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ABSTRACT

In the recent subprime mortgage crisis, which has caused banks and insurance
companies to go bankrupt or into acquisition, the lender and insurer have exhib-
ited not only correlated defaults when exposed to common risk factors but also
counterparty default risk, which is triggered by mortgage defaults. Given the
correlated defaults and the counterparty default risk, we use the reduced-form
approach to derive the closed-form formulas of mortgage insurance contracts
with premium refunds, annual premiums and upfront premiums. Regardless of
the nature of the premium structures, the numerical analysis with parameter
calibration demonstrates that both the correlated defaults and the counterparty
default risk significantly impact mortgage insurance premiums, particularly in
long-term mortgage loans.
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1. INTRODUCTION

Canner and Passmore (1994) indicate thatmortgage insurance (MI) plays an im-
portant role in the functioning of the housing finance markets because it trans-
fers the credit risk exposure from lenders to insurers and facilitates the creation
of secondary mortgage markets. The U.S. mortgage guaranty industry is domi-
nated by six insurance groups: MGIC Investment Corporation, Radian Group,
Genworth Financial, PMI Group, American International Group and Old
Republic International Corporation. Subsidiaries of themwrote 93% of the $4.4
billion of premiums in 2010. Owing to the subprimemortgage crisis, the increas-
ing foreclosure rate of borrowers has resulted in capital scarcity for many mort-
gage insurers. These same companies also recorded 71% of the combined $2.4
billion losses in 2010. Two substantial groups, PMI and Old Republic, wrote

Astin Bulletin 44(2), 303-334. doi: 10.1017/asb.2014.4 C© 2014 by Astin Bulletin. All rights reserved.

https://doi.org/10.1017/asb.2014.4 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.4


304 C.-C. CHANG

24.6% of 2010 earned premiums but were forced to stop writing new policies
due to insufficient capital at the end of the third quarter of 2011. Two PMI
subsidiaries were placed into receivership by the state insurance regulator. One,
PMIMortgage Insurance Company, recorded 11.6% of the total mortgage pre-
miums earned in 2010. Huge losses, $2.4 billion in 2010, threaten to destroy
the MI business. The concern is that the losses will continue to grow and, with
limited growth in real estate sales requiring MI, there will be additional with-
drawals from the market and/or potential failures. As a consequence, default
probabilities of mortgage insurers have become a critical factor in valuing MI
contracts.

Previous studies of pricing MI contracts, such as those performed by Kau
et al. (1992, 1993, 1995) and Kau and Keenan (1995, 1999), have used a struc-
tural approach with two static variables, interest rate and housing price, to
model endogenously prepayments as an American call option and defaults as
an American put option. Other studies, such as those performed by Schwartz
and Torous (1992), Dennis et al. (1997) and Bardhan et al. (2006), exogenously
model the unconditional probability of default. Dennis et al. (1997) propose
an actuarial pricing method in which the actuarially fair premiums of different
MI structures, including upfront premiums, annual premiums and premium re-
funds, are determined by the present value of the expected losses (plus a gross
margin) equal to that of the expected premium revenue. However, the expected
losses are simply a constant fraction of the balance of the loan if a borrower is in
default during the life of a mortgage. Using a process that assumes risk-neutral
agents, housing prices follow geometric Brownian motion and constant interest
rates. Bardhan et al. (2006) derive the closed-form formulas of upfront MI pre-
miums, where the expected losses for an insurer are represented as a portfolio of
put options on the collateral of borrowers. Chang et al. (2012) extend Bardhan
et al. (2006) to employ an option-pricing framework to price and hedge the fair
premium of MI by using a linear regression on the comovement of macroeco-
nomic factors and housing prices. Chang et al. (2012) further incorporate the
default risk of the mortgage insurer by using structured models and then sim-
ulate vulnerable American puts (upfront MI premiums) by the Least-Squares
Monte Carlo algorithm.

Some studies (e.g., Deng and Quigley, 2002; Lambrecht et al., 2003; and
Caselli et al., 2008) indicate that the default and prepayment rates of mort-
gages are highly dependent on macroeconomic variables, such as interest rates,
housing prices and employment rates. If the default and prepayment processes
are modeled to incorporate the macroeconomic variables under a structural ap-
proach, it is hard to derive the closed-form formulas for MI premiums. How-
ever, this problem can be solved by an alternative method: the reduced-form
approach. A relative merit of this approach is its flexibility and ability to derive
an analytical solution with two correlated effects: correlated defaults and corre-
lated prepayments. It is important to incorporate the counterparty default risk,
which has been considered by few previous studies, into the MI pricing model,
particularly in the case of a mortgage crisis. Therefore, to fill this gap in the
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existing literature, this article aims to extend the reduced-form model presented
by Jarrow and Yu (2001) as its first goal. Specifically, we model the default and
prepayment processes as functions of exogenous variables. These variables in-
clude interest rates, housing price indices and employment rates, all of which
lead to changes in the probabilities of default and prepayment. This model
can consider the possibility that lenders, insurers and borrowers default prior
to the maturities of MI contracts. The model can also consider the possibility
that borrowers’ defaults increase the lenders’ and insurers’ default rates and de-
fault probabilities. Furthermore, most of the MI pricing articles (e.g., Kau and
Keenan, 1995, 1999; Bardhan et al., 2006) focus on upfront premiums instead of
annual premiums or premium refunds.Hence, the second goal of this article is to
propose a risk-neutral pricingmodel to derive the fair upfront premiums, annual
premiums and premium refunds with correlated defaults, correlated prepay-
ments and counterparty default risk, respectively. Through numerical analysis,
we demonstrate that fair upfront premiums are the cheapest premium structure
and that fair annual premiums are larger than premium refunds. Furthermore,
a borrower’s correlated default is positively related to the premium, whereas a
borrower’s correlated prepayment is negatively related to the premium. The cor-
related default is dominated by the correlated prepayment, which implies that if
the housing price index (HPI) decreases and the unemployment rate increases,
the borrower will decide to default rather than make a prepayment. An increase
in the borrower’s default probability will contribute to an increase in the prob-
ability that the insurer incurs a loss and will thus cause the fair MI premium
to increase. In addition, the longer the loan maturity is, the higher the MI pre-
mium. If the default risk of a lender or a mortgage insurer (counterparty default
risk) increases, the effectiveness of the mortgage insurer’s protection against the
borrower’s default decreases, as does the borrower’s willingness to pay an MI
premium to the insurer. In summary, correlated effects, time to loan maturity
and counterparty default risk are all critical factors in pricing an MI contract.

The next section describes the structure of MI contract. Section 3 models
the hazard processes of the lender, insurer and borrower with correlated effects.
The counterparty default risk is also considered with respect to the lender and
insurer. Section 4 develops the framework for determining the MI premiums of
different structures. Section 5 provides numerical examples of existing premium
structures with parameter calibration to emphasize the impacts of correlated
effects and counterparty default risk on MI premiums. The last section draws
conclusions about our findings and discusses their implications.

2. THE STRUCTURE OF MORTGAGE INSURANCE CONTRACT

In practice, if a borrower’s loan-to-value ratio exceeds 80%, the borrower is re-
quired by the lender to enter a privateMI contract. Figure 1 shows the structure
of a privateMI contract. According to the privateMI contract, the borrower has
to pay theMI premiums to themortgage insurer, who, in turn, guarantees that if
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FIGURE 1: The structure of a private MI contract.

a borrower defaults on a loan, themortgage insurer will pay up to 20% to 30%of
the claim amount to the lender for any loss resulting from a property foreclosure.
Hence, if the contract is immediately terminated after a borrower defaults, the
payments (loss) that the mortgage insurer pays to the lender increases, which, in
turn, increases the likelihood that the mortgage insurer will default, especially
during the subprime mortgage crisis. In addition, if the borrower defaults, the
lender’s default rate may increase because only a part of the mortgage loss (i.e.,
approximately 20% to 30%) is covered by the insurer.

A feasible premium structure is one in which the present value of the ex-
pected losses (plus a gross margin) is equivalent to the present value of the ex-
pected revenue. The existing premium structures of private MI contracts can
be classified as upfront premiums, monthly premiums, level annual premiums
and standard annual premiums based on the frequency of the payments. Note
that the monthly and annual MI premiums are refundable at prepayment for
the fraction of the month or the year that has not passed. However, this type of
refund differs from an upfront premium refund, which could occur more than
one year after the premium payment. Generally speaking, private MI rates fall
within the range of 0.5% to 1%. Federal Housing Administration (FHA) loans
require a premium of 1.5% of the loan value at closing; monthly premiums are
approximately 0.5% of the loan amount.

