achieved, which will increase the Reynolds number independence of
the results.

Using this approach, the extent of the source region in the duct can be determined.
All the numerical simulations independent of the Strouhal number and perturbation
amplitude have a similar bound for the source region, which is between 0.5W upstream
of the cavity and W downstream of the cavity, shown as zone 1 in figure 12. Note
that 〈Psource〉 remains constant within 5 % when the bounds of the control volume
are extended to include zones 2–4. In some calculations, the reference flow solution
for smooth pipes is carried out with a slip boundary condition for the section of the
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Figure 13. Convergence to high-Reynolds-number limit: 1/Re is plotted against dimensionless
average acoustic source power 〈Psource〉/(ρUSp|u′|2) for Dp/W =2 and |u′|/U =0.1.
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Figure 14. Strouhal number plotted against dimensionless average acoustic source power
〈Psource〉/(ρUSp|u′|2) for a cavity (present study) and a T-joint (Hofmans 1998) with rup/W = 0
and |u′|/U = 0.2.

wall which corresponds to the cavity location. The results are almost identical to the
results presented here.

Simulations have been performed to check the capability of the proposed approach
in predicting the Strouhal number range where there is sound production. In figure 14,
the dimensionless average acoustic source power 〈Psource〉/(ρUSp|u′|2) is displayed as a
function of the Strouhal number for a cavity with sharp edges and for a perturbation
amplitude of |u′|/U =0.2. The results are presented together with the data obtained
by Hofmans (1998), using an inviscid two-dimensional vortex blob method for a
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T-joint with the same geometry and perturbation amplitude for a configuration
similar to corrugated pipes, where there is a grazing flow in the main pipe. Two
ranges of the Strouhal number with positive dimensionless average acoustic source
power are distinguished where there is sound production. The lower (SrW < 0.1) and
the higher (0.52 < SrW < 0.74) Strouhal number ranges correspond to the first and
second hydrodynamic modes, respectively. In the first hydrodynamic mode, there
exists a single vortex in the cavity mouth and the travelling time of the vortex across
the opening is 0.25 oscillation period. However, for the second hydrodynamic mode,
two vortices are present at the same moment in the cavity mouth. A vortex takes
1.25 oscillation periods to travel across the cavity (Bruggeman et al. 1991). It is clear
that the second hydrodynamic mode is stronger than the first one, explaining why
the experimentally observed peak-whistling Strouhal numbers belong to the second
hydrodynamic mode. Acoustic source powers predicted by the present methodology
are in agreement with the data of Hofmans (1998). A peak-whistling Strouhal
number Srp-w of 0.6 is estimated. This is close to the experimental observation
with multiple side branch systems, which is Srp-w = 0.62 ± 0.02 (figure 9). The peak-
whistling Strouhal number is further discussed in § 3.4.

3.3. Nonlinear saturation of the shear layer

The aeroacoustic behaviour of corrugated pipes and the multiple side branch
system depends strongly on the perturbation amplitude, |u′|/U . At low perturbation
amplitudes, the instability of the shear layer can be described by the linear-
stability theory (Rayleigh 1945), in which the acoustic source power 〈Psource〉 grows
quadratically with perturbation amplitude (Bruggeman et al. 1991). In this regime,
the vorticity disturbances are amplified by a factor e2π over one hydrodynamic
wavelength in the shear layer (Bruggeman, Wijnands & Gorter 1986). For the
second hydrodynamic mode, this corresponds to an amplification of e5π/2 ≈ 2.6 × 103.
Evidently, this imposes a perturbation amplitude limit of around 10−3 to the validity
of the linear theory above which nonlinearities become essential (Tam & Block
1978). In this range, the amplitude of the oscillations is determined by nonlinearities,
such as roll-up of the shear layer into discrete vortices (Fletcher 1979; Keller 1984;
Bruggeman et al. 1991; Rowley et al. 2006).

The proposed approach predicts the linear range and the nonlinear saturation
of the shear layer, as demonstrated in figure 15 for a simulation with Dp/

(W + rup) = 3.2. For small perturbation amplitudes |u′|/U � 10−3, the shear layer
behaves linearly. Therefore, the acoustic source power grows quadratically with
|u′|/U , making the dimensionless average acoustic source power 〈Psource〉/(ρUSp|u′|2)
constant. Eventually, around |u′|/U ≈ 10−2, nonlinearities become dominant and
〈Psource〉/(ρUSp|u′|2) starts to decrease with |u′|/U .

