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COMPONENTS ANDMINIMAL NORMAL SUBGROUPS OF FINITE
AND PSEUDOFINITE GROUPS

JOHN S. WILSON

Abstract. It is proved that there is a formula �(h, x) in the first-order language of group theory such
that each component and each non-abelian minimal normal subgroup of a finite group G is definable
by �(h, x) for a suitable element h of G ; in other words, each such subgroup has the form {x | x |=
�(h, x)} for some h. A number of consequences for infinite models of the theory of finite groups are
described.

§1. Introduction. A groupG is called pseudofinite if it is an infinite model for the
first-order theory of finite groups, in other words, if G is infinite and G satisfies all
first-order sentences in the language of group theory that hold in all finite groups.
The study of pseudofinite groups was begun by Felgner [3] and further developed
in [10], [8], and [9]. Some results about finite groups lead directly to results for
pseudofinite groups because they can be formulated using first-order formulae. For
example, a result of [11] asserts that there is a first-order formula �(x) such that an
element g of a finite group G satisfies �(g) if and only if g lies in the largest soluble
normal subgroup R(G) ofG. It follows easily that every pseudofinite groupG has a
unique largest definable normal subgroupR(G) that satisfies all first-order sentences
holding in all finite soluble groups; moreover G/R(G) is finite or pseudofinite and
R(G/R(G)) = 1 (see for example [9, Propositions 2.16, 2.17]).
We recall that a finite group is called quasisimple if it is perfect and simple modulo
its centre, and that a component of a finite group G is a quasisimple subnormal
subgroup. Distinct components centralize each other, and the components of G
can also be described as the quasisimple subgroups L that centralize all conjugates
of L distinct from L; cf. Isaacs [5, Chapter 9].
A pseudofinite group S is called definably simple if it is has no definable normal
subgroups apart from 1 and S. An argument of Felgner ([3]; cf. [10, Proposition
2,7]) shows that such groups are precisely the groups elementarily equivalent to
ultraproducts of finite simple groups; in particular, an ultraproduct of alternating
groups of unbounded rank is definably simple but not simple. We call a definable
subgroup L of a pseudofinite group G a (definable) component of G if it has no
non-trivial definable abelian quotients, is definably simple modulo its centre, and
centralizes all conjugates of L distinct from L.
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For a first-order formula �(h, x) and a group element h we write {x | �(h, g)}
for the set {x | x |= �(h, x)}. In Section 4 below we study definable components
and minimal definable normal subgroups in pseudofinite groups. In particular, we
prove the following result.

Theorem 1.1. Let G be a pseudofinite group. Then

(a) every non-trivial definable normal subgroup of G contains either a non-trivial
abelian normal subgroup of G or a non-abelian minimal definable normal
subgroup of G ;

(b) each non-abelian minimal definable normal subgroup M is of the form S ×
CM (S) for a definably simple component S;

(c) distinct components centralize each other, and so the subgroup generated by
finitely many components is their product and is definable;

(d) all non-abelian minimal definable normal subgroups and all of the products in
(c) are sets of the form {x | �(h, x)} for elements h ∈ G , where �(h, x) is a
first-order formula independent of G .

In particular, from (a) and (b), if R(G) = 1 then G has both minimal definable
normal subgroups and definably simple components.
For a finite group G , the relation between the various products of components
is particularly easy to describe: they constitute a Boolean lattice with respect to
natural operations. For a pseudofinite group G there is also such a lattice which
is interpretable in G and whose atoms correspond to the components of G (see
Proposition 4.5 below). Theorem 1.2 describes the structure of G in the case when
this lattice is finite.

Theorem 1.2. Let G be a pseudofinite group that has only finitely many definable
components and let P be their product. ThenG has a characteristic definable subgroup
G1 of finite index such that G1/PCG(P) is metabelian. In particular, if R(G) = 1,
then G/P is virtually metabelian.

The key to these results is a first-order formulation of properties of components
and perfect minimal normal subgroups of finite groups.

