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Internal gravity wavetrains in continuously stratified fluids are generally unstable as
a result of resonant triad interactions which, in the inviscid limit, amplify short-scale
perturbations with frequency equal to one half of that of the underlying wave. This
so-called parametric subharmonic instability (PSI) has been studied extensively for
spatially and temporally monochromatic waves. Here, an asymptotic analysis of
PSI for time-harmonic plane waves with locally confined spatial profile is made,
in an effort to understand how such wave beams differ, in regard to PSI, from
monochromatic plane waves. The discussion centres upon a system of coupled
evolution equations that govern the interaction of a small-amplitude wave beam
with short-scale subharmonic wavepackets in a nearly inviscid uniformly stratified
Boussinesq fluid. For beams with general localized profile, it is found that triad
interactions are not strong enough to bring about instability in the limited time
that subharmonic perturbations overlap with the beam. On the other hand, for
quasi-monochromatic wave beams whose profile comprises a sinusoidal carrier
modulated by a locally confined envelope, PSI is possible if the beam is wide
enough. In this instance, a stability criterion is proposed which, under given flow
conditions, provides the minimum number of carrier wavelengths a beam of small
amplitude must comprise for instability to arise.

Key words: geophysical and geological flows, instability, internal waves

1. Introduction
There is an extensive literature on the stability of internal gravity waves in

continuously stratified fluids with applications to various geophysical processes.
Most stability analyses assume uniform stratification in the Boussinesq approximation.
Under these flow conditions, the background buoyancy frequency is constant and,
moreover, sinusoidal plane waves are not only linear solutions, but also exact
nonlinear states of the governing equations in the inviscid limit. A uniformly stratified
Boussinesq fluid thus affords a convenient setting for examining the stability of
periodic wavetrains of arbitrary amplitude.

This problem has been addressed by numerous investigations (see Staquet &
Sommeria 2002 for a review), and it is now well established that instability of
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small-amplitude internal waves is instigated by resonant nonlinear wave interactions
(see Phillips 1981 for a review). Specifically, ignoring dissipation, weakly nonlinear
sinusoidal internal waves are unstable to infinitesimal perturbations that form resonant
triads with the underlying wavetrain. In addition, the unstable perturbations singled
out by triad interactions are of short wavelength and have frequency equal to one half
of that of the primary wave. This so-called parametric subharmonic instability (PSI)
has received a great deal of attention as a potential mechanism for transferring energy
from large-scale internal waves to small-scale mixing in oceans (see, for example,
Hibiya, Nagasawa & Niwa 2002; Koudella & Staquet 2006; MacKinnon et al. 2013).

However, as argued by Sutherland (2013), the PSI found in stability analyses
of spatially and temporally monochromatic internal wavetrains may not be entirely
relevant to ocean internal waves. In fact, an inviscid, uniformly stratified Boussinesq
fluid supports time-harmonic plane waves with general spatial profile which propagate
along a direction to the vertical determined by the wave frequency. These disturbances,
often referred to as wave beams, are fundamental to internal wave motion and, like
sinusoidal wavetrains, happen to be exact nonlinear states of the governing equations
(McEwan 1973; Tabaei & Akylas 2003).

In oceans, wave beams with locally confined profile arise from the interaction of
the barotropic tide with sea-floor topography, as demonstrated by theoretical and
numerical models (Bell 1975; Khatiwala 2003; Lamb 2004), laboratory experiments
(Gostiaux & Dauxois 2007; Zhang, King & Swinney 2007; Peacock, Echeverri &
Balmforth 2008) and field observations (Lien & Gregg 2001; Cole et al. 2009;
Johnston et al. 2011). In contrast to sinusoidal wavetrains which are generally prone
to PSI, however, no evidence of PSI in wave beams is reported in these studies.
Moreover, the same is true for internal wave beams generated in several laboratory
experiments by oscillating a body in a stratified fluid tank (see, for example, Mowbray
& Rarity 1967; Sutherland et al. 1999; Sutherland & Linden 2002).

Yet, according to other recent studies, PSI can occur in internal wave beams under
certain circumstances. Similar to earlier experiments, Clark & Sutherland (2010)
used a vertically oscillating circular cylinder as wave source in a stratified fluid
tank. However, the cylinder oscillations were of relatively large amplitude, resulting
in beams with quasi-monochromatic profile which typically broke down as they
propagated away from the forcing region. Clark & Sutherland (2010) indirectly
linked this breakdown to PSI, a hypothesis also supported by numerical simulations.
Furthermore, PSI was noted in an experimental–numerical study of a model internal
tide (Pairaud et al. 2010), as well as in numerical simulations of the reflection of
a localized nearly monochromatic wave beam from a horizontal surface (Zhou &
Diamessis 2013). Finally, recent experiments (Bourget et al. 2013) have revealed that
resonant triad interactions can bring about instability in a localized wave beam that
comprises just three wavelengths of a sinusoidal wavetrain. However, the observed
most unstable perturbations were not short-scale subharmonic disturbances because
the dimensions in the experimental set-up, being orders of magnitude smaller than
the typical ocean scales, amplified the effects of viscosity.

The present paper seeks to understand theoretically the conditions under which
internal wave beams with locally confined profile may suffer PSI in a nearly inviscid,
uniformly stratified Boussinesq fluid. In keeping with the salient features of PSI in
this setting, the analysis focuses on subharmonic disturbances of short wavelength
compared with the beam width, a picture also suggested by the numerical findings
of Clark & Sutherland (2010). Such fine-scale wavepackets are modulated by and
also interact nonlinearly with the underlying large-scale wave beam. To examine the
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possibility of PSI as a result of this long–short wave interaction, coupled evolution
equations are derived for the wavepacket envelopes and the beam profile, taking the
beam and the perturbations to have small but finite amplitude.

The analysis brings out the fact that subharmonic wavepackets travel with their
respective group velocities, so their interaction with a locally confined beam has finite
duration; thus, PSI hinges upon whether, during this limited time, such perturbations
can extract enough energy from the beam to overcome viscous dissipation. The
decisive role, in regard to PSI, of the group velocity of short-scale subharmonic
wavepackets riding on a large-scale internal wave, was first suggested by McEwan &
Plumb (1977).

Based on the evolution equations derived here, it is argued that weakly nonlinear
beams with general locally confined profile are stable to short-scale subharmonic
perturbations, in stark contrast to the well-established PSI of weakly nonlinear
monochromatic plane waves. The reason for this difference is that triad interactions,
which are responsible for PSI, are not strong enough to cause instability during
the limited time that the pertubations overlap with a beam of localized profile. An
exception arises when the group velocity of subharmonic wavepackets happens to
vanish or nearly so, a condition that can be satisfied when Coriolis effects are taken
into account (Gerkema, Staquet & Bouruet-Aubertot 2006; Young, Tsang & Balmforth
2008). PSI of localized beams under this resonance is discussed in Karimi (2015).