This amplitude-dependence test of 〈Psource〉 is performed for Strouhal numbers of
0.5, 0.56 and 0.63. Similar to the simulations discussed in the previous section, initial
simulations have been performed at a constant perturbation amplitude |u′|/U with
various Strouhal numbers to determine the peak-whistling Strouhal number for a
confinement ratio of Dp/(W + rup) = 3.2. The peak-whistling Strouhal number Stp-w
is estimated as 0.56. Then, two other Strouhal numbers close to the peak-whistling
Strouhal number are also studied to investigate whether there is a dependence of
the peak-whistling Strouhal number on perturbation amplitude. From figure 15, it
is seen that the peak-whistling Strouhal number does not alter significantly with the
perturbation amplitude.
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Figure 15. Perturbation amplitude |u′|/U plotted against dimensionless average acoustic
source power 〈Psource〉/(ρUSp|u′|2) for Dp/(W + rup) = 3.2 and for Strouhal numbers of 0.5,
0.56 and 0.63.

3.4. Peak-whistling Strouhal number difference in periodic systems

Previous studies on whistling periodic systems have shown that there is a difference
in peak-whistling Strouhal numbers between multiple side branch systems and
corrugated pipes (Nakiboğlu et al. 2010; Tonon et al. 2010). As demonstrated
in figure 10, the peak-whistling Strouhal number in multiple side branch systems
Srp-w = 0.62 is higher than those observed in most corrugated pipes 0.3 <Srp-w < 0.6.
To investigate the reason for this variation in Srp-w , two sets of simulations have
been performed. In multiple side branch system simulations, a 2D domain is used
with a confinement ratio of Dp/(W + rup) = 0.8, close to the experimental value. For
corrugated pipe simulations, a cylindrical symmetric 2D domain is used to mimic a
circumferential cavity. Also, a larger confinement ratio is chosen for corrugated pipe
simulations Dp/(W + rup) = 3.2. Taking the confinement ratio of actual corrugated
pipes 2 � Dp/(W + rup) � 30 (see table 1) into account, the pipe that is simulated
has a rather small confinement ratio. In both sets of simulations, a perturbation
amplitude |u′|/U of 0.05 is used. This particular perturbation amplitude is a typical
fluctuation amplitude observed in experiments, as shown in figures 6–9 (Belfroid
et al. 2007; Nakiboğlu et al. 2010). The results for these two set of simulations are
presented in figure 16. In parallel with the experimental data, for the multiple side
branch system a higher peak-whistling Strouhal number Srp-w =0.65 is observed
than for the corrugated pipe Srp-w = 0.55. Although these simulations show that the
proposed numerical approach can predict the difference in peak-whistling Strouhal
numbers between these two periodic systems, the reason for this difference remains
unexplained.

As discussed in § 2.6, experiments indicate that there is a dependence of the peak-
whistling Strouhal number on the confinement ratio Dp/(W + rup). To address this
effect of confinement, three sets of numerical simulations have been performed,
which correspond to the experiments of Binnie (1961). The result of the first set
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Figure 16. Strouhal number plotted against dimensionless average acoustic source power
〈Psource〉/(ρUSp|u′|2) for a multiple side branch system with a confinement ratio of
Dp/(W + rup) = 0.8 and for a corrugated pipe with a confinement ratio of Dp/(W + rup) = 3.2
(|u′|/U = 0.05).

of simulations is presented in figure 16, where a cavity in a cylindrical symmetric
configuration is solved for a Dp/(W + rup) ratio of 3.2. In the other two sets of
simulations, the same cylindrical symmetric domain is used together with rods of
diameter Dr =2W or Dr =3W respectively, which are placed coaxially inside the
pipe to vary the confinement ratio. As explained in § 2.6, in the presence of a rod,
the confinement ratio is defined as (Dp − Dr )/(W + rup). The dimensionless average
acoustic source power 〈Psource〉/(ρUSp|u′|2) for these configurations is presented as
a function of the Strouhal number in figure 17. It is seen that in accordance with
the experimental observations, as the confinement ratio decreases, the peak-whistling
Strouhal number increases. For confinement ratios (Dp − Dr )/(W + rup) of 3.2, 1.6
and 0.8, peak-whistling Strouhal numbers Srp-w of 0.55, 0.67 and 0.73 are estimated,
respectively.