3. THE MODEL

According to the structure of a private MI contract, there are three types of
agents in the economy: a lender, a mortgage insurer and a borrower. We first
model the hazard processes of the borrower’s default and prepayment. Then,
considering the counterparty default risk, we design the hazard processes of
the lender and the mortgage insurer. An abnormal jump in these processes is
triggered if the borrower defaults during the life of the mortgage. Finally, we
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present the dynamics of the common risk factors that affect the hazard processes
of the lender, the mortgage insurer and the borrower.

3.1. The hazard processes of the borrower’s default and prepayment

Let uncertainty in the economy be described by the filtered probability space
(�, F, Q, (Ft)T

∗
t=0). Under the assumption that the market is complete and arbi-

trage free, there exists a probability measure1 Q, the MI premium is determined
if the present value of the expected losses is equal to that of the expected pre-
mium revenues. Recently, numerous empirical studies, such as those prepared by
Schwartz and Torous (1989, 1993), Quigley and Van Order (1990, 1995), Deng
et al. (2000), Deng and Quigley (2002), Lambrecht et al. (2003), and Caselli
et al. (2008), have indicated that the patterns of default and prepayment are
significantly explained by the following risk factors: interest rate, housing price
return, loan-to-value ratio and unemployment rate. Prepayment probability is
positively related to housing price return but negatively related to unemploy-
ment rate. Conversely, default probability is an increasing function of unemploy-
ment rate but a decreasing function of housing price return. Both probabilities
are positively related to the interest rate. Therefore, the borrower may make a
prepayment decision rather than a default decision if the housing price return
is high and the unemployment rate is low.

To incorporate the empirical results into our pricing model, we define the
enlarged filtration F , under which default and prepayment are interrelated as
follows:

Ft = Fr
t ∨ FM

t ∨ Hd
t ∨ Hp

t ,

where Fr
t = σ(r(s), s ≤ t), FM

t = σ(Mi (s), s ≤ t, i = 1, . . . , n) and Hi
t =

σ(1{τ i≤s}, s ≤ t) for i = d orp; 1{·} is an indicator function; r(t) is the spot rate
at time t; M(t), an Rn-valued stochastic process denotes the time t common risk
factors, such as housing price and unemployment rate. As a result, Fr

T∗ ∨ FM
T∗

contains complete information on the interest rate and all of the common risk
factors. Let τ d and τ p denote a borrower’s default time and prepayment time,
respectively, and satisfy

τ i = inf
{
t :

∫ T

t
λi (r(s),M(s))ds ≥ Ei

}
, i = d or p,

where the default time and prepayment time are considered to be the first jump
time of a doubly stochastic Poisson process (also called aCox process) combined
with a hazard rate process λi (r(t),M(t)); Ei is an exponential random vari-
able independent of state variables; and λi · (r(t),M(t))T

∗
t=0, which represents the

static variables underlying the evolution of the economy, is a process that is right
continuous with left limits Rn+1-valued that is used to predict the likelihood of
default or prepayment. Consequently, the conditional survival probability of τ i ,
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i = d orp, takes on the following form:

P
(
τ i > t

∣∣ Fr
T∗ ∨ FM

T∗
) = exp

(
−

∫ t

0
λi [r(s),M(s)]ds

)
, t ∈ [0,T∗].

As a function of the interest rate and common risk factors, the hazard rates of
default and prepayment can be rewritten as follows:

λi (r(u),M(u)) = f [r(u,M1(u), . . . ,Mn(u))], i = dorp, u ∈ [0,T∗]. (1)

By defining the hazard rates of default and prepayment as linear functions of
the spot rate and the excess returns of influential variables, we have the following
representation:

λi (u) = λi0 + λir r(u) +
n∑
j=1

λix log
(
Mj (u)
B(u)

)
, for i = dorp, (2)

where λd0(λ
p
0 ) denotes the baseline hazard rate of default (prepayment) at time

u; λdr (λ
p
r ) measures the magnitude of default (prepayment) to the level of spot

rate; and λdj (λ
p
j ) represents the magnitude of default (prepayment) to the excess

return of common risk factor j = 1, 2, . . . , n. B(u) = exp(
∫ u
0 r(s)ds), the sav-

ings account, corresponds to the wealth accumulated by an initial $1 investment
at spot rate r(u) in each subsequent period.

Most studies use the Cox proportional hazard model to specify a hazard
function as the product of a baseline hazard rate and an exponential function
of covariates. However, under the pricing framework of martingale measure,
Miltersen et al. (1997) indicate that a double exponential expression causes an
infinite expectation of cumulative factors if the influential variables are lognor-
mally distributed. Therefore, Jarrow and Turnbull (1995), Duffee (1999), Jarrow
and Turnbull (2000), Jarrow and Yu (2001), Calem and LaCour-Little (2004)
and Liao et al. (2008) assume that the hazard rate function is a linear function
of the spot rate and the influential variables. One problem with this assumption
is that the hazard rate function may be negative. However, Jarrow and Turnbull
(1997) indicate that this difficulty can be avoided by using non-linear transfor-
mations in lattice-based models. Furthermore, Duffee (1999) also argues that
this problem can be ignored if the model accurately prices the relevant instru-
ments.

3.2. Hazard processes of the lender and insurer

In addition to risk exposure to the interest rate and common risk factors, mort-
gage defaults will affect the default rates of the lender and mortgage insurer,
particularly during a mortgage crisis. We define the default times of the lender
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and the mortgage insurer as follows:

τ j = inf
{
t :

∫ T

t
λ j (r(s),M(s),τ d)ds ≥ E j

}
, j = I or L, (3)

where the superscripts I and L denote the mortgage insurer and the lender, re-
spectively. By virtue of (3), their default times are connected not only to the
interest rate and common risk factors but also to the default time of the bor-
rower. From this definition, the conditional survival probability of τ j is given
by

P
(
τ j > t

∣∣ Fr
T∗ ∨ FM

T∗ ∨ Hd
T∗

) = exp
(
−

∫ t

0
λ j [r(s),M(s), τ d ] ds

)
, t ∈ [0,T∗],

j = I or L.

Using the law of iterated expectation, we obtain

P(τ j > t) = EQ
[
exp

(
−

∫ t

0
λ j [r(s),M(s), τ d ] ds

)]
, t ∈ [0,T∗],

j = I or L.

Extending the model of Jarrow and Yu (2001), we assume that the hazard rates
of the lender and the mortgage insurer are linear and incorporate n common
risk factors as well as the spillover effect of the borrower’s default to derive the
following expression:

λ j (u) = λ
j
0 + λ j

r r(u) +
n∑

x=1

λ j
x log

(
Mx(u)
B(u)

)
+ 1{τ d≤u}α j

0 , j = I or L, (4)

where λIo(λ
L
o ) denotes the baseline default rate of the mortgage insurer (lender);

λIr (λ
L
r ) measures the magnitude of default to the level of spot rate of the mort-

gage insurer (lender); λ j
x has the anagogic definition; α I

0 (α
L
0 ) represents the jump

size of the mortgage insurer’s (lender’s) default intensity if a borrower defaults.
For example, if α

j
0 > 0, j = I or L, which implies that the contract is imme-

diately terminated in the case of the borrower’s default, the MI premiums (rev-
enue) paid by the borrower to the mortgage insurer decrease, but the payment
(loss) from the mortgage insurer to the lender increases, which, in turn, leads to
an increase in the likelihood of default by the mortgage insurer. Conversely, if
the borrower defaults, the default rate of the lendermay increase because part of
the loss is compensated by the mortgage insurer. Therefore, a borrower default
may lead to a shock in the hazard rates of the lender and the mortgage insurer.
Otherwise, if α

j
0 = 0, j = I or L, a borrower default may not influence the

hazard rates of the lender and the mortgage insurer.
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3.3. Interest rate and common risk factor processes

We use a one-factor model — the extended Vasicek model (see Hull and White
1990) — to describe the evolution of the term structure. That is,2

dr(t) = [θ(t) − α(t)r(t)]dt + σ r dWr
t , (5)

where θ(t)/α(t) denotes the long-term equilibrium value of the process; α(t) is
a non-negative mean reversion speed; σr is the volatility of the spot rate; andWr

t
is a Brownian motion with respect to Ft.