On the other hand, triad interactions are capable of destabilizing quasi-
monochromatic wave beams whose profile consists of a sinusoidal carrier wave
modulated by a locally confined envelope. In this instance, the asymptotic theory
reveals that PSI does occur if a beam is wide enough, and an explicit stability
criterion is proposed in terms of the number of carrier wavelengths required for
instability to arise. Although strictly valid for weakly nonlinear slowly modulated
beams, the theoretical predictions seem consistent with the experiments and numerical
simulations of Clark & Sutherland (2010), which involved finite-amplitude beams with
just two carrier wavelengths.

2. Long–short wave interaction
Our analysis assumes two-dimensional disturbances in an incompressible,

continuously stratified Boussinesq fluid with constant buoyancy frequency N0. We shall
work with dimensionless variables, employing 1/N0 as time scale and a characteristic
length L∗, to be specified later, as length scale. With x being the horizontal and y
the vertical coordinate pointing upwards, the steamfunction ψ(x, y, t) for the velocity
field (ψy,−ψx), and the reduced density ρ(x, y, t) are then governed by

ρt +ψx + J(ρ, ψ)= 0, (2.1)
∇2ψt − ρx + J(∇2ψ, ψ)− ν∇4ψ = 0, (2.2)

where J(a, b)= axby − aybx stands for the Jacobian. The parameter

ν = ν∗
N0L2∗

(2.3)

is an inverse Reynolds number, where ν∗ denotes the fluid kinematic viscosity.
In the inviscid limit (ν = 0), (2.1) and (2.2) support time-harmonic plane

waves with general spatial profile. These so-called wave beams are manifestations
of the anisotropy of internal gravity wave motion: according to the familiar
dispersion relation

ω= sin θ, (2.4)
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FIGURE 1. Geometry of long–short wave interaction. The underlying wave beam with
general locally confined profile of characteristic width L∗ has frequency ω and propagates
at an angle θ to the horizontal such that ω= sin θ . Subharmonic perturbations are short-
crested (λ∗/L∗� 1) nearly monochromatic wavepackets with frequency close to ω/2 that
propagate at an angle φ to the horizontal, with sin φ = (sin θ)/2.

the frequency ω of a plane wave with sinusoidal profile depends on the inclination
θ to the vertical, but not the magnitude, of the wavevector. Thus, by superposing
sinusoidal plane waves with wavevectors of different magnitude but pointing in the
same direction, it is possible to construct linear time-harmonic disturbances in the
form of beams. Remarkably, this class of disturbances happen to be also nonlinear
solutions of (2.1) and (2.2) for ν = 0, irrespective of the beam profile (McEwan
1973; Tabaei & Akylas 2003). The dispersion relation (2.4) then links the frequency
0<ω< 1 of a beam to its direction θ relative to the horizontal (figure 1).

The question of interest here is how wave beams with general locally confined
profile differ from sinusoidal plane waves in regard to PSI. We shall address this
issue via an asymptotic theory for weakly nonlinear beams under nearly inviscid flow
conditions. Specifically, the non-dimensional beam amplitude ε is supposed to be
small:

ε = ψ∗
N0L2∗

� 1, (2.5)

where ψ∗ denotes the (dimensional) peak amplitude of the streamfunction and the
length scale L∗ is the characteristic width of the beam (figure 1). Also, viscous effects
are assumed to be weak relative to nonlinear effects (ν/ε� 1; see (2.15) below), as
is the case for spatial scales typical of ocean wave beams (Bourget et al. 2013).

Our discussion of PSI focuses on subharmonic perturbations in the form of
fine-scale, nearly monochromatic wavepackets with frequency close to one half
of the frequency ω = sin θ of the underlying beam. As discussed in § 1, this
choice is motivated by earlier work on PSI of weakly nonlinear sinusoidal plane
waves under nearly inviscid flow conditions (McEwan & Plumb 1977; Koudella &
Staquet 2006), as well as laboratory experiments and numerical simulations of PSI of
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quasi-monochromatic wave beams (Clark & Sutherland 2010). The dispersion relation
(2.4), then, requires the wavepacket carrier wavevector k to be inclined to the vertical
by φ, such that ω/2= sin φ, and we write

k± =± 1
µ

êζ . (2.6)

Here êζ is a unit vector along ζ = x sin φ + y cos φ and µ is a small parameter, to
express the fact that the perturbations are short-crested relative to the beam width:

µ= λ∗
2πL∗

� 1, (2.7)

where λ∗ denotes the (dimensional) carrier wavelength of the subharmonic wavepackets
(figure 1).

Utilizing the presence of these two disparate lengthscales, we shall examine
by asymptotic methods the possibility of the assumed perturbations extracting
energy from the underlying wave beam, leading to instability. This long–short wave
interaction is expected to take place on a time scale of O(1/µ), since, according to
(2.4), the group velocities of wavepackets with carrier wavevectors (2.6) are O(µ):

cg± =±µ(cos2 φ,−sinφ cos φ). (2.8)

Thus, to study the evolution of the subharmonic perturbations due to their interaction
with the wave beam, we define the ‘slow’ time

T =µt, (2.9)

and introduce the following expansions for ψ and ρ:

ψ = ε{Q(η, T)e−iωt + c.c.} +µδ{(A(η, T)eiζ/µ + B(η, T)e−iζ/µ)e−iωt/2 + c.c.} + · · · ,
(2.10a)

ρ = ε{R(η, T)e−iωt + c.c.} + δ{(F(η, T)eiζ/µ +G(η, T)e−iζ/µ)e−iωt/2 + c.c.} + · · · .
(2.10b)

The first curly bracket in expansions (2.10) represents the underlying wave beam
with amplitude parameter ε; the second curly bracket represents the superposed
subharmonic wavepackets with amplitude parameter δ � 1 and carrier wavevectors
given by (2.6). The beam profile amplitudes Q and R vary in the across-beam
direction η = x sin θ + y cos θ , which is also the spatial modulation variable of the
wavepacket envelopes A, B, F and G. In stability studies based on the so-called
‘pump wave’ approximation, the perturbation amplitude parameter δ is assumed to be
infinitesimal (δ� ε), and the beam profile is frozen in time. As unstable perturbations
grow at the expense of the underlying beam, however, eventually some feedback is
anticipated, so Q and R are allowed to evolve with T in (2.10). The magnitude of
δ relative to ε for such full coupling to take place is determined below (see (2.16));
ε and δ, as well as ν and µ introduced earlier, are treated as independent small
parameters at this stage.