Theorem 1.3. There exist formulae �(h, y), �′(h) in the first-order language of
group theory such that, for every finite groupG , the products of components of G are
precisely the sets {x | �(h, x)} for the elements h of G satisfying �′(h).
Moreover there exist formulae �′c(h), �

′
m(h) such that, for each finite G , the com-

ponents and non-abelian minimal normal subgroups of G are the sets {x | �(h, x)}
with h satisfying, respectively, �′c(h) and �′m(h).

The formula �(h, y) appearing in Theorem 1.3 is the same one as in Theorem 1.1.
To prove these results we use ideas concerning double centralizers which have
proved fruitful in other contexts (cf. [12]). We also need some consequences of
the classification of the finite simple groups, including the positive solutions to the
Schreier and Ore conjectures. Somewhat weaker structural results can be proved
using only the solubility of outer automorphism groups of finite simple groups, by
working directly with double centralizers of components.
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§2. Preliminary results. Webegin by listing the consequences of the classification
of finite simple groups that we shall require.

(CFSG) (a) Each finite quasisimple group can be generated by two elements.
(b) Let S be a finite non-abelian simple group. Then
(i) the outer automorphism group Out(S) = Aut(S)/Inn(S) of S has a
metabelian subgroup of index at most 2, and has a series 1 = G0 �G1 �
· · ·�G5 = Out(S) with Gi/Gi−1 cyclic for i = 1, . . . , 5.

(ii) every element of S is a commutator in S.
(c) All elements of finite quasisimple groups are products of two commutators.

Assertion (a) is an immediate consequence of the fact, proved by Aschbacher and
Guralnick [1], that finite non-abelian simple groups can be generated by two ele-
ments. For (b)(i), see for example Gorenstein [4], Theorem 4.237 and the discussion
preceding it, and for (b)(ii) and (c) see [6] and [7]. Here is an easy and well-known
consequence of (CFSG) (b)(i).

Lemma 2.1. LetM be a perfect finite group with all components normal and with
no non-central nilpotent normal subgroups of class at most 2. ThenM is the product
of its components.

Proof. LetL1, . . . , Ln be the components ofM andM0 their product.Write Si =
Li/Z(Li ) for each i (where Z(H ) denotes the centre of a group H ). Conjugation
in M induces a homomorphism from M to A = Aut(S1) × · · · × Aut(Sn), with
kernel D, say, andM0 maps to I = Inn(S1) × · · · × Inn(Sn). Because each group
Aut(Si )/Inn(Si ) is soluble so is A/I , and thus the perfect groupM must also map
to I . Hence, M = M0D. Suppose that D �� M0 and choose N � M minimal
with respect to N � D, N �� M0. Thus, N/(N ∩M0) is either abelian or a direct
product of non-abelian simple groups. Since D centralizes M0/Z(M0) we have
N ∩M0 � [D,M0] � Z(M0) � Z(M ). Hence, either N is nilpotent of class at most
2, or N is perfect and a product of simple groups modulo its centre. In the latter
case N is a product of components, and in both cases we have a contradiction. �
Our notation for conjugates and commutators is as follows: xy = x−1yx and
[x, y] = x−1y−1xy for elements x, y of a group G.We write C2G(X ) as shorthand
for CG(CG(X )) for each subset X of G. Evidently 〈X 〉 � C2G(X ) for each X.
Lemma 2.2. Let G be a finite group. If L is a component of G then L � C2G(L).

Proof. LetT be the product of all componentsN �= LofG ; thenT � CG(L) and
so C2G(L) � CG(T ). If c ∈ CG(T ) and Lc �= L then Lc � T and L � Tc−1 = T , a
contradiction. �
For each element h of a group G define

Xh = {[h−1, hg ] | g ∈ G} and Wh =
⋃
(Xfh | f ∈ G, [Xh,Xfh ] �= 1).

Lemma 2.3. Let M be the product of some components L1, . . . , Lr of a finite
group G .

(a) If X is a subset of M whose projection in each Li/Z(Li) is non-trivial then
M = 〈Xg | g ∈M, [X,X g ] �= 1〉.