We follow Kau et al. (1992, 1993, 1995) and Liao et al. (2008) in assuming
that common risk factors, such as the HPI and the unemployment rate, follow
a geometric Brownian motion.3 That is,

dMj (t)
Mj (t)

= r(t)dt + σ j dW
j
t , j = 1, 2, . . . , n, (6)

where σ j is the constant volatility of the common risk factor j . Wj
t , a stan-

dard Brownian motion under Q, is correlated with Wr
t and Wi

t and satisfies
E(dWr

t dW
j
t ) = ρr j dt and E(dWi

t dW
j
t ) = ρi j dt, where ρi j (ρr j ) is the correla-

tion coefficient between the common risk factor i (spot rate) and the common
risk factor j and satisfies ρ j j = 1.

4. VALUATION OF MORTGAGE INSURANCE CONTRACTS

In this section, we present a framework under which feasibleMI premium struc-
tures can be constructed given the counterparty default risk. In anMI contract,
a borrower pays insurance premiums to an insurer. A fair premium structure is
one in which the present value of the expected losses is equivalent to the present
value of the expected revenue. The premium structures can include upfront pre-
miums, annual premiums or premium refunds.

Consider a situation in which a lender issues a T-year mortgage loan to a
borrower. This loan originates at time 0 and is secured by the housing prop-
erty. For an MI contract prior to maturity, the borrower determines whether to
prepay, default or make the scheduled payment. Denoted by Rs , the remaining
mortgage balance at the instant after the time-s payment is s ∈ [t,T]. gs is the
ratio of the refund to the remainingmortgage balance. If the borrower decides to
prepay part of the mortgage loan, the mortgage insurer will refund a portion of
the remainingmortgage balance Rsgs to the borrower. If the borrower decides to
default on themortgage loan, themortgage insurer incurs losses proportional to
the remaining mortgage balance LRRs , where LR denotes the ratio of the losses
to the remaining mortgage balance.

In what follows, we first present the discounted values of expected losses
and revenue for the MI contracts subject to counterparty default risk from the
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insurer’s viewpoint. Then we discuss alternative premium structures (e.g., re-
fund, annual and upfront premiums).

4.1. Present value of the expected accumulated revenues for the insurer

During the life of a mortgage, we assume that a borrower pays the insurance
premium csds to a mortgage insurer at each subinterval [s, s + ds]. The MI
contract will be terminated early and the premium payments csds will cease if
one of the following conditions is fulfilled: (1) the borrower defaults prior to
maturity; (2) the borrower prepays prior to maturity; (3) the borrower does not
default but the MI contract is terminated early because the lender has declared
bankruptcy4 or (4) the borrower does not default, but the mortgage insurer goes
bankrupt.

Let ERdenote the present value of the mortgage insurer’s expected revenues
from time t to T. Given the information on the interest rate, the common risk
factors and the default (prepayment) of a borrower before t, which is denoted
by Ft, we have

ER≡ EQ
{∫ T

t

B(t)
B(s)

[
cs Rs1{τ L>s,τ I>s,τ d>s,τ p>s} − 1{τ d>s,t<τ P≤s}gs Rt

]
ds

∣∣∣∣Ft
}

= G1(t,T) − G2(t,T), if τ d > t, τ p > t, τ I > t, τ L > t, (7)

where cs Rs1{τ L>s,τ I>s,τ d>s,τ p>s} indicates that if the borrower does not prepay
and the mortgage lender, insurer and borrower do not default at time S, the
revenue of the mortgage insurer is cs Rs . 1{τ d>s,t<τ P≤s}gs Rt indicates that if the
borrower prepays but does not default at time s, then the mortgage insurer
will refund a portion of the remaining mortgage balance to the borrower. The
closed-form of the first term G1(t,T) in (7) becomes

G1(t,T) =
∫ T

t
cs Rs exp

(
−λK0 (s − t) + 	′μt,s

X + 	′
s,s
t 	

2

)
ds,

where

λK0 = λL0 + λI0 + λd0 + λ
p
0 , λKr = 1 + λLr + λIr + λdr + λp

r ,

λKi = λLi + λIi + λdi + λ
p
i , 	 = [−λKr , −λK1 , . . . , −λKn

]′
,

μ
t,s
X = [μX0(t, s), μX1(t, s), . . . , μXn (t, s)]

′,

μX0(t, s) = ∫ s
t f (t, u)du + 1

2σXt,s
0 Xt,s

0
, μXi (t, s) = (s−t)2

4 σ 2
i ; f (t,T), 0 ≤ t ≤ T ≤

T∗, denotes the forward rate at time t for instantaneous borrowing and lending
at time T. 
s,y

t = (σXt,s
i Xt,y

j
) is a (n+ 1)− by −(n+ 1) covariance matrix; σXt,s

i Xt,y
j
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is the covariance between Xt,s
i and Xt,y

j for s > y, where

Xt,s = [
Xt,s
0 , Xt,s

1 , . . . , Xt,s
n

]
=

[∫ s

t
r(u)du,

∫ s

t
log

[
M1(u)
B(u)

]
du, . . . ,

∫ s

t
log

[
Mn(u)
B(u)

]
du

]
,

σXt,s
0 Xt,y

0
= ∫ y

t b(u, s)b(u, y)du, is the covariance of
∫ s
t r(u)du and

∫ y
t r(u)du,

σXt,s
0 Xt,s

i
= −σiρri

∫ s
t (s − u)b(u, s) du is the covariance of

∫ s
t r(u)du and∫ s

t log[
Mi (u)
B(u) ]du, σXt,s

i Xt,s
j

= (s−t)3
3 σiσ jρi j is the covariance of

∫ s
t log[

Mi (u)
B(u) ]du and∫ s

t log[
Mj (u)
B(u) ]du, i = 1, 2, . . . , n, j = 1, 2, . . . , n,

b(u, s) = −σr D(u, s), D(u, s) =
∫ s

u
exp{−[�(y) − �(u)]}dy,

�(u) =
∫ u

0
α(y)dy.

G1(t,T) is the discount value of MI premiums adjusted by the borrower’s de-
fault and prepayment risks and by the lender’s and insurer’s default risks. Fur-
thermore, the closed-form of the second term G2(t,T) in (7) becomes

G2(t,T) =
∫ T

t
gs Rt exp

(
−λd0(s − t) + φ′μt,s

X + φ′
s,s
t φ

2

)
ds

−
∫ T

t
gs Rtexp

(
−λ

p
0 (s − t) + ϒ ′μt,s

X + ϒ ′
s,s
t ϒ

2

)
ds,

if τ d > t, τ p > t, τ I > t, τ L > t,

where

φ = [− (
1 + λdr

)
, −λd1, . . . , −λdn

]′
,

ϒ = [− (
1 + λdr + λp

r

)
, − (

λd1 + λ
p
1

)
, . . . , − (

λdn + λp
n

)]′
.

The detailed proof is shown in Appendix A. In (7) the present value of the in-
surer’s expected revenue is composed of two parts — G1(t,T), the discounted
value of MI payments adjusted by default and prepayment risks, and G2(t,T),
the discounted value of refund premiums — conditional on no prepayments
and bankruptcies between the lender, mortgage insurer and borrower prior to
time t.
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4.2. Present value of the expected accumulated losses for the insurer

During the life of amortgage, if a borrower defaults without prepaying themort-
gage before the lender and mortgage insurer default (the indicator functions
1{t<τ d≤s}1{τ p>τ d }1{τ I>τ d }1{τ L>τ d } all hold), the mortgage insurer will compensate
the lender for the losses on the mortgage LRRτ d at the default time of borrower
τ d . Hence, the present value of the expected losses from t to T is denoted by EL
and is given by

EL ≡ EQ
[∫ T

t
LRRτ d

B(t)
B(τ d)

1{t<τ d≤s}1{τ p>τ d}1{τ I>τ d}1{τ L>τ d}ds|Ft
]

= G3(t,T), if τ d > t, τ p > t, τ I > t, τ L > t, (8)

where

G3(t,T)

=
∫ T

t
LR

{∫ s

t
Rv exp

(− (
λK0 + α I

0 + αL
0

)
(v − t)

)[(
λd0 + � ′μt,v

W + � ′
̄v,v
t 	

)

× exp
(

	′μt,v
X + 1

2

(
	′
v,v

t 	
))

+ (
αL
0 + α I

0

) ∫ v

t
exp

(−[λd0 − (α I
0 + αL

0 )](x− t)
)

× exp
(

	′μt,v
X + � ′μt,x

X + 1
2

(
	′
v,v

t 	
) + (

� ′
v,x
t 	

) + 1
2

(
� ′
x,x

t �
))

× (
λd0 + � ′μt,v

W + � ′
̄v,v
t � + � ′
̄x,v

t �
)
dx

]
dv

}
ds,

where � = [λdr , λ
d
1, . . . , λ

d
n ]