Upon substituting expansions (2.10) into the governing equations (2.1) and (2.2),
we collect terms proportional to exp(−iωt) and exp(±iζ/µ) exp(−iωt/2). This results
in six coupled equations for the beam amplitudes Q and R and the subharmonic
wavepacket envelopes A, B, F and G. After consistent elimination of R, F and G, the
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following system of equations for Q, A and B is obtained:

µQT − i
2ω
µ2QTT + 2

δ2

ε
sin χ cos2 1

2
χAB− ν

2
Qηη =O(µ3, µδ2/ε), (2.11)

µ
(
AT + cAη

)− i
2
µ2c′Aηη + 1

2
ν

µ2
A− i

ε2

µ2

sin2 χ

ω

∣∣Qη

∣∣2 A

+ ε sin χ
{

3
2

QηηB∗ + 2
ω

QηB∗T +
1
ω

QηTB∗
}
=O(εµ, µ3, δ2, ε2/µ), (2.12a)

µ
(
BT − cBη

)− i
2
µ2c′Bηη + 1

2
ν

µ2
B− i

ε2

µ2

sin2 χ

ω

∣∣Qη

∣∣2 B

+ ε sin χ
{

3
2

QηηA∗ − 2
ω

QηA∗T −
1
ω

QηTA∗
}
=O(εµ, µ3, δ2, ε2/µ), (2.12b)

where

c= ω
2
(2− cos χ), c′ = ω

2
(3 cos2 χ − 4 cos χ − 1). (2.13a,b)

Here, χ = θ − φ and ∗ denotes complex conjugate. Details of the derivation of this
system are given in appendix A.

Focusing on (2.12) and recalling that T = µt, the leading-order terms indicate that
the envelopes A and B of the subharmonic wavepackets travel across the beam with
speed ±µc = cg± · êη, the projection of the respective group velocity (2.8) on the
modulation direction η, where êη is a unit vector along η. The higher-order terms
in (2.12) account for the O(µ2) effects of dispersion, the O(ν/µ2) effects of viscous
dissipation and the nonlinear effects due to the coupling with the underlying beam.
The latter comprise O(ε2/µ2) cubic terms, which can only affect the phases of the
complex envelopes A and B and may be interpreted as nonlinear refraction terms, as
well as O(ε) quadratic interaction terms which may give rise to energy exchange with
the beam.

Based on (2.12) and (2.13), we now determine the proper balance between the small
parameters ε, µ, ν and δ so that nonlinear, dispersive and viscous effects partake
equally in the coupled evolution of the subharmonic perturbations with the underlying
beam. From (2.12), the O(µ2) dispersive terms are as important as the O(ε) quadratic
interaction and the O(ε2/µ2) nonlinear refraction terms, if µ∼ ε1/2. Thus, we put

µ= ε
1/2

κ
, (2.14)

where κ =O(1) is a normalized carrier wavenumber of the subharmonic wavepackets.
In view of (2.14), the scaling

ν = 2αε2, (2.15)

where α = O(1), then brings the effects of viscous dissipation to the same level
as those of dispersion and nonlinearity. Finally, returning to (2.11), for the beam
amplitude Q to evolve on the same time scale as the wavepacket envelopes A and B,
we set

δ = ε. (2.16)

Hence, full nonlinear coupling occurs when the subharmonic perturbations reach an
amplitude comparable with that of the underlying beam. Also, from (2.14)–(2.16), it is
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now clear that the O(ν) viscous term in (2.11) is relatively small in comparison with
the quadratic interaction term; naturally, viscous dissipation predominantly affects the
perturbations, as they are of fine scale relative to the beam.

Upon implementing (2.14)–(2.16), (2.11) and (2.12), correct to O(ε1/2), become

QT ′ + 2ε1/2 sin χ cos2
(

1
2χ
)

AB= 0, (2.17)

AT ′ + c
κ

Aη − i
2
ε1/2 c′

κ2
Aηη + ε1/2ακ2A− iε1/2κ2 sin2 χ

ω

∣∣Qη

∣∣2 A

+ ε1/2 sin χ
{

3
2

QηηB∗ + 2
c
ω

QηB∗η

}
= 0, (2.18a)

BT ′ − c
κ

Bη − i
2
ε1/2 c′

κ2
Bηη + ε1/2ακ2B− iε1/2κ2 sin2 χ

ω

∣∣Qη

∣∣2 B

+ ε1/2 sin χ
{

3
2

QηηA∗ + 2
c
ω

QηA∗η

}
= 0, (2.18b)

where
T ′ = ε1/2t= κT. (2.19)

According to the evolution equations (2.18), subharmonic perturbation wavepackets
are expected to travel across a beam of O(1) width virtually intact. As noted earlier,
of the dispersive, nonlinear and viscous effects in (2.18), only the quadratic interaction
terms are potentially destabilizing. These terms, however, being O(ε1/2), are small
relative to the propagation terms associated with the wavepacket group velocities, and
cannot bring about instability in the limited time that the perturbations are in contact
with the underlying beam.

More specifically, in the pump-wave approximation where the beam profile Q(η)
does not evolve in time, the nonlinear refraction terms can be removed from (2.18)
by letting

(A, B∗)→ (A, B∗) exp
{

iε1/2 κ
3

cω
sin2 χ

∫ η ∣∣Qη

∣∣2 dη
}
. (2.20)

As they modify only the phases of the wavepacket envelopes A and B, these terms
have no impact on stability. Focusing now on the O(ε1/2) quadratic interaction terms
in (2.18), to stand a chance of causing instability, they must be comparable with
the O(c/κ) propagation terms which control the duration of the interaction of the
perturbations with the beam:

c
κ
=O(ε1/2). (2.21)

The above requirement could conceivably be satisfied by short-wavelength
perturbations with κ =O(ε−1/2); in this limit, however, the phases of the wavepacket
envelopes in (2.20) become O(1/ε) so they vary on the same scale as the carrier
exp(±iζ/µ) in view of (2.10) and (2.14), violating the premises of the asymptotic
theory. A feasible way to meet (2.21) is by taking c= O(ε1/2), which supposes that
the wavepacket group velocities (2.8) nearly vanish; the perturbations then remain
almost stationary and could extract significant energy from the underlying beam to
cause instability. This resonant flow situation, although not possible here as is clear
from (2.13), can arise when Coriolis effects are taken into account and is responsible,
due to the Earth’s rotation, for the instability of internal-tide beams to near-inertial
subharmonic disturbances (Gerkema et al. 2006; Young et al. 2008). Detailed analysis
of PSI under such resonant conditions is presented in Karimi (2015).
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FIGURE 2. Schematic of interaction of nearly monochromatic wave beam of frequency
ω = sin θ and non-dimensional amplitude ε � 1 with subharmonic perturbations of
frequency close to ω/2= sinφ. The beam profile comprises a sinusoidal carrier modulated
by a slowly varying envelope, Λ∗/D∗ = O(ε1/2), where Λ∗ denotes the (dimensional)
carrier wavelength and D∗ the characteristic width of the envelope. The perturbations
are short-scale wavepackets with (dimensional) carrier wavelength λ∗, such that λ∗/Λ∗ =
O(ε1/2).

Our conclusion that small-amplitude beams with general locally confined profile
are stable to short-scale subharmonic perturbations may come as a surprise in view
of the well-established PSI of weakly nonlinear sinusoidal plane waves. As noted in
§ 1, PSI of a monochromatic wave arises due to subharmonic disturbances that form
resonant triads with the underlying wavetrain. For a localized beam with general
profile of O(1) width, however, this triad mechanism, while still present by virtue
of the quadratic interaction terms in (2.18), cannot cause instability, as perturbations
travel with their respective group velocities and triad interactions have relatively little
time to act. To further clarify this essential difference between sinusoidal waves
and localized beams, we now turn to a discussion of PSI for beams with profile in
the form of a monochromatic carrier with O(1) wavelength, modulated by a locally
confined envelope.

