
The Bulletin of Symbolic Logic

Volume 24, Number 1, March 2018

POLYMORPHISM AND THE OBSTINATE CIRCULARITY OF SECOND
ORDER LOGIC: A VICTIMS’ TALE

PAOLO PISTONE

Abstract. The investigations on higher-order type theories and on the related notion
of parametric polymorphism constitute the technical counterpart of the old foundational
problem of the circularity (or impredicativity) of second and higher-order logic. However,
the epistemological significance of such investigations has not received much attention in the
contemporary foundational debate.
We discuss Girard’s normalization proof for second order type theory or System F and

compare it with two faulty consistency arguments: the one given by Frege for the logical
system of the Grundgesetze (shown inconsistent by Russell’s paradox) and the one given by
Martin-Löf for the intuitionistic type theory with a type of all types (shown inconsistent by
Girard’s paradox).
The comparison suggests that the question of the circularity of second order logic cannot

be reduced to Russell’s and Poincaré’s 1906 “vicious circle” diagnosis. Rather, it reveals a
bunch of mathematical and logical ideas hidden behind the hazardous idea of impredicative
quantification, constituting a vast (and largely unexplored) domain for foundational research.

§1. Introduction. It is usually agreed that the history of second order
logic starts with Frege’s pioneering work, especially in the Begriffschrift
and in the Grundgesetze. In the first text, the German logician introduced
a logical syntax with a clear distinction between “first-level” and “second-
level” functions. In the second, he introduced a logical semantics centered
around the notion of denotation (Bedeutung), along with a “proof” of what
we would call nowadays a soundness theorem, stating that every expression
in his system has a (unique) denotation.
The latter result obviously implied the consistency of Frege’s system, as it
stated that with every proposition there is associated a unique truth-value.
Everybody knows the end of this story: in 1902 Russell constructed an
antinomy in Frege’s system, that is, a proposition which becomes false as
soon as it is true and becomes true as soon as it is false. Not only Russell
had contradicted Frege’s result that every proposition is associated with a
unique truth-value, but he had explicitly constructed a contradiction in the
system. In a word, Frege’s system was inconsistent and his alleged proof was
wrong.
Many years later, in 1971,Martin-Löf introduced a very general syntax for
type theory based on a strongly impredicative axiom, stating the existence

Received August 10, 2017.
2010Mathematics Subject Classification. 03A05, 03F03, 03F05.
Key words and phrases. second order logic, impredicativity, intuitionistic type theory,

normalization proofs.

c© 2018, Association for Symbolic Logic
1079-8986/18/2401-0001
DOI:10.1017/bsl.2017.43

1

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

2 PAOLO PISTONE

of a type of all types. The Swedish logician also provided a semantics for
this system centered around the notion of “computability”, an elegant gen-
eralization of previous work by Tait and Girard. Actually, in those years
several results in proof theory were dissolving the belief that no constructive
approach to higher-order logic were possible. Martin-Löf’s system pursued
then the ambitious goal of providing an abstract and uniform formalization
of higher-order logic within intuitionistic type theory.
Martin-Löf’s original unpublished article [34] contained an alleged
proof that all terms in his system are computable. This result obviously
implied the consistency of the system, as it stated that, with every well-
typed term of the system, there is associated a unique normal form (and
no well-typed term in normal form for the absurdity exists). Unfortunately,
history often repeats itself: in the same year, Girard showed that a variant
of Burali-Forti’s paradox could be typed in Martin-Löf’s system, producing
a term having no normal form. Not only Girard had contradicted Martin-
Löf’s result that every term has a unique normal form, but he had explicitly
constructed a contradiction in the system. In a word, Martin-Löf’s system
was inconsistent and his alleged proof was wrong.
Very instructive insights into the much debated issue of the circularity (or
impredicativity) of second order logic are provided by these two surprisingly
similar, and equally unfortunate, episodes about such two great logicians.
It is often argued that Frege’s consistency argument succumbed to what
Russell called the vicious circle principle of second order logic, that is the
fact that the second order quantifier quantifies over a class of propositions
including those which are defined by means of that very operator. In the
case of Martin-Löf’s argument the circularity in question is more difficult
to identify, as no apparent vicious circle occurs in the proof.
Nowadays, the vicious circles of impredicative reasoning, far from being
eradicated from the logical world, appear not only in mathematics, but also
in the instructions of many programming languages (under the names of
polymorphism, generic programming, templates). From a theoretical ques-
tion concerning the foundations of mathematics, the philosophical problem
of impredicativity has evolved into a technical issue in the design of abstract
and uniform programming tools.
As is well-known, a substantial symmetry between methods of proof and
methods of programming was revealed by the so-called propositions-as-types
or Curry-Howard ([7, 27]) correspondence between natural deduction sys-
tems and typed �-calculi. It is such a symmetry which makes it possible
that the normalization theorem for System F (a typed �-calculus imple-
menting second order polymorphism), whose proof constitutes the trait
d’union of our reconstruction, has a double interpretation: as a result in
computer science, it provides the grounds for our confidence that the exe-
cution of higher-order, impredicative, programs, ultimately halts; as a result
in logic, it warrants the consistency of second order logic in a very strong,
proof-theoretical, sense.
This theorem is just one of a series of foundational results (like Reynolds’
theory of parametric polymorphism or the denotational interpretation of

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 3

polymorphism) that had a significative echo in proof theory and theoret-
ical computer science, but went practically unnoticed in the philosophical
debate on impredicativity. It seems, however, hard to deny that an up-to-
date evaluation of the old question of impredicativity passes through an
epistemological analysis of these advances.
In our reconstruction a characterization is attempted of different forms of
circularity, which Russell’s more than one century old diagnosis seems inca-
pable to distinguish. In particular, a distinction ismade between the circular-
ity of which Frege was victim: that of establishing the truth of a proposition
which refers to all propositions, and the circularity of which Martin-
Löf was victim: that of establishing that an impredicative rule is sound
by employing, in the argument, occurrences of a similarly impredicative
rule.
This article is intended both as a survey of some important results in
the proof-theory of second order logic and polymorphism, which have not
received much attention in the philosophical debate, and as a starting point
for a discussion of their foundational significance.

