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Abstract
Although oilseed rape has become one of the most important oil crops in Europe, little is

known regarding the viability of its seed under conditions of long-term storage. We report

here an examination of oilseed rape seed longevity performed on a set of 42 accessions

housed at the German ex situ genebank at IPK, Gatersleben. A comparison of germination

between the accessions stored for 26 years showed that viability was in part genetically deter-

mined, since it ranged between 42 and 98%. An attempt was made to define the genetic basis

of viability by subjecting a mapping population of doubled haploids to three artificial ageing

treatments. Quantitative trait loci (QTL) were detected on six chromosomes: N6, N7, N8, N15,

N16 and N18. The chromosomal locations of these QTL were compared with their syntenic

regions in Arabidopsis thaliana in order to explore what genes might underlie genetic vari-

ation for longevity.
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Introduction

Originally developed as a source of oil for energy pur-

poses, oilseed rape (Brassica napus L.) has now risen

to become one of the most important field crops in

Europe, Canada, China and Australia. Its oil is now

used in many applications, including biodiesel, culinary

oil and livestock feed. Due to its remarkable increase in

production, canola has become the focus of much breed-

ing and molecular genetics in recent years (Friedt and

Snowdon, 2010).

Until recently, the longevity of B. napus seed has been

considered to be of little importance. However, as par-

ticularly the spring-type canola crop becomes trans-

genic-based, some concern has been expressed about

the growing dominance of transgenic material in the

soil seed bank, while at the same time, there is a continu-

ing loss of non-transgenic materials stored in genebanks,

as a result of ageing. Seeds from Brassica spp. typically

lose ,50% of their viability with 7.3 years of storage at

208C and 50% relative humidity (RH) (Nagel and

Börner, 2010), and within 23 years under standard low

temperature (2188C) storage conditions (Walters et al.,

2005a). Evidence that seed viability in some crop species

is in part genetically determined (Nagel et al., 2010) has

prompted the present study of intra-specific variation in

B. napus seed longevity.

Materials and methods

We tested the seed viability of 42 accessions of B. napus

ssp. napus var. napus f. biennis, which had been* Corresponding author. E-mail: boerner@ipk-gatersleben.de
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multiplied in 1983 and have been maintained in the

interim at 7 ^ 38C and 6 ^ 2% seed moisture content.

Three replicates of 50 seeds/accession were placed on

moistened filter paper and germination was monitored

after 28 d. Their current viability was compared with

historic data collected in 1983, 1990 and 1993 by using

arithmetic means and standard deviations.

A set of artificial ageing protocols was applied to a

population of 153 doubled haploid lines of the winter oil-

seed rape YE2-DH mapping population (Badani et al.,

2006) to explore the genetic basis of seed longevity.

The protocols were: AA1, following Hampton and

TeKrony (1995), in which two replicates of 50 seeds

each were sealed in glass jars containing 200 ml deionised

water to raise the RH above 99%. After holding the jars

for 48 h at 428C, a germination test was conducted as

above, with a final count after 7 d. AA2: this was identical

to AA1, except that the temperature was 448C. AA3: fol-

lowing Hay et al. (2008), in which two replicates of 100

seeds/line were placed inside a sealable box containing

a 8.7 M LiCl solution which ensured that the RH at 208C

stabilized at 47% within 14 d. Artificial ageing was then

initiated by changing the solution (7.1 M LiCl), and main-

taining the temperature at 458C (to give an RH of 60%) for

17 d. This was followed by the same germination test as

above. A measure of relative viability for each method

was calculated by dividing the viability of the aged

seeds by their initial viability. The data were subjected

to a quantitative trait loci (QTL) analysis, using QGENE

software (Nelson, 1997) and a genetic map of, in total,

161 markers comprising amplified fragment length

polymorphism and simple-sequence repeat markers

(Snowdon et al., unpublished data). A permutation test

was used to set the appropriate logarithm of odds

(LOD) ratio threshold for each treatment.