3. Nearly monochromatic beam profile
Consider a uniform wave beam of frequency ω= sin θ with nearly monochromatic

profile, involving a carrier modulated by a localized envelope (figure 2). Here it is
convenient to choose as the characteristic length scale L∗=Λ∗/2π, where Λ∗ denotes
the (dimensional) carrier wavelength of the beam profile; thus, the beam carrier
wavevector

k0 = êη, (3.1)
where êη is a unit vector in the cross-beam direction, as before. Also, the (dimensional)
characteristic width of the beam envelope D∗ satisfies D∗�Λ∗ (see (4.2) below for
the precise scaling of D∗ in terms of Λ∗).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

50
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.509


PSI of internal waves 389

The perturbations again are taken to be short-scale (relative to Λ∗) wavepackets
with frequency close to ω/2= sin φ (figure 2). Since PSI arises due to subharmonic
disturbances that form resonant triads with the basic wavetrain, recalling (2.6) and
(2.14), the wavepacket carrier wavevectors are chosen as

k± =± κ

ε1/2
êζ + 1

2
k0; (3.2)

thus, k++ k−= k0, as required for the members of a resonant triad. Upon substituting
(3.2) in the dispersion relation (2.4) and making use of cg± · êη =±ε1/2c/κ , with cg±
and c as given in (2.8) and (2.13), respectively, we find

ω± = 1
2
ω± 1

2
ε1/2

κ
c+O(ε); (3.3)

hence, ω+ + ω− = ω + O(ε). This confirms that k+, k− and k0 form a resonant triad
correct to O(ε1/2) and also suggests that the appropriate ‘slow’ time for the evolution
of the subharmonic perturbation wavepackets is

τ = εt. (3.4)

Returning now to (2.17) and (2.18), we adapt these evolution equations to the
problem at hand: the interaction of a nearly monochromatic beam of frequency ω and
carrier wavevector k0 with two subharmonic wavepackets having carrier wavevectors
(3.2) and frequencies (3.3). Specifically, combining (3.2) and (3.3) with (2.19), the
appropriate expressions for the wavepacket envelopes A(η, T ′) and B(η, T ′) are

A= exp
{

i
2

(
η− c

κ
T ′
)}

a(ξ , τ ), B= exp
{

i
2

(
η+ c

κ
T ′
)}

b(ξ , τ ). (3.5a,b)

Here, a and b are complex envelopes that evolve on the slow time τ defined in (3.4)
and depend on the ‘stretched’ across-beam coordinate

ξ = ε1/2η, (3.6)

such that spatial and temporal modulations are equally important. In addition, the
profile amplitude Q(η, T ′) of the nearly monochromatic wave beam with carrier
wavevector (3.1) takes the form

Q= q(ξ , τ )eiη, (3.7)

where q denotes the beam envelope, which also evolves on τ and depends on ξ ; this
ensures strong coupling with the two subharmonic wavepackets, as shown below.

Inserting (3.5) and (3.7) into (2.17) and (2.18), after some simplification making use
of (2.13), we find that a, b and q are governed by

aτ + c
κ

aξ + i
8

c′

κ2
a+ ακ2a− i

κ2

ω
sin2 χ |q|2 a− sin χ cos2

(
1
2
χ

)
qb∗ = 0, (3.8a)

bτ − c
κ

bξ + i
8

c′

κ2
b+ ακ2b− i

κ2

ω
sin2 χ |q|2 b− sin χ cos2

(
1
2
χ

)
qa∗ = 0, (3.8b)

qτ + 2 sin χ cos2
(

1
2χ
)

ab= 0. (3.9)
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Finally, it is possible to remove the terms involving c′ from (3.8),

aτ + c
κ

aξ + ακ2a− i
κ2

ω
sin2 χ |q|2 a− sin χ cos2

(
1
2
χ

)
qb∗ = 0, (3.10a)

bτ − c
κ

bξ + ακ2b− i
κ2

ω
sin2 χ |q|2 b− sin χ cos2

(
1
2
χ

)
qa∗ = 0, (3.10b)

by letting

a→ a exp
(
−i

c′

8cκ
ξ

)
, b→ b exp

(
i

c′

8cκ
ξ

)
; (3.11a,b)

this amounts to an O(ε1/2) shift of the carrier wavevectors k±→ k± ∓ (c′/8cκ)ε1/2êη
in (3.2).

As a result of the scalings chosen above, no small parameter appears explicitly in
the evolution equations (3.9) and (3.10). In this ‘distinguished limit’, the effects that
control the interaction of the subharmonic wavepacket envelopes a and b with the
beam envelope q, are equally important. Specifically, according to (3.10), the transport
of a and b with their respective group velocities is balanced by viscous and nonlinear
effects, while at the same time q is evolving in response to its nonlinear coupling with
a and b, as described by (3.9).

The system of equations (3.9) and (3.10) forms the basis for the discussion of PSI
of wave beams in the remainder of the paper.

4. Stability analysis
A uniform beam corresponds to the steady-state solution

q= q(ξ), (4.1)

with a= b= 0, of (3.9) and (3.10). The linear stability of this state is examined by
assuming that perturbations are small compared with the underlying beam (|a|, |b| �
|q|). It then follows from (3.9) that q is frozen in time (pump-wave approximation),
so a, b are governed by (3.10) with q= q(ξ).

To bring out the effect of the finite extent of a beam, we let ξ → ξ/D and take
q(ξ) to have fixed O(1) width. Here, D is the scaled width of the beam envelope in
terms of the beam carrier wavelength,

D= 2π
D∗
Λ∗
ε1/2 = 2πNε1/2, (4.2)

and N = D∗/Λ∗ measures the number of carrier wavelengths contained in the beam
(see figure 2). It is also convenient to factor out the refraction terms in (3.10), which
have no impact on stability, via a substitution analogous to (2.20)

(a, b∗)→ (a, b∗) exp
{

i
Dκ3

ωc
sin2 χ

∫ ξ

|q|2 dξ ′
}
. (4.3)

Thus, a and b satisfy the reduced system

aτ + c
Dκ

aξ + ακ2a− γ qb∗ = 0, (4.4a)

bτ − c
Dκ

bξ + ακ2b− γ qa∗ = 0, (4.4b)

with
γ = sin χ cos2

(
1
2χ
)
. (4.5)
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4.1. Sinusoidal wavetrain
From (4.4), it is easy to recover the well-known PSI of weakly nonlinear sinusoidal
wavetrains by letting D→∞ and setting q = 1/2; the peak amplitude of the wave
streamfunction is thus normalized to ε, according to (2.10a) and (3.7). Normal-mode
solutions, (a, b∗)∝ exp(λτ), of (4.4) then satisfy(

λ+ ακ2
)2 = 1

4γ
2, (4.6)

and the disturbance growth rate is

λ= 1
2γ − ακ2. (4.7)

Using (4.5) and recalling that χ = θ − φ with sin θ = 2 sin φ, it can be verified, after
some trigonometry, that (4.7) in the inviscid limit (α= 0) agrees with the growth rate
of inviscid PSI quoted in equation (10) of Koudella & Staquet (2006).