Ziada & Shine (1999) explained the shift in the peak-whistling Strouhal number
by a change in the velocity profile. To investigate this argument, the same sets of
simulations that are presented in figure 17 are repeated. But instead of using a fully
developed turbulent velocity profile, in all the simulations the same boundary layer
profile as used by Martı́nez-Lera et al. (2009) is considered: a uniform velocity profile
in the core of the flow with a boundary layer of momentum thickness θ = 0.0065Dp .
The momentum thickness (Eggels et al. 1994) is defined here as

θ(Dp − θ) = 2

∫ Dp/2

0

r
u(r)

U0

(
1 − u(r)

U0

)
dr, (3.11)

where u(r) is the radial profile of the axial velocity, U0 is the velocity at the centreline of
the duct, and for coordinates see figure 11. The dimensionless average acoustic source
powers 〈Psource〉/(ρUSp|u′|2) for these three configurations are presented as a function
of the Strouhal number in figure 18. It is seen that the peak-whistling Strouhal number
Srp-w = 0.68 remains constant with changing confinement ratio (Dp −Dr )/(W +rup), if
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Figure 17. Strouhal number plotted against the dimensionless average acoustic source power
〈Psource〉/(ρUSp|u′|2) for a corrugated pipe with Dp/(W + rup) = 3.2 and for rod diameters of

Dr/W = 0, Dr/W =2 and Dr/W = 3; |u′|/U = 0.05, θ/Dp = 3 × 10−2.
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Figure 18. Strouhal number plotted against the dimensionless average acoustic source power
〈Psource〉/(ρUSp|u′|2) for a corrugated pipe with Dp/(W + rup) = 3.2 and for rod diameters
of Dr/W = 0, Dr/W = 2 and Dr/W = 3. Same approach velocity profile (3.11) is used in all
simulations; rup/W = 0.25, |u′|/U = 0.05, θ/Dp =6.5 × 10−3.

the same velocity profile is used at the inlet. Thus, in agreement with the interpretation
of Ziada & Shine (1999), the shift observed in the peak-whistling Strouhal number
can be attributed to a change in the velocity profile due to an alteration in the
confinement ratio, rather than a pure confinement effect.

To evaluate the capability of the proposed numerical approach in predicting the
peak-whistling Strouhal number, simulations with larger confinement ratios are also

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

58
84

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010005884


On the whistling of corrugated pipes 99

(Dp – Dr)/(Weff  + rup)

P
ea

k-
w

hi
st

li
ng

 s
tr

ou
ha

l n
um

be
r,

 S
r p

-w

5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Experimental
Numerical
Power-law fit

Figure 19. Measured and estimated peak-whistling Strouhal numbers plotted against
confinement ratio together with the proposed formula,

Stp-w =0.58[(Dp − Dr )/(Weff + rup)]
−0.2.

carried out. In figure 19, the available experimental data (figure 10) are compared with
the numerical estimations. Although estimated peak-whistling Strouhal numbers are
somewhat larger than the measured values, using the proposed numerical approach,
the dependence of the peak-whistling Strouhal number on the confinement ratio is
successfully captured.

For grazing flows along wall-mounted cavities in the presence of turbulent boundary
layers, a dependence of the convection velocity of shear-layer perturbations (Uc)
on the non-dimensional boundary-layer thickness (Γ = δ/W ) has been reported by
Elder, Farabee & DeMetz (1982). Later, for orifices subjected to a grazing turbulent
boundary-layer flow, Golliard (2002) proposed an empirical formula for the convection
velocity as a function of non-dimensional boundary-layer thickness as follows:

Uc

U∞
= 0.4Γ −0.2, (3.12)

where U∞ is the free-stream velocity. Associating the convection velocity (Kooijman,
Hirschberg & Golliard 2008), the peak-whistling Strouhal number can be stated as
follows:

Stp-w =

(
f (Weff + rup)

