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Langmuir circulations (LCs) generated by the interaction between wind-driven currents
and surface waves can engulf the whole water column in neutrally stratified shallow
water and interact with the turbulence in the bottom boundary layer. In this study, we
perform a mechanistic study using wall-resolved large-eddy simulations (LES) based
on the Craik–Leibovich equations to investigate the effects of LCs on turbulence
statistics in the bottom half of shallow water. The highest Reynolds number considered
in this paper, Reτ = 1000, is larger than the values considered in wall-resolved LES
studies of shallow-water Langmuir turbulence reported in literature. The logarithmic
layer is diagnosed based on a plateau region in the profile of a diagnostic function.
It is found that the logarithmic layer disrupted at Reτ = 395 reappears at Reτ = 1000,
but the von Kármán constant is slightly different from the traditional value 0.41. To
study the effects of LCs on turbulence statistics, LCs are extracted using streamwise
averaging. The velocity fluctuations u′i are decomposed into a LC-coherent part
uL

i and a residual turbulence part uT
i . It is found that the profiles of LC-coherent

Reynolds shear stress −〈uLvL
〉 obtained at various Reynolds numbers are close to

each other in the water-column coordinate y/h, with h being the half-water depth. As
the Reynolds number (or, by definition, the ratio between the outer and inner length
scales) increases, the influence of LCs on the near-bottom momentum transfer is
reduced, which is responsible for the reappearance of the logarithmic layer. At all of
the Reynolds numbers under investigation, the peaks of 〈uLuL

〉 are collocated in the
water-column coordinate y/h, while those of 〈uTuT

〉 are collocated in the inner-scale
coordinate y/(ν/uτ ). Due to the increase in the distance between the peaks of 〈uLuL

〉

and 〈uTuT
〉 with the Reynolds number, the profile of 〈u′u′〉 forms a bimodal shape at

Reτ = 700 and 1000.
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1. Introduction
The interaction between wind-shear-driven currents and surface water waves

generates Langmuir circulations (LCs), manifested by the long windrows (or streaks)
extending along the wind direction at the water surface (Leibovich 1983; Smith 2001;
Thorpe 2004; Sullivan & McWilliams 2010; D’Asaro 2014). LCs are named after
Irving Langmuir for his pioneering contribution to the investigation of windrows
based on a series of flow visualization experiments (Langmuir 1938). He attributed
the windrows to the convergent motion between pairs of counter-rotating streamwise
vortices in the water. Following the work of Langmuir, many field observations and
laboratory experiments were conducted to study the characteristics of LCs in the
upper-ocean mixed layer (see, e.g. the reviews by Pollard 1977; Leibovich 1983;
Thorpe 2004). The previous studies of LCs in deep water investigated the length
scales of windrows, the vertical penetration depth of LCs and the intensities of
the upwelling and downwelling motions induced by LCs (Langmuir 1938; Scott
et al. 1969; Assaf, Gerard & Gordon 1971; Smith, Pinkel & Weller 1987; Weller &
Price 1988; Nepf 1992; Thorpe 1992; Farmer & Li 1995). It was reported that the
strong downwelling and upwelling motions of LCs enhance the vertical mixing and
attenuate the mean shear in the mixed layer (Weller & Price 1988; Nepf 1992; Thorpe
1992; Farmer & Li 1995). In neutrally stratified shallow water, LCs can engulf the
entire water column (Faller & Caponi 1978; Gargett et al. 2004; Gargett & Wells
2007; Kukulka, Plueddemann & Sullivan 2012; Savidge & Gargett 2017). These
large-scale full-depth LCs greatly enhance the vertical mixing of scalar quantities and
momentum throughout the water column (Gargett et al. 2004; Dethleff & Kemepema
2007; Gargett & Wells 2007; Dierssen et al. 2009; Kukulka et al. 2012; Akan et al.
2013), and have a significant impact on the bottom boundary layer (Tejada-Martínez
& Grosch 2007; Tejada-Martínez et al. 2012).

Craik & Leibovich (1976) and Leibovich (1977) derived the Craik–Leibovich (C–L)
equations to explain the mechanism underlying LCs. The C–L equations describe the
wave-phase-averaged effect of surface waves on the shear turbulence through a vortex
force term in the momentum equations, which depends on the Stokes drift velocity
of surface waves and the vorticity of flow field. The derivation of the C–L equations
was also given in Andrews & McIntyre (1978), Leibovich (1980) and Holm (1996).
Through the stability analysis of the C–L equations, it was found that the vertical
vorticity generated by the disturbance of the shear-driven current is tilted into the
streamwise direction by the shear of the Stokes drift of surface waves to generate
streamwise vortices (Craik 1977).

The development of the C–L equations makes it possible to perform numerical
simulations to study Langmuir turbulence without resolving the wave surface.
Skyllingstad & Denbo (1995) and McWilliams, Sullivan & Moeng (1997) performed
large-eddy simulations (LES) for Langmuir turbulence in the mixed layer based on
the C–L equations. McWilliams et al. (1997) pointed out that the turbulent Langmuir
number, Lat =

√
uτ/u∗s , is a key dimensionless parameter in Langmuir turbulence

that quantifies the relative importance of the wind shear to the C–L vortex force
related to the Stokes drift of surface waves. Here, uτ is the surface friction velocity,
and u∗s is the characteristic value of Stokes drift velocity, defined as the surface
Stokes drift in deep-water Langmuir turbulence. As the value of Lat decreases, the
LCs are enhanced, characterized by the increase of the variance of vertical velocity
fluctuations (Li, Garrett & Skyllingstad 2005; Harcourt & D’Asaro 2008). The LCs
are also influenced by the parameter kh, where k is the wavenumber of the dominant
wave and h is the depth of mixed layer. It was found that the location of the maximum
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vertical velocity in deep-water Langmuir turbulence moves towards the water surface
as kh increases (Li et al. 2005; Harcourt & D’Asaro 2008). LES based on the
C–L equations were also performed to study the deep-water Langmuir turbulence
under complex sea conditions, including modelling for wave breaking (Noh, Min &
Raasch 2004; Sullivan, McWilliams & Melville 2007), swells coexisting with wind
seas (McWilliams et al. 2014) and hurricanes (Sullivan et al. 2012).

While the C–L equations were solved numerically to study deep-water Langmuir
turbulence as reviewed above, for shallow waters, LES based on the C–L equations
were also conducted to study the influence of full-depth LCs on the turbulence
in the bottom, core and surface regions of the neutrally stratified shallow-water
column (Tejada-Martínez & Grosch 2007; Kukulka et al. 2012; Tejada-Martínez et al.
2012; Akan et al. 2013; Tejada-Martínez et al. 2013; Martinat, Grosch & Gatski 2014;
Sinha et al. 2015). It was reported that in shallow-water Langmuir turbulence, the
mean shear in the core region reduces and even becomes negative, and the logarithmic
layer disappears due to the disruption effect of the LCs (Tejada-Martínez et al.
2012, 2013; Sinha et al. 2015). In comparison with the pure shear-driven turbulence
without LCs, the LCs significantly enhance the spanwise velocity fluctuations near
the water bottom and the vertical velocity fluctuations in the core region of the
water column (Tejada-Martínez & Grosch 2007; Kukulka et al. 2012; Akan et al.
2013; Martinat et al. 2014; Sinha et al. 2015). The results obtained from the LES
show good agreement with the observations of full-depth LCs in an unstratified
shallow-water column (15 m) on the shelf approximately 6–7 km off the New
Jersey coast (Gargett et al. 2004; Gargett & Wells 2007). The effects of Coriolis
force (Grosch & Gargett 2016), surface heat flux (Gargett et al. 2004; Gargett
& Wells 2007; Gargett & Grosch 2014; Gargett, Savidge & Wells 2014; Walker,
Tejada-Martínez & Grosch 2016) and tidal current (Kukulka et al. 2011; Martinat
et al. 2011) on shallow-water Langmuir turbulence are also studied through LES and
field measurements.

To study the mechanism of the effect of full-depth LCs on turbulence statistics
in the bottom boundary layer, wall-resolved LES (i.e. without wall-layer modelling)
has been used in the literature to resolve the near-bottom region. Only full-depth
LCs can deeply penetrate into the bottom boundary. This is the focus of the
present study. Hereafter, full-depth LCs are called LCs for short. In previous studies,
wall-resolved LES of shallow-water Langmuir turbulence was carried out at relatively
low Reynolds numbers, e.g. Reτ = uτh/ν = 395 and 590 (Tejada-Martínez & Grosch
2007; Tejada-Martínez et al. 2012). Here, h is the half-water depth, and ν is the
kinematic viscosity. The disruption of the logarithmic layer implies that the traditional
wall-layer modelling based on the logarithmic law of the mean velocity (Cabot
& Moin 2000; Piomelli & Balaras 2002) is inappropriate. The above conclusion
is, however, based on relatively low Reynolds numbers, and needs to be further
examined at higher Reynolds numbers. Furthermore, the increase of Reynolds number
differentiates the inner and outer length scales. It was found that in canonical wall
turbulence at high Reynolds numbers (Reτ =O(103–105)), the length scale separation
leads to the emergence of large-scale motions scaled by the outer length scale, which
make the shape of Reynolds normal stress profiles different from that at low Reynolds
numbers (Reτ =O(102)) (Hoyas & Jiménez 2006; Marusic, Mathis & Hutchins 2010;
Jiménez 2012). From the above review of previous studies of Langmuir turbulence and
canonical wall turbulence, it is understood that wall-resolved LES at higher Reynolds
numbers are needed to further study the effects of LCs on the bottom boundary
layer. The recent growth in computer power allows us to perform wall-resolved
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FIGURE 1. (Colour online) Sketch of the computational model for shear-driven shallow-
water turbulence with LCs.

LES at higher Reynolds numbers with a larger computational domain size. In the
present study, we perform wall-resolved LES of shallow-water Langmuir turbulence
at Reτ = 395, 700 and 1000 to study the Reynolds number effect. The effects of
dimensionless parameters kh and Lat are also investigated.

The remainder of this paper is organized as follows. In § 2, the governing equations
and numerical method are introduced. In § 3, the reappearance of the logarithmic layer
at Reτ =1000 is reported, and the effects of kh and Lat on the width of the logarithmic
layer are studied. In § 4, the Reynolds stresses are analysed. The reappearance of the
logarithmic layer at Reτ = 1000 is explained by analysing the Reynolds shear stress.
The bimodal shape in the profile of the variance of streamwise velocity fluctuations
at Reτ = 1000 is reported and analysed based on the decomposition of the velocity
fluctuations into a LC-coherent part and a residual turbulence part. In § 5, the budget
of turbulence kinematic energy (TKE) is analysed to further study the effects of LCs
on the turbulence statistics, followed by the summary in § 6.