′, μW = [μr (t, v), μM1(t, v), . . . , μMn (t, v)]′, and sat-
isfies

μr (t, v) = f (t, v) + b(t, v)2

2
and μMi (t, v) = −1

2
σ 2
i (v − t) for i = 1, 2, . . . , n;


̄
y,y
t = (σXt,y

i Wt,y
j

) is a (n + 1)−by−(n + 1) covariance matrix;Wt,y is given by

Wt,y = [
Wt,y

0 ,Wt,y
1 , . . . ,Wt,y

n

]′ =
[
r(y), log

(
M1(y)
B(y)

)
, . . . , log

(
Mn(y)
B(y)

)]′
,

σXt,v
0 Wt,x

0
=

∫ x

t
b(u, v)b(u, x)du, i = 0, 1, 2, . . . , n;
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σXt,y
i Wt,y

j
, which represents the covariance between Xt,y

i andWt,y
j , satisfies

σr t,yXt,y
0

=
∫ y

t
−�(u, y)b(u, y)du,

σXt,y
i r t,y = σiρri

∫ y

t
�(u, y)(y− u) du,

σXt,y
0 Wt,y

i
= −σiρri

∫ y

t
b(u, y)(y− u) du,

σXt,y
j Wt,y

i
=−1

2
σiσ jρi j (y− t)2 for i = 1, 2, . . . , n, j = 1, 2, . . . , n, y = xor v.

G3(t,T) is the present value of expected losses (adjusted by the borrower’s de-
fault and prepayment risks as well as by the lender’s and insurer’s default risks).
Appendix B provides the detailed proof of G3(t,T).

In our pricing model, the fair premium is determined by when the present
value of the expected losses is equal to that of the expected premium revenues.
However, the mortgage insurers are expected to earn a profit margin beyond the
fair premium. Thus, following Equation (5) ofDennis et al. (1997) and Equation
(6) of Bardhan et al. (2006), we determine the mortgage premium charged by
the insurers by adding the profit margin and the fair premium as follows:

ER= (1 + q)EL. (9)

In the Refund case, the MI premium collected at time t is proportional to the
remaining mortgage balance at time t (Rt), and if the borrower decides to pre-
pay part of the mortgage loan, the mortgage insurer will refund a portion of
the remaining mortgage balance to the borrower. Hence, this rate is called the
level annual premium rate with refund. Thus, according to (7)–(9), the condi-
tion of no arbitrage is ER= (1+q)EL, subject to cs = cRF , which implies that
the closed-form formula of a level annual premium rate with refund cRF is as
follows:

cRF = (1 + q)G3(t,T) + G2(t,T)

G∗
1(t,T)

, if τ d > t, τ p > t, τ I > t, τ L > t, (10)

where

G∗
1(t,T) =

∫ T

t
Rs exp

(
−λK0 (s − t) + 	′μt,s

X + 	′
s,s
t 	

2

)
ds.

In light of (10), the annual premium rate is equal to the ratio of the sum of the
discount values of the expected losses (plus a gross margin) and refund premi-
ums to that of the remaining mortgage balance at each time if there is no default
or prepayment prior to evaluation time t.
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In the Annual case, the annual premium collected at time t is proportional
to the remaining mortgage balance Rt and is not refundable if the borrower
prepays. Hence, the Refund case can be reduced to the Annual case if gs =
0(G2(t,T) = 0). Thus, by virtue of (11), as long as there is no default or pre-
payment prior to time t, an annual premium rate cAN is equivalent to the ratio
of the present value of the expected losses (plus a gross margin) to the sum of
the present values of the remaining mortgage balance at each time.

cAN = (1 + q)G3(t,T)

G∗
1(t,T)

, if τ d > t, τ p > t, τ I > t, τ L > t. (11)

Note that in the Upfront case, neither annual premium nor premium refund is
collected; only an upfront fee is paid. The upfront premium is determined by the
present value of the expected losses (plus a gross margin). Hence, the upfront
premium cUP in equilibrium is given by

cUP = (1 + q)EL = (1 + q)G3(t,T). (12)

5. IMPLEMENTING THE MODEL

To emphasize the impacts of correlated effects and counterparty default risk
on the pricing of MI contracts, we first describe the calibration procedures for
implementing the model. Then, through numerical analysis, we show that the
MI premiums would be overpriced if we did not consider the correlated effects
and counterparty default risk, which are two major sources of risks during a
subprime mortgage crisis.

5.1. Estimation of parameters

To illustrate the impacts of both correlated effects and counterparty default risk,
we demonstrate the calibration procedures, including the estimation of the Va-
sicek interest ratemodel, the variance-covariancematrix of common risk factors
and the coefficients for the linear hazard rate functions of the lender, the insurer
and the borrower. Without loss of generality, we adopt two static variables, the
HPI and unemployment rate, as the common risk factors.

By virtue of (10), the MI premium is determined jointly by the following
parameters: (1) the initial yield curve f (t, s) and the parameters α, θ and σr in
the Vasicekmodel under the risk-neutral measure; (2) the volatilities of common
risk factors σi and the correlation parameters ρri and ρi j , i, j = 1, 2, . . . , n; and
(3) the parameters of the hazard rates λd0 , λdr , λd1 , λd2 , λ

p
0 , λ

p
r , λ

p
1 and λ

p
2 for the

borrower and λL0 , λLr , λL1 , λL2 , αL
0 , λI0, λIr , λI1, λ

I
2 and α I

0 for the lender and the
insurer under the risk-neutral measure.

To estimate the parameters α, θ and σr in Vasicek model under the risk-
neutral measure, we use the swap curve with maturities of one, two, three, four,
five, seven, ten and thirty years on April 30, 2008, available from U.S. Federal
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Reserve. Given a number of payment dates Ti , i = α̃+1, . . . , β̃ (called the tenor
structure) and δi = Ti − Ti−1, we calculate theoretical price of swap in Vasicek
model under the risk-neutral measure, using formula

Sα̃,β̃ (t) = B(t,Tα̃) − B(t,Tβ̃ )∑β̃

i=α̃+1 δi B(t,Tα̃)
,

where B(t,Ti ) denotes the price of a zero-coupon bond with maturity Ti at time
t, given by

B(t,Ti ) = A(t,Ti )e−r(t)C(t,Ti ), C(t,Ti ) = 1 − e−α(Ti−t)

α
,

A(t,Ti ) = exp
{(

θ

α
− σ 2

r

2α2

)
(C(t,Ti ) − Ti + t) − σ 2

r

4α
C2(t,Ti )

}
.

Our calibrations are performed by minimizing the sum of the squared errors
between theoretical curve and market curve. Hence, α, θ and σr are estimated as
0.192, 0.003 and 0.021, respectively.5 Furthermore, the instantaneous forward
interest rate with maturity Ti is given by

f (t,Ti ) =
{(

θ − σ 2
r

2
C(t,Ti )

)
C(t,Ti ) + r(t)e−α(Ti−t)

}
.

The excess returns, the sample variances and the correlation coefficients of two
common risk factors — housing price and unemployment rate — are estimated
from the historical market data as follows:

σ̂ 2
1 = Var

(
Mi (t + �t) − Mi (t)

Mi (t)

)
1

�t
, σ̂ 2

2 = Var (Mi (t + �t) − Mi (t))
1

�t
,

ρ̂ri = Corr
(
Mi (t + �t) − Mi (t)

Mi (t)
, r(t + �t) − r(t)

)
, i = 1, 2,

ρ̂12 = Corr
(
M1(t + �t) − M1(t)

M1(t)
,M2(t + �t) − M2(t)

)
,

where M1 denotes the U.S. HPI and M2 denotes the unemployment rate. Based
on monthly data for the U.S. unemployment rate and the Office of Federal
Housing Enterprise Oversight’s HPI from January 2004 to April 2008, the cor-
responding parameters are σ̂1 = 0.006, σ̂2 = 0.001, ρ̂r1 = 0.558, ρ̂r2 = −0.079
and ρ̂12 = −0.258.

The default and prepayment rates are measured by the monthly delinquency
rates and the monthly annualized prepayment rates, respectively, from January
2004 to April 2008 (provided by FreddieMac). Using a linear regression model,
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we obtain the parameters for the borrower’s hazard rates as follows:

λd(u) = 0.019 + 0.054 × r(u) − 0.003 × log
(
M1(u)
B(u)

)

+ 0.0034 × log
(
M2(u)
B(u)

)
, (13)

λp(u) = 0.381 + 0.58 × r(u) + 0.104 × log
(
M1(u)
B(u)

)

− 0.114 × log
(
M2(u)
B(u)

)
. (14)

Consistent with past empirical studies, the default rate is significantly and neg-
atively related to the unemployment rate but positively related to housing price.
Conversely, the prepayment rate is positively related to housing price but nega-
tively related to the unemployment rate. Both the default rate and the prepay-
ment rate are positively related to the interest rate.