§2. A programmer in the barber’s shop. The problem of circularity, or
impredicativity, is here historically introduced by recalling Russell’s diag-
nosis of the antinomies, based on the individuation of a specific form
of circularity, namely the violation of the vicious circle principle. Type
theory was introduced by Russell to let propositions obey the vicious cir-
cle principle and to prohibit self-application. However the developments
of type theory, which had more success in theoretical computer science
than in foundations, betrayed the foundational concerns that had led
to its introduction: polymorphic type disciplines reintroduce impredica-
tivity and self-applications in a typed-setting. In particular, the Curry-
Howard correspondence, here briefly recalled, shows that polymorphism
and higher-order quantification are actually two ways to look at the same
phenomenon.
The problem of impredicativity is decomposed into a metaphysical prob-
lem, related to the existence of impredicatively defined entities, and an
epistemic problem, related to the possibility of ascertaining the truth or
proving an impredicative proposition. Concerning the latter, two forms
of circularity are retrieved (to which Sections 2 and 3 will be devoted,
respectively): a circularity in the definition of the truth or provability condi-
tions for impredicative propositions (related to the problem of providing
meanings or denotations to higher-order propositions), and a circular-
ity in the elimination of redundant impredicative concepts in a proof
(related to the problem of establishing the Hauptsatz for higher-order
logic).

2.1. Russell’s vicious circle principle. A quite general way to express the
problem exposed by the antinomies in Frege’s logical system and in naı̈ve set
theory is the following: in every logical system in which sets can be defined
by means of any clause of the form the set of all sets such that ϕ where ϕ is

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

4 PAOLO PISTONE

a property of sets, an antinomy, that is, a sentence logically equivalent to its
negation, can be derived.1

Since in standard (minimal, intuitionistic or classical) logics, a contradic-
tion can be derived from an antinomy,2 one must conclude that the appeal
to definitions of this form has to be restricted in some way.
As is well-known, Russell [41] and Poincaré [36] suggested that all such
definitions should be forbidden, as they violate the so-called vicious circle
principle VCP, stated by Russell as follows:

Whatever in any way concerns all or any or some of a class must not
itself be one of the members of that class. [41]

In [22] Gödel observes that the core of the debate on the VCP actually
lies in a special case of the vicious circle principle, namely the case in which
one defines a set by quantifying over a class of which the new defined set is
a member. In particular, it is this special case which forbids to define sets by
means of clauses of the form the set of all sets such that ϕ, as the definition
makes reference to the totality of sets, hence including the set here defined.
We can restate thus the VCP as follows:

Whatever can only be defined in terms of all or any or some of a class
must not itself be one of the members of that class.

We will call impredicative a clause defining a given notion and violating
the VCP.
On the one side, the VCP prevents constructions like those leading to
Russell’s paradox, as it forbids definitions of the form mentioned above. On
the other side, this principle forbids basic second order constructions:
i.: the definition of a proposition by quantification over all propositions:
for instance, the propositions every proposition is either true or false
and some proposition implies its own negation; this is explicitly observed
in [44]:

The vicious circles in question arise from supposing that a col-
lection of objects may contain members which can only be
defined by means of the collection as a whole. Thus, for exam-
ple, the collection of propositions will be supposed to contain
a proposition stating that “all propositions are either true or
false”. It would seem, however, that such a statement could not
be legitimate unless “all proposition” referred to some already
definite collection, which it cannot do if new propositions are
created by statements about “all proposition”. We shall, there-
fore, have to say that statements about “all propositions” are
meaningless. [44]

1Remark that, if s is the set of all sets such that ϕ, then asking whether s satisfies ϕ is
equivalent to asking whether s belongs to s .
2However, this is not the case for some logics likeElementaryLinear Logic andLight Linear

Logic [19], in which structural rules are controlled in a special way (for reasons connected
with the theory of implicit computational complexity), giving rise to different analyses of the
paradoxes.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 5

ii.: the definition of a set as the intersection of all sets satisfying a certain
property: for instance the intersection of all infinite sets, that we can
equivalently call the smallest infinite set. This is remarked for instance
in [22]:

[. . .] if one defines a class as the intersection of all classes satis-
fying a certain condition ϕ and then concludes that is a subset
also of such classes u as are defined in terms of (provided they
satisfy ϕ). [22]

We will call impredicative a proposition containing a quantification over
all propositions as well as any set defined as the intersection of all sets
satisfying a given property. Hence, if one endorses the VCP as a way-out of
the paradoxes, and in particular if one endorses the view that any legitimate
logical system must obey the VCP, then he must count second order logic
as not legitimate as logic, as it allows for “viciously circular” definitions.
It must be stressed that the validity of the VCP is not implied by the
existence of the antinomies. For instance, in the standard set theory ZF, a
theory devised in order to avoid the paradoxes of naı̈ve set theory, definitions
violating the VCP are possible: let ϕ be any property stable by intersection3

given a set s , one can define a new set s ′ as the smallest subset of s satisfying
ϕ, i.e., as the intersection of all subsets of s satisfying ϕ. Then s ′, which
belongs to the collection of sets (the subsets of s), to which its definition
makes reference, satisfies ϕ.
What form should then a logical system in accordance with theVCP have?
In a later text [42] Russell expressed the VCP in a more syntactic way as
follows:

Whatever contains an apparent variable must not be a possible value
of that variable. [42]

If s is the set of all sets such that ϕ, then in the definition of s a bound
variable occurs, standing for elements of the range of ϕ, i.e., sets, of which
s is a possible value. In order to avoid such constructions, Russell proposed
the introduction of a type discipline. All expressions in the language are
assigned a type, following the two principles below:

T1: the range of application of a function forms a type;

T2: if the range of a function f is �, then f has a higher type � → �,
where � is the type of the image of f.