(b) Suppose thatM centralizes all conjugatesMg �=M and let h be an element of
M that projects non-trivially to each Li/Z(Li). ThenM = 〈Wh〉.
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Proof. (a) Write H = 〈X 〉. Thus, [X,X g ] �= 1 if and only if [H,Hg ] �= 1. The
following elegant proof based on an idea of Chris Parker replaces an earlier longer
argument.
Since 〈Hg | g ∈ M 〉 is normal in M and has non-trivial projection in each
Li/Z(Li) we have 〈Hg | g ∈ M 〉 = M. Let K = 〈Hg | g ∈ G, [H,Hg ] �= 1〉.
Then NM (H ) contains the conjugates of H that centralize H and permutes the
remaining conjugates, and so NM (H ) normalizes K . Thus, 〈Hg | g ∈ M 〉 �
〈K,NM (H )〉 = NM (H )K andM = NM (H )K. ClearlyHg0 � K for some g0 ∈M.
Let g ∈ M and write g0 = n0k0, g = nk with n0, n ∈ NM (H ), k0, k ∈ K. Then
Hg = Hnn

−1
0 g0k

−1
0 k = Hg0k

−1
0 k � Kk−10 k = K, and the result follows.

(b) For each g ∈ G , either g normalizesM or [M,Mg ] = 1; hence, [h−1, hg ] ∈M.
Therefore Xh ⊆M, and for f ∈ G we have Xhf ⊆Mf ; thus, if Xhf and Xh do not
commute then Xhf ⊆M. It follows thatWh ⊆M.
Write h = h1 . . . hr with hi ∈ Li for each i . For each i there is an element
s ∈ Li such that [h−1i , hsi ] �∈ Z(Li), and clearly [h−1, hs ] = [h−1i , hsi ] ∈ Li . Thus the
subset {[h−1, hf ] | f ∈ M} of M satisfies the hypothesis on X in (a), and hence
M ⊆ 〈Wh〉. �
We define the words �r for r � 1 recursively by �1(x1, x2) = [x1, x2] and
�r(x1, . . . , x2r ) = [�r−1(x1, . . . , x2r−1 ), �r−1(x2r−1+1, . . . , x2r )] for r > 1.

Lemma 2.4. LetM be the product of some componentsL1, . . . , Lr of a finite group
G and letM � K � C2G(M ) ∩

⋂
i�r NG (Li). ThenM is the set of products of two

�4-values in K .
Proof. By (CFSG) (b)(ii) and induction, every element of a non-abelian finite
simple group is a �n-value for all n. Therefore, for each i , every element of Li is
congruent modulo Z(Li ) to a �3-value inLi , and every commutator of two elements
of Li is a �4-value in Li . Thus, from (CFSG) (c) each element of Li is a product
of two �4-values in Li . The corresponding statement now follows for the (external)
direct productP of the groupsLi , and sinceM is a homomorphic image ofP, every
element ofM is a product of two �4-values inM.
Write Si = Li/Z(Li) for each i . Since each Li is normal in K , conjugation in K
yields a homomorphism from K to A = Aut(S1) × · · · × Aut(Sr), with kernel D,
say. The image I ofM is equal to Inn(S1)× · · · × Inn(Sr). From (CFSG) (b) each
group Aut(Si )/Inn(Si ) is soluble of derived length at most 3, and hence so is A/I .
Therefore all �3-values inA lie in I , and so all �3-values inK lie inMD. SinceD acts
trivially on eachSi wehave [M,D] � Z(M ) and so [[M,D],M ] = 1. Therefore from
the 3-lemma we have [M,D] = [[M,M ], D] = 1. Thus,D � CG(CG (M ))∩CG(M )
and so D andMD/M are abelian. It follows that every �4-value in K lies inM and
the lemma is proved. �
We shall need the following elementary lemma.
Lemma 2.5. Let H be a finite non-abelian group with no non-central nilpotent
normal subgroups of class at most 2. Then,H has a component.
Proof. Let L be a minimal subnormal subgroup subject to L �� Z(H ). Thus,
L/(L ∩ Z(H )) is simple and either L is perfect, and hence quasisimple and a
component ofH , or L is nilpotent. Suppose thatL is nilpotent. Then the subgroup
N generated by its conjugates is normal and nilpotent. Write Ni for the i-th term
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of the lower central series of N for each i , and let d be the smallest integer with
N2d = 1. Since [Nd ,Nd ] � N2d the subgroup Nd is abelian and normal in H ;
hence Nd � Z(H ) and Nd+1 = 1. Thus d � 2 and N4 = 1. But then N2 is abelian
and lies in Z(H ), so that N3 = 1. Therefore L � N � Z(H ), and a contradiction
ensues. �
Although far better results than the following are known we include an ad hoc
proof for the reader’s convenience.