2. Simulation set-up and numerical method
2.1. Governing equations

Figure 1 shows the computational domain and coordinates used in the present
simulations. As shown, x, y and z represent the streamwise, vertical and spanwise
directions, respectively. The water depth is H. Wall-resolved LES based on the
C–L equations is performed to study the neutrally stratified shallow-water Langmuir
turbulence. Following McWilliams et al. (1997), a low-pass spatial filter is applied to
obtain the wave-phase-averaged motions. The C–L equations read

∇ · u= 0, (2.1)
∂u
∂t
+ u · ∇u=−∇Π + ν∇2u+∇ · τ sgs

+ us ×ω. (2.2)

Here, u= (u, v, w) is the resolved velocity with u, v and w denoting the velocity in
the x-, y- and z-directions, respectively. The overline represents the implicit grid-level
filter. The effective pressure Π = p/ρ +Γ includes the resolved pressure p/ρ and the
additional term (McWilliams et al. 1997)

Γ = 1
2 us · us + us · u. (2.3)
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Influence of shallow-water LCs on turbulence near the bottom 279

In (2.2) and (2.3), us is the Stokes drift velocity induced by water waves. According
to Longuet-Higgins (1953) and Phillips (1967), us induced by shallow-water potential
waves is given as

us(y)= u∗s

(
cosh(2ky)

2 sinh2(2kh)
, 0, 0

)
=

uτ
La2

t

(
cosh(2ky)

2 sinh2(2kh)
, 0, 0

)
. (2.4)

Here, u∗s = σka2 is the characteristic value of us (Tejada-Martínez & Grosch 2007),
with σ , k and a being the frequency, wavenumber and wave amplitude, respectively.
In (2.2), ν is the kinematic viscosity, and the subgrid-scale (SGS) stress tensor τ sgs is
included due to the use of the low-pass spatial filter. The last term on the right-hand
side of (2.2) is the C–L vortex force, with ω=∇ × u being the vorticity. The value
of La2

t characterizes the relative magnitude of the wind-shear forcing with respect to
wave forcing. According to the definitions of the C–L vortex force (2.2) and Stokes
drift (2.4), the increase of either Lat or kh leads to the magnitude decrease of the C–L
vortex force. Particularly, as the value of Lat approaches infinity, the flow reduces to
a shear-driven turbulence without LCs.

In the C–L equations derived by Craik & Leibovich (1976) and Leibovich (1977),
the Stokes drift us is obtained using the leading-order solution of potential waves
with respect to the wave steepness ε. Near the wave surface and water bottom, the
magnitude of Stokes drift in the context of viscous flow is different from that obtained
from the potential theory due to the viscous boundary condition. For example, at
the water bottom, the Stokes drift us is zero due to the no-slip boundary condition,
but the value given by (2.4) is non-zero. Nevertheless, the magnitude of the latter
is very small. Among all the cases studied in this paper, the maximal value of us
is 2.26uτ . Near the water surface, the viscous effect can also influence the Stokes
drift. However, the influence of the viscous effect on the Stokes drift is confined
in a thin layer. Longuet-Higgins (1953) showed that the leading-order approximation
of shallow-water waves satisfies the potential solution in most of the water column,
and only deviates from the potential solution in a thin viscous layer with a thickness
comparable to that of the Stokes layer. The thickness of the Stokes layer δs is

√
2ν/σ ,

which is small for water waves. For example, in the case of finite-depth waves, if
σ = 2π rad s−1, the thickness of its Stokes layer is only 0.56 mm (Longuet-Higgins
1953). The thickness of the Stokes layer can also be estimated from other studies of
turbulent boundary layer subjected to an oscillatory pressure gradient. Based on the
results of Ramaprian & Tu (1983), Scotti & Piomelli (2001) and Manna, Vacca &
Verzicco (2012), we can estimate that δs is smaller than five wall units under the wave
condition that Langmuir circulations are observed in the field by Gargett & Wells
(2007). This above discussions indicate that the viscous effects are confined in the
viscous sublayer. According to the original theory of Craik & Leibovich (1976), the
viscous effects may lead to a correction to the C–L equation. However, the correction
is only subtle and is in a thin layer near the wave surface and water bottom. In
Langmuir turbulence, due to the wind shear, the viscous effects near the wave surface
and water bottom are much less important than the wind-induced shear. As a result
of the above factors, it is believed that the viscous effects at the boundaries only have
higher-order influence on the dynamics of the Langmuir turbulence. It was shown in
previous LES studies of shallow-water Langmuir turbulence that the LES results based
on the C–L equations with us given by (2.4) (Tejada-Martínez & Grosch 2007) agree
well with the field measurement data (Gargett & Wells 2007). At last, we remark
that when more computer power becomes available, one might conduct wave-phase-
resolved simulations with full viscous boundary conditions to quantify the viscous
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Case Reτ Lat kh λ/H Lx/h Lz/h Nx Ny Nz 1x+ 1y+min 1z+

Case 1 1000 0.7 0.5 2π 8π 16π/3 512 192 512 49.09 0.625 32.72
Case 2 700 0.7 0.5 2π 8π 16π/3 384 144 384 45.81 0.588 30.54
Case 3S 395 0.7 0.5 2π 4π 8π/3 128 128 128 38.78 0.395 25.85
Case 3 395 0.7 0.5 2π 8π 16π/3 256 128 256 38.78 0.395 25.85
Case 3L 395 0.7 0.5 2π 32π 64π/3 1024 128 1024 38.78 0.395 25.85
Case 4 1000 0.7 1.0 π 8π 16π/3 512 192 512 49.09 0.625 32.72
Case 5 1000 0.7 1.5 2π/3 8π 16π/3 512 192 512 49.09 0.625 32.72
Case 6 1000 0.7 2.0 π/2 8π 16π/3 512 192 512 49.09 0.625 32.72
Case 7 1000 0.4 0.5 2π 8π 16π/3 512 192 512 49.09 0.625 32.72
Case 8 1000 0.9 0.5 2π 8π 16π/3 512 192 512 49.09 0.625 32.72
Case 9 1000 ∞ — — 8π 16π/3 512 192 512 49.09 0.625 32.72

TABLE 1. Key parameters of simulation cases.

effects at the boundaries, which requires a simulation framework different from the
present one based on the C–L equations and is beyond the scope of this work.

The surface boundary for the wave-phase-averaged motions described in the C–L
equations is a rigid lid, which is obtained by keeping the leading-order term in
the expansion of the boundary condition with respect to the wave steepness (Craik
& Leibovich 1976; Leibovich 1977). According to Kemp & Simons (1982) and
McWilliams, Restrepo & Lane (2004), the difference in wave amplitude induced by
wave–current interactions is a higher-order effect with respect to the wave steepness,
which is omitted in the C–L theory. Therefore, it is believed that the C–L equation
with a rigid-lid boundary condition at wave surface can still be used under the
influence of wave–current interaction. In fact, the rigid-lid surface boundary condition
has been widely used in LES of Langmuir turbulence (Skyllingstad & Denbo 1995;
McWilliams et al. 1997; Tejada-Martínez & Grosch 2007). The flow is driven by
a constant wind-shear stress τw = ρu2

τ at the water surface y = 2h, with ρ being
the density of water. The no-slip boundary condition is applied at the bottom y= 0.
Periodic boundary conditions are imposed in the x- and z-directions.

2.2. Computational parameters
Table 1 summarizes the key parameters of the present simulations. In the table, Lx

and Lz denote the computation domain size in the x- and z-directions, respectively; Nx,
Ny and Nz are the number of the grid points in the x-, y- and z-directions, respectively,
with 1x+, 1y+min and 1z+ being the grid resolution in the corresponding directions.
The superscript ‘+’ denotes flow quantities normalized using the viscous length scale
ν/uτ and surface friction velocity uτ . Note that due to the use of a conservative finite
difference scheme for the discretization in the y-direction (Kim & Moin 1985), the
shear stress τw prescribed at the top is balanced by the time-averaged shear stress
at the bottom when the flow is fully developed to a statistically stationary state.
Correspondingly, the value of uτ at the water bottom obtained from the simulation
is also identical to that at the water surface. As a result, the values of 1x+, 1y+min
and 1z+ are all constants in different cases with the same Reτ . The details of the
numerical scheme are given in § 2.3.

Simulation cases 1–3 are conducted to study the effect of the Reynolds number
Reτ = uτh/ν. The value of Reτ is 1000, 700 and 395 in cases 1, 2 and 3, respectively.
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Influence of shallow-water LCs on turbulence near the bottom 281

The dimensionless parameters Lat = 0.7 and kh= 0.5 are chosen to match the typical
field condition in the observation of Gargett & Wells (2007). Cases 3S and 3L
are performed to examine the influence of the computational domain size on the
simulation results. The values of Reτ , Lat and kh in cases 3S and 3L are the same as
those in case 3. The computational domain sizes of cases 3S and 3L are respectively
one-half and four times that of case 3 in both the x- and z-directions. It is shown
in § 2.4 that the computation domain size of case 3, Lx × Lz = 8πh × 16πh/3, is
sufficiently large to obtain accurate simulation results. As a result, the computational
domain size of the other cases is set to that of case 3. Cases 1 and 4–6 are performed
to investigate the effect of kh. In these cases, the value of kh varies from 0.5 to 2.0
with the corresponding wavelength-to-depth ratio λ/H varying from 2π to π/2, while
Reτ and Lat are fixed at 1000 and 0.7, respectively. The effect of Lat is studied
through cases 1, 7 and 8. The value of Lat is 0.4, 0.7 and 0.9 in cases 7, 1 and
8, respectively. Case 9 is the pure shear-driven turbulence case, which is used as a
reference case to reveal the influence of LCs on turbulence statistics.

The grid is evenly distributed in the x- and z-directions. In the y-direction, the grid
lines are located at yj/h = b−1 tanh[(−1 + 2j/Ny) tanh−1(b)] + 1 for j = 0, 1, . . . , Ny
with b= 0.973, such that the grid is clustered near the water surface and water bottom.
As shown in table 1, the minimum vertical grid resolution 1y+min near the top and
bottom is smaller than 1.0, satisfying the grid resolution of wall-resolved LES. The
grid resolution in the x- and z-directions also satisfies the standard of wall-resolved
LES, i.e. 1x+ ' 50 and 1z+ ' 30 (Chapman 1979; Choi & Moin 2012). We have
re-run case 1 by doubling the number of grid points in the x- and z-directions to
examine the effect of grid resolution on the simulation results. It is found that the
mean velocity and Reynolds stresses change by less than 2 % and 4 %, respectively.