According to (4.7), the inviscid growth rate of PSI is independent of the disturbance
wavenumber κ so there is no preferred wavelength of instability. Viscous effects
stabilize the relatively short waves with κ >

√
γ /2α, and the maximum growth rate

is then obtained for κ = 0. (Strictly, the asymptotic theory, which assumes fine-scale
disturbances obeying (2.14), breaks down for κ � 1; under the present weakly
nonlinear nearly inviscid flow conditions, the maximum growth rate is realized for
finite but small κ , as illustrated in figure 3 of Koudella & Staquet (2006) and in
figure 11(a) of Bourget et al. (2013).)

The conclusion that the strongest PSI arises for perturbations with small κ ,
holds only for sinusoidal wavetrains, which have infinite extent (D → ∞). As
remarked earlier, in the case of beams with locally confined profile, the duration
of the interaction of perturbations with the underlying wave is controlled by the
group velocity c/κ , making instability less likely as κ is decreased; as a result, a
low-wavenumber cutoff is to be expected, in addition to the high-wavenumber cutoff
imposed by viscous effects. Thus, instability, if present at all, occurs in an interval
of finite κ , and the maximum growth rate is realized at a certain κ = O(1) within
this window. A detailed discussion of this scenario follows.

4.2. Eigenvalue problem
The stability of beams with locally confined envelope, q(ξ)→ 0 as ξ→±∞, hinges
upon finding normal-mode solutions of (4.4)

(a, b∗)=
(

â(ξ), b̂∗(ξ)
)

eλτ , (4.8)

with λ= λr + iλi, that decay to zero far from the beam:

â→ 0, b̂∗→ 0 (ξ→±∞) . (4.9a,b)

Substituting (4.8) into (4.4), â and b̂∗ thus satisfy

âξ + λ̂â− κ̂qb̂∗ = 0, (4.10a)

b̂∗ξ − λ̂b̂∗ + κ̂q∗â = 0, (4.10b)

with
λ̂= (λ+ ακ2

) D
c
κ, κ̂ = γD

c
κ. (4.11a,b)
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For given envelope profile q(ξ), (4.10) along with the boundary conditions (4.9)
define an eigenvalue problem, with λ̂= λ̂r+ iλ̂i being the eigenvalue and κ̂ a parameter
that controls the perturbation wavenumber κ . Solving this eigenvalue problem provides
λ̂ = λ̂(κ̂), and the stability of the underlying beam is decided by the disturbance
growth rate λr which follows from (4.11),

λr = γ λ̂r

κ̂
− αc2

D2γ 2
κ̂2, (4.12)

with λr > 0 implying instability.
It is easy to verify that, for given q(ξ) and κ̂ , if {λ̂; â, b̂∗} is an eigensolution

of the problem (4.9) and (4.10), so is {−λ̂∗; b̂, −â∗}. Choosing then the mode with
λ̂r > 0, the first term in (4.12), which derives from the interaction of the disturbance
with the beam, is destabilizing, whereas the second term accounts for viscous effects
and is stabilizing; the stability of an eigensolution thus depends upon which of these
terms prevails. Based on this criterion, a comprehensive stability analysis of a beam
with certain envelope q(ξ) can be carried out by tracing eigensolution branches as κ̂
is varied.

In the following, for simplicity, the envelope profile q(ξ) will be taken to be real.
In this instance, it can readily be shown (see appendix B) that a countable infinity of
real eigenvalue branches λ̂= λ̂(n)(κ̂) bifurcate at certain critical values of κ̂:

κ̂ (n)c =
(2n+ 1)π

2
∫ ∞
−∞

q(ξ) dξ
(n= 0, 1, 2, . . .). (4.13)

In view of (4.11) and (4.12), the lowest of the bifurcation points (4.13), κ̂ (0)c , provides
a minimum value of the perturbation wavenumber,

κmin = c
γD

κ̂ (0)c , (4.14)

below which no instability is possible, even in the absence of viscous dissipation.
Clearly, this low-wavenumber cutoff for instability is a characteristic only of beams
with locally confined profile. As expected, decreasing the beam width D increases
κmin, which makes instability less likely. The presence of κmin, combined with the high-
wavenumber cutoff due to viscous effects in (4.12), confirms that PSI of a localized
beam, if possible at all, is limited to values of κ within a finite window which shrinks
as the beam is made narrower.

5. Top-hat beam envelope
As a simple example, we now work out the details of PSI for the top-hat envelope

profile

q(ξ)=
{

1/2 (|ξ |6 1/2)
0 (|ξ |> 1/2),

(5.1)

which represents a uniform sinusoidal wave of peak amplitude ε and finite width,
similar to the type of beams studied in the laboratory experiments of Bourget et al.
(2013). For this choice of q(ξ), it is feasible to solve the eigenvalue problem (4.9)
and (4.10) by analytical means.
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Briefly, under the normalization â= exp(−λ̂ξ) for ξ > 1/2, the appropriate solution
of (4.10) that also satisfies conditions (4.9) takes the form

â= e−λ̂ξ , b̂∗ = 0 (ξ > 1/2), (5.2a)

â= 0, b̂∗ =Deλ̂ξ (ξ <−1/2), (5.2b){
â
b̂∗

}
=D+

{
1

B+

}
eiσξ +D−

{
1

B−

}
e−iσξ (|ξ |< 1/2) , (5.3)

where

σ =
(

1
4
κ̂2 − λ̂2

)1/2

, B± = 2
κ̂

(
λ̂± iσ

)
, (5.4a,b)

and D+,D− and D are constants to be determined. Enforcing continuity of â and b̂∗
at ξ =±1/2 then leads to the characteristic equation

λ̂ sin σ + σ cos σ = 0 (5.5)

for the eigenvalues λ̂= λ̂(κ̂).
From (5.5), one may verify that a countable infinity of real eigenvalue branches,
λ̂= λ̂(n)(κ̂), bifurcate at

κ̂ (n)c = (2n+ 1)π (n= 0, 1, 2, . . .), (5.6)

in agreement with (4.13). On each of these solution branches and κ̂ slightly above the
bifurcation point κ̂ (n)c ,

λ̂(n) = (2n+ 1)π
4

(
κ̂ − κ̂ (n)c

)+ · · · , (5.7)

while, in the other extreme, κ̂� κ̂ (n)c ,

λ̂(n) ∼ 1
2
κ̂ − n2π2

κ̂
+ · · · . (5.8)

In view of (4.11) and (4.12), the leading-order term in (5.8) recovers the growth rate
(4.7) of PSI for a uniform sinusoidal wave; as expected, for very short subharmonic
disturbances (κ� 1), a nearly monochromatic localized beam behaves like an infinite
sinusoidal wavetrain. Moreover, the same is true when the width of the beam envelope
is increased (D� 1) for κ =O(1) fixed, since κ̂� 1 in this limit as well, according
to (4.11).

