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Suppose we are given n coloured balls and an integer k between 2 and n. How many

colour-comparisons Q(n, k) are needed to decide whether k balls have the same colour?

The corresponding problem when there is an (unknown) linear order with repetitions on

the balls was solved asymptotically by Björner, Lovász and Yao, the complexity being

θ(n log 2n
k ). Here we give the exact answer for k > n

2 : Q(n, k) = 2n − k − 1, and the order

of magnitude for arbitrary k : Q(n, k) = θ( n
2

k ).

1. Introduction

Suppose we are given n coloured balls and an integer k, 2 � k � n. Two players, Paul and

Carole, play the following game. At any stage Paul chooses two balls and asks whether

they have the same colour, whereupon Carole answers ‘yes’ or ‘no’. The game ends when

Paul either produces k balls coloured alike or states that no k balls have the same colour.

How many questions Q(n, k) are needed in the worst case?

Two variants of this problem have been studied in detail. Suppose the n balls are

coloured with two colours, and Paul has to produce a majority ball (or state that there

is no majority). This variant is known as the majority problem and was solved first by

Saks and Werman [9], and later by Alonso, Reingold, Schott [4, 5] and Wiener [10] using

different methods. They answer it exactly: n − B(n) comparisons are needed, where B(n)

is the number of 1s in the binary representation of n. When there is an arbitrary number

of colours the solution � 3n
2

� − 2 was given by Fisher and Salzberg [8]. A general account

of this and related results is contained in Aigner [2, 3].

The other variant was considered by Björner, Lovász and Yao. Suppose we are given

n real numbers (or equivalently a linear order on the balls with repetitions). How many
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comparisons are necessary to decide whether k of the numbers are equal? They give the

asymptotic answer θ(n log 2n
k
).

In our situation we are at the other end. The coloured balls may be thought of as an

antichain with repetitions. The general problem would then consist of an arbitrary poset

(with repetitions). For example, for a linear order the case k = 2 amounts to sorting the n

numbers, while for an antichain we clearly have Q(n, 2) =
(
n
2

)
. For a general poset P , the

case k = 2 amounts to producing the poset P; see, e.g., Aigner [1, Chapter 5].

Let us return to the topic of this note. It is to be expected that the cases k > n
2

and

k � n
2

are of an entirely different nature. In the first case, a k-set of equally coloured balls

is unique, while for k � n
2

uniqueness is no longer guaranteed. This is reflected in the

following two results.

Theorem 1.1. Let k > n
2
. Then Q(n, k) = 2n − k − 1.

Theorem 1.2. For general k, 2 � k � n, we have Q(n, k) = θ( n
2

k
), more precisely, 1

4
n2

k
<

Q(n, k) < 2 n2

k
.

2. Proof of Theorem 1.1

We use an argument similar to that in [8]. Let us look at the upper bound Q(n, k) �
2n − k − 1 first. Paul uses the following algorithm.

Phase 1. Arrange the balls B1, B2, . . . , Bn in linear order, and compare the balls Bi one

after the other. We set up a dynamic list L and a reservoir R. Initially, L = {B1}, R = ∅.

Suppose that before Bj is compared the list is L = C1C2 . . . Cs with reservoir R. Now

compare Bj to the last ball Cs of the list. If they have the same colour, put Bj into R.

Otherwise, enlarge L by moving Bj to the end and putting a ball Z of R behind Bj (in

case R �= ∅). Phase 1 ends when the last ball Bn has been handled accordingly, so we

have made n − 1 comparisons so far.

The following facts are immediate.

(a) All balls in R have the same colour which is equal to the colour of the last ball of L.

(b) Neighbouring balls in L have different colours.

(c) Since k > n
2
, the only possible k-set of equally coloured balls contains the last ball

of L.