Uc

)(
U0

U

)(
Uc

U0

)
, (3.13)

Here, (Weff + rup)/Uc is the time that it takes a vortex to cross the cavity mouth,
which is 1.25 oscillation periods for the second hydrodynamic mode (Bruggeman et al.
1991). The second term is the ratio of maximum velocity (U0) to the average velocity
(U ) in the duct, which is taken as 1.23, considering the fully developed turbulent
profiles (Re = 5 × 104) used in the simulations (Schlichting 1979). For the last term,
an empirical formula similar to (3.12) is employed. The free-stream velocity (U∞)
and the dimensionless boundary-layer thickness (Γ ) are replaced by the maximum
velocity in the duct (U∞ =U0) and the confinement ratio (Γ = (Dp − Dr )/(W + rup)),
respectively. Finally, an empirical formula for the peak-whistling Strouhal number as
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Strouhal number, Stc = f (W + rup)/Uc
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Figure 20. Strouhal number based on the convective velocity Stc = f (W + rup)/Uc plotted
against the normalized dimensionless average acoustic source power (Dp − Dr )/(W + rup)

〈Psource〉/(ρUSp|u′|2) for confinement ratios (Dp − Dr )/(W + rup) of 3.2, 1.6 and 0.8.

a function of the confinement ratio is obtained for fully turbulent flows as

Stp-w = 0.63

(
Dp − Dr

W + rup

)−0.2

. (3.14)

A power-law fit of the experimental data yields 0.58 instead of 0.63, which is shown
in figure 19. It is seen that this rather simple empirical formula explains the broad
range of peak-whistling Strouhal numbers observed in periodic systems as an effect
of changing velocity profile due to changing confinement ratio.

3.5. Time-averaged acoustic source power in periodic systems

Up to now attention has been given to the peak-whistling Strouhal number.
In this section, the time-averaged acoustic source power in periodic systems is
addressed. From figure 17, it is seen that the non-dimensional acoustic source
power 〈Psource〉/(ρUSp|u′|2) decreases almost linearly with increasing confinement
ratio ((Dp − Dr )/(W + rup)) for the second hydrodynamic mode. Thus, if the non-
dimensional averaged acoustic source power is normalized with the confinement ratio
as (Dp −Dr )/(W +rup)〈Psource〉/(ρUSp|u′|2), then a universal graph of the source power
for periodic systems with various confinement ratios can be obtained. In figure 20, the
normalized non-dimensional average acoustic source power is shown as a function
of the Strouhal number based on the convection velocity (Stc = f (W + rup)/Uc).
Considering the convection velocity Uc, instead of the mean flow velocity U in the
Strouhal number definition, collapses the peak-whistling Strouhal numbers into a
single peak (Stc = 1.4). From figure 20, it is seen that for the third hydrodynamic
mode (Stc =2.5) as the confinement ratio increases, the normalized dimensionless
averaged acoustic source power decreases. This decrease could be explained on the
basis of the linear theory of Michalke (1965) on the effect of finite momentum
thickness (θ) on the spatial amplification of the shear-layer instability. Following the
theory, above a critical value of f θ/U =0.04, the amplification vanishes (Bruggeman
et al. 1991). It should be noted that the third hydrodynamic mode has not been
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reported in any experimental study on corrugated pipes. It is therefore difficult to
verify this result. Another consequence of the theory is that (3.14) has a limited range
of validity. Above a critical ratio of Dp/W whistling will not occur also for the second
hydrodynamic mode.

3.6. Estimation of the pressure fluctuation amplitude in a periodic system

To estimate the amplitude of self-sustained oscillations, i.e. whistling, in a periodic
system an energy balance model is required, where the acoustic sources and the
acoustic losses are equalized:

〈Psource〉 = 〈Pvisc〉 + 〈Pconv 〉 + 〈Prad 〉, (3.15)

where 〈Psource〉 is the time-averaged acoustic source power, 〈Pvisc〉, 〈Pconv 〉 and 〈Prad 〉
are the time-averaged power losses due to visco-thermal, convective and radiation
effects, respectively. In contrast to the acoustic sources which are calculated spatially
locally as explained in § 3, acoustic losses are estimated for the whole system. Here,
first the estimation of acoustic losses is considered (Tonon et al. 2010) and then the
prediction of pressure fluctuation amplitudes is discussed for two periodic systems,
namely a corrugated segment in a smooth pipe and a unit length of a long corrugated
pipe.