Results and discussion

The decay in viability of the genebank accessions over 26

years of storage is shown in Fig. 1. The mean proportion

of viable seeds fell from 94.7% in 1983 to 92.9, 79.1 and

65.7% after 7, 10 and 26 years of storage, respectively.

The associated standard deviations were 5.4% (1983)

4.6% (1990), 12.5% (1993) and 14.2% (2009). Despite

having been grown simultaneously and subjected to the

same post-harvest and storage conditions, the accessions

nevertheless displayed variation with respect to seed via-

bility, as also occurs in barley, wheat, sorghum, rye and
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Fig. 1. Mean viability of B. napus genebank accessions over
different test years. The bold line indicates mean viability,
and standard deviations over the years are shown.
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Fig. 2. QTL interval mapping in the B. napus YE2-DH population detected a range of loci with effects on seed longevity after
artificial ageing. The choice of artificial ageing protocol (AA1, AA2 and AA3) applied was found to be important. The
14 QTL map to seven different chromosomes (a). Individual QTL effects are tabulated (b).
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linseed (Nagel et al., 2009, 2010). We therefore concluded

that there is a genotypic component involved in the

determination of seed viability.

When the doubled haploid lines from the YE2-DH

population were tested using the three artificial ageing

methods, 13 significant QTL affecting seed longevity

were identified (Fig. 2). Most of the QTL were method-

specific. AA1 produced five QTL, mapping to chromo-

somes N7, N8, N15 and N18a, while AA2 generated six

QTL on N6, N15 and N16. By using AA3, four QTL on

chromosomes N7 and N18b were found with in particular

highest explained phenotypic variation in QTL 14:

R 2 ¼ 0.081. The only QTL common to AA1 and AA3

was QTL5, on chromosome N7.

The reliability of artificial ageing as a surrogate for

long-term storage has been repeatedly discussed in the

literature (Delouche and Baskin, 1973; Priestley and

Leopold, 1979; McDonald, 1999; Freitas et al., 2006),

leading to a number of mutually inconsistent con-

clusions. Rajjou et al. (2008) suggested that a controlled

deterioration test protocol, as described by Tesnier et al.

(2002), mimics many of the molecular and biochemical

events experienced during seed ageing. On the other

hand, in this study, we showed that even a modest

increase in ageing temperature (from 42 to 448C) can

have a major effect on the expression of relevant genes.

The QTL identified in AA1 and AA2 mapped to distinct

regions from those detected following AA3, which

compared with AA1 and AA2 operates on lower

seed moisture contents in a dry state, according to

Walters et al. (2005b).

The Brassica consensus map of Parkin et al. (2005)

was used to estimate potential locations of orthologous

loci in the Arabidopsis thaliana genome with respect to

the B. napus QTL. Potential links with B. napus QTL

were found for the upper part of the A. thaliana chromo-

somes AtC1 and AtC3, and near the lower ends of

AtC1 and AtC5. The genetic basis of seed longevity in

A. thaliana has been ascribed to genes mapping in the

upper parts of chromosomes AtC1 and AtC3 (Bentsink

et al., 2000; Clerkx et al., 2004b). Other QTL related to

germination in the presence of salinity or heat stress, as

well as some controlling the rate of germination, are

also known in the region of AtC1, which suggests the

possibility that tolerance to stress represents an aspect

of seed longevity (Clerkx et al., 2004b). Nevertheless,

many of the genes involved in the stress response are

also participants in the oxidative stress response. An

example of this connection has been provided by

Thorlby et al. (1999), who detected the expression of

genes in the region of AtC1 related to tolerance of oxi-

dative stress, as well as of some involved in abscisic

acid (ABA) biosynthesis and perception. A. thaliana

mutants which have lost sensitivity to ABA, or are

compromised in its synthesis, tend to show poor seed

longevity (Clerkx et al., 2004a). This demonstrates that

ABA plays a role in maintaining seed viability during

storage. Certain chemical and/or physical properties of

the seed-coat also affect germination rate after storage,

since the seed of both structural and pigmentation mutants

tends to deteriorate faster than that of their wild-type

progenitor (Debeaujon et al., 2000; Clerkx et al., 2004a).
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