Phase 2. Let L = DtDt−1 . . . D1BA be the list with |R| = r, and thus t = n − 2 − r. Let us

call the colour of A the majority colour , and all balls of this colour majority balls . Any

ball with a colour different from A is called a non-majority ball , and we know that B is

such a ball. If at the outset of Phase 2, either r + 1 � k or n + r + 2 − 2k � 0, then we are

done. In the first case, we have found k majority balls, and in the second case there is no

such set since the number of majority balls is at most

r +

⌈
n − r

2

⌉
=

⌈
n + r

2

⌉
� 2k − 2

2
= k − 1.
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Now we scan the list L from the end, first comparing D1 with A, then D2 with A, and

so on. Note that whenever Di is a majority ball (i � 1), then Di+1 is a non-majority ball.

Suppose that up to a certain stage we have received � answers ‘yes’ and m answers ‘no’.

The game is over when, for the first time, either after a ‘yes’ answer,

� + r + 1 � k, (2.1)

or after a ‘no’ answer,

m + � + 1 +

⌊
n − r − 2 − 2� − m

2

⌋
� n − k + 1, (2.2)

where � accounts for non-majority balls after each ‘yes’ answer, 1 for B, and the last

summand for the remaining balls. Inequality (2.2) is equivalent to

m � n + r − 2k + 2. (2.3)

It remains to estimate the number of questions � + m. Suppose (2.1) occurs first. Then

� + r + 1 = k and 2� − 1 + m � n − r − 2 (note that the �th ‘yes’ may occur when Dt is

compared to A). Hence we obtain

� + m � n − r − 1 − � = n − k.

Suppose that (2.3) occurs first. Then � � k − 2 − r by (2.1) and m = n + r − 2k + 2 by

(2.3). Adding, we obtain again

� + m � n − k.

Hence Phase 2 uses at most n − k questions, and so Q(n, k) � 2n − k − 1.

We come to the lower bound Q(n, k) � 2n − k − 1. Carole sets up the following data

structure. She constructs a dynamic graph G on the balls where the edges correspond to

the ‘no’ answers. The balls are dynamically labelled A, B or C with weights w, where all

balls labelled B have weight 1/2 and all balls labelled C have weight 0. Let A, B, C be

the sets of balls with labels A, B and C , respectively, and set
∑

=
∑

X∈A∪B w(X). At the

start all balls are labelled A with weight 1, thus
∑

= n. If X ∈ A has weight i, then we

write X = A(i).

Now Carole answers according to the following rules, where we keep in mind that the

A-balls aim for the k-majority.

(I′) A(i) : A(j) ‘yes’ if
∑

= k, and the two balls are merged into a single ball A(i + j).

‘no’ if
∑

> k, and an edge is inserted. In this case

(I′′) i = j = 1 and we make the label change A(1) : A(1) −→ B − B.

In all other cases the answer is ‘no’, with the following label changes:

(II)

A(i) : B � A(i) C

B A(1)

(III) A(i) : C � A(i) C
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(IV) B : B � C B

B B A(1) B

(V) B : C � C C

B A(1)

(VI) C : C � C C

We note the following easy facts.

(a) An edge of B-balls is only created when A(1) : A(1) are compared.

(b) The B-balls constitute a matching, and there is no edge between different B-edges,

between A(i) and A(j), and between A(i) and B.

(c) Σ is only reduced (by 1) in case (I′′) and remains unchanged otherwise; Σ never drops

below k. Furthermore, as long as Σ > k, all balls in A have weight 1. We have |A| � 1

at any time, since
∑

Y ∈B w(Y ) � n
2
< k.

(d) At a certain stage the number of ‘yes’ answers is
∑

X∈A w(X) − |A|. This follows

from (I′). The number of ‘no’ answers (= edges) is at least 2|C| +
∑

Y ∈B w(Y ). This

follows from (I′′) to (VI).

(e) At any stage a k-majority is possible. Indeed, since there are no edges between A : A,

A : B and different B-edges, all weighted balls in A and one from each edge in B
may be coloured alike, summing to

∑
� k.

Claim. As long as |A| + |B| � 2, there is also a non-majority possible, and hence the

game is not over.

Case 1: Σ > k. Then all balls in A have weight 1, and so all n balls may have different

colours.