Returning now to expression (4.12) for the disturbance growth rate λr, instability
(λr > 0) arises if

λ̂(κ̂) >Cκ̂3, (5.9)

where

C= αc2

γ 3D2
. (5.10)

Figure 3 shows the first three eigensolution branches λ̂= λ̂(n)(κ̂) of the characteristic
equation (5.5), which bifurcate at κ̂ (n)c = (2n + 1)π (n = 0, 1, 2) according to (5.6),
along with the cubic in κ̂ on the right-hand side of (5.9), taking C= 1.5× 10−3 for
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FIGURE 3. Plots (—) of the first three eigenvalue branches λ̂(n)(κ̂) of the characteristic
equation (5.5), which bifurcate at κ̂ (n)c = (2n+ 1)π for n= 0, 1, 2. The intersections of the
lowest (n= 0) of these modes with the cubic Cκ̂3 (—), shown here for C= 1.5× 10−3,
determine the range of unstable disturbance wavenumbers κ̂l < κ̂ < κ̂u. The dashed lines
(– –) indicate the asymptotic approximations (5.7) and (5.8) of λ̂(0)(κ̂) near and far away
from the bifurcation point κ̂ (0)c , respectively.

illustration. For this C, the cubic intersects the first two eigensolution branches (n=
0, 1), so for a certain range of κ̂ the instability condition (5.9) can be satisfied by
either of these modes; however, the lowest mode (n= 0) always provides the dominant
instability (largest growth rate) since λ̂(0)(κ̂) > λ̂(1)(κ̂). Specifically, there is a finite
range of unstable disturbance wavenumbers, κ̂l < κ̂ < κ̂u, where κ̂l and κ̂u denote the
values of κ̂ at which the cubic Cκ̂3 intersects the lowest-eigenvalue curve (figure 3).
Within this finite window of instability, the wavenumber that has the maximum growth
rate (4.12) is expected to emerge from a general initial perturbation as the preferred
scale of PSI.

It is clear from figure 3 that, in order for the cubic Cκ̂3 to intersect the eigenvalue
curve λ̂(0)(κ̂), and hence instability to be possible, the parameter C in (5.10) must be
less than a critical value Cc (= 0.0108),

C<Cc. (5.11)

Combining (5.10) with (2.15), this condition for instability can be written as

ε

ν1/2

γ 3/2

c
D>

(
1

2Cc

)1/2

. (5.12)

Thus, PSI of a locally confined beam is controlled by: ε/ν1/2, the strength of nonlinear
relative to viscous effects; the beam frequency which fixes the beam propagation
direction and hence c and γ according to (2.13) and (4.5); and D, which fixes the
envelope width. More specifically, for given Reynolds number 1/ν, a beam of certain
frequency and amplitude parameter ε becomes unstable when D exceeds the critical
value

Dc =
(

1
2Cc

)1/2 c
γ 3/2

ν1/2

ε
. (5.13)
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Recalling the scaling (4.2), the critical envelope width Dc translates into a minimum
number of carrier wavelengths,

Nc = 1
2π

(
1

2Cc

)1/2 c
γ 3/2

ν1/2

ε3/2
, (5.14)

which a weakly nonlinear nearly monochromatic beam must comprise to develop PSI.
Note that, since ν1/2/ε =O(1) according to (2.15), Nc =O(ε−1/2).

Although it was derived for the particular envelope profile (5.1), the instability
condition (5.12) holds in general for real, locally confined envelopes, as suggested
by the bifurcation analysis of the eigenvalue problem (4.9) and (4.10) presented in
appendix B; only the value of Cc depends on the specific envelope shape. Hence, the
stability criterion (5.12) as well as expressions (5.13) and (5.14) for the minimum
envelope width and number of cycles, respectively, required for instability, are also
generally valid.

6. Transient disturbance evolution
We now turn attention to the long-time evolution of PSI, when unstable disturbances

are no longer infinitesimal and full coupling with the underlying beam is in effect, as
described by (3.9) and (3.10).

As in the simulations of Clark & Sutherland (2010), here the unperturbed beam is
taken to have a Gaussian envelope profile, in the normalized form

q(ξ)= 1
2 exp

(−ξ 2
)
, (6.1)

so that the wave streamfunction has peak amplitude ε. The assumed initial
perturbations consist of small subharmonic disturbances that are locally confined
in the beam vicinity and whose wavenumber κ is within the window of instability
predicted by the linear stability analysis of § 4.2.

For the envelope profile (6.1), in particular, it follows from the eigenvalue problem
(4.9) and (4.10) that the fundamental eigensolution branch λ̂(0)(κ̂), which bifurcates at
κ̂ (0)c =

√
π according to (4.13), intersects with the cubic Cκ̂3 when C< Cc = 2.66×

10−2. (The eigenvalues were computed numerically, solving (4.9) and (4.10) by centred
finite differences on a uniform grid with 1ξ = 0.01 and −10< ξ < 10.) Taking C=
5 × 10−3, instability then arises for 1.81 < κ̂ < 9.15. In addition, we choose D = 1
for the envelope width and θ =π/4 for the beam propagation angle to the horizontal;
this, in turn, fixes the beam frequency ω= sin θ = 1/

√
2, the subharmonic propagation

angle φ= sin−1(ω/2)= 0.3614, the group velocity c= 0.3849 in (2.13), the parameter
γ = 0.3932 in (4.5), and α = 2.05 × 10−3 in view of (5.10). Thus, from (4.11), the
disturbance wavenumber κ=0.9788κ̂ , so the range of unstable wavenumbers is 1.77<
κ < 8.96, with the largest growth rate (4.12) corresponding to κ = 4.29.

The evolution equations (3.9) and (3.10) were solved numerically using as initial
conditions

q= q(ξ), a= b= q(ξ)
100

(τ = 0), (6.2a–c)

with q(ξ) given by (6.1), and perturbation wavenumber within the unstable range
1.77< κ < 8.96 determined above. The numerical method used second-order centred
finite differences on a uniform grid, with 1ξ = 0.02 and −25 < ξ < 25, and
fourth-order Runge–Kutta time stepping with 1t= 0.005.
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FIGURE 4. Evolution of wave beam, with initially Gaussian envelope (6.1), and
subharmonic perturbations with the most unstable wavenumber, according to numerical
solution of the coupled equations (3.9) and (3.10) subject to the initial conditions (6.2).
The wave envelope magnitudes of the beam (|q|) and the perturbations (|a|, |b|) are
displayed at various times τ .

As the initial perturbations in (6.2) are small relative to the uniform beam, in
the early stages of our computations the disturbance evolution is governed by the
linearized system (4.4), confirming the predictions of the linear stability analysis.
After an initial adjustment period, a and b adapt to the fundamental instability
eigenmode and grow exponentially in τ with the growth rate (4.12) corresponding to
the chosen value of κ . However, since a and b grow at the expense of q according
to the fully coupled equation system (3.9) and (3.10), this exponential growth cannot
be sustained: as the beam becomes less steep, the subharmonic wavepackets can no
longer stay locked onto it; as a result, the nonlinear wave interaction comes to an
end, and the linearly unstable disturbances eventually decay due to viscous dissipation
as they move away from the beam with their respective group velocities.