In order to calculate the acoustic power dissipated by the visco-thermal damping
of acoustic waves in a periodic system, a standing wave built up of right p+ and left
p− travelling waves of equal amplitude is assumed. Then, the visco-thermal losses are
given by

〈Pvisc〉
ρUSp|u′

max |2 =
1

2

c2
0αLp

ceff U
, (3.16)

where c0 is the speed of sound, ceff is the effective speed of sound in the pipe, Lp is
the pipe length and α is the acoustic damping coefficient. Note that here the acoustic
losses are non-dimensionalized by the use of |u′

max | instead of |u′| because the global
behaviour of the standing wave is considered.

To determine the acoustic losses due to convective effects, vortex shedding at
the downstream pipe termination is considered. Instead of describing the flow in
detail, a quasi-steady free jet formed at the outlet of the pipe is assumed. Using the
acoustic energy reflection coefficient of Ingard & Singhal (1975) and assuming the
incompressible limit, the acoustic power loss due to vortex shedding at the outlet of
the system is determined as follows:

〈Pconv 〉
ρUSp|u′

max |2 =
1

2

c0

ceff

. (3.17)

It should be noted that this approximation is limited to low frequencies. At high
frequencies, the approximation proposed by Munt (1977, 1990) should be used (Peters
et al. 1993).

Furthermore, compared with the acoustic losses due to visco-thermal dissipation
and convective effects, the radiation losses at the pipe terminations are rather small.
Thus, they are neglected in the calculations.

3.6.1. A corrugated segment in a smooth pipe

A corrugated segment in a smooth pipe is technologically useful as it allows bending
the pipe. When appropriately designed it should not whistle. Elliott (2005) performed
tests with a corrugated segment composed of 10 corrugations in a smooth pipe as
shown in figure 21. The pipe has a length (Lp) of 1031 mm and an inner diameter
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Lent

Dp

Lp

Figure 21. A corrugated segment in a smooth pipe as described by Elliott (2005).

(Dp) of 10.65 mm. The pitch length of corrugations is P t = 2.13 mm. Unfortunately,
rup is not explicitly mentioned by Elliott (2005). Thus, rup is taken as 0.25W , which
is a typical value for this type of corrugated pipe (see figure 2b), which leads to
a confinement ratio of Dp/(W + rup) = 5.8. It is reported that when the corrugated
segment is placed at the beginning of the pipe, Lent = 0, the system just whistles at
U = 8.6 m s−1 with a frequency of 1488 Hz, which corresponds to the ninth axial
mode.

Since the corrugated segment is 21.3 mm, which is only 2 % of the total pipe length,
when calculating 〈Pvisc〉 and 〈Pconv 〉, the effective speed of sound ceff is taken equal
to the speed of sound c0. For the same reason, the theory of Kirchhoff (Pierce 1981;
Peters et al. 1993) for smooth pipes is used to estimate the damping coefficient α, as
follows:

α =
Lper

2Spc0

√
πfµ

ρ

(
1 +

cp/cv − 1√
Pr

)
, (3.18)

where Lper is the perimeter of the pipe, f is the sound wave frequency, µ is the
dynamic viscosity, cp/cv is the ratio of specific heat capacities and Pr is the Prandtl
number. Then, using (3.16) and (3.17) the total acoustic loss is determined as (Dp/(W+
rup))〈Ploss〉/(ρUSp|u′

max |2) = 28.4. Here, the interaction between the acoustic boundary
layer and the turbulent main flow is neglected. This is justified by the relatively low
Reynolds numbers prevailing in the experiments (Peters et al. 1993; Howe 1998).

To estimate the source power of the system, first the location of the corrugated
segment with respect to the standing wave should be determined. The average acoustic
source power of a corrugation presented in figure 15 is valid only for cavities that
are located in the vicinity of pressure nodes of the standing wave, where the sound
production is maximum. Considering the fact that the system whistles at the ninth
acoustic mode, the wavelength of the standing wave pattern is approximately λ=
230 mm. Thus, compared with the wavelength, a segment of 21.3 mm at the
beginning of the pipe is small enough to assume that all the corrugations are close
to the pressure node.