Case 2: Σ = k. If |B| � 2, then
∑

X∈A w(X) < k, and thus a non-majority is possible by

assigning different colours to different A-balls and to all other balls. Suppose then B = ∅

and |A| � 2. But here the same argument works since w(X) < k for all X ∈ A.

Hence we conclude that the game is only over when |A| = 1, B = ∅, Σ = k, and thus

|C| = n − k. Invoking (d) we find that Paul has asked at least

k − 1 + 2(n − k) = 2n − k − 1

questions, and the proof is complete.

Remarks. (1) When k drops below n
2
, the situation changes completely. Let n be even;

then we have just seen that Q(n, n
2

+ 1) = 3n
2

− 2. By an argument similar to that of the

proof of the theorem, it can be shown that Q(n, n
2
) = 2n − 3 for n � 6.
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(2) In a variant which seems to favour Paul, Carole is only allowed c colours (unknown

to Paul). It can be shown that in the strategy of Carole used in Theorem 1.1 she can force

Paul to ask 2n − k − 1 questions using no more than 5 colours, for any n.

3. Proof of Theorem 1.2

We may restrict ourselves to k � n
2
. Here the lower bound is easier. Carole always

answers ‘no’. Let G be the dynamic graph on the n balls with edges corresponding to the

comparisons. A k-set of identically coloured balls is possible as long as the independence

number α(G) is at least k. By Turán’s Theorem the minimal number of edges such that

α(G) � k − 1 is achieved when G is the union of k − 1 complete subgraphs of nearly equal

size. Hence

Q(n, k) � (k − 1)

(
n

k−1

2

)
=

1

2

(
n2

k − 1
− n

)
>

1

4

n2

k
,

where the last inequality follows from 2k � n.

Now to the upper bound. Let n = qk + r, 0 � r < k. Paul arranges the balls 1, 2, . . . , n

around a circle in clockwise fashion, and proceeds in k − 1 rounds. In the first round he

compares i with i + 1, . . . , i + q (mod n) for all i. This takes qn comparisons. The ‘yes’

answers partition {1, . . . , n} into sets A1, . . . , Am, where balls in the same set have the same

colour. Let us set C(1) = {A1, . . . , Am}, with
∑m

i=1 |Ai| = n. Any set A ∈ C(1) is an ‘arc’

A = {a1, . . . , as} read clockwise with ai+1 − ai � q. Now either s � k, in which case we are

finished, or the q balls following as have different colours from A. Furthermore, any ball

b �∈ A in the arc, that is, a1 < b < as, also has a different colour. We say that A dominates

at least q balls. Suppose that all sets A ∈ C(1) have size � k − 1.

Claim. If the sets Ai1 , . . . , Ai� in C(1) form a possible � k-set with equal colour, then at

least one of the sets contains at least two elements.

Suppose otherwise with Aij = {aj}, j = 1, . . . , k. Then by what we have just seen, any

two consecutive balls are separated by at least q balls around the circle. It follows that

n � kq + k, which contradicts r < k.

So, for the next round we need only compare sets A ∈ C(1) with |A| � 2 in clockwise

fashion. In every round we compare A with the next q undecided balls. Let us fix some

notation. After round i (1 � i � k − 1), C(i) = {A1, . . . , Am} is the partition into equally

coloured sets determined by the ‘yes’ answers. We denote by s(A) the smallest number

such that A ∈ C(i) dominates at least s(A)q balls of different colour; #A denotes the

number of comparisons which involved balls of A in rounds 2 to i.

Now either there is A ∈ C(i) with |A| � k, in which case we are finished, or we assume

inductively that the following holds:

(a) |A| � i =⇒ s(A) � |A|, #A � (|A| − 1)q,

(b) |A| � i + 1 =⇒ s(A) � i, #A � [min(|A| − 2, s(A) − 1)]q.

Note that (a) and (b) hold for i = 1.

Claim. If, after round i, the sets A1, . . . , A� of C(i) constitute a possible � k-set of equally

coloured balls, then at least one of them contains at least i + 1 balls.
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Suppose not, and set ft = #{j : |Aj | = t}, 1 � t � i. Then
∑i

t=1 tft = |
⋃�

j=1 Aj | � k.