This scenario is illustrated in figure 4 for subharmonic perturbations with the most
unstable wavenumber, κ = 4.29. Note that the maximum combined amplitude of these
disturbances, reached at τ ≈ 64, is comparable to the beam peak amplitude at that
time, and the final beam peak amplitude, after the perturbations have died out, is
roughly 40 % of its initial value. Hence, the stability parameter C, which is inversely
proportional to the square of the beam amplitude ε according to (2.15) and (5.10),
has effectively been increased by roughly a factor of 6, so finally C ≈ 3 × 10−2; as
this exceeds the critical value for instability, Cc = 2.66× 10−2, the final beam profile
is thus stable according to (5.11).

These findings indicate that the overall effect of PSI in the weakly nonlinear regime
is transfer of energy to short-scale subharmonic perturbations, which ultimately decay
by viscous dissipation, leaving behind a stable beam. However, the rapid growth of
these perturbations and the fact that they become as strong as the underlying beam,
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suggest that overturning and/or shear instability leading to breakdown may be possible
due to PSI, in the case of beams with O(1) non-dimensional amplitude. These finite-
amplitude phenomena, of course, are beyond the reach of the present weakly nonlinear
theory.

7. Concluding remarks

As revealed by the preceding analysis, in order for PSI of locally confined internal
wave beams to set in, subharmonic perturbations must overlap with the underlying
beam for long enough time to allow triad interactions to act. Specifically, for a beam
with amplitude parameter ε� 1, the time required for triad interactions to come into
play is O(1/ε). In the case of localized beams with general profile of O(1) width,
according to the evolution equations (2.18), this nonlinear interaction time scale is
longer than t = O(ε−1/2), the time it takes short-scale subharmonic wavepackets to
travel across the beam. As a result, no PSI is possible save for the resonant situation
where the wavepacket group velocity happens to vanish or nearly so.

On the other hand, when the beam profile is nearly monochromatic, comprising a
sinusoidal carrier with O(1) wavelength modulated by a locally confined envelope of
O(ε−1/2) width, short-scale subharmonic perturbations evolve on the same time scale,
t = O(1/ε), as triad interactions. Thus, the propagation of subharmonic disturbances
is in balance with nonlinear-interaction effects and weak viscous dissipation, as
indicated by the evolution equations (3.8) and (3.9). In this instance, if the beam
obeys condition (5.12), PSI is possible for a finite range of disturbance wavenumbers.

According to the stability criterion (5.12), larger-amplitude and wider beams are
more prone to PSI. Specifically, given the fluid stratification and viscosity, a beam
of certain carrier wavelength and small amplitude can suffer PSI if its width exceeds
the threshold (5.13); thus, the beam profile must comprise a minimum number of
carrier wavelengths for instability to arise. In keeping with our assumption of weakly
nonlinear nearly monochromatic beams, this critical number turns out to be relatively
large, Nc = O(ε−1/2). The theoretical stability criterion (5.12) could be confirmed
by numerical simulations and perhaps laboratory experiments. In fact, in very recent
experimental and numerical work, Bourget et al. (2014) have confirmed that the finite
width of a beam does play an important role in resonant-triad instability; however,
as in their earlier study (Bourget et al. 2013), owing to viscous effects, the unstable
perturbations were not of the short-scale subharmonic type discussed here.

The conclusion reached here, that nearly monochromatic wave beams can suffer PSI
as opposed to localized beams of O(1) width which were found to be stable, seems
consistent with the experiments and simulations of Clark & Sutherland (2010). As
noted in § 1, a novel feature of these experiments was that wave beams were induced
via a cylinder performing relatively large-amplitude vertical oscillations (amplitude-
to-diameter ratio ≈0.33). In response to this forcing, the turbulent oscillatory flow
surrounding the cylinder acted as wave source, and the resulting quasi-monochromatic
wave beams were observed to breakdown due to PSI. By contrast, no PSI was detected
in relatively thin beams generated by similar means, but with a cylinder performing
smaller-amplitude oscillations (amplitude-to-diameter ratio ≈0.10), in which case the
beam width was set by the cylinder radius (Sutherland et al. 1999; Sutherland &
Linden 2002).

Quantitative comparison of the predictions of the asymptotic analysis with Clark &
Sutherland (2010), strictly, is not feasible since the experimentally observed beams,
as well as those used as initial conditions in companion simulations, had finite
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amplitude and involved only roughly two carrier wavelengths. Specifically, using
L∗ = 1/kσ , where kσ ≈ 0.6 cm−1 is the experimentally observed carrier wavenumber,
the wave amplitude parameter ε defined in (2.5) of the beam used in these simulations,
is estimated from figure 15(a) of Clark & Sutherland (2010) as ε= 0.79, 0.55 for the
stratified solution of NaCl and NaI, respectively. To convert the Gaussian envelope
profile used in their simulations to the normalized form (6.1), the dimensionless
width parameter D = √2ε1/2kσσ0, where σ0 is the (dimensional) standard deviation.
Taking σ0 as a quarter of the beam width, kσσ0≈ 2.6 according to figure 15(a), which
translates into 4σ0(kσ/2π) ≈ 1.65 carrier wavelengths contained in the beam; also,
D≈ 3.2, 2.7 for the solution of NaCl and NaI, respectively.

For these ε, D and θ = π/4 for the beam propagation angle, the values of
the stability parameter in (5.10) for the two stratified solutions turn out to be
C≈ (3.2, 6.4)× 10−4, well below the critical value Cc= 2.66× 10−2 for the Gaussian
(6.1). Hence, the beam profile in the simulations is clearly unstable according to
the linear stability criterion (5.11). Moreover, from (4.12), the theoretical maximum
instability growth rate, εN0λr|max ≈ 0.2 s−1, is about twice the numerical growth rate
estimated from figure 15(b,c) of Clark & Sutherland (2010). Also, the theoretically
most unstable wavelength over predicts by a factor of approximately two the preferred
instability wavelength found in the simulations. Given that the beam used as initial
condition in the simulations did not actually have small amplitude and slowly
modulated profile, this rough quantitative agreement with the asymptotic analysis
seems reasonable.

Acknowledgement
This work was supported in part by the US National Science Foundation under grant

DMS-1107335.