The parameter values for the lender’s and insurer’s default rates can be ob-
tained with virtually identical procedures.Without loss of generality, we assume
that λL0 = λI0 = 0.01, λLr = λIr = 0.05, λL1 = λI1 = 0.01, λL2 = λI2 = 0.01,
αL
0 = α I

0 = 0.1 and βL
0 = β I

0 = 0.1. Using the above parameters, we can
price the MI premiums in different MI structures, either while considering or
without considering the correlated effects (i.e., correlated default and correlated
prepayment) and counterparty default risk. Note that these parameters of U.S.
HPI, unemployment rate and default/prepayment risk are fitted under the real
measure P. We assume that these parameters are identical under real measure
P and risk-neutral measure Q.

5.2. Sensitivity analysis

To the best of our knowledge, no previous study has incorporated the possibility
of both the lender and the insurer defaulting during the life of the mortgage into
theMI pricingmodel. This omissionmisprices theMI premiums. Consequently,
this section investigates the impacts of both correlated effects and counterparty
default risk on the MI premiums with different MI premium structures.

To adapt our model to the criterion concerning the maximum loan-to-value
ratio (LTV) in the United States, we set LTV = 95%. In addition, we assume
that the loss ratio LR is 30%, that the refund ratio g is 0.05%, that the gross profit
margin q is 10% and that the average size of the insured property is $250,000.

Some studies, such as those by Schwartz and Torous (1992), Dennis
et al. (1997) and Bardhan et al. (2006), simply consider the borrower’s de-
fault/prepayment probability and model the unconditional default/prepayment
probability exogenously. To examine whether the correlated effects and the
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FIGURE 2: Refund case: the relationship between the premium rate and the loan maturity under different
cases. Case 1: the borrower without correlated effects (dotted line). Case 2: the borrower with correlated

effects (diamond line). Case 3: the lender and the borrower with correlated effects (asterisk line). Case 4: all
the participants with correlated effects (triangle line). Case 5: general model considering not only correlated

effects but also counterparty default risk (solid line). (Color online)

counterparty default risk play a crucial role in pricing MI, we considered the
following five cases:

Case 1: The lender and insurer are default-free; because the hazard rate of a bor-
rower is not influenced by the correlated effects, neither the default rate nor
the prepayment rate is relevant to the interest rate, HPI and unemployment
rate (the case assumed in previous studies on pricing MI).

Case 2: The lender and the insurer are default-free. The correlated effect is only
considered for the borrower.

Case 3: The insurer is default-free. The hazard rates of the lender and borrower
are impacted by the correlated effects.

Case 4: Neither agent is default-free. All of the hazard rates are impacted by the
correlated default.

Case 5: Neither agent is default-free. All of the hazard rates are impacted by not
only the correlated effects but also the counterparty default risk.

Given a suitable set-up for the parameters, the MI premiums are examined in
threeMI premium structures6 (Figure 2,Refund case; Figure 3,Annual case; and
Figure 4, Upfront case) in light of (10)–(12). Each figure provides five premium
curves for the five above-mentioned cases. Figures 2–4 indicate that the MI pre-
mium is an increasing function of loan maturity. That is, the premium is lower

https://doi.org/10.1017/asb.2014.4 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.4


MORTGAGE INSURANCE PRICING WITH COUNTERPARTY RISK 319

5 10 15 20 25 30
6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8
x 10

-3

 

Case 1
Case 2
Case 3
Case 4
Case 5

FIGURE 3: Annual case: the relationship between the premium rate and the loan maturity under different
cases. Case 1: the borrower without correlated effects (dotted line). Case 2: the borrower with correlated

effects (diamond line). Case 3: the lender and the borrower with correlated effects (asterisk line). Case 4: all
the participants with correlated effects (triangle line). Case 5: general model considering not only correlated

effects but also counterparty default risk (solid line). (Color online)

if the life of the mortgage is shorter. Corresponding to a given loan maturity, we
see an interesting pattern with respect to the correlated effects and counterparty
default risk: if more correlated effects and counterparty default risk are consid-
ered when pricingMI, theMI premiums are lower. In the following paragraphs,
we discuss some interesting insights in more detail.

First, the premium inCase 1 is higher than that in Case 2. The likelihood that
a borrower’s correlated default increases the probability that an insurer incurs a
loss is positively related to the premium,whereas the likelihood that a borrower’s
correlated prepayment increases the probabilities of freeing an insurer from the
obligation is negatively related to the premium. Because the estimated param-
eters of a borrower’s default rate λdr , λ

d
1 and λd2 in (13) and (14) are virtually

identical to zero, the correlated default dominated by the correlated prepay-
ment will, in turn, lead to a decline in the premium. Overall, if the borrower’s
correlated effects are not considered, the premium in Case 1 should be higher
than that in Case 2.

Second, comparing Case 2 with Cases 3 and 4, we can see that the extra
effects induced by the lender’s and insurer’s correlated defaults are negatively
related to the premiums. Considering the correlated defaults in both the lender
and the insurer will increase the default probabilities as well as the probabili-
ties that the MI contracts will be terminated early. Therefore, similar to the MI
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FIGURE 4: Upfront case: the relationship between the premium and the loan maturity under different cases.
Case 1: the borrower without correlated effects (dotted line). Case 2: the borrower with correlated effects
(diamond line). Case 3: the lender and the borrower with correlated effects (asterisk line). Case 4: all the
participants with correlated effects (triangle line). Case 5: general model considering not only correlated

effects but also counterparty default risk (solid line). (Color online)

contract with a shorter loanmaturity, the correlated default is negatively related
to the premiums.

Finally, the counterparty default risk, under which the borrower’s default
can trigger a jump in the insurer’s default rate, increases the probability of joint
defaults for the insurer and the borrower while decreasing the effectiveness of
the insurer’s protection against the borrower’s default. Therefore, the premium
in Case 5 — with the counterpart default risk — is lower than that in Case 4.
Furthermore, if the counterparty default risk is considered, a longer time to
maturity leads to a bigger decline in premium.

Other features that can be observed in Figure 2 are also presented in
Figures 3 and 4. In brief, the correlated effects, time to loan maturity and
counterparty default risk, all play highly important roles in the pricing of MI
contracts. Without considering either the correlated effects or the counterparty
default risk, the premiums would be overpriced regardless of what the premium
structures are, especially for long-term mortgages.

6. CONCLUSIONS

Mortgage defaults have risen sharply during the subprime mortgage crisis,
with major adverse consequences for both lenders and insurers. Therefore, the
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lender’s and insurer’s default risks triggered by the mortgage defaults should
be seriously considered to prevent MI premiums from being overpriced. Fur-
ther, according to previous empirical studies, the default and prepayment rates
depend closely on macroeconomic variables, such as the interest rates, housing
price and employment rates. Using the reduced-form approach, we consider the
correlated effects along with the counterparty default risk to price suitable pre-
miums for threeMI structures: premium refunds, annual premiums and upfront
premiums.

Sensitivity analysis shows that the MI premium is an increasing function of
loan maturity. Corresponding to a given maturity, the correlated defaults of the
lender and the insurer are negatively related to the MI premiums. Triggered by
the mortgage defaults, the counterparty default risk increases the probability of
joint defaults for both the insurer and the borrower and decreases the effective-
ness of the insurer’s protection against mortgage defaults. The premium is lower
and the decline in premium for a mortgage with longer maturity is larger if the
counterparty default risk is considered.

In conclusion, correlated effects, time to loan maturity and counterparty de-
fault risk play crucial roles in the pricing of MI contracts. Without consider-
ing either the correlated effects or the counterparty default risk, the premiums
would be overpriced regardless of the premium structures, especially for long-
term mortgages.

There are several potential improvements to, and possible extensions of, this
model. First, we suggest modeling the house price index as a jump diffusion
model (Chen et al., 2010) or anARMA-GARCHmodel (e.g., Brown et al., 1997;
Crawford and Fratantoni, 2003) for further research. Next, this paper fails to
consider that an insurer default may impact a lender default and that a lender
default does not imply that the lender’s claims disappear. Therefore, it is also an
important issue in pricing MI contracts.