2.3. Numerical method
In our simulations, the fractional-step projection method (Kim & Moin 1985) is
employed to solve (2.1) and (2.2). The second-order explicit Adams–Bashforth
scheme and second-order implicit Crank–Nicolson scheme are used for the time
integrations of the convective and viscous terms in the C–L equations, respectively.
In the x- and z-directions, the Fourier–Galerkin method is utilized for the spatial
discretization. The 3/2 rule is employed to remove the aliasing error. In the vertical
direction, the second-order finite-difference method is used to discretize the flow field.
The vertical velocity component v is defined at grid points, while horizontal velocity
components u, w, and pressure Π are defined at the centres of grid lines.

The SGS stress τ sgs
ij is calculated using the dynamic Smagorinsky model (Germano

et al. 1991; Lilly 1992). Hereinafter, the subscript i (or j) = 1, 2 and 3 represents the
component in the streamwise, vertical and spanwise directions, respectively. The SGS
stress τ sgs

ij is calculated as

τ
sgs
ij =

1
3τ

sgs
kk δij + 2Cs∆

2
|S|Sij, (2.5)

where the dilatational part of the SGS stress τ sgs
kk δij/3 is absorbed into the modified

pressure Π̄ , Cs is the model coefficient, ∆ = (1x1y1z)1/3 is the width of the grid-
level filter, Sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the resolved strain-rate tensor and |S| =
(2SijSij)

1/2 is the norm of S̄ij. The model coefficient Cs is determined using a dynamic
procedure as

Cs =
1
2
〈LijM ij〉xz

〈M ijM ij〉xz
, (2.6)
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FIGURE 2. (Colour online) Profiles of (a) the mean streamwise velocity 〈u〉+ and (b)
Reynolds normal stresses in case 3S and comparison with the result of Tejada-Martínez
& Grosch (2007).

where
Lij = ˜̄ui˜̄uj −˜̄uiūj, (2.7)

and

M ij = ∆̃
2
|
˜̄S|˜̄Sij − ¯̃∆2|S̄|S̄ij. (2.8)

Here, 〈〉xz denotes the averaging in the x- and z-directions, the tilde stands for a test-
grid-level filter, and ∆̃ is the size of the test-grid-level filter.

To validate the code, we compare the results in case 3S with those in Tejada-
Martínez & Grosch (2007). The computational domain size, Lat, and Reτ in case 3S
are the same as those in Tejada-Martínez & Grosch (2007), while the value of kh in
case 3S (0.5) is close to that (0.52) in Tejada-Martínez & Grosch (2007). Figure 2
compares the profiles of the mean streamwise velocity 〈u〉+ and Reynolds normal
stresses 〈u′u′〉+, 〈v′v′〉+ and 〈w′w′〉+ in case 3S with those in Tejada-Martínez &
Grosch (2007) to validate the numerical algorithms. Here, the angular brackets 〈 〉
represent the temporal and spatial averaging over a time duration of t = 120h/uτ
in x–z planes. The prime denotes fluctuations. For the convenience of presenting
the results, the overline is omitted hereinafter. Figures 2(a) and 2(b) show that
the results of case 3S are close to those of Tejada-Martínez & Grosch (2007).
In the equilibrium shallow-water Langmuir turbulence, the viscous shear stress
d〈u〉+/dy+, resolved Reynolds shear stress −〈u′v′〉+ and the SGS shear stress 〈τ sgs

12 〉
+

satisfy (Tejada-Martínez & Grosch 2007)

d〈u〉+/dy+ − 〈u′v′〉+ + 〈τ sgs
12 〉
+
= 1. (2.9)

Figure 3 shows different terms in (2.9) in Langmuir turbulence (case 3S) and
shear-driven turbulence (case 1). As shown, the viscous stress is important near
the water bottom, while the resolved Reynolds shear stress is dominant away from
the bottom of the water. The SGS shear stress is significantly smaller than the
resolved Reynolds shear stress. The value of the total shear stress obtained from
our LES is 1.0 throughout the water column, indicating that the simulation reaches a
statistically equilibrium state and the time duration used for performing time averaging
is sufficiently long.
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FIGURE 3. (Colour online) Profiles of shear stresses in (a) case 3S and (b) case 1.
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FIGURE 4. (Colour online) Profiles of (a) 〈u′u′〉+, (b) 〈v′v′〉+, (c) 〈w′w′〉+ and (d) 〈u′v′〉+
in cases 3S, 3 and 3L with different domain sizes.

2.4. Effect of computational domain size

Figure 4 compares the profiles of 〈u′u′〉+, 〈v′v′〉+, 〈w′w′〉+ and 〈u′v′〉+ among cases 3S,
3 and 3L to examine the effect of computational domain size on the Reynolds stresses.
As shown, the profiles of 〈u′u′〉+, 〈v′v′〉+, 〈w′w′〉+ and 〈u′v′〉+ in case 3 collapse with
those in case 3L, indicating that the computational domain size of case 3 is adequate
to obtain domain-size-independent results of Reynolds stresses. The domain size of
case 3S, on the other hand, is inadequate as evident by the difference in the profiles
of 〈u′u′〉+, 〈v′v′〉+ and 〈w′w′〉+ of case 3S from those of cases 3 and 3L (figure 4a–c).

We have also examined the effect of computational domain size on the scales
and intensities of LCs. The LC quantities are extracted using a triple decomposition,
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FIGURE 5. (Colour online) Contours of 〈uL
〉
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t and vectors consisting of (〈wL
〉
+

t , 〈v
L
〉
+

t ) in
(a) case 3 and (b) case 3L with different domain sizes.

viz.
u= 〈u〉 + u′ = 〈u〉 + uL

+ uT . (2.10)

Because the LCs are elongated along the wind direction (Gargett et al. 2004; Gargett
& Wells 2007), the LC-coherent velocity uL is defined as the streamwise averaging
of u′. The residual turbulence fluctuations are denoted as uT . The summation of uL

and uT gives the total fluctuation u′. The same triple decomposition method was used
by Tejada-Martínez & Grosch (2007), Kukulka et al. (2012) and Tejada-Martínez et al.
(2013) in shallow-water Langmuir turbulence.

Figure 5 compares the LCs obtained from cases 3 and 3L. The LCs are visualized
using the vectors consisting of (〈wL

〉
+

t , 〈v
L
〉
+

t ) and the contours of 〈uL
〉
+

t in an z–y
plane, where 〈 〉t represents the time averaging over 120h/uτ . As highlighted by
the red dashed boxes in figure 5(a,b), the positive uL forms a mushroom-shaped
region (Tejada-Martínez & Grosch 2007), and each mushroom is accompanied
by a pair of counter-rotating streamwise vortices, consistent with the observation
of Tejada-Martínez & Grosch (2007). As pointed out by Tejada-Martínez et al.
(2012) and Sinha et al. (2015), the magnitude of the time- and streamwise-averaged
velocity is larger in the downwelling limbs than in the upwelling limbs, because
uL is positive and negative in the downwelling and upwelling limbs, respectively
(figure 5). Furthermore, in the region away from the bottom, the decrease in the
amplitude of uL with y/h (figure 5) results in a negative and positive vertical gradient
of uL in the downwelling and upwelling limbs, such that the velocity gradient in
the upwelling limbs is relatively small in comparison with that in the downwelling
limbs. Two and eight pairs of counter-rotating vortices are observed in cases 3 and
3L, respectively. The spanwise length scale of LCs obtained from the present LES
is 8πh/3, agreeing with that in Tejada-Martínez & Grosch (2007). The spanwise
domain size in the present study follows Tejada-Martínez & Grosch (2007), who set
the spanwise domain size to 8πh/3, which approximates the spanwise length scale of
LCs in the field measurements by Gargett et al. (2004) and Gargett & Wells (2007).
According to Tejada-Martínez et al. (2012), no Langmuir circulation is observed if
the spanwise domain size is set to 12πh/3.

The Reynolds stress can be further decomposed into the LC-coherent part and
residual turbulence part as

〈u′iu
′

j〉 = 〈u
L
i uL

j 〉 + 〈u
T
i uT

j 〉. (2.11)
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FIGURE 6. (Colour online) Profiles of (a) 〈uLuL
〉
+, (b) 〈vLvL

〉
+, (c) 〈wLwL

〉
+ and (d)

〈uLvL
〉
+ in cases 3 and 3L with different domain sizes.

The cross-term 〈uL
i uT

j 〉 is zero (Akan et al. 2013; Martinat et al. 2014), because uL
i

are streamwise averaged and the streamwise-averaged value of uT
j is zero. To further

examine the domain-size effect on the intensity of LCs, we compare the profiles of
LC-induced Reynolds stresses 〈uLuL

〉
+, 〈vLvL

〉
+, 〈wLwL

〉
+ and 〈uLvL

〉
+ between cases 3

and 3L in figure 6. As shown, the profiles in case 3 agree with those in case 3L. The
results shown in figures 4–6 indicate that the computational domain size of Lx× Lz=

8πh× 16πh/3 is sufficiently large for capturing LCs.

3. Mean velocity

It was reported in Tejada-Martínez et al. (2012) that the logarithmic layer over the
bottom boundary is disrupted in the shallow-water Langmuir turbulence at Reτ = 395
and 590 with Lat = 0.7 and kh = 0.5. In this paper, we start our analysis from the
examination of the logarithmic law of the mean velocity at higher Reynolds numbers.
In the logarithmic layer, the mean velocity satisfies (Millikan 1938; Rotta 1962;
Townsend 1976)

〈u〉+ =
1
κ

log(y+)+ B, (3.1)

where κ is the von Kármán constant, and B is the intercept. The logarithmic law can
be quantitatively identified by the diagnostic function

F= y+
d〈u〉+

dy+
. (3.2)
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FIGURE 7. (Colour online) Effect of Reynolds number on (a) 〈u〉+ and (b) F in the
bottom half of the shallow-water Langmuir turbulence in cases 1–3 with Reτ = 1000, 700
and 395, respectively. The logarithmic law in (a) is 〈u〉+ = log(y+)/0.36+ 3.2. The open
circles represent the results of case 9 (the shear-driven turbulence at Reτ = 1000).

The value of F is a constant 1/κ if the logarithmic law (3.1) holds. However, at a
finite Reynolds number, the value of F is not strictly identical to 1/κ , but increases
slightly with y+ in a quasi-plateau region (Moser, Kim & Mansour 1999; Hoyas &
Jiménez 2006; Avsarkisov et al. 2014; Bernardini, Pirozzoli & Orlandi 2014; Lee &
Moser 2015). This is because the logarithmic law is only the first-order truncation of
the asymptotic expansion of the mean velocity with respect to 1/Reτ (Afzal & Yajnik
1973; Zagarola, Perry & Smits 1997; Jiménez & Moser 2007; Mizuno & Jiménez
2011).