Lemma 2.6. Let G be a group having a series 1 = H0 �H1 �H2 � · · ·�Hn = G
with cyclic factors and let K = 〈g2 | g ∈ G〉. Then (a) |G/K | � 2n and (b) every
element of K is a product of 3n squares in G .

Proof. Since G/K has exponent at most 2 and has a series of length at most n
with cyclic factors assertion (a) is clear. Assertion (b) is clear for n = 1. Let n � 2
and write A = Hn−1. Then B = 〈a2 | a ∈ A〉 is normal in G and by induction
we may assume that B consists of products of 3(n − 1) squares. It suffices now to
show that each product of squares in G is congruent modulo B to a product of
three squares. Thus, we may pass to G/B and assume that A has exponent at most
2. Write G = 〈t〉A and D = {ata | a ∈ A}. Then D � G and G/D is abelian,
and so every product of squares in G is congruent to a square modulo D. Since
ata = t−2(ta)2 for each a ∈ A the result follows. �

§3. Finite groups: Proof of Theorem 1.3. The following first-order characteriza-
tion of quasisimple groups is similar to a characterization of simple groups given
by Felgner [3].

Proposition 3.1. Let G be a finite group. Then G is quasisimple if and only if G
satisfies the sentence QS1 ∧ QS2 ∧ QS3, where QS1, QS2, and QS3 are respectively
defined as follows:

(∃u)(u �= 1) ∧ (∀x)(∃y1∃y2∃y3∃y4) (x = [y1, y2][y3, y4]);
(∀x)((∀u)[x, xu ] ∈ Z(G))→ x ∈ Z(G);
(∀x∀y)(x /∈Z(G)∧CG(x, y)>Z(G) →

⋂
g∈G(CG(x, y)C

2
G (x, y))

g = Z(G)).

These sentences are clearly equivalent to (considerably longer) sentences written
in the primitive first-order language of group theory.

Proof. First suppose that G is quasisimple. Then QS1 holds by (CFSG) (c),
while an element x that commutes modulo Z(G) with all of its conjugates generates
an abelian normal subgroup modulo Z(G), and therefore lies in Z(G). If Z(G) <
H < G then HCG(H ) < G and

⋂
g(HCG (H ))

g = Z(G); therefore QS3 certainly
holds.
Now let G be a group satisfying QS1 ∧ QS2 ∧ QS3. Then G is non-trivial and
perfect and so it has aminimal normal subgroupK subject toK �� Z(G). Moreover
KZ(G)/Z(G) cannot be abelian by QS2. Therefore G has a component T . By
(CFSG) (a) we can find x, y with T = 〈x, y〉; evidently x /∈ Z(G). Write H =
CG(x, y) = CG(T ). Then the product of all components of G is normal and lies
in HT , so that

⋂
g∈G (CG(x, y)C

2
G (x, y))

g �= Z(G). Therefore by QS3 we have
H = Z(G); in particular T is the only component of G , and T � G . Write D =
CG(T/Z(T )). Since G/D is perfect and embeds in Aut(T/Z(T )) we have G = TD
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by (CFSG) (b)(i). Since T is perfect and [[T,D], T ] = 1 we have [T,D] = 1 from
the 3-lemma. Therefore D = H = Z(G) and G = T. �
Proof of Theorem 1.3. We begin with the following formulae (cf. [12, Section
4]):

ϕ(h, x) : (∃y)(x = [h−1, hy ]);
�(h, x) : (∃t∃y1∃y2)(ϕ(h, y1) ∧ ϕ(ht, y2) ∧ ϕ(ht, x) ∧ [y1, y2] �= 1);
�1(h, x) : (∀y)(�(h, y) → [x, y] = 1);
�(h, x) : (∀y)(�1(h, y)→ [x, y] = 1);
α1(h, x) : (∃y1 · · · ∃y16)

(∧16
n=1 �(h, yn)

) ∧ (x = �4(y1, . . . , y16)),
α(h, x) : (∃y1∃y2)(α1(h, y1) ∧ α1(h, y2) ∧ x = y1y2).