NOTES

1. Some risk factors (e.g., the unemployment rate used in numerical applications) in our model
are not necessarily freely traded, the market considered is well incomplete and the risk neutral
measure is not unique. For simplification, we follow Chang et al. (2012) to assume that the market
is complete and arbitrage-free.

2. This model is widely used in the mortgage pricing literature. See, for example, Liao, Tsai and
Chiang (2008).

3. (6) is true only if the market is complete. In certain circumstances, the growth rate can set
to another value if the risk is not traded and if the market is risk averse. However, we follow some
pricing studies with non-traded mortality/longevity risk or macroeconomic factors risk by using
the arbitrage-free or risk-neutral pricing framework (e.g., Milevsky and Promislow, 2001; Dahl,
2004; Blake, Cairns and Dowd, 2006; Chang et al., 2012).

4. If the mortgage insurance is payable to the holder of the mortgage regardless of the survival
or failure of the mortgage lender (i.e., mortgage insurance contract will not be early terminated
if the lender goes bankrupt), we can assume λL0 = λL1 = ... = λLn = αL

0 = 0 in the closed-form
formula to compute the mortgage premiums for this special case.

5. The quasi-Newton algorithm is used to estimate the parameters. The initial value of
α, θ and σr is set as 0.2, 0.006 and 0.02, respectively, by using the moment method proposed
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by Stanton (1995) and the daily data of three-month Treasury rates from January 2004 to
April 2008.

6. The parameters of Case 1 are given by λd0 = 0.019, λp
0 = 0.381, λI0 = λL0 = αL

0 = α I
0 = 0,

λdr = λ
p
r = λd1 = λ

p
1 = λd2 = λ

p
2 = λLr = λIr = λL1 = λI1 = λL2 = λI2 = 0; the parameters of Case

2 are expressed as λd0 = 0.019, λ
p
0 = 0.381, λI0 = λL0 = αL

0 = α I
0 = 0, λdr = 0.054, λp

r = 0.586,
λd1 = −0.003, λp

1 = 0.104, λd2 = 0.0034, λ
p
2 = −0.114, λLr = λIr = λL1 = λI1 = λL2 = λI2 = 0;

the parameters of Case 3 are set as λd0 = 0.019, λp
0 = 0.381, λL0 = 0.01, λI0 = αL

0 = α I
0 = 0,

λdr = 0.054, λp
r = 0.586, λd1 = −0.003, λp

1 = 0.104, λd2 = 0.0034, λ
p
2 = −0.114, λLr = 0.05, λL1 =

λL2 = 0.01, λIr = λI1 = λI2 = 0; the parameters of Case 4 satisfy λd0 = 0.019, λ
p
0 = 0.381, λL0 =

λI0 = 0.01, αL
0 = α I

0 = 0, λdr = 0.054, λ
p
r = 0.586, λd1 = −0.003, λ

p
1 = 0.104, λLr = λIr = 0.05,

λL1 = λI1 = λL2 = λI2 = 0.01; and the parameters of Case 5 are defined as λd0 = 0.019, λ
p
0 = 0.381,

λL0 = λI0 = 0.01, αL
0 = α I

0 = 0.1, λdr = 0.054, λdr = 0.054, λ
p
r = 0.586, λd1 = −0.003, λ

p
1 = 0.104,

λd2 = 0.0034, λp
2 = −0.114, λLr = λIr = 0.05, λL1 = λI1 = λL2 = λI2 = 0.01.
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APPENDIX A

In the appendix, the derivation of (7) is provided. In view of (7), it can be rewrit-
ten as

ER≡ EQ
{∫ T

t

B(t)
B(s)

[
cs Rs1{τ d>s,τ p>s,τ I>s,τ L>s} − 1{τ d>s,t<τ P≤s}gs Rt

]
ds |Ft

}

= EQ
[∫ T

t

B(t)
B(s)

cs Rs1{τ d>s,τ p>s,τ I>s,τ L>s}ds |Ft
]

− EQ
[∫ T

t

B(t)
B(s)

1{τ d>s,t<τ P≤s}gs Rtds |Ft
]

≡ A− B.

Applying the law of iterated expectation, A satisfies

A = EQ
{∫ T

t

B(t)
B(s)

cs Rs1{ τ d>s}1{τ p>s}

× EQ[
1{τ L>s}1{τ I>s}

∣∣Fr
T∗ ∨ FM

T∗ ∨ Hd
T∗ ∨ Hp

T∗ ∨ HI
t ∨ HL

t

]
ds|Ft

}

= EQ
{∫ T

t

B(t)
B(s)

cs Rs1{τ d>s}1{τ p>s}1{τ L>t} exp
(∫ t

0
λL(u)du

)

× EQ[
1{τ L>s}1{τ I>s} |Fr

T∗ ∨ FM
T∗ ∨ Hd

T∗ ∨ Hp
T∗ ∨ HI

t

]
ds|Ft

}

= EQ

⎧⎨
⎩
∫ T

t

B(t)
B(s)

cs Rs1{ τ d>s}1{τ p>s}1{τ L>t}1{τ I>t} exp
(∫ t

0
λL(u)+λI(u)du

)

× EQ[
1{τ L>s}1{τ I>s}

∣∣Fr
T∗ ∨ FM

T∗ ∨ Hd
T∗ ∨ Hp

T∗
]
ds|Ft

}
. (A1)

Under the complete information of Fr
T∗ ∨ FM

T∗ ∨Hd
T∗ ∨Hp

T∗ , the default time and
prepayment time of the borrower are known, and the default time of the lender
τ L and the default time of the insurer τ I are conditional independent. Hence,
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(A1) can be rewritten as follows:

A= EQ
{∫ T

t

B(t)
B(s)

cs Rs1{ τ d>s}1{τ p>s}1{τ L>t}1{τ I>t}

× exp
(∫ t

0
[λL(u) + λI(u)]du

)
P

[
τ L > s

∣∣Fr
T∗ ∨ FM

T∗ ∨ Hd
T∗ ∨ Hp

T∗

]

× P
[
τ I > s

∣∣Fr
T∗ ∨ FM

T∗ ∨ Hd
T∗ ∨ Hp

T∗

]
ds |Ft

}

= EQ
{∫ T

t

B(t)
B(s)

cs Rs1{ τ d>s}1{τ p>s}1{τ L>t}1{τ I>t} exp
(∫ t

0
[λL(u) + λI(u)]du

)

× exp
(

−
∫ s

0
λL(u)du

)
exp

(
−

∫ s

0
λI(u)du

)
ds|Ft

}

= 1{τ d>t}1{τ p>t}EQ
[∫ T

t
cs Rs1{τ d>s}1{τ p>s}

× exp
(

−
∫ s

t
[r(u) + λL(u) + λI(u)]du

)
ds |Ft

]
. (A2)

Substituting the linear hazard rate functions of the lender and the insurer into
the following equation,

1{τ d>s}1{τ p>s} exp
(

−
∫ s

t
[r(u) + λL(u) + λI(u)]du

)
,

we have

1{τ d>s}1{τ p>s} exp
{
−

∫ s

t

[ (
λL0 + λI0

) + (
1 + λLr + λIr

)
r(u)

+ (
λL1 + λI1

)
log

(
M1(u)
B(u)

)
+ . . .

+ (λLn + λIn) log
(
Mn(u)
B(u)

)]
du − 1{t<τ d≤s}

(
αL
0 + α I

0

)
)(s − τ d)

}
. (A3)
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Due to the fact that 1{t<τ d≤s}(αL
0 + α I

0 )(s− τ d) is clearly 0 conditional on the set
{τ d > s}, (A3) is expressed by

1{ τ d>s}1{τ p>s} exp
{
−

∫ s

t

[ (
λL0 + λI0

) + (
1 + λLr + λIr

)
r(u)

+ (
λL1 + λI1

)
log

(
M1(u)
B(u)

)
+ . . .