Invoking (a) we see that a t-set A is separated by at least tq balls from the next set,

whence

n �
i∑

t=1

tft +

i∑
t=1

(tft)q � kq + k,

which cannot be.

Hence Paul need only compare sets A ∈ C(i) with |A| � i + 1 in round i + 1, and in fact

he only compares all sets A ∈ C(i) with

|A| � i + 1 and s(A) = i.

We have to check the conditions (a) and (b) after round i + 1. Clearly, any set B ∈ C(i + 1)

is a union of sets A1, . . . , Ah of C(i).

Case 1: h = 1, that is, B = A ∈ C(i). If |A| � i or |A| � i + 1 and s(A) � i + 1, then A

has not been compared, s(B) = s(A), and (a) and (b) are satisfied. If |A| = i + 1, s(A) = i,

then A has been compared (with all q balls following A of different colour), hence

s(B) = s(A) + 1. Thus s(B) = i + 1 = |B| and #B = #A + q � (|A| − 2)q + q = (|B| − 1)q,

and (a) holds. Finally, if |A| � i + 2, s(A) = i, then s(B) = s(A) + 1 = i + 1. Furthermore,

#A � [min(|A| − 2, s(A) − 1]q = (i − 1)q, thus #B = #A + q � iq � [min(|B| − 2,

s(B) − 1]q, since |B| − 2 � i and s(B) − 1 = i.

Case 2: B = A1 ∪ · · · ∪ Ah in clockwise order, h � 2. Since only A ∈ C(i) with |A| � i + 1,

s(A) = i are compared, we have

|Aj | � i + 1, s(Aj) = i for j = 1, . . . , h − 1,

|Ah| � i + 1, s(Ah) � i or |Ah| � i, s(Ah) � |Ah|.

It follows that

s(B) � (h − 1)i + min(i, |Ah|) � i + 1.

If Ah is also compared, that is, |Ah| � i + 1, s(Ah) = i, then

#B =

h∑
j=1

#Aj + hq �
h∑

j=1

[min(|Aj | − 2, i − 1)]q + hq

= (i − 1)hq + hq = ihq

� [min(|B| − 2, s(B) − 1)]q,

since |B| � (i + 1)h, and hence |B| − 2 � (i + 1)h − 2 � ih because of h � 2, and s(B) �
i(h − 1) + (i + 1) = ih + 1, and thus s(B) − 1 � ih.
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Finally, if Ah is not compared, then either |Ah| � i + 1, s(Ah) � i + 1 or |Ah| � i, s(Ah) �
|Ah|. This gives

#B =

h∑
j=1

#Aj + (h − 1)q �
h−1∑
j=1

[min(|Aj | − 2, i − 1)]q

+

{
[min(|Ah| − 2, s(Ah) − 1)]q

(|Ah| − 1)q
+ (h − 1)q

= i(h − 1)q +

{
[min(|Ah| − 2, s(Ah) − 1)]q

(|Ah| − 1)q

� [min(|B| − 2, s(B) − 1)]q,

since |B| � (i + 1)(h − 1) + |Ah|. Hence, with h � 2,

|B| − 2 � i(h − 1) + h − 3 + |Ah| � i(h − 1) + |Ah| − 1,

and

s(B) � i(h − 1) +

{
s(Ah),

|Ah|,

and thus

s(B) − 1 � i(h − 1) +

{
s(Ah) − 1,

|Ah| − 1.

Performing rounds 2 to k − 1, we see that either we obtain a � k-set of equal colours,

or that at the latest after round k − 1 no such set is possible. Thus the game is finished

after round k − 1. Counting the number of comparisons in rounds 2 to k − 1 we find that

after the last round � � k − 1∑
A∈C(�)

#A �
∑

A∈C(�)

(|A| − 1)q < nq.

Altogether, this gives, with round 1, at most 2nq � 2 n2

k
comparisons, and the proof is

complete.
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