Figure 7 compares the profiles of 〈u〉+ and F among cases 1, 2 and 3, with
Reτ = 1000, 700 and 395, respectively. The results of case 9 for the shear-driven
turbulence at Reτ = 1000 are superimposed as a reference. As shown in figure 7(a),
the profile of 〈u〉+ at Reτ = 395 deviates from the logarithmic law, consistent
with the results of Tejada-Martínez et al. (2012). However, the profile of 〈u〉+
approaches the logarithmic law progressively as the Reynolds number increases.
This observation from figure 7(a) is further confirmed by the diagnostic function F.
Figure 7(b) shows that although the profile of F in Langmuir turbulence deviates
from that in shear-driven turbulence above y+= 100, the profile of F below y+= 100
approaches that of shear-driven turbulence progressively as the Reynolds number
increases. Particularly, at Reτ = 1000, the profiles of F in the Langmuir turbulence
and shear-driven turbulence are close to each other below y+ = 100, indicating a
weak influence of LCs on the mean velocity in the near-bottom region. A plateau
region can be observed in the profile of F in the Langmuir turbulence at Reτ = 1000,
an indicator of the presence of logarithmic layer. The value of F in the plateau
region is approximately 2.77, and correspondingly, the value of the von Kármán
constant is κ = 0.36. Note that κ is not necessarily the conventional value of 0.41.
It also deviates from 0.41 in canonical wall-bounded turbulence at finite Reynolds
number (Nagib & Chauhan 2008; Klewicki, Fife & Wei 2009; Mizuno & Jiménez
2011; Jiménez 2012; Marusic et al. 2013; Avsarkisov et al. 2014; Lee & Moser
2015). The conventional value κ = 0.41 is the asymptotic value as the Reynolds
number approaches infinity (Jiménez & Moser 2007; Mizuno & Jiménez 2011). The
presence of the logarithmic layer at Reτ = 1000 indicates that the wall-layer model
based on the logarithmic law is still appropriate in the shallow-water Langmuir
turbulence at high Reynolds number. Because the logarithmic layer in Langmuir
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FIGURE 8. (Colour online) Effect of kh on (a) 〈u〉+ and (b) its diagnostic function F
in the bottom half of the shallow-water Langmuir turbulence in cases 1 and 4–6 with
kh= 0.5, 1, 1.5 and 2, respectively. The open circles represent the results in case 9 (the
shear-driven turbulence at Reτ = 1000).
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FIGURE 9. (Colour online) Effect of Lat on (a) 〈u〉+ and (b) its diagnostic function F in
the bottom half of the flow in cases 1, 7 and 8 with Lat = 0.7, 0.4 and 0.9, respectively.
The open circles represent the results in case 9 (the shear-driven turbulence at Reτ =1000).

turbulence is thinner than that in shear-driven turbulence (figure 7b), care must
be taken to ensure that the first grid is located in the logarithmic layer when the
wall-layer model is used. The reappearance of the logarithmic layer at Reτ = 1000 is
further explained in § 4.2, based on the analysis of Reynolds shear stress, an indicator
of the transport of mean momentum in the vertical direction.

Figures 8 and 9 show respectively the effects of the dimensionless parameters kh
and Lat on the profiles of 〈u〉+ and F. The results in cases 1 and 4–6 with various
values of kh are shown in figure 8, while those of cases 1, 7 and 8 with various values
of Lat are shown in figure 9 (see table 1 for the parameters). The results of case 9
for shear-driven turbulence are superimposed in figures 8 and 9 for comparison. As
pointed out above, at Reτ = 1000, the LCs do not significantly influence the mean
velocity in the near-bottom region (figure 7). As a result, below y+ = 80, both the
profiles of 〈u〉+ and those of F in cases 1 and 4–8 for Langmuir turbulence with
various values of kh and Lat are coincident with those in case 9 for shear-driven
turbulence. As the value of either kh or Lat increases, the magnitude of the vortex
force decreases ((2.2) and (2.4)), resulting in a weaker influence of the vortex force on
the mean velocity. Therefore, the profile of F above y+ = 80 in Langmuir turbulence
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Case Case 1 Case 4 Case 5 Case 6 Case 8 Case 9

Lat 0.7 0.7 0.7 0.7 0.9 ∞

kh 0.5 1.0 1.5 2.0 0.5 –
κ 0.359 0.362 0.363 0.365 0.360 0.386

TABLE 2. The von Kármán constant κ obtained at Reτ = 1000.

approaches that in shear-driven turbulence as the values of kh and Lat increase, leading
to the thickness increase of the logarithmic layer (figures 8b and 9b). The effect of
kh on the mean velocity at Reτ = 1000 obtained from our LES is consistent with
the trend observed by Tejada-Martínez et al. (2012) and Sinha et al. (2015) at Reτ =
395. According to the analysis above, Reτ , kh and Lat all influence the thickness of
the logarithmic layer in shallow-water Langmuir turbulence. In the future, if more
measurement and simulation data are available, it will be interesting to derive an
explicit expression of the thickness of the logarithmic layer as a function of these
three parameters, which is however, infeasible at this stage due to the limitation in
the present computer power and beyond the scope of this study.

The von Kármán constant κ is an important parameter in the wall-layer modelling
of wall turbulence (Cabot & Moin 2000; Piomelli & Balaras 2002). Table 2 lists
the values of κ in different cases, calculated by fitting the mean velocity in the
plateau region of F. Note that because the logarithmic layer is absent in cases
2, 3 and 7, table 2 only gives the value of κ in cases 1, 4–6, 8 and 9. In the
shear-driven turbulence (case 9), the value of κ is 0.386, close to that in canonical
wall-bounded turbulence (Nagib & Chauhan 2008; Jiménez 2012; Marusic et al.
2013; Avsarkisov et al. 2014; Lee & Moser 2015). As shown in table 2, the value
of κ varies in a narrow range with 0.362 ± 0.003, for the Langmuir turbulence
considered in the present work, which is slightly smaller than that in the shear-driven
turbulence. It was reported in the literature that the value of κ is influenced by
the boundary geometry (Nagib & Chauhan 2008; Marusic et al. 2013), body forces
such as the buoyancy force (Scagliarini et al. 2015) and the streamwise mean
pressure gradient (Luchini 2017). In the Langmuir turbulence, the small discrepancy
in the value of κ between the shallow-water Langmuir turbulence and shear-driven
turbulence is correlated with the C–L vortex force, which acts as a body force in the
C–L equations.

4. Structure and statistics of velocity fluctuations
4.1. Instantaneous velocity fluctuations

Figure 10 compares the instantaneous velocity fluctuations in an x–z plane at
y/h = 0.12 in the Langmuir turbulence (case 1) with those in the shear-driven
turbulence (case 9). The contours of u′ in the shear-driven turbulence show large-scale
streaks with spanwise length scale 5.6h, accompanied by smaller-scale streaks
(figure 10b1). The contours of u′ in the Langmuir turbulence are more coherent
and mainly dominated by large-scale streaks with spanwise length scale 8πh/3
agreeing with those of LCs (figure 10a1), indicating the important contribution
of LCs to the streamwise velocity fluctuations. This observation is similar to that
of Tejada-Martínez & Grosch (2007) at the centre of the water column at Reτ = 395.
Similarly, the comparison between figures 10(a3) and 10(b3) indicates that the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

88
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.883


Influence of shallow-water LCs on turbulence near the bottom 289

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

15
10
5

15
10
5

15
10
5

15
10
5

15
10
5

15
10
5

4
0
-4

4
0
-4

4
0
-4

4
w�

u�

0
-4

2
0
-2

2
0
-2

z/h

x/h x/h x/h

z/h

(a1) (a2) (a3)

(b1) (b2) (b3)

√�

w�
u� √�

FIGURE 10. (Colour online) Instantaneous velocity fluctuations of (a1) (b1) u′, (a2) (b2)
v′ and (a3) (c3) w′ in a x–z plane at y/h= 0.12. (a1), (a2) and (a3) are results for case 1
(Langmuir turbulence), while (b1), (b2) and (b3) are for case 9 (shear-driven turbulence).

spanwise velocity fluctuation w′ is more coherent in the Langmuir turbulence than
in the shear-driven turbulence. For the vertical velocity fluctuations, two negative
streamwise-elongated streaks with spanwise separation of 8πh/3 appear in the
Langmuir turbulence (figure 10a2), which are the footprints of the strong downwelling
motions of LCs near the bottom. In contrast, the large-scale motion in the shear-driven
turbulence is not sufficiently strong to leave footprints in v′ near the water bottom.

4.2. Reynolds shear stress
According to (2.9), the mean velocity 〈u〉 and Reynolds shear stress −〈u′v′〉 in the
shallow-water Langmuir turbulence are related by the following balance equation of
the mean streamwise shear stress

d〈u〉+

dy+
− 〈u′v′〉+ = 1. (4.1)

Here, the mean SGS shear stress 〈τ sgs
12 〉 in (2.9) is neglected, because its magnitude

is negligibly small in comparison with −〈u′v′〉 (figure 3). In this section, the
reappearance of the logarithmic layer at Reτ = 1000 and the effects of kh and
Lat on the thickness of the logarithmic layer are further studied through the analysis
of the Reynolds shear stress.

Figure 11(a) compares the profiles of −〈u′v′〉+ in cases 1 and 3 for Langmuir
turbulence at Reτ = 1000 and 395, respectively, with the result of case 9 for
shear-driven turbulence superimposed. Figure 11(b) provides a zoom-in view of their
distributions in the logarithmic layer. In all of these three cases, the value of −〈u′v′〉+
increases monotonically as y+ increases in the near-bottom region below y+ = 100,
and approaches 1.0 in the outer layer above y+= 100. Substituting equation (4.1) into
the definition of F (3.2) gives the relationship between F and −〈u′v′〉+ as

F= y+ + y+〈u′v′〉+. (4.2)

According to this equation, although the difference in the profile of −〈u′v′〉+ seems
to be small between cases 1 and 3, it is amplified by the multiplication with y+ to
result in a more significant difference in the profile of F.