In figure 22, the normalized dimensionless average acoustic source power is
presented as a function of the perturbation amplitude for a fully developed
turbulent velocity profile and a thin boundary-layer velocity profile (3.11).
The proposed model predicts whistling with 15 corrugations instead of 10
corrugations, as found in the experiments. The acoustic loss per corrugation, (Dp/

(W + rup))〈Psource〉/(ρUSp|u′
max |2) = 1.89, is indicated by a horizontal line in figure 22

(acoustic losses – corrugated segment) and the respective predicted amplitude
|u′

max |/U = 1.1 × 10−2 by a vertical line. It should be noted that since the corrugated
segment is located at the beginning of the pipe, the velocity profile is not yet developed.
Consequently, the source calculated for a thin boundary layer is used to predict the
whistling and its amplitude.
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Figure 22. Maximum perturbation amplitude |u′
max |/U is plotted against the normalized

dimensionless average acoustic source power (Dp/(W + rup))〈Psource〉/(ρUSp|u′|2) for a fully
developed turbulent velocity profile (turbulent BL) and a thin boundary-layer velocity profile
(thin BL).

Elliott (2005) reported that when the corrugated segment is shifted such that
Lent > 100 mm, no oscillations could be produced. This can be explained by the
change of the velocity profile upstream from the corrugated segment. When the
corrugated segment is shifted such that Lent > 10Dp , instead of a thin boundary-layer
profile, a developed turbulent velocity profile will enter the corrugated segment. As
shown in figure 22, the normalized dimensionless average acoustic source power is
much smaller for the fully developed turbulent velocity profile than for the thin
boundary-layer velocity profile. Consequently, the system which is just whistling for
Lent =0 stops whistling when it is shifted to the next pressure node of the standing
wave.

Figure 22 also indicates that in the transition region (10−3 < |u′
max |/U < 10−2), a

small increase in the acoustic losses can suppress the whistling. As a result, it is
difficult to predict whistling in this amplitude zone.

3.6.2. A fully corrugated pipe

In this section, the whistling amplitude for a long corrugated pipe is estimated
for a unit length. A typical corrugated pipe geometry (Com 3 in table 1) with a
confinement ratio of Dp/(W + rup) = 5.9 is used for the calculations. The pitch length
of the corrugations is P t =10 mm, meaning that there are 100 corrugations in a
unit length segment. For systems with such a high number of cavities, it can be
assumed that the cavities are uniformly distributed along the standing wave. Thus,
to estimate the average acoustic sound production per cavity, the maximum acoustic
sound production per cavity (see figure 22) should be multiplied by (2/π), which
is the average of the absolute value of a cosine function. This factor corresponds
to the assumption of a moderate amplitude behaviour (Bruggeman et al. 1991;
Tonon et al. 2010). This assumption is only reasonable for high oscillation amplitudes
|u′|/U > 0.05. Since the pipe is long, it can also be assumed that the convective
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losses are small compared with the viscous losses 〈Pconv 〉 � 〈Pvisc〉, so that they can
be neglected in (3.15).

As a first approximation, similar to the calculations in the previous section, the
theory of Kirchhoff (3.18) is used to estimate the damping coefficient. Following
(3.15) and (3.16), the normalized dimensionless acoustic loss per corrugation
(Dp/(W + rup))〈Psource〉/(ρUSp|u′

max |2) = 2.8 × 10−2 is determined. This leads to
maximum perturbation amplitudes which are a factor 5 higher than the experimentally
observed |u′

max |/U = 0.1.
As a second approach, assuming a quasi-steady flow (Ingard & Singhal 1975) and

linearizing the pressure gradient, the fluctuating pressure drop is stated as follows:

dp′

dx
= ρUu′ 4cf

Dp

, (3.19)

where cf is the experimentally determined resistance coefficient. For the corrugated
pipe investigated (Com 3 in table 1), cf ≈ 0.025. The damping coefficient for acoustic
waves is given by

α =
U0

ceff

4cf

Dp

. (3.20)