For a group G and element h these formulae express, respectively, that x ∈ Xh ,
x ∈ Wh , x ∈ CG(Wh), x ∈ C2G(Wh), x is a �4-value in C2G(Wh) and that x is a
product of two �4-values in C2G(Wh). Let α

′(h) be a first-order formula asserting
that {x | α(h, x)} is a subgroup satisfying QS1 ∧ QS2 ∧ QS3 that centralizes all of
its other conjugates.
Now let G be a finite group andL a component ofG . From Lemma 2.3, for each
h ∈ L \ Z(L) we have L = 〈Wh〉 and hence L � C2G(Wh). Lemma 2.4 now shows
thatL is the set of products of two �4-values in C2G(Wh) and thatL = {x | α(h, x)}.
Therefore α′(h) holds by Proposition 3.1. Conversely, if h satisfies α′(h), then
{x | α(h, x)} is a component by Proposition 3.1.
We shall use this characterization of components to find formulae for arbitrary
products of components.
Let K =

⋂
L(CG(L)C

2
G(L)), the intersection being over all components L of

G . If L1, L2 are components then either L1 = L2 and hence L1 � C2G(L2), or
L1 �= L2 and hence L1 � CG(L2). Thus, for each component L we have L � K ,
and indeed L�K by Lemma 2.2. From above, we haveK =

⋂
(CG(Wh)C2G(Wh)),

the intersection being over all h satisfying α′(h); thus, K is defined by the formula

κ(x) : (∀h)(α′(h)→ (∃u∃v)(x = uv ∧ �1(h, u) ∧ �(h, v))).
Now we introduce formulae like those at the start of the proof but relative to the
subgroup K :

ϕK(h, x) : (∃y)(κ(y) ∧ x = [h−1, hy ]);
�K(h, x) : (∃t∃y1∃y2)(κ(t) ∧ ϕK (h, y1) ∧ ϕK (ht, y2) ∧ ϕK (ht, x) ∧ [y1, y2] �= 1);
�1K (h, x) : (∀y)((κ(y) ∧ �K(h, y))→ [x, y] = 1);
�K (h, x) : (∀y)((κ(y) ∧ �1K(h, y))→ [x, y] = 1);
�1(h, x) : (∃y1 · · · ∃y16)(

(∧16
n=1 �K(h, yn)

) ∧ x = �4(y1, . . . , y16));
�(h, x) : (∃y1∃y2)(�1(h, y1) ∧ �1(h, y2) ∧ x = y1y2).
Finally, let �′(h) be the conjunction of κ(h) and a first-order formula asserting
that {x | �(h, x)} is a normal subgroup of K satisfying QS1 and QS2 (that is,
every element is a product of two commutators andK has no non-central nilpotent
normal subgroups of class at most 2).
If �′(h) holds then {x | �(h, x)} is a product of components from Lemma 2.1.
We claim that every product of components has this form. Let L1 , . . . , Lr (with
r � 0) be components, writeM = L1 . . . Lr and choose h ∈ M with non-trivial
projections in all groups Li/Z(Li ). (Thus, if r = 0 we have M = 1 and h = 1.)

https://doi.org/10.1017/jsl.2018.71 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.71


296 JOHN S. WILSON

So M = 〈{x | �K(h, x)}〉, from Lemma 2.3 applied to the group K. By Lemma
2.4, M is the set of products of two �4-values in C2K({x | �K(h, x)}) and so
M = {x | �(h, x)}. SinceM is a product of components, the formula �′(h) holds
and our claim follows.
It is now easy to identify the elements h for which {x | �(h, x)} is a non-abelian
minimal normal subgroup or a component. We take �′m(h) = �′(h)∧�′1(h)∧�′2(h)
where �′1(h) is the formula

(∃u �= 1)�(h, u)∧(∀x∀y)(�(h, x) → �(h, xy))∧(∀v �= 1)(∃t)(�(h, v)→ [v, vt] �= 1)
asserting that the subgroup {x | �(h, x)} is non-trivial, normal and contains no
non-trivial abelian normal subgroup of G , and �′2(h) is the formula