To further study the effect of the Reynolds shear stress on the logarithmic layer, we
depict in figure 11(b) the profile of −〈u′v′〉+ in cases 1, 3 and 9 in the logarithmic
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FIGURE 11. (Colour online) Profiles of −〈u′v′〉+ in cases 1, 3 and 9 and comparison with
1−1/(κy+). LCs are present in cases 1 and 3 with Reτ =1000 and 395, respectively, while
LCs are absent in case 9 with Reτ = 1000.
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coordinate y/h, respectively.

layer of the shear-driven turbulence between y+= 50 and 200. According to (4.1), the
identity −〈u′v′〉+= 1− 1/(ky+) holds in the logarithmic layer. Figure 11(b) shows that
in case 3 for Langmuir turbulence at Reτ = 395, the value of −〈u′v′〉+ is larger than
1 − 1/(ky+), indicating that the mean velocity deviates from the logarithmic law. In
contrast, in case 1 for Langmuir turbulence at Reτ = 1000, the profile of −〈u′v′〉+ is
close to that of 1− 1/(ky+), meaning that the logarithmic layer reappears.

The effect of LCs on the Reynolds shear stress can be further assessed through
the decomposition of −〈u′v′〉+ into the LC-coherent part −〈uLvL

〉
+ and the residual

part −〈uTvT
〉
+ (2.11). Figures 12(a) and 12(b) compare respectively the profiles

of −〈uTvT
〉
+ and −〈uLvL

〉
+ in cases 1–3 in the near-bottom coordinate y+, while

figure 12(c) compares the profile of −〈uLvL
〉
+ in these cases in the water-column

coordinate y/h to further study the effect of the Reynolds number on the Reynolds
shear stress. From the comparison between figures 12(a) and 12(b), it can be observed
that the residual part −〈uTvT

〉
+ is dominant below y+ = 100, while the LC-coherent

part −〈uLvL
〉
+ is more important above y+ = 100, consistent with the observations

of Tejada-Martínez & Grosch (2007) and Sinha et al. (2015). Figure 12(a) shows that,
as the Reynolds number increases, the peak location of −〈uTvT

〉
+ remains almost

unchanged in the near-bottom coordinate. Different from −〈uTvT
〉
+, the peaks of
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FIGURE 13. (Colour online) Profiles of −〈uLvL
〉
+ in (a) cases 1 and 4–6 with kh= 0.5, 1,

1.5 and 2, respectively, and (b) cases 1, 7 and 8 with Lat= 0.7, 0.4 and 0.9, respectively.

−〈uLvL
〉
+ are collocated in the water-column coordinate at y/h = 0.5 (figure 12c).

Note that the near-bottom and water-column coordinates are related by the Reynolds
number as y+ = Reτy/h. As a result, the peaks of −〈uLvL

〉
+ collocated at the same

value of y/h correspond to an increasing value of y+ as the Reynolds number
increases (figure 12b). This indicates a weaker influence of LCs on the momentum
transfer near the water bottom at higher Reynolds number, characterized by the
smaller magnitude of −〈uLvL

〉
+ below y+= 200 (figure 12b). This effect of Reynolds

number leads to the reappearance of the logarithmic layer in the near-bottom region
at Reτ = 1000 (figure 7).

Figure 13 shows the effects of kh and Lat on the LC-coherent Reynolds shear stress
−〈uLvL

〉
+. As depicted in figure 13(a), as the value of kh increases, the peak of

−〈uLvL
〉
+ shifts to larger y+, and the magnitude of −〈uLvL

〉
+ decreases below y+ =

200. This indicates a weaker effect of LCs on the momentum transfer in the near-
bottom region at larger value of kh. As a result, the logarithmic layer expands as the
value of kh increases (figure 8).

The magnitude of −〈uLvL
〉
+ is non-monotonic with the increase of Lat. As shown

in figure 13(b), the magnitude of −〈uLvL
〉
+ at Lat = 0.7 is larger than those at

Lat = 0.4 and 0.9 between y+ = 20 and 1000. The larger magnitude of −〈uLvL
〉
+ at

Lat = 0.7 than at Lat = 0.9 can be attributed to the stronger intensity of LCs due to
the larger magnitude of vortex force at smaller value of Lat (2.2). The magnitude
of −〈uLvL

〉
+ is smaller at Lat = 0.4 than at Lat = 0.7, indicating a less important

contribution of LCs to the momentum transfer at Lat = 0.4, which is consistent with
the observation of Sinha et al. (2015) at Reτ = 395. As explained by Sinha et al.
(2015), the intensities of the upwelling motion induced by LCs become stronger at a
smaller value of Lat due to the larger magnitude of C–L vortex forcing. The strong
upwelling motion at Lat = 0.4 shifts LCs towards the water surface. As a result,
the magnitude of the LC-coherent Reynolds stress is smaller at Lat = 0.4 than at
Lat = 0.7 in the lower half of the water column. The residual turbulence motions
become important in the momentum transfer at Lat = 0.4, which is indicated by
−〈uTvT

〉
+. To further study the effects of Lat on the residual turbulence motions, we

compare −〈uTvT
〉
+ among cases 1, 7 and 8 in figure 14(a), and the pre-multiplied

spanwise co-spectrum φT
uv(y, kz)= kzET

uv(y, kz) at a near-bottom plane y+ = 120 and a
water-column central plane y/h = 1.0 in figures 14(b) and 14(c), respectively. Here,
kz = 2π/λz is the spanwise wavenumber corresponding to the spanwise length scale

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

88
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.883


292 B.-Q. Deng, Z. Yang, A. Xuan and L. Shen

103102 104 103102 104

101 103100 102

1.0

0.5

0

0.4

0.3

0.2

0.1

0

0.4

0.3

0.2

0.1

0

Lat = 0.4
Lat = 0.7
Lat = 0.9

y+

¬z
+ ¬z

+

-
ƒT u√

-
¯u

T √T ˘+

(a)

(b) (c)

FIGURE 14. (Colour online) Residual part of Reynolds shear stress −〈uTvT
〉
+ and

pre-multiplied co-spectrum −φT
uv in cases 1, 7 and 8 with Lat = 0.7, 0.4 and 0.9,

respectively. (a) Profiles of −〈uTvT
〉
+, (b) pre-multiplied co-spectra −φT

uv at y+= 120 and
(c) pre-multiplied co-spectra −φT

uv at y/h= 1.

λz, and ET
uv(y, kz) is the spanwise co-spectrum between uT and vT , which satisfies the

normalization property

〈uTvT
〉(y)=

∫
∞

0
ET

uv(y, kz) dkz =

∫
+∞

−∞

kzET
uv(y, kz) d log(kz). (4.3)

As shown in figure 14(a), the magnitude of the residual turbulence part of Reynolds
shear stress −〈uTvT

〉
+ is larger at Lat = 0.4 than at Lat = 0.7 above y+ = 20 and

Lat= 0.9 above y+= 100, which results from the intensification of residual turbulence
motions. The effect of turbulence motions on −〈uTvT

〉
+ can be observed from the

pre-multiplied spanwise co-spectrum −φT
uv shown in figure 14(b,c). At the near-bottom

plane y+= 120 (figure 14b), the magnitude of −φT
uv at Lat = 0.4 is larger than that at

Lat = 0.7 for λ+z > 200, indicating that the larger magnitude of −〈uTvT
〉
+ at Lat = 0.4

results from the enhancement of the large-scale turbulence motions (λ+z > 200). Akan
et al. (2013) and Sinha et al. (2015) pointed out that the strong shear of Stokes drift
at Lat = 0.4 significantly enhances the large-scale turbulent motion in the vertical
direction in the upper half of the water column. It is evident from figure 14(c) that the
large-scale turbulent motions also lead to the magnitude increase of −φT

uv at spanwise
scales larger than λ+z = 200 at the centre of the water column y/h= 1. By comparing
figure 14(b) with figure 14(c), it is observed that as the value of Lat decreases from
0.7 to 0.4, the magnitude of −φT

uv increases at the same spanwise scales (λ+z > 200).
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FIGURE 15. (Colour online) Profiles of 〈u′u′〉+ in the coordinate of (a) y+ and (b) y/h in
cases 1–3 with Reτ = 1000, 700 and 395, respectively. In (a), the line with open circles
represents the result in case 9 (the shear-driven turbulence at Reτ = 1000) as a reference.

This indicates that the large-scale turbulent motions are sufficiently strong to reach the
near-bottom region. As a result, the magnitude of −〈uTvT

〉 also becomes stronger at
Lat= 0.4 than at Lat= 0.7 near the water bottom. This effect of large-scale turbulence
motion on the near-bottom momentum flux is absent at larger value of Lat, because of
the smaller Stokes shear. As shown in figure 14(b), the magnitude of −φT

uv is larger
at Lat = 0.9 than at Lat = 0.7 at all spanwise scales λ+z . In contrast, as shown in
figure 14(c), at y/h= 1, the magnitudes of −φT

uv at Lat = 0.9 and 0.7 are comparable
at most spanwise scales except for λ+z > 7000. This indicates that the suppression
of −〈uTvT

〉
+ near the water bottom in response to the decrease of Lat from 0.9 to

0.7 cannot be attributed to large-scale turbulence motions at y/h = 1. Martinat et al.
(2014) and Sinha et al. (2015) pointed out that LCs tend to suppress the momentum
flux induced by turbulent motions. Because the impact of LCs on the momentum flux
near the bottom is weaker at Lat = 0.9 than at Lat = 0.7 (figure 13b), the magnitude
of −〈uTvT

〉
+ becomes larger as Lat increases from 0.7 to 0.9.

4.3. Reynolds normal stresses
We start our analyses of Reynolds normal stresses with the effect of the Reynolds
number. Figure 15 compares the profiles of 〈u′u′〉+ among cases 1–3 with different
Reynolds numbers. The result of case 9 for shear-driven turbulence is superimposed
for comparison. As shown in figure 15(a), at Reτ = 395, there is a single peak in the
profile of 〈u′u′〉+. This peak is located at y+= 32, different from the peak location of
〈u′u′〉+ at y+= 11 in the shear-driven turbulence. As the Reynolds number increases to
700 and 1000, the profile of 〈u′u′〉+ shows a bimodal shape. As shown in figure 15(a),
the inner peak at y+ = 12 is close to that in the shear-driven turbulence. Although
an outer peak of 〈u′u′〉+ also occurs in canonical wall-bounded turbulence for Reτ >
15 000 (Alfredsson, Segalini & Örlü 2011), the one in Langmuir turbulence is different
in three aspects. First, the outer peak of 〈u′u′〉+ in the Langmuir turbulence occurs
at a much smaller Reynolds number of 700. Second, in the shallow-water Langmuir
turbulence, the outer peak location is scaled by h for various Reynolds numbers. As
shown in figure 15(b), at Reτ = 700 and 1000, the outer peak of 〈u′u′〉+ is collocated
at y/h= 0.11. However, the outer peak in the canonical wall-bounded turbulence for
Reτ > 15 000 is located at y+ ∼ Re1/2

τ (Alfredsson et al. 2011). Third, as shown in
figure 15(b), in the water-column coordinate y/h, the profiles of 〈u′u′〉+ in the outer
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FIGURE 16. (Colour online) Profiles of 〈v′v′〉+ in the coordinate of (a) y+ and (b) y/h in
cases 1–3 with Reτ = 1000, 700 and 395, respectively. In (a), the line with open circles
represents the result in case 9 (the shear-driven turbulence at Reτ = 1000) as a reference.

layer of the Langmuir turbulence at various Reynolds numbers are close to each other.
In contrast, in the canonical wall-bounded turbulence, the profiles of 〈u′u′〉+ at various
Reynolds numbers deviate from each other in the outer coordinate y/h (Hoyas &
Jiménez 2006; Avsarkisov et al. 2014; Bernardini et al. 2014; Lee & Moser 2015). It
is evident from the above three points that the occurrence of LCs significantly alters
the profile of 〈u′u′〉+.