Similarly, following (3.15) and (3.16), this approach leads to a maximum perturbation
amplitude (|u′

max |/U ) of 0.4, which is a factor 4 larger than the measured values
(see figure 22, acoustic losses – fully corrugated pipe). However, it should be noticed
that although the predicted fluctuation amplitude is fairly close to the experimental
observations, this approach has a fundamental drawback. When calculating the source
power 〈Psource〉, the losses due to flow separation at each cavity are implicitly included
in the simulations. By introducing the experimentally measured resistance coefficient
(cf ) to calculate the damping coefficient, this nonlinear effect is again taken into
account in the quasi-steady approximation. Also, the model neglects heat transfer
losses. Thus, some of the loss terms are overestimated and some are excluded in this
prediction. Finally, it should be noted that a quasi-steady approach is only valid at
very low frequencies.

3.7. Discussion

In this study, a methodology which combines incompressible numerical simulations
and the theory of vortex sound is introduced to estimate the acoustic source power in
periodic systems. A comparison with the experimental measurements and the earlier
studies indicates that the proposed method is promising in many aspects for the
physical understanding of the whistling behaviour of periodic systems. However, the
methodology has certain limitations.

First of all, it is assumed that the cavities are only acoustically coupled. Thus, any
hydrodynamic interaction between cavities is neglected. Derks & Hirschberg (2004)
showed that hydrodynamic interaction can be important for Helmholtz resonators
if the plateau length between successive openings is smaller than the opening width
(l � W ). Similarly, for corrugated pipes with short plateau lengths, hydrodynamic
interaction is expected to play a role.

Secondly, the approach does not include any turbulence modelling. This puts a limit
on the cavity depth to cavity width ratio (H/W ) that can be studied with this method.
For shallow cavities (H/W � 0.5), where turbulence plays a significant role (Gloerfelt
2009; Nakiboğlu et al. 2010), the approach is not applicable. However, most of the
corrugated pipes used in industrial applications have deep cavities (H/W � 0.5).
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Another point that can be improved is the inlet boundary condition for
incompressible simulations. As demonstrated in §§ 3.4 and 3.6, the velocity profile
is essential for both the peak-whistling Strouhal number and fluctuation amplitude.
Instead of using a fully developed turbulent velocity profile for smooth pipes at the
inlet boundary, for each corrugated pipe geometry, respective fully developed velocity
profiles can be estimated using RANS calculations. Preliminary calculations using
this approach indicate a shift in predicted peak-whistling Strouhal numbers towards
the proposed empirical power-law formula (3.14). Such an approach, however, will
also be limited because whistling at large amplitudes is expected to affect the main
flow profile, which cannot be predicted by RANS simulations.

It should be noted that using the theory of Kirchhoff for the estimation of the
damping coefficient leads to overpredicted fluctuation amplitudes in long corrugated
pipes. The quasi-steady approximation is not a satisfactory alternative either. Further
research is needed on the estimation of visco-thermal losses of acoustic waves
propagating in corrugated pipes.

Our standing wave model is only reasonable when the resonator has a large quality
factor. For the investigation of very long corrugated pipes, a travelling wave model
could be employed rather than a standing wave model.

4. Conclusions
Experiments performed on corrugated pipe segments of various lengths and cavity

geometries show that the peak-whistling Strouhal number, based on cavity width plus
upstream edge radius as characteristic length, is independent of the pipe length.

The experiments on corrugated pipes revealed a saturation behaviour in the
amplitude of the pressure fluctuation |p′

max |/ρc0U ≈ 0.1. Although the segment length,
where this saturation level is reached, varies depending on the type of the corrugated
pipe, the saturation amplitude remains about the same.

The broad range of peak-whistling Strouhal numbers in corrugated pipes,
0.3 � Stp-w � 0.6, which has been reported in the literature, is observed experimentally.
There is a decrease of the peak-whistling Strouhal number with increasing confinement
ratio, which is defined as the ratio of pipe diameter to cavity width plus upstream
edge radius Dp/(W + rup).

The proposed numerical methodology predicts Strouhal number ranges of acoustic
energy production and absorption, which are in agreement with earlier studies about
periodic systems. The nonlinear saturation of the shear layer, responsible for the
stabilization of the limit cycle oscillation, is also successfully captured with the
current approach.