With Russell’s type disciple, propositions, that is, those expressions which
are either true or false, are simply those expressions which receive the type
prop, the type of propositions.
The type discipline given by T1–2 prevents the application of a function to
itself: if a function has range �, then it must have a type of the form � → �,
hence it cannot be among its possible values. Similar considerations for sets

3That is, such that, if (ai)i∈I is a collection of sets indexed by a set I , and ϕ(ai) holds for
all i ∈ I , then ϕ(∩i∈I ai) holds. One can take as ϕ the property of being a subset of a given
set t.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

6 PAOLO PISTONE

can be made, as soon as one identifies a set with the property defining it
(which is a function from a given range to truth values): as the function
cannot belong to its own range, a set cannot belong to itself.
However, a type discipline in accordancewith the principlesT1–2 in which
the second order construction i. is well-typed (that is, where an impredicative
proposition ∀XA is given type prop) can be devised, by stating that, if A[X],
where X has type prop, is a function of type prop → prop, then ∀XA has
type prop (that is, by stating that the second order quantifier ∀ is a function
of type (prop → prop) → prop); this discipline, usually called simple type
theory ([43], see next section), is compatible with T1–2 but violates the VCP:
the proposition ∀XA appears among the possible values of X .
A more rigid type discipline was introduced by Russell in order to forbid
impredicative quantification: rather than considering a unique type prop for
propositions, he introduced a hierarchy of types propn for propositions of
different complexities, and stated that, if A[X] has type propn → prop, then
∀nXA has type propn+1, i.e., it is a proposition of strictly higher complexity
(that is, for any n, the quantifier ∀n is of type (propn → prop) → propn+1).
This discipline, called ramified type theory [42], does not violate the VCP,
since, in the proposition ∀nXA, ∀nXA itself does not appear among the
possible values of X .
The propositions typable in simple type theory yield a quite expressive
system, including second order logic. This means that, even if one accepts,
as Russell did, that the VCP forces to accept the type discipline T1–2, the
converse does not hold: the type discipline T1 2 is compatible with the
existence of impredicative types. Ramified type theory yields a much less
expressive system, which does not include full second order logic.4 As is well-
known, Russell andWhitehead’s solution in the Principia was a compromise
between the two: a ramified type theory with the axiom of reducibility, which
implies that, for any proposition of type propn there exists an equivalent
proposition of type prop0.

2.2. Polymorphism: the “non-Russellian” type discipline of second order
proofs. The success of Russell’s type discipline as a new foundation for
mathematics (and especially set-theory) was quite limited. As we saw, the
dominant foundational theory, ZF, is not in accordance with the VCP.
However, his ideas had a significant appeal in the development of theoretical
computer science, as modern type theory constitutes the foundations of
the theory of programming languages. At the same time, consistent type
disciplines allowing for impredicative types and self-application of functions
were introduced through the notion of polymorphism. In aword, type theory
progressively rejected the foundational concerns which had been the very
reason of its introduction.
A central position in the path leading fromRussell’s type theory tomodern
type theories (a complete reconstruction of this path obviously exceeds the
purposes of this article—the reader can look for instance at [29]) is occupied

4In particular, it is incapable of representing quite basic arithmetical operations like
exponentiation.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 7

by the development of typed �-calculi as abstract functional programming
languages.
In the simply typed �-calculus �→, first proposed by Church [4], terms are
defined in accordance with the type discipline T1–2.5 In �→ no well-typed
program can be applied to itself: ifM is a program of type �, then, in order
for the application MM to be well-typed, one should also have that M
has type � → �, for some type �, which is impossible, since programs are
assigned a unique type. Hence, Russell’s ban on self-application has a direct
translation in �→.
The fact that programs come with a unique type is sometimes referred to
as static typing. Contrarily to Russell’s type discipline, in modern program-
ming languages there exist programs which can be assigned more than one
(actually, infinitely many) types: this polymorphism of programs gives rise to
type disciplines which, while appearing, at a first glance, quite natural from
a programming point of view, are extremely challenging from the point of
view of logic.
The natural aspect of polymorphism is shown by the following example:
suppose we want to write a program ID which, when applied to an arbitrary
other program P, gives as output the program P. The behavior of ID is then
governed by the simple equation

ID P = P.

To represent this very simple program in �→, we are forced to make an
apparently arbitrary choice, namely the one of the range of ID. In other
words, we are forced to restrict the programs to which ID can be applied to
those belonging to a given type. Hence, for any choice of a type �, a different
coding of our program in �→must be given, by the �-term ID� = (�x ∈ �)x,
of type � → �. However, the program is so simple that it seems natural to
look for a uniform coding of ID such that, for any type �, we can say that
ID can be given the type � → �.
It seems natural then to look for programs which are, so to say, so simple
that they can work at any type. Let us make the hypothesis that a uniform
and polymorphic coding of ID exists, and let us fix a type �0; as ID can be
given type � → � for any type �, then it can be given the type �0 → �0, but
also the type (�0 → �0)→ (�0 → �0); this means that one of the types of ID
is actually one of the possible ranges of ID, which authorizes the application
ID ID of ID to itself. In other words, as soon as one follows the intuition
that a simple enough program can be given infinitely many types, Russell’s
ban on self-applications is violated. Actually, the polymorphic intuition is
at work in most common programming languages, pace Russell.

5We recall that �→ terms, also called �-terms, are generated, starting from a collection, for
any type �, of variables x, y, z ∈ � of that type, by two operations: abstraction, which, given
a term M� and a variable x ∈ �, forms a term (�x ∈ �)M� , of type � → �; application,
which, given a termM�→� and a termN� , forms a termM�→�N� , of type �. Moreover, the
execution of terms is governed by the reduction rule ((�x ∈ �)M�)N� → M� [N�/x ∈ �],
which computes the result of applying a function constructed by the abstraction operation.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

8 PAOLO PISTONE

A first, informal, description of this phenomenon appeared in a 1967
seminal text by Strachey, in which the notion of parametric polymorphism
(i.e., the fact that a term can have infinitely many types) was first introduced:

Parametric polymorphism [. . .] may be illustrated by an example.
Suppose f is a function whose argument is of type α and whose
results is of type � (so that the type of f might be written α → �),
and that L is a list whose elements are all of type α (so that the type
of L is αlist). We can imagine a function, say Map, which applies
f in turn to each member of L and makes a list of the results. Thus
Map[f, L] will produce a �list.Wewould like Map to work on all types
of lists provided f was a suitable function, so that Map would have to
be polymorphic. However its polymorphism is of a particularly simple
parametric type which could be written as

(α → �, αlist)→ �list,
where α and � stand for any types. [45]

In definitive, a polymorphic program is one which can be given an infinite
class of types, all of the form �[�/X], where � is an opportune type and
varies among all types.
Strachey’s ideas were formalized in 1971 by Girard [16] (and, inde-
pendently, in 1974 by Reynolds [39]) with the introduction of System F,
or polymorphic �-calculus. The type discipline of System F differs from
Russell’s one for the fact that types contain variables, and a variable intu-
itively stands for all its substitution instances. Hence when a function is
assigned a range � and the variable X occurs freely in �, this means that
the function can be assigned all types �[�/X], for any type �. To the clauses
T1–2 a third and a fourth clause are added:
T3: if a function can be assigned the type �, where the variableX occurs
freely in �,6 then it can be assigned the type ∀X�;

T4: if a function has type ∀X� then, for all type �, it has also type �[�/X].
More precisely, in addition to the operations of abstraction and applica-
tion of �→, two new operations are present in System F: type abstraction,
which, given a term M� of type � and a type variable X occurring freely
in �,7 forms a term ΛX.M� , of type ∀X�; type extraction which, given a
termM∀X� of type ∀X� and a type �, forms a termM{�}, of type �[�/X].
To the reduction law governing the execution of programs a new reduc-
tion law is added: (ΛX.M�){�} → M [�/X]�[�/X], which computes the
result of extracting over a type a program previously abstracted over all
types.8

6And moreover X does not occur free in any open assumptions.
7And moreover X does not occur free in any other type declaration.
8It’s worth mentioning that System F (as well as �→) can be presented in the so-called

à la Curry version, as a type discipline over untyped �-terms. Untyped �-terms are defined
similarly to the typed ones, but without type annotations. Starting from untyped variables
x, y, z, . . . , the abstraction operation allows to form a term �x.M starting from a term M

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 9

The definition of impredicative types of the form ∀X� must be distin-
guished from the fact of typing impredicative propositions: while the latter
can be done in simple type theory, the former requires a proper extension
of the simple type discipline. One can then ask what theory results by con-
sidering those propositions which can be well-typed in a polymorphic (say
System F) type discipline: this hugely impredicative theory, called System
U− in [16], is much more expressive than System F alone and will be dis-
cussed in Section 3, in connection with Martin-Löf’s impredicative type
theory.
The program ID has a unique representation in System F, by means
of the �-term ΛX.(�x ∈ X)x which has type ∀X (X → X). The type-
dependent representations of ID in �→ are easily obtained from ID by type
extraction: ID� = ID{�}. Moreover, by performing two different extrac-
tions, the term ID can be correctly applied to itself, yielding the program
(ID{X → X})ID{X}.9
Similarly, the program Map mentioned by Strachey has a unique rep-
resentation, of type ∀X∀Y ((X → Y) → (Xlist → Ylist)).10 Also
the program Map can be applied to itself, as soon as one chooses the type
(X → Y) and (Xlist → Ylist) as values, respectively, of X and Y .
Though this type discipline allows for constructions which clearly violate
the VCP, paradoxical constructions like Russell’s paradox cannot be typed
in System F. In particular, Girard showed that, similarly to the much weaker
calculus �→, the execution of any program in System F reduces to a unique
normal form (Girard’s normalization theoremwill be reconstructed in detail
in the next section). As we will discuss in the next subsection, from a logical
point of view, this result establishes the consistency of second order logic
(and of second order arithmetics) in a very strong proof-theoretic sense.

2.3. The epistemic problem of impredicativity. In the debate on the VCP
two different, though related, problems can be distinguished: the problem
concerning the existence of the objects defined by impredicative clauses, that
we will call the metaphysical problem; the problem concerning the ways to
prove that some objects belong to a set defined by an impredicative clause,

and a variable x; the application operation allows to form a term MN starting from two
arbitrary terms M and N . In the untyped case, the typing conditions for System F do not
affect types. In the case of type abstraction, ifM is a term of type, thenM itself is a term of
type ∀X� (provided the variable X does not occur free in all the type declarations for the free
variables ofM); in the case of type extraction, ifM is a term of type ∀X�, then, for all type
�,M itself is a term of type �[�/X]. In this system (which is equivalent to the typed version)
polymorphism appears in a more literal way: the same untyped �-term might have infinitely
many types.
9In the version à la Curry, the program ID, as well as all programs ID� , is represented by the

untyped �-term �x.x. Moreover, the term (�x.x)�x.x, corresponding to the self-application
of ID to itself, can be well-typed.
10Where Xlist is the type ∀Y (Y → (X → Y → Y) → Y) whose elements are either

the empty list � = ΛY.(�x ∈ Y)(�c ∈ X → Y → Y)x or the concatenation conc(l, a) =
ΛY.(�x ∈ Y)�c ∈ X → Y → Y)ca((l{Y})xc) of an object l of type Xlist and an object
a of type X .