Figure 16 shows the Reynolds number effect on the profiles of 〈v′v′〉+. As shown
in figure 16(a), the value of 〈v′v′〉+ increases monotonically with y+ at Reτ = 395.
In contrast, at Reτ = 700 and 1000, a local peak located at y+ = 50 occurs in the
profile of 〈v′v′〉+. As the distance from the bottom further increases, the profiles of
〈v′v′〉+ at Reτ = 700 and 1000 first reach their local minimal values at y/h ≈ 0.17,
and then increases again with y/h (figure 16b). The shape of the 〈v′v′〉+ profile in
shallow-water Langmuir turbulence is drastically different from that in the shear-driven
turbulence and canonical wall-bounded turbulence (Kim, Moin & Moser 1987; Hoyas
& Jiménez 2006; Avsarkisov et al. 2014; Bernardini et al. 2014; Lee & Moser 2015).
For example, the value of 〈v′v′〉+ in the turbulent Couette flow (Avsarkisov et al.
2014) and the shear-driven turbulence is close to a constant in the outer layer, while
in the pressure-driven turbulent channel flow the magnitude of 〈v′v′〉+ decreases with
y+ in the outer layer (Kim et al. 1987; Hoyas & Jiménez 2006; Lee & Moser 2015).

Figure 17 compares the profiles of 〈w′w′〉+ in shallow-water Langmuir turbulence
at various Reynolds numbers. Figure 17(a) shows that in the wall coordinate y+,
the magnitude of 〈w′w′〉+ increases as the Reynolds number increases. In Langmuir
turbulence at Reτ = 395, 700 and 1000, the peak value of 〈w′w′〉+ is respectively 5.7,
6.6 and 7.2, significantly larger than those in the shear-driven turbulence (figure 17a)
and canonical wall-bounded turbulence at Reτ 6 1000 (approximately 2.0–3.0, see e.g.
Kim et al. 1987; Hoyas & Jiménez 2006; Avsarkisov et al. 2014; Bernardini et al.
2014). The peak location of 〈w′w′〉+ in Langmuir turbulence is also different from
that in shear-driven turbulence and canonical wall-bounded turbulence. In Langmuir
turbulence, the peak location of 〈w′w′〉+ is scaled by h. As shown in figure 17(b), the
peaks of 〈w′w′〉+ at various Reynolds numbers collocate at y/h = 0.15. In canonical
wall-bounded turbulence, the peak of 〈w′w′〉+ is located at y+ = 30–40 (Kim et al.
1987; Hoyas & Jiménez 2006; Avsarkisov et al. 2014; Bernardini et al. 2014), closer
to the wall than in Langmuir turbulence. Similarly, in the shear-driven turbulence the
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FIGURE 17. (Colour online) Profiles of 〈w′w′〉+ in the coordinate of (a) y+ and (b) y/h
in cases 1–3 with Reτ = 1000, 700 and 395, respectively. In (a), the line with open circles
represents the result in case 9 (the shear-driven turbulence at Reτ = 1000) as a reference.
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FIGURE 18. (Colour online) Profiles of (a) 〈uLuL
〉
+ in the coordinate of y/h, (b) 〈uLuL

〉
+

and (c) 〈uTuT
〉
+ in the coordinate of y+ in cases 1–3 with Reτ = 1000, 700 and 395,

respectively.

peak is located at y+ = 30 (figure 17a). From the comparison of the peak magnitude
and location of 〈u′u′〉+, 〈v′v′〉+ and 〈w′w′〉+ between the shallow-water Langmuir
turbulence and canonical wall turbulence without LCs, it is evident that LCs make a
substantial contribution to the Reynolds normal stresses in Langmuir turbulence.

Similar to the analyses of Reynolds shear stress in § 4.2, we employ the
decomposition of the Reynolds stress (2.11) to study the effect of LCs on the
Reynolds normal stresses in Langmuir turbulence at various Reynolds numbers.
Figure 18 shows the profiles of 〈uLuL

〉
+ and 〈uTuT

〉
+, while figures 19 and 20 show

respectively those of 〈vLvL
〉
+ and 〈vTvT

〉
+ and those of 〈wLwL

〉
+ and 〈wTwT

〉
+ at

various Reynolds numbers. In each of these three figures, the left column compares
the profiles of LC-coherent part in the water-column coordinate, while the middle
and right columns compare respectively the profiles of LC-coherent and residual parts
in the near-bottom coordinate.

From the comparison among figures 15–20, it can be observed that in the
outer layer, all of the three LC-coherent Reynolds normal stresses make important
contributions to the total Reynolds normal stresses, which is consistent with the
observations of Tejada-Martínez & Grosch (2007) and Sinha et al. (2015) at Reτ =395.
Figure 18(a) shows that the location of the 〈uLuL

〉
+ peak is scaled by h. The peaks of

〈uLuL
〉
+ at various Reynolds numbers collocate at y/h= 0.11, which is consistent with

the outer peak of 〈u′u′〉+ at Reτ = 700 and 1000 (figure 15b). From the comparison
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FIGURE 19. (Colour online) Profiles of (a) 〈vLvL
〉
+ in the coordinate of y/h, (b) 〈vLvL

〉
+

and (c) 〈vTvT
〉
+ in the coordinate of y+ in cases 1–3 with Reτ = 1000, 700 and 395,

respectively.
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FIGURE 20. (Colour online) Profiles of (a) 〈wLwL
〉
+ in the coordinate of y/h, (b) 〈wLwL

〉
+

and (c) 〈wTwT
〉
+ in the coordinate of y+ in cases 1–3 with Reτ = 1000, 700 and 395,

respectively.

between figures 18(b) and 18(c), it can be observed that the magnitude of 〈uLuL
〉
+

is much larger than that of 〈uTuT
〉
+ above y+ = 100, indicating that the outer peaks

of 〈u′u′〉+ at Reτ = 700 and 1000 are induced by the LCs. Figure 19(b) shows that
the value of 〈vLvL

〉
+ increases with y+ in the outer layer. In contrast, as depicted in

figure 19(c), the profile of 〈vTvT
〉
+ is relatively flat above y+ = 100. This indicates

that the increase of 〈v′v′〉+ with y+ above y+= 100 (figure 16b) is caused by the LCs.
Similar to 〈uLuL

〉
+, the peak location of 〈wLwL

〉
+ is scaled by h at various Reynolds

numbers. As shown in figure 20(a), the peaks of 〈wLwL
〉
+ at various Reynolds

numbers collocate at y/h = 0.16, which are close to those of 〈w′w′〉+ at y/h = 0.15
(figure 17b). In contrast, as shown in figure 20(c), the magnitude of the 〈wTwT

〉
+

profile changes little with y+. Therefore, the peak of 〈w′w′〉+ in the shallow-water
Langmuir turbulence results from the contribution of LCs.

In the near-bottom region below y+= 100, it can be observed from the comparisons
between figures 18(b) and 18(c), and between figures 20(b) and 20(c) that the
magnitudes of 〈uLuL

〉
+ and 〈wLwL

〉
+ are comparable to those of 〈uTuT

〉
+ and 〈wTwT

〉
+,

respectively. This indicates that both the LC-coherent and residual parts are important
to the total Reynolds normal stresses 〈u′u′〉 and 〈w′w′〉 near the bottom. As shown in
figure 18(c), the peaks of 〈uTuT

〉
+ at various Reynolds numbers collocate at y+ = 12.

At Reτ = 395, because the peak of 〈uTuT
〉
+ is close to that of 〈uLuL

〉
+, neither of them

alone is shown in the profile of the total Reynolds normal stress 〈u′u′〉 (figure 15a).
As the Reynolds number increases, the peak of 〈uTuT

〉
+ is located at the same y+, but

that of 〈uLuL
〉
+ moves to larger y+. As a result, the peaks of both 〈uTuT

〉
+ and 〈uLuL

〉
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FIGURE 21. (Colour online) Profiles of (a1) 〈u′u′〉+, (a2) 〈uLuL
〉
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〉
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〉
+, (c1) 〈w′w′〉+, (c2) 〈wLwL

〉
+ and (c3) 〈wTwT

〉
+ in cases

1 and 4− 6 with kh= 0.5, 1, 1.5 and 2, respectively.

are shown in the profile of 〈u′u′〉, forming a bimodal shape (figure 15a). The peak
of 〈wTwT

〉
+ for various Reynolds numbers collocates at y+= 30, where its magnitude

is smaller than that of 〈wLwL
〉
+. As a result, the peak of 〈wTwT

〉
+ is not shown in

the profile of 〈w′w′〉 (figure 17a). From the comparison between figure 17(a) and
figure 20(b), it can be deduced that the single peak of 〈w′w′〉 is induced by the
LC-coherent part 〈wLwL

〉
+. The peak locations of 〈w′w′〉 and 〈wLwL

〉
+ are close to

each other. As the Reynolds number increases, they both shift away from the bottom,
with their magnitude increasing.