+ (
λLn + λIn

)
log

(
Mn(u)
B(u)

)]
du

}
. (A4)

Substituting (A4) into (A2) and using the law of iterated expectation, we have

A= 1{ τ d>t}1{τ p>t}EQ
{∫ T

t
cs Rs exp

(
−

∫ s

t

[(
λL0 + λI0

)

+ (
1 + λLr + λIr

)
r(u) + (

λL1 + λI1
)
log

(
M1(u)
B(u)

)

+ . . . + (
λLn + λIn

)
log

(
Mn(u)
B(u)

)]
du

)

× EQ
[
1{ τ d>s}1{τ p>s}

∣∣Fr
T∗ ∨ FM

T∗ ∨ Hd
t ∨ Hp

t ∨ HL
t ∨ HI

t

]
ds|Ft

}

= 1{τ L>t}1{τ I>t}1{ τ d>t}1{τ p>t}
∫ T

t
cs Rs exp

[− (
λL0 + λI0 + λd0 + λ

p
0

)
(s − t)

]

×EQ
{
exp

(
−

∫ s

t

[
(1 + λLr + λIr + λdr + λp

r )r(u)

+ (
λL1 + λI1 + λd1 + λ

p
1

)
log

(
M1(u)
B(u)

)

+... + (
λLn + λIn + λdn + λp

n

)
log

(
Mn(u)
B(u)

)]
du

)
|Ft

}
ds. (A5)

Assuming Xt,s
0 ≡ ∫ s

t r(u)du and Xt,s
i ≡ ∫ s

t log[
Mi (u)
B(u) ]du, i = 1, 2, . . . , n, we

obtain

Xt,s
i =

∫ s

t
log

[
Mi (u)
B(u)

]
du =

∫ s

t

(
log

[
Mi (t)
B(t)

]
− 1

2
σ 2
i (u − t) + σi

∫ u

t
dWi

v

)
du

= log
[
Mi (t)
B(t)

]
(s − t) + 1

2
σ 2
i

∫ s

t
(u − t)du − σi

∫ s

t
(s − v)dWi

v.
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Without loss of generality, we assume that Mi (t)/B(t) = 1; therefore, we have

Xt,s
i = (s − t)2

4
σ 2
i − σi

∫ s

t
(s − v) dWi

v, i = 1, 2, . . . , n,

μ
t,s
Xi = EQ (

Xt,s
i

) = (s − t)2

4
σ 2
i ,

σXt,s
i Xt,s

i
= Var

(
Xt,s
i

) = (s − t)3

3
σ 2
i , i = 1, 2, . . . , n,

where EQ(·) and Var(·) are correspondingly the conditional expectation and
variance with respect to Ft.

Let B(t,T) be the time t price of a zero coupon bond paying $1 at time T.
As proved by Heath et al. (1992) and Chiarella and Kwon (2001), the dynamic
of the price of a zero coupon bond is

dB(t,T)

B(t,T)
= r(t)dt + b(t,T)dWr

t , (A6)

where b(u, s) = −σr D(u, s), D(u, s) = ∫ s
u exp{−[�(y) − �(u)]}dy and �(u) =∫ u

0 α(y)dy. By virtue of (A6), using Ito’s lemma, we have

ln B(s, s) = ln B(t, s) +
∫ s

t
r(u)du − 1

2

∫ s

t
b(u, s)2du+

∫ s

t
b(u, s)dWr

u .

Since B(s, s) = 1 and B(t, s) = exp(− ∫ s
t f (t, u)du) by the definition of for-

ward rate, we obtain

Xt,s
0 ≡

∫ s

t
r(u)du =

∫ s

t
f (t, u)du + 1

2

∫ s

t
b(u, s)2du−

∫ s

t
b(u, s)dWr

u ,

μ
t,s
X0

≡ EQ [
Xt,s
0

] =
∫ s

t
f (t, u)du + 1

2
σXt,s

0 Xt,s
0

,

σXt,s
0 Xt,s

0
≡ Var[Xt,s

0 ] =
∫ s

t
b(u, s)2du,

σXt,s
0 Xt,s

i
≡ Cov

[
−

∫ s

t
b(u, s) dWr

u , σi

∫ s

t
(s − v) dWi

v

]

= −σiρri

∫ s

t
(s − u)b(u, s) du, i = 1, 2, . . . , n,
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where Cov(·, ·) denotes the covariance function conditional on Ft. In sum, (A5)
can be rewritten as

A= 1{ τ d>t}1{τ p>t}1{τ I>t}1{τ L>t}
∫ T

t
cs Rs

exp
(

− (
λK0

)
(s − t) + 	′μt,s

X + 	′
s,s
t 	

2

)
ds,

where λK0 = λL0 +λI0+λd0+λ
p
0 , λKr = 1+λLr +λIr +λdr +λ

p
r , λKi = λLi +λIi +λdi +λ

p
i ,

	 = [−λKr , −λK1 , . . . , −λKn ]
′ and μ

t,s
X = [μX0(t, s), μX1(t, s), . . . , μXn (t, s)]

′;


s,s
t = (σXt,s

i Xt,s
j
) is a (n + 1)−by−(n + 1) covariance matrix; σXt,s

i Xt,s
j
is the

covariance between Xt,s
i and Xt,s

j , i = 0, 1, 2, . . . , n, j = 0, 1, 2, . . . , n, and
satisfies

[
Xt,s
0 , Xt,s

1 , . . . , Xt,s
n

] =
[∫ s

t
r(u)du,

∫ s

t
log

[
M1(u)
B(u)

]
du, . . . ,

∫ s

t
log

[
Mn(u)
B(u)

]
du

]
.

Similarly, we can derive the solution of B as follows:

B = EQ
[∫ T

t

B(t)
B(s)

1{τ d>s,t<τ P≤s}gs Rtds
∣∣∣∣Ft

]

= 1{τ P>t}EQ
[∫ T

t

B(t)
B(s)

1{τ d>s}gs Rtds
∣∣∣∣Ft

]

− EQ
[∫ T

t

B(t)
B(s)

1{τ d>s,τ P>s}gs Rtds
∣∣∣∣Ft

]
≡ C − D.

Using the law of iterated expectation, we have

C = 1{τ P>t}1{τ d>t}
∫ T

t
gs RtEQ

[
1{τ d>s} exp

(
−

∫ s

t
r(u)du

)]
ds

= 1{τ p>t}1{τ d>t}
∫ T

t
gs Rt exp

(
−λd0(s − t) + φ′μt,s

X + φ′
s,s
t φ

2

)
ds,
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where φ = [−(1 + λdr ), −λd1, . . . , −λdn ]
′. Furthermore, D can be obtained in the

same way as follows:

D = EQ
[∫ T

t

B(t)
B(s)

1{τ d>s,τ P>s}gs Rtds
∣∣∣∣Ft

]

=
∫ T

t
gs RtEQ

[
exp

(
−

∫ s

t
[r(u) + λd(u) + λp(u)]du

)
ds

∣∣∣∣Ft
]

= 1{τ d>t}1{τ p>t}
∫ T

t
gs Rt exp

[− (
λd0 + λ

p
0

)
(s − t)

]

×EQ
{
exp

(
−

∫ s

t

[(
1 + λdr + λp

r

)
r(u)

+
n∑
i=1

(
λdi + λ

p
i

)
log

(
Mi (u)
B(u)

)]
du

) ∣∣∣∣Ft
}
ds

= 1{τ p>t}
∫ T

t
gs Rt exp

(
−λ

p
0 (s − t) + ϒ ′μt,s

X + ϒ ′
s,s
t ϒ

2

)
ds,

where ϒ = [−(1 + λdr + λ
p
r ), −(λd1 + λ

p
1 ), . . . , −(λdn + λ

p
n )]′.

APPENDIX B

In the appendix, the derivation of (8) is provided. Using the law of iterated ex-
pectation, we have

EL = EQ
{
EQ

[∫ T

t

B(t)
B(τ d)

LRRτ d1{t<τ d≤s}1{τ p>τ d}

× 1{τ L>τ d}1{τ I>τ d}ds
∣∣Fr

T∗ ∨ FM
T∗ ∨ Hd

t ∨Hp
T∗ ∨ HL

T∗ ∨ HI
T∗

] ∣∣∣∣ Ft
}

= EQ
{∫ T

t
LR1{τ d>t}1{τ p>t}exp

(∫ t

0
[λd(u) + λp(u)] du

)

× EQ
[
B(t)
B(τ d)

Rτ d1{t<τ d≤s}1{τ p>τ d}

× 1{τ I>τ d}ds
∣∣Fr

T∗ ∨ FM
T∗ ∨HL

T∗ ∨ HI
T∗

] ∣∣∣∣ Ft
}
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= 1{τ d>t}1{τ p>t}EQ
{∫ T

t
LR exp

(∫ t

0
[λd(u) + λp(u)] du

)

×
∫ >s

t
1{τ p>s}1{τ I>v}1{τ L>v}

B(t)
B(v)

Rvλ
d(v)

× exp
(

−
∫ v

0
[λd(u)] du

)
dv ds

∣∣∣∣Ft
}

= 1{τ d>t}1{τ p>t}EQ
{∫ T

t
LR

∫ s

t

B(t)
B(v)

1{τ p>v}1{τ L>v}1{τ I>v}

×Rvλ
d(v) exp

(
−

∫ v

t
[λd(u)] du

)
dv ds

∣∣∣∣Ft
}

.