(∀k)(�′(k) ∧ �′1(k) ∧ ((∀x)�(k, x)→ �(h, x)))→ ((∀y)�(h, y) → �(k, y))
asserting minimality of this normal subgroup. For �′c(h) we can take the conjunc-
tion of �′(h) and a formula asserting that {x | �(h, x)} is minimal among sets
{x | �(k, x)} �= {1} for which �′(k) holds. �

§4. Pseudofinite groups.
Lemma 4.1. Let G be a pseudofinite group. The following assertions hold.

(a) for all h1, h2 ∈ G ,
�′m(h1) ∧ �′m(h2) ∧ ((∀x)�(h1, x)→�(h2, x))→((∀y)�(h1, y)↔�(h2, y))
and
�′c(h1) ∧ �′c(h2) ∧ ((∀x)�(h1, x)→�(h2, x))→((∀y)�(h1 , y)↔�(h2, y)).

(b) Every non-trivial definable normal subgroup of G contains either a non-trivial
abelian normal subgroup of G or a subgroup {x | �(h, x)} with h satisfying
�′m(h).

(c) Let h ∈ G satisfy �′c(h). Then {x | �(h, x)} is a (definable) component of G .
Proof. (a) Since in a finite group the sets {x | �(h, x)} for which �′m(h) (resp.
�′c(h)) holds are non-abelian minimal normal subgroups (resp. components), the
two assertions hold for finite groups. Therefore they hold for G .
(b) Let �(x) be a formula that in G defines a non-trivial normal subgroup and
�+(x) the conjunction of �(x) and a sentence asserting that {x | �(x)} is closed for
products, inverses, and conjugates. In each finite group the sentence

(∃a �= 1)�+(a)
→ (∃b �= 1)(�+(b) ∧ (∀x)[b, bx] = 1) ∨ (∃h)(�′m(h) ∧ ((∀y)�(h, y) → �+(y)))

holds, since every non-trivial normal subgroup contains a non-trivial abelian normal
subgroup or a non-abelianminimal normal subgroup. Therefore this sentence holds
in G.
(c) Because of Theorem 1.3 and the properties of components of finite groups,
�(h, x) defines a subgroup H of G that centralizes all conjugates Hg �= H . It
remains to prove that H has no proper non-central definable normal subgroups.
Let �(x) be a formula that in G defines a non-central normal subgroup of H
and �+(x) the conjunction of �(x) and a sentence asserting that {x | �(x)}
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is closed for products, inverses, and H -conjugates. In each finite group the
sentence

(∀k)(�′c(k) ∧ (∀x)(�+(x)→ �(k,x)) ∧ (∀a �= 1)(�+(a)→ (∃b)(�(k, b) ∧ [a, b] �= 1))
→ (∀y)(�(k,y)→ �+(y)))
holds, because components of finite groups have no proper non-central normal
subgroups. Therefore this sentence holds in G, and our conclusion holds. �
Proposition 4.2. Let G be a pseudofinite group. The following assertions hold.

(a) The non-abelian minimal definable normal subgroups of G are the subgroups
{x | �(h, x)} for elements h satisfying �′m(h).

(b) The definable components of G are the subgroups {x | �(h, x)} for elements h
satisfying �′c(h).