Different from 〈uLuL
〉
+ and 〈wLwL

〉
+, the magnitude of 〈vLvL

〉
+ is much smaller

than that of 〈vTvT
〉
+ near the water bottom (figure 19b,c). In wall-bounded turbulent

flows, the vertical mixing is responsible for the generation of Reynolds shear
stresses (Blackwelder & Eckelmann 1979; Robinson 1991; Jeong et al. 1997; Jiménez
& Pinelli 1999; Panton 2001). As a result, the magnitude of −〈uLvL

〉
+ is also small

in the near-bottom region (figure 12b). As the Reynolds number increases, the profile
of 〈vLvL

〉
+ shifts to larger y+, leading to the thickness increase of the near-bottom

region with a small magnitude of 〈vLvL
〉
+. In response, the near-bottom region with

a small magnitude of −〈uLvL
〉
+ also becomes thicker at higher Reynolds number,

which in turn leads to the reappearance of the logarithmic layer at Reτ = 1000.
Figure 21 shows the effects of kh on the Reynolds normal stresses, together

with their LC-coherent parts and the residual turbulence parts. As the value of kh
increases, the profile of Stokes drift velocity in (2.4) shifts towards the water surface,
and the magnitude of vortex force term in the C–L equations (2.2) is suppressed
in the bottom half of the water column, which weakens the intensity of LCs. In
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response, the profiles of the LC-coherent Reynolds normal stresses shift towards the
water surface (figure 21a2,b2,c2), with the magnitude of the 〈uLuL

〉
+ peak decreasing

slightly (figure 21a2) and those of 〈vLvL
〉
+ and 〈wLwL

〉
+ decreasing throughout the

bottom half of the water column (figure 21b2,c2). The present observation of the
effects of kh on the intensity of LCs is consistent with that of Tejada-Martínez et al.
(2012) and Sinha et al. (2015) at Reτ = 395. The smaller magnitude of 〈vLvL

〉
+

indicates weaker vertical turbulence mixing coherent to the motion of LCs, such
that the magnitude of −〈uLvL

〉
+ decreases as the value of kh increases (figure 13a),

resulting in the wider logarithmic layer at larger value of kh (figure 8).
In the outer layer, because the turbulence is dominated by the LCs, the effects of kh

on the Reynolds normal stresses are dominated by those on their LC-coherent parts.
This is evident by comparing figures 21(a1), 21(b1), 21(c1) with figures 21(a2), 21(b2)
and 21(c2), respectively. From the comparison, it can be observed that above y+=200,
the effects of kh on the total Reynolds normal stresses are consistent with those on
their LC-coherent part.

In the near-bottom region with y+ < 20, the profiles of 〈uTuT
〉, 〈vTvT

〉 and 〈wTwT
〉

are barely influenced by kh (figure 21a3,b3,c3), indicating that the interaction between
LCs and residual turbulence is week and the residual turbulence is not significantly
influenced by the reduction in LC intensity. However, because the LC-coherent
motion makes a considerable contribution to 〈u′u′〉 and 〈w′w′〉 in the inner layer
(figure 21a2,c2), the magnitudes of 〈u′u′〉 and 〈w′w′〉 decrease in the inner layer as
the value of kh increases. As shown in figures 21(a1) and 21(c1), the LC-coherent
motion influences the profiles of 〈u′u′〉 and 〈w′w′〉 down to y+ = 10 and y+ = 4,
respectively. Different from 〈uLuL

〉 and 〈wLwL
〉, the magnitude of 〈vLvL

〉 is negligibly
small in the inner layer below y+ = 100 (figure 21b2), such that the effect of kh
on 〈v′v′〉 is consistent with that on 〈vTvT

〉. As shown in figure 21(b1,b3), between
y+ = 40 and 100, the magnitudes of 〈v′v′〉 and 〈vTvT

〉 both increase slightly as the
value of kh increases.

Figure 22 shows the effect of Lat on the profiles of the Reynolds normal stresses,
their LC-coherent parts, and residual parts. Similar to the LC-coherent Reynolds
shear stress discussed in § 4.2, the magnitudes of the LC-coherent Reynolds normal
stresses are not monotonic with the increase of Lat. As shown in figure 22(a2,b2,c2),
the magnitudes of 〈uLuL

〉
+, 〈vLvL

〉
+ and 〈wLwL

〉
+ are all larger at Lat = 0.7 than at

0.4 and 0.9, indicating that the intensity of the LCs reverses at Lat = 0.7. Further
because the residual parts of the Reynolds normal stresses 〈uTuT

〉
+ and 〈wTwT

〉
+

are not significantly influenced by the value of Lat (figure 22a3,c3), the magnitudes
of 〈u′u′〉+ and 〈w′w′〉+ also reverse at Lat = 0.7 (figure 22a1,c1). In contrast, the
magnitude of 〈v′v′〉+ is monotonic to the value increase of Lat (figure 22b1), due
to the magnitude increase of 〈vTvT

〉
+ as the value of Lat decreases from 0.7 to 0.4,

which is also observed by Sinha et al. (2015) at Reτ = 395.

5. Budget of turbulence kinematic energy
To further assess the effects of LCs on the energy transport, we study the budget

of TKE. The transport equation of TKE reads

Dk
Dt
= Pk + Tk +Πk + Vk + Sk + εk. (5.1)

Here, k = 〈u′iu
′

i〉/2 is the TKE. The budget terms on the right-hand side are the
production term Pk, turbulent diffusion term Tk, pressure diffusion term Πk, viscous
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FIGURE 22. (Colour online) Profiles of (a1) 〈u′u′〉+, (a2) 〈uLuL
〉
+, (a3) 〈uTuT

〉
+, (b1)

〈v′v′〉+, (b2) 〈vLvL
〉
+, (b3) 〈vTvT

〉
+, (c1) 〈w′w′〉+, (c2) 〈wLwL

〉
+ and (c3) 〈wTwT

〉
+ in

cases 1, 7 and 8 with Lat = 0.7, 0.4 and 0.9, respectively.

and SGS diffusion term Vk, Stokes production term Sk and viscous and SGS
dissipation term εk, defined respectively as

Pk =−〈u′v′〉
d〈u〉
dy

, (5.2)

Tk =−
1
2

d〈u′iu
′

iv
′
〉

dy
, (5.3)

Πk =−
1
ρ

d〈p′v′〉
dy

, (5.4)

Vk = ν
d2k
dy2
+

d〈u′iτ
′sgs
i2 〉

dy
, (5.5)

Sk =−〈u′v′〉
dus

dy
, (5.6)

εk =−ν

〈
∂u′i
∂xj

∂u′i
∂xj

〉
−

〈
τ
′sgs
ij
∂u′i
∂xj

〉
. (5.7)

The above equations can also be found in McWilliams et al. (1997), Harcourt (2013)
and Sinha et al. (2015).

The profiles of the budget terms of TKE pre-multiplied by y are shown in figure 23
using the scaling of u3

τ , with a maximum balance error smaller than 1 % of the
dominant source terms. The pre-multiplication by y makes the balance relationship
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FIGURE 23. Pre-multiplied budget terms of TKE in (a) Langmuir turbulence at Reτ =
1000, Lat = 0.7 and kh = 0.5 (case 1) and (b) shear-driven turbulence at Reτ = 1000
(case 9).

among the budget terms in the outer layer clear (Hoyas & Jiménez 2008; Avsarkisov
et al. 2014). From the comparison between figures 23(a) and 23(b), it is evident
that below y+ = 100, the balance relationship of budget terms in the shallow-water
Langmuir turbulence is similar to that in the shear-driven turbulence. Above y+ = 10,
the energy gained from the production term Pk is largely balanced by the viscous
and SGS dissipation term εk. The turbulent diffusion term Tk transports the energy
above y+ = 10 downward. The viscous diffusion term Vk transports the energy in the
buffer layer downward into the viscous sublayer to balance the dissipation term εk.
The energy transport below y+= 100 shown in figure 23 is also similar to that in the
canonical wall turbulence (Hoyas & Jiménez 2008; Avsarkisov et al. 2014), indicating
that the effect of LCs on the TKE budget is weak in the near-bottom region.

In the outer layer, the occurrence of LCs significantly alters the transport of TKE.
In the Langmuir turbulence (figure 23a), there is a plateau region in the profile
of y+P+k between y+ = 15 and 100. In the shear-driven turbulence (figure 23b),
the plateau of y+P+k extends to y+ = 300. According to its definition (5.2), the
value of P+k is determined by the Reynolds shear stress −〈u′v′〉+ and the mean
velocity gradient du+/dy+. In the outer layer above y+ = 100, the value of −〈u′v′〉+
is approximately unity in both Langmuir turbulence and shear-driven turbulence
(figure 11d). As a result, the value of the pre-multiplied production term is
approximately y+P+k ≈ y+d〈u〉+/dy+ = F (see (3.2) for the definition of F). In the
Langmuir turbulence, due to the occurrence of LCs, the mean shear is reduced above
the logarithmic layer, resulting in the value decrease of F and y+P+k above y+ = 100.
Above y+ = 400, the major source of TKE changes from the production term Pk

to the turbulence diffusion term Tk and Stokes production term Sk in the Langmuir
turbulence (figure 23a). It has been known that in the deep-water Langmuir turbulence,
Sk is an important source term in the transport equation of TKE, resulting in a large
magnitude of vertical velocity fluctuations (Skyllingstad & Denbo 1995; McWilliams
et al. 1997; Li et al. 2005; Kukulka et al. 2010). In the following content, we first
study the Sk term to show the effect of Stokes drift of surface waves on the TKE
budget in the shallow-water Langmuir turbulence.

Figure 24 compares the profiles of Sk/(u3
τ/h) in cases 1–3 with various Reynolds

numbers. According to Harcourt (2013) and Suzuki & Fox-Kemper (2016), it can be
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FIGURE 24. (Colour online) Profiles of the Stokes production term Sk scaled by u3
τ/h in

the TKE budget in cases 1–3 with Reτ = 1000, 700 and 395, respectively, in (a) water-
column coordinate y/h and (b) near-bottom coordinate y+. The lines without symbols in
(a) are SL

k .

derived that the Stokes production terms in the transport equations of 〈u′u′〉, 〈v′v′〉 and
〈w′w′〉 are respectively

S11 = 0, S22 = 2Sk, and S33 = 0. (5.8a−c)

Equation (5.8) indicates that the Sk term is directly responsible for the enhancement of
〈v′v′〉 in the outer layer of the Langmuir turbulence (figure 16). This deduction can be
further confirmed by the comparison between the profiles of 〈v′v′〉 and Sk. As shown
in figures 16(a) and 24(a), above y/h= 0.2, both 〈v′v′〉 and Sk have large magnitudes,
and their values increase fast as y/h increases.

According to its definition (5.6), the Sk term is determined by −〈u′v′〉 and dus/dy.
The value of −〈u′v′〉+ is approximately unity in the outer layer (figure 11a), while
us/uτ is independent of the Reynolds number by its definition (2.4). As a result, the
value of Sk/(u3

τ/h) is expected to be insensitive to the Reynolds number, which is
confirmed by figure 24(a). However, the effect of the Stokes production term on
the LC-coherent fluctuations is slightly dependent on the Reynolds number. This can
be explained using the decomposition Sk = SL

k + ST
k , where SL

k = −〈u
LvL
〉dus/dy and

ST
k = −〈u

TvT
〉dus/dy are the Stokes productions of 〈vLvL

〉 and 〈vTvT
〉, respectively.