It is explained that the variation observed in the peak-whistling Strouhal number
due to a change of confinement ratio results from a different main flow velocity profile.
Assuming a fully developed turbulent velocity profile for a smooth channel flow at
the inlet, the proposed methodology predicts the decrease of the peak-whistling
Strouhal number with increasing confinement ratio. The estimated peak-whistling
Strouhal numbers are in a reasonable agreement with the experimentally measured
values. An empirical formula for the peak-whistling Strouhal number as a function
of confinement ratio is proposed, which relates this effect to earlier observations from
the literature on cavities (Elder et al. 1982; Golliard 2002; Kooijman et al. 2008) and
deep resonant side branches (Ziada & Shine 1999).

Combined with an energy balance, the proposed model is used to explain
qualitatively the difference observed in acoustic fluctuation amplitudes in periodic
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systems due to variations of cavity geometry and flow parameters. However, it should
be improved before being a quantitative tool for the prediction of the pulsation
amplitude.

The work discussed in this paper was made possible by the contributions of STW
Technologiestichting (Project STW 08126), BP, Bureau Veritas, ExxonMobil, Statoil
and UK Health and Safety Executive. We thank J. F. H. Willems, F. M. R. van Uittert,
J. Bastiaansen and R. M. J. Tummers for their contributions to the development of
the experiments.
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flows. PhD thesis, École Supérieure d’Ingénieurs de Poitiers, Poitiers, France.

Golliard, J., Tonon, D. & Belfroid, S. P. C. 2010 Experimental investigation of the source
locations for whistling short corrugated pipes. In Proc. ASME 2010 3rd Joint US–European

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

58
84

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010005884


On the whistling of corrugated pipes 107

Fluids Engineering Summer Meeting and 8th Intl Conf. on Nanochannels, Microchannels and
Minichannels, Montreal, Canada.

Goyder, H. 2009 On the Modelling of Noise Generation in Corrugated Pipes. ASME Pressure Vessels
and Piping Division, Prague, Czech Republic.

Gutin, L. 1948 On the sound field of a rotating propeller. (Original in Russian: Z. Tekh. Fiz. 1936;
12, 76–83.) NACA Tech. Memo. 1195.

Hofmans, G. C. 1998 Vortex sound in confined flows. PhD thesis, Eindhoven University of
Technology, Eindhoven, the Netherlands.

Howe, M. S. 1980 The dissipation of sound at an edge. J. Sound Vib. 70, 407–411.

Howe, M. S. 1998 Acoustics of Fluid–Structure Interactions . Cambridge University Press.

Ingard, U. & Singhal, V. K. 1975 Effect of flow on the acoustic resonances of an open-ended
duct. J. Acoust. Soc. Am. 58 (4), 788–793.

Keller, J. J. 1984 Non-linear self-excited acoustic oscillations in cavities. J. Sound Vib. 94, 397–409.

Kooijman, G., Hirschberg, A. & Golliard, J. 2008 Acoustical response of orifices under grazing
flow: effect of boundary layer profile and edge geometry. J. Sound Vib. 315, 849–874.

Kop’ev, V. F., Mironov, M. A. & Solntseva, V. S. 2008 Aeroacoustic interaction in a corrugated
duct. Acoust. Phys. 54, 197–203.

Kriesels, P. C., Peters, M. C. A. M., Hirschberg, A., Wijnands, A. P. J., Iafrati, A.,

Riccardi, G., Piva, R. & Bruggeman, J. C. 1995 High amplitude vortex-induced pulsations
in a gas transport system. J. Sound Vib. 184, 343–368.

Kristiansen, U. R. & Wiik, G. A. 2007 Experiments on sound generation in corrugated pipes with
flow. J. Acoust. Soc. Am. 121, 1337–1344.
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Ziada, S. & Bühlmann, E. T. 1991 Flow-induced vibration in long corrugated pipes. In Intl Conf.
on Flow-Induced Vibrations. IMechE, UK.

Ziada, S., Ng, H. & Blake, C. E. 2003 Flow excited resonance of a confined shallow cavity in low
Mach number flow and its control. J. Fluids Struct. 18, 79–92.

Ziada, S. & Shine, S. 1999 Strouhal numbers of flow-excited acoustic resonance of closed side
branches. J. Fluids Struct. 13, 127–142.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

58
84

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010005884