Since the default rates of the lender and the insurer are a function of the
interest rate, common risk factors and the default time of the borrower, using
the law of iterated expectation, we obtain

EL = 1{τ d>t}1{τ p>t}EQ
{ ∫ T

t
LR

∫ s

t
EQ

[
B(t)
B(v)

1{τ p>v}1{τ L>v}1{τ I>v}Rvλ
d(v)

× exp
(
−

∫ v

t
[λd(u)] du

)
dv

∣∣∣Fr
T∗ ∨ FM

T∗ ∨ H d
T∗ ∨ Hp

T∗ ∨ HL
t ∨ H I

t

]
ds

∣∣∣∣Ft
}

= 1{τ d>t}1{τ p>t}1{τ I>t}1{τ L>t}

×EQ
{∫ T

t
LRexp

(∫ t

0
[λp(u) + λL(u) + λI(u)] du

)

×EQ
[∫ s

t
1{τ p>v}1{τ I>v}1{τ L>v}

B(t)
B(v)

Rvλ
d(v)

× exp
(

−
∫ v

t
[λd(u)] du

)
dv

∣∣∣∣ Fr
T∗ ∨ FM

T∗ ∨ Hd
T∗

]
ds

∣∣∣∣Ft
}

= 1{τ d>t}1{τ p>t}1{τ I>t}1{τ L>t}EQ
{∫ T

t
LR EQ

[∫ s

t

B(t)
B(v)

Rvλ
d(v)

× exp
(

−
∫ v

t
[λd(u) + λp(u) + λI(u) + λL(u)] du

)
dv

]
ds

∣∣∣∣Ft
}

= 1{τ d>t}1{τ p>t}1{τ I>t}1{τ L>t}EQ
{∫ T

t
LREQ

[ ∫ s

t

B(t)
B(v)

Rvλ
d(v)
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× exp
(

−
∫ v

t
[λd(u) + λp(u) + λI(u) + λL(u)] du

)
dv

×
∣∣∣∣ Ft ∨ Fr

T∗ ∨ FM
T∗

]
ds |Ft

}
. (B1)

Using Fubini’s theorem and substituting (2) and (4) into (B1), we have

EL = 1{τ d>t}1{τ p>t}1{τ I>t}1{τ L>t}EQ
{ ∫ T

t
LR

∫ s

t
Rvλ

d(v)

× exp
(

−
∫ v

t

[
λK0 + λKr r(u) + λK1 log

(
M1(u)
B(u)

)

+ . . . + λKn log
(
Mn(u)
B(u)

)]
du

)

×EQ
[
exp

((
α I
0 + αL

0 )(v − τ d
)
1{t<τ d≤v}

) ∣∣∣∣Ft ∨ Fr
T∗ ∨ FM

T∗

]
dv ds |Ft

}
.

(B2)

Assuming that Z is the conditional expectation under the information Ft∨Fr
T∗ ∨

FM
T∗ in (B2), we have

Z =
(∫ v

t
+

∫ ∞

v

)
exp

(
−(

α I
0 + αL

0

)
(v − x)1{t<x≤v}

)
λd(x)

× exp
(

−λd0(x− t) −
∫ x

t

[
λdr r(y) + λd1 log

(
M1(y)
B(y)

)

× +... + λdn log
(
Mn(y)
B(y)

)]
dy

)
dx

= exp
(− (

α I
0 + αL

0

)
(v − t)

) {
1+ (

α I
0 + αL

0

)

×
∫ v

t
exp

(−[λd0 − (
α I
0 + αL

0

)
](x− t)

−
∫ x

t

[
λdr r(y) +

n∑
i=1

λdi log
(
Mi (y)
B(y)

)]
dy

)
dx

}
. (B3)
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Substituting (B3) into (B2), we have

1{τ d>t}1{τ p>t}1{τ I>t}1{τ L>t}EQ
{ ∫ T

t
LR

∫ s

t
Rvλ

d(v)

× exp

(
−

∫ v

t

[
λK0 + λKr r(u) +

n∑
i=1

λKi log
(
Mi (u)
B(u)

)]
du

)

× exp
(−(

α I
0 + αL

0

)
(v − t)

) [
1+ (

α I
0 + αL

0

)

×
∫ v

t
exp

(
−[

λd0 − (
α I
0 + αL

0

)]
(x− t) −

∫ x

t

[
λdr r(y)

+
n∑
i=1

λdi log
(
Mi (y)
B(y)

) ]
d y

)
dx

]
dvds|Ft

⎫⎬
⎭ . (B4)

(B4) can be divided into two parts, J1 and J2, as follows:

J1 = 1{τ d>t}1{τ p>t}1{τ I>t}1{τ L>t}

×EQ
{∫ T

t
LR

∫ s

t
exp

(−(
α I
0 + αL

0

)
(v − t)

)
Rvλ

d(v)

× exp
(

−
∫ v

t

[
λK0 + λKr r(u) +

n∑
i=1

λKi log
(
Mi (u)
B(u)

)]
du

)
dvds| Ft

}
,

J2 = 1{τ d>t}1{τ p>t}1{τ I>t}1{τ L>t}

× EQ
{∫ T

t
LR

(
α I
0 +αL

0

) ∫ s

t
exp

(
− (

α I
0 + αL

0

)
(v − t)

)
Rv

× λd(v) exp
(

−
∫ v

t

[
λK0 + λKr r(u) +

n∑
i=1

λKi log
(
Mi (u)
B(u)

)]
du

)

×
[ ∫ v

t
exp

(
− [

λd0 − (αL
0 + α I

0 )
]
(x− t) −

∫ x

t

[
λdr r(y)

+
n∑
i=1

λdi log
(
Mi (y)
B(y)

)]
dy

)
dx

]
dv ds|Ft

}
. (B5)
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To compute J1, using the fact that

∂EQ(exp(	′Xt,v + � ′Wt,v))

∂� ′ = EQ (
Wt,v exp(	′Xt,v + � ′Wt,v)

)
= exp

(
	′μt,v

X + � ′μt,v
W + 1

2
(	′
v,v

t 	 + 2� ′
̄v,v
t 	 + � ′
v,v

t �)

)

×
(

μ
t,v
W +
v,v

t � + 
̄v,v
t 	

)
,

we obtain

J1 = 1{τ d>t}1{τ p>t}1{τ I>t}1{τ L>t}
∫ T

t
LR

∫ s

t
exp

(
− (

λK0 + α I
0 + αL

0

)
(v − t)

)
Rv

×EQ
{[

λd0 + λdr r(v) + λd1 log
(
M1(v)

B(v)

)
+ ... + λdn log

(
Mn(v)

B(v)

)]

× exp(	′Xt,v) | Ft
}
dv ds.

Assuming that � = [λdr , λ
d
1, . . . , λ

d
n ]

′ and Wt,v = [r(v), log(M1(v)

B(v)
), . . . ,

log(Mn(v)

B(v)
)]′, we have

J1 = 1{τ d>t}1{τ p>t}1{τ I>t}1{τ L>t}
∫ T

t
LR

∫ s

t
exp

(
− (

λK0 + α I
0 + αL

0

)
(v − t)

)
Rv

×EQ
{(

λd0 + � ′ Wt,v) (
exp (	′Xt,v)

∣∣∣Ft )
}
dv ds

= 1{τ d>t}1{τ p>t}1{τ I>t}1{τ L>t}
∫ T

t
LR

∫ s

t
exp

(
−(λK0 + α I

0 + αL
0 )(v − t)

)
Rv

×
{
λd0E

Q(exp(	′Xt,v)|Ft) + � ′EQ(Wt,vexp(	′Xt,v)|Ft)
}
dv ds.

(B6)

Based on

∂EQ[exp(	′Xt,v + � ′Wt,v)]
∂� ′ |�=0 = EQ(Wt,v exp(	′Xt,v))

= exp
(

	′μt,v
X + 1

2
(	′
v,v

t 	)

) (
μ
t,v
W + 
v,v

t �

)
,
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(B6) can be rewritten as

J1 = 1{τ d>t}1{τ p>t}1{τ I>t}1{τ L>t}
∫ T

t
LR

∫ s

t
exp

(−(
λK0 + α I

0 + αL
0

)
(v − t)

)
Rv

× (
λd0 + � ′μt,v

W + � ′
̄v,v
t 	

)
exp

(
	′μt,v

X + 1
2
(	′
v,v

t 	)

)
dv ds.

Following the similar procedure, we can derive J2.
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