The profiles of SL
k at various Reynolds numbers are also shown in figure 24(a).

From the figure, it can be seen that the magnitude of SL
k increases slightly as the

Reynolds number increases. Correspondingly, the magnitude of 〈vLvL
〉 also increases

with the Reynolds number in the water-column coordinate (figure 19a). On the other
hand, as shown in figure 24(b), the profiles of Sk shift to larger y+ as Reτ increases.
In response, when observed in the near-bottom coordinate y+, the effect of Stokes
production on 〈v′v′〉 is weakened near the bottom. Therefore, as the Reynolds number
increases, the profiles of 〈v′v′〉 below y+ = 50 in the Langmuir turbulence approach
that in the shear-driven turbulence (figure 16a).

Different from the Reynolds number effect, kh and Lat affect the magnitude of Sk.
Figure 25 shows the effects of kh and Lat on the profile of Sk. It can be observed
from the figure that as the value of either kh or Lat increases, the magnitude of Sk
decreases. This is expected from the definitions of the Sk term (5.6) and Stokes drift
velocity (2.4). As a result of the reduction of Sk, the magnitude of 〈v′v′〉 also decreases
in the outer layer (figures 21b1 and 22b1), which leads to the suppression of vertical
mixing.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

88
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.883


302 B.-Q. Deng, Z. Yang, A. Xuan and L. Shen

101 103100 102 101 103100 102

1.0

0.8

0.6

0.4

0.2

0

3

2

1

0

kh = 0.5
kh = 1.0
kh = 1.5
kh = 2.0

Lat = 0.4
Lat = 0.7
Lat = 0.9

y+ y+

S k
/(

u3 †/
h)

(a) (b)

FIGURE 25. (Colour online) Profiles of the Stokes production term Sk scaled by u3
τ/h (a)

in cases 1 and 4–6 with kh = 0.5, 1, 1.5 and 2, respectively and (b) cases 1, 7 and 8
with Lat = 0.7, 0.4 and 0.9, respectively.

It is shown in figure 23 that the turbulence diffusion term Tk is the most important
source in the transport equation of TKE above y+ = 400 in the Langmuir turbulence,
and its magnitude is larger than that in the shear-driven turbulence. Here, we further
study the effect of LCs on the Tk term. The Tk term can be decomposed as

Tk = TT+
k + TL∗

k . (5.9)

Here, the TT+
k term is the turbulent diffusion only related to the residual velocity

fluctuations, defined as

TT+
k =−

1
2

d〈uT
i uT

i v
T
〉

dy
. (5.10)

The TL∗
k term is defined as

TL∗
k =−

1
2

d〈uL
i uL

i v
L
+ uT

i uT
i v

L
〉

dy︸ ︷︷ ︸
TL1

k

−
d〈uL

i uT
i v

T
〉

dy︸ ︷︷ ︸
TL2

k

, (5.11)

which includes the LC-coherent velocity fluctuations and represents the effect of the
LCs. A similar triple decomposition was used by Martinat et al. (2014) to analyse
the budget balance of 〈uL

i uL
i 〉/2 and 〈uT

i uT
i 〉/2 at Reτ = 395. Figure 26 compares the

profiles of y+TT+
k , y+TL∗+

k and y+Tk in Langmuir turbulence (case 1). As shown, above
y+= 200, the magnitude of y+TL∗+

k is significantly larger than that of y+TT+
k , and the

profiles of y+TL∗+
k and y+T+k almost collapse. This indicates that the large magnitude

of the turbulent diffusion term in the outer layer is contributed by the LCs.
According to (5.11), TL∗+

k can be further decomposed into TL1+
k and TL2+

k . The
TL1+

k term is the turbulence diffusion term induced by vL, and TL2+
k is the interaction

between the residual turbulence and LCs. Figure 27 compares the profiles of y+TL∗+
k ,

y+TL1+
k and y+TL2+

k in Langmuir turbulence (case 1). As shown, above y+ = 200, the
magnitude of y+TL1+

k is much larger than that of y+TL2+
k , indicating that the large

magnitude of TL∗+
k and T+k in the outer layer is induced by the vertical mixing of

the LCs. Therefore, the vertical velocity fluctuations of LCs generated by Sk in the
outer layer lead to the strong turbulent diffusion, which significantly alters the energy
transport in the outer layer.
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k in Langmuir turbulence (case 1).

6. Summary
In this study, wall-resolved large-eddy simulations based on the C–L equations have

been performed to investigate the influence of LCs on the turbulence in the bottom
boundary layer of shallow water. The effect of Reynolds number Reτ on the mean
velocity and Reynolds stresses is investigated by varying Reτ from 395 up to 1000.
The wall-resolved LES of the shallow-water Langmuir turbulence at Reτ = 1000
is carried out for the first time. The effects of the dimensionless wavenumber of
surface waves kh and turbulent Langmuir number Lat, two parameters dominating the
intensity of LCs, are also studied. To analyse the result, the total velocity fluctuation
u′i is decomposed into the LC-coherent velocity fluctuation uL

i and residual turbulent
velocity fluctuation uT

i , and their contributions to the Reynolds stresses are analysed.
The transport equations of TKE are studied to further reveal the effect of LCs on the
energy transport. The major findings of this paper are summarized as follows.

In the analysis of the mean streamwise velocity, we focus on the effects of Re, kh
and Lat on the thickness of the logarithmic layer, identified as the plateau region in the
profile of the diagnostic function F. The present simulations show that the logarithmic
layer is absent at low Reynolds numbers Reτ = 395 and 700, but reappears at Reτ =
1000. As the value of either kh or Lat increases, the magnitude of the C–L vortex
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force in the momentum equation decreases, leading to the thickness increase of the
logarithmic layer. In the plateau region of F, the value of F is identical to the von
Kármán constant. It is observed that the von Kármán constant in the bottom boundary
of the Langmuir turbulence under investigation varies in a narrow range with 0.362±
0.003, which is below the classic value 0.41.

In the outer layer, the LC-coherent part makes important contributions to the total
Reynolds stresses. In the water-column coordinate y/h, the peak locations of 〈−uLvL

〉,
〈uLuL
〉 and 〈wLwL

〉 remain the same at various Reτ with given values of Lat and
kh, indicating that the locations of LCs are scaled by h. On the other hand, when
observed in the near-bottom coordinate y+, the profile of 〈−uLvL

〉 shifts to larger y+
at higher Reynolds number, indicating a weaker influence of LCs on the momentum
transfer near the bottom, which results in the reappearance of the logarithmic layer
at Reτ = 1000. Furthermore, as the Reynolds number increases, the peak location of
〈uTuT

〉 remains unchanged, while that of 〈uLuL
〉 shifts to larger y+. As a result, the

peaks of both 〈uTuT
〉 and 〈uLuL

〉 are shown in the profile of 〈u′u′〉 at Reτ = 700 and
1000, resulting in a bimodal shape. The profile of 〈w′w′〉 only has a single peak,
with its location close to the peak of 〈wLwL

〉. Owing to the contribution of LCs, the
magnitude of 〈v′v′〉 increases fast with y/h in the outer layer above y/h= 0.17 at all
of the Reynolds numbers under investigation.

As the value of kh increases, the intensity of LCs is reduced, characterized by
the magnitude decrease of 〈−uLvL

〉, 〈uLuL
〉, 〈vLvL

〉 and 〈wLwL
〉 in the outer layer,

which leads to the magnitude decrease of their corresponding total Reynolds stresses.
Furthermore, at larger value of kh, the peak locations of −〈uLvL

〉, 〈uLuL
〉 and 〈wLwL

〉

are farther away from the bottom, indicating a weaker influence of LCs on the
momentum and energy transfer in the bottom inner layer. As a result, the thickness
of the logarithmic layer increases as the value of kh increases.

The intensity of LCs is not monotonic in response to the increase of Lat. The
magnitudes of −〈uLvL

〉, 〈uLuL
〉, 〈vLvL

〉 and 〈wLwL
〉 all reverse at Lat = 0.7. As the

value of Lat decreases from 0.9 to 0.7, the logarithmic layer becomes thinner because
of the stronger effect of LCs on the momentum transfer. As Lat further decreases
from 0.7 to 0.4, although the LCs become weaker, the logarithmic layer is thinner
at Lat= 0.4 due to the enhancement of outer-layer large-scale turbulence motions that
penetrate to the near-bottom region. This effect alters the momentum transfer in the
near-bottom region, and tends to disrupt the logarithmic law.

The effects of Reτ , kh and Lat on the intensity of LCs are further explained through
the analyses of the Stokes production term Sk in the transport equation of TKE. The
Stokes production term induces large magnitude of vertical velocity fluctuations in
the outer layer mainly contributed by LCs. The contribution of the Stoke production
term to LCs, SL

k , is slightly dependent on Reτ , so that 〈vLvL
〉 varies with Reτ . As

the value of either kh or Lat increases, the magnitude of Sk decreases, leading to
the smaller magnitude of 〈v′v′〉 in the outer layer. Due to the occurrence of LCs,
the turbulence diffusion term Tk is significantly amplified in the outer layer of the
Langmuir turbulence, which becomes the most important source of TKE instead of
the production term Pk as in the shear-driven turbulence.

Finally, we remark that the present results show the capability of numerical
simulations in the investigation of flow details of the bottom boundary layer in
shallow-water Langmuir turbulence. Before we can reach a much higher Reynolds
number of practical interest with wall-modelled LES, it is important to examine the
logarithmic law using wall-resolved LES. Our LES results show that the disruption
effect of LCs on the logarithmic law becomes less significant as the Reynolds
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number increases and the logarithmic layer reappears at Reτ = 1000, indicating that
the wall-layer modelling based on the logarithmic law can still be used at high
Reynolds number. Recently, Golshan et al. (2017) conducted wall-modelled LES with
the conventional wall-layer model based on the logarithmic law, and captured the
disruption of the logarithmic layer in the profile of the mean velocity at Reτ = 395.
In the future, it will be of interest to examine if the wall-layer model based on the
logarithmic law can capture the reappearance of the logarithmic layer and the thinning
effect of LCs on the logarithmic layer at Reτ = 1000 and higher. However, care must
be taken to ensure that the first grid is located in the logarithmic layer, given that
the logarithmic layer is thinner in the Langmuir turbulence than in shear-driven
turbulence.
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