Proof. (a) From Lemma 4.1(b), every non-abelian minimal definable normal
subgroup has the form {x | �(h, x)} for some h satisfying �′m(h).
Now let h ∈ G satisfy �′m(h). Then the set M = {x | �(h, x)} is a non-abelian
normal subgroup and we must establish minimality. Since in a finite group a non-
abelian minimal normal subgroup has no non-trivial element that commutes with
all of its conjugates,M contains no non-trivial abelian normal subgroup of G. Let
N be a definable normal subgroup contained inM. By Lemma 4.1(b),N contains a
subgroup {x | �(k, x)} with k satisfying �′m(k). Therefore N =M = {x | �(k, x)}
by Lemma 4.1(a), and minimality follows.
(b) By Lemma 4.1(c) it suffices to show that if H is a definable component of
G , defined by a first-order formula (x), then H = {x | �(h, x)} for some h
satisfying �′c(h). We may replace  by its conjunction with a sentence asserting
that {x | (x)} is a non-abelian subgroup that normalizes its conjugates and all
of whose nilpotent normal subgroups of class at most 2 lie in its centre. In a finite
group F , a set E defined by  is a subgroup that normalizes its conjugates (so is
subnormal in F ) and by Lemma 2.5 it contains a component of E, and hence of
F ; thus, (∃h)(�′c(h)∧ (∀x)(�(h, x)→ (x))) holds in F by Theorem 1.3. Therefore
this sentence holds in G and we can find h ∈ G satisfying �′c(h) such thatH0 � H
whereH0 = {x | �(h, x)}. SinceH0 is a definable component we haveH0 �L�H
whereL =

⋂
h∈H NH (H

h
0 ), and sinceL is definable andH is a definable component

we haveH = {x | �(h, x)}, as required. �
Proof of Theorem 1.1. This is easy now that we have identified the non-abelian
minimal definable normal subgroups and the components as the sets {x | �(h, x)}
for elements h satisfying �m(h) and �c(h). Assertion (a) follows fromLemma 4.1(b)
and Proposition 4.2(a). Each non-abelian minimal normal subgroup N of a finite
group is the direct product of a simple component and its centralizer in N ; since
this statement can be expressed by a first-order sentence, assertion (b) holds for
G . Assertions (c) and (d) also follow from the corresponding assertions for finite
groups and Theorem 1.3. �
Let G be a finite or pseudofinite group. Write Π(G) = {h | �′(h)} and for each
h ∈ Π(G) write Γh = {x | �(h, x)}. Define a pre-order on Π(G) by setting h1 � h2
if and only if �(h1, x) → �(h2, x). Thus, Π(G) and the relation � are definable in
G . We note that 1 ∈ Π(G) and 1 � h for all h ∈ Π(G).
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Lemma 4.3. (a) There is an elementm ∈ Π(G) such that h � m for all h ∈ Π(G).
(b) For all h1, h2 ∈ Π(G) there exists h3 ∈ Π(G) with Γh2Γh2 = Γh3 .
(c) For each h ∈ Π(G) there are elements h◦ ∈ Π(G) with ΓhΓh◦ = Γm and
[Γh ,Γh◦ ] = Γh ∩ Γh◦ = 1. Moreover, Γ(h◦)◦ = Γh for all choices of h◦, (h◦)◦.
(d) The minimal elements of Π(G) \ {1} are the elements h satisfying �c(h).
Proof. These assertions hold for finite groups and since they can be expressed
using first-order formulae they also hold in pseudofinite groups. �
It is convenient to use the following (dual of a) result of Frink [2].

Lemma 4.4. Let B be a partially ordered set with a maximum element 1 in which
every pair of elements b1, b2 has a least upper bound b1 ∨ b2. Suppose that there is an
order-reversing bijection ◦ : B → B such that for all b1, b2 ∈ B we have b1 ∨ b2 = 1
if and only if b1 � b◦2 . Then B is a Boolean lattice, with minimum element 1◦, with
complementation given by ◦ and with meet operation given by b1 ∧ b2 = (b◦1 ∨ b◦2 )◦.
Proposition 4.5. The quotient B(G) of Π(G) modulo the equivalence relation
defined by

h1 ∼ h2 if and only if h1 � h2 and h2 � h1
carries the structure (definable in G) of a Boolean lattice.

Proof. This follows directly from the above two lemmas. The set B(G) inherits
a partial order from Π(G), with minimum element 0 the class containing 1 and
maximum element the class containingm, and h �→ Γh induces an order-preserving
bijection B(G) → {Γh | �′(h)}. By Lemma 4.3(b), for all b1, b2 ∈ B(G) there
is a least upper bound b1 ∨ b2, and (c) gives an order-reversing bijection b �→ b◦
satisfying the conditions of Lemma 4.4. ThereforeB(G) is a Boolean lattice. Finally,
the equivalence relation on Π(G) and the operations ∨ and ◦ are clearly defined by
first-order formulae, and the result follows. �
It is worth noting that when R(G) = 1 the family {Γh | �′(h)} consists of all
definable normal subgroups of Γm, and lattice operations ◦,∨,∧ in it are precisely
the operations K �→ CΓm (K), and join and intersection of subgroups.
We turn now to Theorem 1.2. For each group G let q(G) be the subgroup
generated by all squares.