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

10 PAOLO PISTONE

or that some impredicative proposition is true, that we will call the epistemic
problem.
Themetaphysical problem can be stated as follows: how can an impredica-
tively defined set be said to exist, if its definition presupposes the existence of
a totality of sets, containing the set it defines? The answer seems to depend
upon the philosophical position about the nature of mathematical objects
one adopts. For instance, a problem of course occurs if one endorses the
view thatmathematical objects owe their existence (if any) to their definition,
either intended in purely formalistic way, or intended as a representation of
some form of (mental or linguistic) construction. If, however, as Gödel
remarks,

it is a questionof objects that exist independently of our constructions,
there is nothing in the least absurd in the existence of totalities con-
tainingmembers,which canbedescribed (i.e., uniquely characterized)
only by reference to this totality. [22]

Hence, for instance, no problem of existence would arise from a platonistic
standpoint. The analysis of impredicativity in the pages that follow will
not take into consideration the metaphysical problem. Our focus is indeed
directed towards some the issues which arise in the attempt at defining
truth-conditions or proof-conditions for impredicative propositions. These
issues are captured by the epistemic problem, which arises from the remark
that, when one argues for the truth of a proposition quantifying over all
propositions, or for the fact that some set belongs to the set of all sets such
that ϕ, one might enter an infinite regress. For instance, if one wants to
know whether the proposition P: every proposition is either true or false is
true or false, one has to verify, for every proposition, whether it is true or
false, hence in particular one has to verify this for the proposition P, ending
in a regress.
In a famous article [36], Poincaré identifies a circularity in reasoning about
impredicative concepts starting from abroad conception of logic as an essen-
tially “sterile” activity: theFrenchmathematician argues that a purely logical
proof is one which can be transformed into a series of tautological propo-
sitions, once the expressions involved in it are replaced by their definitions.
This is in contrast, for the author, with mathematical proofs, which do not
reduce to tautologies but to propositions the acknowledgement of whose
truth requires an appeal to intuition. For instance, he insists that, if one has
logically proved an equality of the form a = b, then hemust be able to reduce
this equality, by progressively substituting concepts by their definition, into
tautological equalities of the form c = c.

Mais si l’on remplace successivement les diverses expressions qui y
figurent par leur définition et si l’on poursuit cette opération aussi
loin que l’on le peut, il ne restera plus à la fin que des identités, de
sorte que tout se réduira à une immense tautologie. La Logique reste
donc stérile, à moins d’être fécondée par l’intuition. [36]

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 11

Once established this, Poincaré argues that the replacement of an impred-
icatively defined concept with its definition might fail to produce a series
of tautologies. For instance, the truth of the proposition P above can be
defined by stating that P is true when, for any propositionQ,Q is either true
or false. Now, to ascertain whether P is true, we substitute the proposition
“P is true” by its definition, and we find the proposition “P is either true or
false” among all possibleQ, ending in a regress which prevents the reduction
to a series of tautologies. Poincaré, notoriously, concludes that

Dans ces conditions, la Logistique n’est plus stérile, elle engendre
l’antinomie. [36]

Poincaré’s argument is sometimes recalled in order to show that impredica-
tive propositions must be considered viciously circular from a constructivist
standpoint. For instance, Sundholm refers to this argument when explaining
why, in his opinion, the meaning conditions for impredicative propositions
are circular:

A meaning explanation for the second order quantifier begins by
stipulating that (∀X : Prop)A has to be a proposition under the
assumption that A is a propositional function from Prop to Prop,
that is, that A : Prop, provided X : Prop. One then has to explain,
still under the same assumption, which proposition it is:

(∀X : Prop)A is true if and only if A[P = X] is true, for each proposition P.

In the special case of (∀X : Prop)X one obtains
(∀X : Prop)X is true =def P is true, for each proposition P,

but (∀X : Prop)X is (meant to be) a proposition, so it has to be
considered on the righthand side. Accordingly (4.2.2) cannot serve as
a definition of what it is for (∀X : Prop)X to be true; it does not allow
for the elimination, effective or not, of . . . is true when applied to the
alleged proposition (∀X : Prop)X . [46]
A different view is advocated by Carnap (a well-known defender of
impredicativity), who remarks that, if we really endorse the “sterility” view
of logic and reject impredicativity in proofs, then we are forced to reject even
basic arithmetical proofs. Indeed, an infinite regress arises even when one
tries to argue that the number three is inductive (i.e., that for all property P
which holds of zero and holds of n + 1 as soon as it holds of n, P holds of
three):

For example, to ascertain whether the number three is inductive, we
must, according to the definition, investigate whether every property
which is hereditary and belongs to zero also belongs to three. But
if we must do this for every property, we must also do it for the
property “inductive” which is also a property of numbers. Therefore,
in order to determine whether the number three is inductive, we must
determine among other things whether the property “inductive” is
hereditary, whether it belongs to zero and, finally—this is the crucial

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

12 PAOLO PISTONE

point—whether it belongs to three. But this means that it would be
impossible to determine whether three is an inductive number. [3]

A dilemma seems to come out of this argument: either one accepts
that even some basic arithmetical arguments (like the inductive proof that
three is a natural number) are flawed, since circular, or one must admit
that the intuition that ascertaining the truth (or proving) an impredicative
proposition amounts at ascertaining the truth (or proving) all its substi-
tution instances is flawed, since circular. In a word, if we don’t want to
concede that the whole edifice of mathematics lays on loose ground, we
must admit that the intuitive understanding of the conditions for proving
impredicative propositions exemplified by the regress argument above is not
correct.
The intuitive understanding can be expressed by the following thesis: to
prove a statement of the form ∀XA is to prove that A[C/X] holds, where
C varies over all admissible substitution instances of X . Instead, Carnap
sketches the view that proving ∀XA amounts to something like proving
A[X] on the assumption thatX is an arbitrary, or generic, proposition. This
understanding is explicitly attacked by Carnap:

If we had to examine every single property, an unbreakable circle
would indeed result, for then we would run headlong against the
property “inductive”. Establishing whether something had it would
thenbe impossible inprinciple, and the conceptwouldbemeaningless.
But the verification of a universal logical or mathematical sentence
does not consist in running through a series of individual cases [. . .]
The belief that we must run through all individual cases rests on a
confusion of “numerical generality” [. . .] We do not establish spe-
cific generalities by running through individual cases but by logically
deriving certain properties from certain others. [. . .]
If we reject the belief that it is necessary to run through individual
cases and rather make it clear to ourselves that the complete verifica-
tion of a statement means nothing more than its logical validity for an
arbitrary property, we will come to the conclusion that impredicative
definitions are logically admissible. [3]

Also Gödel comments upon this way out of the problem:

[. . .] one may, on good grounds, deny that reference to a totality
implies reference to all single elements of it or, in other words, that
“all”means the same as an infinite logical conjunction. Onemay [. . .]
interpret “all” as meaning analyticity or necessity or demonstrability.
There are difficulties in this view; but there are no doubts that in this
way the circularity of impredicative definitions disappears. [22]

To sum up, the epistemic problem of impredicativity revolves around an
apparent circularity in the definition of the truth or provability conditions for
propositions quantifying over all propositions: if one accepts the intuition
that the conditions for assessing the truth or proving a statement of the form
∀XA are given in terms of the conditions for assessing the truth or proving

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 13

all possible substitution instances A[B/X], then apparently no non-circular
definition of such conditions can be given, as the proposition ∀XA appears
among the possible instances of X .
As Gödel comments, saying that the conditions for proving (or assessing
the truth) of ∀XA obtain when the conditions for proving (or assessing the
truth of) all the substitution instances obtain is the same as saying that the
conditions for proving (or assessing the truth) of ∀XA are provided by an
infinite conjunction of conditions. Hence, the problem can be restated as
follows: as soon as the explanation of the second order quantifier is given in
terms of an infinite conjunction, that is, as soon as one accepts that a rule
of the form

. . . A[B/X] . . .
B proposition∀XA

provides a good explanation of the meaning of the second order quantifier,
as ∀XA (or a more complex statement) might occur among its immediate
premisses, a problem of circularity in the definition appears.

2.4. Consistency proofs and the harmony between the finite and the infinite.
Hilbert’s view of mathematics was based on a distinction between finitary
and infinitary propositions: those which can be expressed in an (essentially
quantifier-free) arithmetical language and those which require a more com-
plex language, containing quantifiers ranging over infinite domains (natural
numbers, real numbers, sets, . . .). In Hilbert’s perspective, the first are
directly meaningful and “safe” from a foundational perspective, as their
truth can be assessed by a finite computation. On the contrary, as no direct
computation can be employed to verify a proposition quantifying over an
infinite domain, the use of the second must be vindicated by means of a
consistency proof, showing in particular that any finitary proposition estab-
lished using infinitary concepts can be also established by purely finitary
means. In a word, a consistency proof should prove that any apparently
redundant use of an infinitary concept can be “eliminated”.11

It is widely acknowledged that Gödel’s second theorem implies a refu-
tation of Hilbert’s reductive goal, in the sense that a reductive proof of
consistency for a system containing infinitary propositions cannot be carried
over within finitary mathematics. More precisely, Gödel’s second theorem
does not refute the possibility of showing that redundant uses of infinitary
concepts can be eliminated, but shows that a proof of this fact must itself
employ infinitary concepts.12 In a sense, the conclusion that no false finitary
consequence can be drawn from infinitary, unsafe, propositions, must itself
be drawn from some infinitary, unsafe, proposition.
A further elaboration of Hilbert’s reductive ideal appears in later proof
theory, when, after Gentzen’s work, the eliminability of redundant steps

11That consistency follows from this elimination result can be seen as follows: if a proof of
the absurdity 0 = 1 exists, then a finitary proof of 0 = 1 must also exist, which is obviously
false.
12A typical example is provided by Gentzen’s consistency proof of arithmetics by means

of a finitary system (primitive recursive arithmetics PRA) augmented with the infinitary
principle of transfinite induction over a recursive well-order of order type �0.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

14 PAOLO PISTONE

(called cuts or detours) in a proof became the fundamental goal of the
proof-theoretic analysis of logical systems. Gentzen had shown that, in
propositional (and first-order) logic, one can devise a systematic strategy
to eliminate, in a proof, all redundancies which appear when some con-
sequence is drawn from a proposition whose principal connective has just
been introduced. This result, called Hauptsatz, is the cornerstone of the
proof-theoretic explanation of deduction. It has, as its main consequence,
the consistency of the logical system, since, on the one hand, it asserts that
any proof can be transformed into a detour-free (or cut-free) proof and, on
the other hand, a proof of a contradiction must always contain a detour.13

Moreover, it implies that a proof of a finitary proposition canbe transformed
into one which contains finitary propositions only (as any introduction of
an infinitary proposition would be redundant and, thus, eliminable).14

It is often advocated (see [11,38]) that the result that theHauptsatzobtains
for a given logical system counts as a justification of the rules of that system.
For instance, the philosopher Michael Dummett argues that at the basis of
a proof-theoretical justification of deduction is the fact that the conditions
for proving logical statements should be self-explanatory (“stérile”, to quote
Poincaré), in a precise sense provided by the notion of harmony:

The requirement that this criterion for harmony be satisfied conforms
to our fundamental conception of what deductive inference accom-
plishes. An argument or proof convinces us because we construe it
as showing that, given that the premisses hold good according to
our ordinary criteria, the conclusion must also hold according to the
criteria we already have for its holding. [11]

Following Gentzen’s notorious remark:

The introductions represent, as it were, the “definitions” of the sym-
bols concerned, and the eliminations are nomore, in the final analysis,
than the consequences of these definitions. This fact may be expressed
as follows: in eliminating a symbol, the formula, whose terminal sym-
bol we are dealing with, may be used only “in the sense afforded it by
the introduction of that symbol.” [15]

Dummett takes the introduction rule for a connective as a definition of the
meaning of the connective: the conclusion of the rule is the definiendum, the
premisses of the rule constitute its definiens. Thus, if some consequences are
drawn from a proposition A that we have previously introduced (according
to the introduction rule of its principal connective) then it must be possible,
by harmony, to draw the same consequences from the propositions appear-
ing as premisses in the rule introducing A; in a word, it must be possible
13In a cut-free proof of the absurd the premisses must be a formula A and its negation ¬A;

now, the principal connective ¬ of the formula ¬A must be introduced in its cut-free proof;
hence this concept, ¬, is introduced and eliminated in the proof, contradicting the hypothesis
that the proof has no detour.
14This is a consequence of the subformula property of (first-order) cut-free proofs:

this property asserts that all propositions occurring in the proof are subformulas of the
conclusion.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 15

to eliminate the connective just introduced in the derivation of its conse-
quences by replacing it by its definiens, i.e., the premiss of the introduction
rule. The justification of a logical system by means of a reduction argument,
along with the thesis that introduction rules play the role of definitions of
the logical constants, can be compared with Poincaré’s idea that deductive
argument must be reducible to tautological ones.
Since Gentzen’s original argument, the arguments to prove the Hauptsatz
usually proceed by showing how to eliminate detours gradually, i.e., by
repeatedly applying a series of transformations which replace redundant
concepts with their definition. For instance, if a configuration like the one
below

n

A
D1
B ⇒I, (n)