Appendix A. Derivation of wave-interaction equations
Here, we provide some intermediate steps in the derivation of the evolution

equations (2.11) and (2.12). Interactions between the underlying beam and subharmonic
perturbations appear through nonlinear resonant terms and are best organized by
phase,

J(ρ, ψ) = µδ2
{

J(Feiζ/µ, Be−iζ/µ)+ J(Ge−iζ/µ, Aeiζ/µ)
}

e−iωt

+ εδ {J(G∗eiζ/µ,Q)+µJ(R, B∗eiζ/µ)
}

e−iωt/2

+ εδ {J(F∗e−iζ/µ,Q)+µJ(R, A∗e−iζ/µ)
}

e−iωt/2 + c.c., (A 1)

J(∇2ψ, ψ) = (µδ)2
{

J(Aeiζ/µ, Be−iζ/µ)+ J(Be−iζ/µ, Aeiζ/µ)
}

e−iωt

+µεδ {J(Qηη, B∗eiζ/µ)+ J(B∗eiζ/µ,Q)
}

e−iωt/2

+µεδ {J(Qηη, A∗e−iζ/µ)+ J(A∗e−iζ/µ,Q)
}

e−iωt/2 + c.c., (A 2)

where

Aeiζ/µ ≡ ∇2Aeiζ/µ =
{−1
µ2

A+ 2
i
µ

cos χAη + Aηη

}
eiζ/µ, (A 3)

Be−iζ/µ ≡ ∇2Be−iζ/µ =
{−1
µ2

B− 2
i
µ

cos χBη + Bηη

}
e−iζ/µ, (A 4)

and χ = θ − φ.
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The evolution equation (2.11) for Q is derived by substituting expansions (2.10) in
the governing equations (2.1) and (2.2) and collecting terms proportional to exp(−iωt).
Making use of the first set of curly brackets in (A 1), it follows from (2.1) that

R=−iQη −µ 1
ω

QηT +µ2 i
ω2

QηTT + δ
2

ε

sin χ
ω

(AG− BF)η +O
(
µ3, µδ2/ε

)
. (A 5)

Upon substituting (A 5) in (2.2) and using (A 2), one then has{
µQT − i

2ω
µ2QTT + δ2

2ε
sin χ (2 cos χAB+ BF− AG)− ν

2
Qηη

}
ηη

=O(µ3, µδ2/ε).

(A 6)
Next, to derive the evolution equations (2.12), we collect terms proportional to

exp(±iζ/µ− iωt/2). Specifically, making use of (A 1), it follows from (2.1) that

F = A− 2iµ
(

1
ω

AT + Aη

)
− 4µ2

ω

(
1
ω

ATT + AηT

)
− 2ε
µ

sin χ
ω

QηG∗

+ 4iε
sin χ
ω2

(
QηG∗

)
T − 2iε

sin χ
ω

QηηB∗ +O(µ3, εµ, δ2), (A 7)

G = −B+ 2iµ
(

1
ω

BT − Bη

)
+ 4µ2

ω

(
1
ω

BTT − BηT

)
+ 2ε
µ

sin χ
ω

QηF∗

− 4iε
sin χ
ω2

(QηF∗)T + 2iε
sin χ
ω

QηηA∗ +O(µ3, εµ, δ2). (A 8)

Also, making use of (A 2), it follows from (2.2) that

A = F− 2iµ
{

1
ω

AT − cos χAη + Fη

}
+µ2

{
Aηη − 4 cos χ

ω
AηT

}
− i

2ν
ωµ2

A

− ε

µ

2 sin χ
ω

QηB∗ − iε
2 sin 2χ
ω

QηB∗η +O(εµ, µ3), (A 9)

B = −G− 2iµ
{

1
ω

BT + cos χBη +Gη

}
+µ2

{
Bηη + 4 cos χ

ω
BηT

}
− i

2ν
ωµ2

B

+ ε

µ

2 sin χ
ω

QηA∗ + iε
2 sin 2χ
ω

QηA∗η +O(εµ, µ3). (A 10)

Putting the leading order balance, F = A and G = −B, from the above into (A 6)
produces (2.11).

Using (A 7) and (A 8) to eliminate F and G from (A 9) and (A 10), we obtain

µ
{

AT + ω2 (2− cos χ)Aη
}
− iµ2

{
3ω
4

Aηη + (2+ cos χ) AηT + 1
ω

ATT

}
+ ν

2µ2
A

+ ε sin χ
{

3
2

QηηB∗ + (2− cos χ)QηB∗η +
1
ω

QηTB∗
}
− i

ε2

µ2

sin2 χ

ω

∣∣Qη

∣∣2 A

=O
(
µ3, εµ, δ2, ε2/µ

)
, (A 11)
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µ
{

BT − ω2 (2− cos χ) Bη
}
− iµ2

{
3ω
4

Bηη − (2+ cos χ) BηT + 1
ω

BTT

}
+ ν

2µ2
B

+ ε sin χ
{

3
2

QηηA∗ + (2− cos χ)QηA∗η −
1
ω

QηTA∗
}
− i

ε2

µ2

sin2 χ

ω

∣∣Qη

∣∣2 B

=O
(
µ3, εµ, δ2, ε2/µ

)
. (A 12)

Finally, to obtain the evolution equations (2.12) for the subharmonic envelopes A and
B, we eliminate AηT, ATT, BηT and BTT in favour of Aηη and Bηη by using the leading-
order balance in (A 11) and (A 12).

Appendix B. Bifurcation of eigensolution branches
Here we show that, for real beam envelope q(ξ), the stability eigenvalue problem

(4.9) and (4.10) admits a countable infinity of real eigenvalue branches, λ̂ = λ̂(n)(κ̂),
which bifurcate at certain critical values of the wavenumber parameter, κ̂ = κ̂ (n)c (n= 0,
1, 2, . . .).

In the vicinity of each bifurcation point, where 0< λ̂� 1, we expand

â= â0 + λ̂â1 + · · · , b̂∗ = b̂∗0 + λ̂b̂∗1 + · · · , (B 1a)

with
κ̂ = κ̂ (n)c + λ̂κ̂ (n)1 + · · · . (B 1b)

Since q(ξ)→ 0 (ξ→±∞), the far-field (outer) solution of (4.9) and (4.10) is taken
in the form

â= e−ξ̃ , b̂∗ = 0 (ξ̃ > 0), (B 2a)
â= 0, b̂∗ =Keξ̃ (ξ̃ < 0), (B 2b)

where ξ̃ = λ̂ξ and K is a constant to be specified by matching with the near-field
(inner) solution, valid for ξ =O(1). Specifically, upon substituting (B 1) in (4.10), â0

and b̂0 satisfy
â0ξ − κ̂ (n)c qb̂∗0 = 0, (B 3a)
b̂∗0ξ + κ̂ (n)c qâ0 = 0, (B 3b)

from which it follows that â2
0 + b̂∗20 is independent of ξ . Thus, to be consistent with

the inner limit (as ξ̃→ 0) of the outer solution (B 2), we set â2
0 + b̂∗20 = 1 so K =±1

in (B 2b), and the appropriate matching conditions for â0 and b̂∗0 are

â0→ 1, b̂∗0→ 0 (ξ→∞) , (B 4a)
â0→ 0, b̂∗0→±1 (ξ→−∞) . (B 4b)

Equations (B 3), subject to (B 4), admit a countable infinity of eigensolutions

â(n)0 = (−1)n sin
{
κ̂ (n)c

∫ ξ

−∞
q
(
ξ ′
)

dξ ′
}
, (B 5a)

b̂∗(n)0 = (−1)n cos
{
κ̂ (n)c

∫ ξ

−∞
q
(
ξ ′
)

dξ ′
}
, (B 5b)

where
κ̂ (n)c =

(2n+ 1)π

2
∫ ∞
−∞

q(ξ) dξ
(n= 0, 1, 2, . . .) (B 6)

are the bifurcation points of the corresponding eigenvalue branches.
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