Proposition 4.6. Let G be a pseudofinite group with a normal definable com-
ponent L. Then q(G)CG(L) is definable, q(G)CG(L)/LCG(L) is metabelian, and
G/q(G)CG(L) is elementary abelian of order at most 32.

Proof. We haveL = {x | �(h, x)} for some h ∈ G satisfying �′c and soG satisfies
(∃h)�(h) where �(h) is the formula

�′c(h) ∧ (∀x∀y)(�(h, x)↔ �(h, xy)).
We shall show that q(G)CG(L) is defined in G by the formula

(h, x) : (∃y1 · · · ∃y15)(∃s∃t)
x = y21 . . . y

2
15st ∧ �(h, s) ∧ (∀z)(�(h, z)→ [z, t] = 1).

Let F be a finite group that satisfies (∃h)�(h). This sentence asserts that F
has a normal component N = {x | �(h, x)}. Clearly, N = q(N)Z(N). Let
S = N/Z(N). An easy application of the 3-lemma shows that CF (N) = CF (S);
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therefore, F/CF (N) is isomorphic to a subgroup H of Aut(S) containing Inn(S).
By (CFSG) (b)(i) the group H/Inn(S) satisfies the hypothesis on G in Lemma 2.6
with n = 5, and so q(F ) � XNCF (N) where X is the set of products of 15 squares
in F . Thus, q(F )CF (N) = q(F )NCF (N) = {x | (h, x)}. Since every product of
16 squares is a product of an element ofX and an element ofNCF (N), the formula

�1(h) : (∀x1 · · · ∀x16)(hx21 , . . . , x216)
holds in F . Further use of (CFSG) (b)(i) and Lemma 2.6 shows thatF/q(F )CF (N)
is elementary abelian of order at most 32 and q(F )CF (N)/NCF (N) is metabelian.
Therefore, the formulae

�2(h) : (∃t1 · · · ∃t32)(∀g)
∨32
i=1 (h, t

−1
i g),

�3(h) : (∀x1 · · · ∀x4)(
∧4
i=1((h, xi )→ (∃u∃v)

(�2(x1, x2, x3, x4) = uv ∧ �(h, u) ∧ (∀w(�(h,w)→ [w, t] = 1)))
hold in F.
Consequently, for finite groups we have �(h)→ �1(h)∧�2(h)∧�3(h). Therefore,
this implication holds for G , and G satisfies �1(h) ∧ �2(h) ∧ �3(h). It follows that
q(G)CG(L) is defined by the formula (h, x), that this subgroup has index at most
32 and that q(G)CG(L)/LCG(L) is metabelian, as required. �
Proof of Theorem 1.2. LetL1, . . . , Ln be the definable components,G0 the inter-
section of their normalizers, and P their product. Then G0 has finite index in G
since it is the kernel of the conjugation action on the set of components. Write

G1 =
n⋂

i=1

q(G0)CG0 (Li).

Since automorphisms of G permute the subgroups Li , both G1 and PCG(P)
are characteristic subgroups of G . By Proposition 4.6 each subgroup Qi =
q(G0)CG0(Li ) is definable and of finite index in G0; hence, G1 is definable and
of finite index in both G0 and G . Because each Qi/LiCG0(Li ) is metabelian, so
is G1/K where K =

⋂
LiCG0(Li). For each i , conjugation by elements of K

induces only inner automorphisms in Li/Z(Li), and so the images of K and P
in Aut(

∏
Li/Z(Li)) coincide. Therefore, K = PCG(P/Z(P)). Another use of the

3-lemma shows that CG(P/Z(P)) = CG(P), and so G1/PCG(P) is metabelian, as
required.
Finally, suppose also thatR(G) = 1. Then CG(P) is a definable normal subgroup
containing neither components nor a non-trivial abelian normal subgroup of G ,
and so CG(P) = 1. The result follows. �
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