A⇒ B
D2
A ⇒E

B

occurs in a proof, where a consequence of the logical proposition A ⇒ B
is drawn, according to its elimination rule, just after that proposition is
introduced, according to its introduction rule, then it can be replaced by

D2
[A]
D1
B

in which this “detour” has disappeared. This transformation eliminates
detours only locally, since possibly some new detours are created when a
certain number of copies of the derivationD2 are attached toD1 and the lat-
ter is attached toD3. Hence, in order to complete the proof of theHauptsatz
one must find a way to show that the iteration of this local transformations
eventually eliminates all detours, globally. The crucial property in the case
just illustrated is that the new detours created by the transformation occur
on propositions (A and B) which are of strictly smaller logical complexity
than the propositionA⇒ B . One can then argue by induction over themax-
imal logical complexity of a proposition occurring in a detour. An argument
relying over an induction over an explicit discrete measure assigned to proofs
is sometimes called combinatorial, for the fact that it can be formalized in
first-order arithmetics.
Two are the ingredients onwhich a combinatorial argument for theHaupt-
satz is based: first, the fact that one can apply certain transformations to
proofs which, locally, make detours disappear (though new detours may
appear elsewhere); second, the fact that the new detours created have a log-
ical complexity strictly bounded by the logical complexity of the eliminated
detour.
Gentzen’s Hauptsatz can be given an elegant description in the language
of typed �-calculi, through the lens of the propositions-as-types correspon-
dence, that is, the acknowledgement of a substantial isomorphism between

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

16 PAOLO PISTONE

the structure of propositions and their proofs in logical systems and the struc-
ture of types and programs in typed �-calculi.15 The isomorphism between
the calculus � and the natural deduction systemNM⇒ for (the⇒-fragment
of) propositional minimal logic is a basic example of this correspondence.16

Through the lens of the propositions-as-types correspondence, the redun-
dancies in proofs correspond to the redexes in the associated programs,
i.e., to the configurations from which the execution of the program can be
launched. The local transformation depicted above has a simple description
in typed �-calculus, as it corresponds to the reduction rule of �→:

((�x ∈ A)MB)NA → MB [NA/x ∈ A],
which eliminates the redex formed by an abstraction immediately followed
by an application. The local elimination of redundancies corresponds then
to a single step in the execution of a program, and the eliminability of
all redundancies corresponds to the termination of the execution of the
program. In a word, the Hauptsatz expresses the normalization of pro-
grams, i.e., the fact that any program is associated with a (unique) normal
form.17

The history of polymorphism is a very good example of the entangle-
ment of proof-theory and theoretical computer science captured by the
propositions-as-types correspondence: in 1971 Girard, a logician, [16] intro-
duced SystemF as an extension of the simply typed �-calculus corresponding
to intuitionistic second order logic, as a means to resolve an important
conjecture in the proof-theory of second order logic. In 1974 Reynolds, a
computer scientist, independently presented an extension of �→, called poly-
morphic �-calculus [39], in order to capture Strachey’s informal notion of
polymorphism by a rigorous type discipline. Actually, the logicians and the
computer scientist, from different perspectives, had the same idea: System F
and the polymorphic �-calculus happen to be exactly the same system. This
means that the representation of second order, impredicative, quantifica-
tion, directly corresponds, via the propositions-as-types correspondence, to
polymorphism: from a logical point of view, a polymorphic program, hav-
ing all types �[�/X], with � any type, is a program having an impredicative
type constructed by second order quantification, i.e., the type ∀X�. From
a computer science point of view, a proof of an impredicative proposition
∀XA is nothing but a polymorphic program. In a word, the much debated
notion of second order proof is captured by the notion of polymorphic
program.

15While this correspondence was initially reserved to minimal and intuitionistic logical
systems, several extensions to classical systems are now well-known (see for instance [30,35]).
16The isomorphism associates types with propositions by an obvious translation which

simply replaces all occurrences of ⇒ by →; the correspondence between typed �-terms
and derivations is obtained by associating variables with hypotheses and the abstraction
and application operations, respectively, with the introduction and elimination rules for
⇒. Finally, the reduction of �-terms is associated with the reduction of detours in natural
deduction derivations.
17As a program is said in normal form exactly when it has no redexes.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 17

In the propositions-as-types view, propositions are considered as types
themselves. The proposition ∀X (X ⇒ X) is the same as the type ∀X (X →
X). On the other hand, propositions need not be assigned a type: System
F does not have a type prop of propositions (which would correspond to
the type of a special class of types, that of propositions). In Section 4 we
will discuss a theory in which every proposition is a type and is moreover
assigned a type, the type of all types. A precise connection exists between
the apparent circularity of the provability conditions for the second order
quantifier, discussed in the previous subsection, and the difficulty in showing
that its rules satisfy Dummett’s requirement of harmony. To investigate
harmony in second order logic we have to consider a configuration like the
one below

D1
A ∀I∀XA ∀E

A[B/X]

occurring in a proof, where a consequence of the logical proposition ∀XA
is drawn, according to the elimination rule, just after that proposition
is introduced, according to the introduction rule; a local transformation
to eliminate this detour locally can be applied, yielding the configuration
below

D1[B/X]

A[B/X]
,

where D1[B/X] is the derivation obtained by systematically replacing in D1
all occurrences of X with B . The local transformation just depicted has a
very simple description in terms of typed �-calculus, as it corresponds to the
execution rule of System F:

(Λx.MA){B} → M [B/X]A[B/X],

which eliminates the redex formed by a type abstraction immediately fol-
lowed by a type extraction. The local elimination of redundancies is then a
single step in the execution of a program.
As in the propositional case, the execution of the local transformation
might create new detours; however, a combinatorial bound on the logi-
cal complexity of the formula occurring in this detour can not be given
in this case: as B might be any formula (in particular B might be the
formula ∀XA itself),18 the new detours might be arbitrarily complex. In
a word, the fact that the same formula ∀XA can occur as a possible
substitution for its variable X (i.e., Russell’s vicious circle) blocks any com-
binatorial argument for proving that detours in second order logic can be
eliminated.
The Hauptsatz for second order logic was conjectured in an article by
Takeuti in 1954 and independently proved by Tait, Prawitz, and Takahashi

18A consequence of this remark is that the subformula principle does not hold for second
order logic: for instance, a cut-free proof of a proposition of the form ∀XA ⇒ B might
contain propositions of arbitrary logical complexity.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

18 PAOLO PISTONE

[37, 48, 49] by means of semantical (i.e., non combinatorial) techniques.
However, as it will be discussed in more detail in the next section, the first
proof of theHauptsatz for second order logic based on a reduction argument
(i.e., showing that the local reduction like the one above eventually eliminate
all detours) is a corollary ofGirard’s 1971 normalization theorem for System
F. Girard’s non combinatorial argument exploits a series of predicates of
growing logical complexity (hence not globally definable in second-order
arithmetics, see Section 4).
His result proves that, in all second order proofs, a redundant concept
can be eliminated in favor of its definition. As a consequence of the sec-
ond order Hauptsatz, harmony does hold for the second order quantifier.
However, an epistemological problem in the proof-theoretical justification
of second order logic stems from the fact that the argument for the Haupt-
satz cannot be of a combinatorial nature and must rely on a heavy (and
impredicative) logical apparatus. In a word, even if every redundant use of
the infinite concept of second order quantification can be eliminated in a
finite amount of time, no definitive reduction of the infinite to the finite
is achieved, as infinitary concepts are needed to establish this fact. This is
compatiblewithour previous remarks onGödel’s second theorem: the justifi-
cation of an infinitary system like secondorder logic should require infinitary
concepts.
Nevertheless, it is often argued that the second order Hauptsatz does
not produce a viable justification of the use of second order concepts,
as it does not provide a reduction of impredicative logic to a predicative
ground:

[. . .] it should be noted, [. . .] that these new proofs use essentially the
principles formalized in P2 [second order Peano Arithmetics], and
there is thus still no reduction of e.g., the impredicative character of
second order logic. [38]

In particular, to the eyes of a sceptic with respect to impredicative argu-
ments, an impredicative proof that harmony obtains in second order logic
might not provide a satisfying justification of the use of second order
quantification.
A different form of circularity, then, with respect to the one discussed in
the last subsection, appears in the proof-theoretic justification of the rules for
second order quantification: this is the particular form of circularity appear-
ing in the argument showing that harmony (or eliminability) holds between
conditions for introducing and for eliminating the second order quantifier.
The fact that all instances A[B/X] can be consequences of ∀XA makes the
definition of a combinatorial measure on proofs, which should decrease
along with the progressive elimination procedure, impossible. Rather, the
arguments showing that such detours are eventually eliminated during the
reduction process rely over principles that, in a sense, reflect the impredica-
tivity to be justified. This form of circularity will be discussed in detail in
Section 4.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 19

§3. Propositions about all propositions. The problem of the circularity in
the definition of the truth or provability conditions for second order logic
is investigated by comparing two arguments: first, Frege’s consistency argu-
ment in the Grundgesetze, purported to show that all propositions in the
system have a definite truth-value and based on a definition of what it means
for an expression of a given level to have a denotation; second, Girard’s
normalization proof for System F corresponding, through the propositions-
as-types correspondence, to a consistency proof for second order logic and
based on a definition of what it means for a term of a given type to be
computable.

3.1. Frege’s consistency proof. The language of the Grundgesetze (let
us call it G) would be called nowadays a functional language. It was
based on two basic distinctions: firstly, the one between functions and
objects, the first being unsaturated entities, i.e., constitutively demand-
ing for an argument (a function or an object, depending on the level
of the function—see below) to be fed with, the second being, on the
contrary, saturated, i.e., let us say, complete, entities. Secondly, the one
between names and their denotations: to every class of entities (objects
and functions of some type), which forms a well-defined totality, there
corresponds a class of names of which those entities are the denotations.
Correspondingly, names for functions, called function names, are unsatu-
rated expressions, (one would say open terms, i.e., terms containing free
variables, in modern language), whereas names for objects, called proper
names, are saturated expressions (closed terms, i.e., terms without free
variables).
Interestingly, the language G contains no primitive saturated expressions.
Numerical expressions 0, 1, 2, . . . , for instance, are famously (or infamously)
constructed by Frege starting from unsaturated expressions. A peculiar class
of saturated expressions is the class of propositions, which are, in Frege’s
terminology, names for the most basic objects, truth-values, i.e., True or for
the False.
Functions are divided into three classes: first-level functions, designated
by unsaturated expressions of the form f(x), g(x), . . . , whose free variables
x, y, z, . . . can be substituted for proper names, yielding proper names;
second-level functions, designated by unsaturated expressions of the form
φ(X),
(X), . . . , whose free variables X,Y,Z, . . . can be substituted for
first-level function names, yielding proper names; third-level functions, des-
ignated by unsaturated expressions of the form Φ(�),Ψ(�), . . . , whose free
variables �, �,
 can be substituted for second-level function names, yield-
ing proper names. Examples of first-level functions are given by the logical
connectives, e.g., f(x) = x → x, g(x) = ¬x and by truth-functions,
e.g., x2 − 1 = (x + 1) × (x − 1); examples of second-level functions are
the first-order quantifiers ∀xX (x), ∃xX (x) as well as the function –εX (ε),
which allows to construct, from any first-level function f(x), a course-of-
value expression, i.e., a saturated expression –εf(ε) designating the class
of all objects falling under the concept expressed by the function f(x).

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

20 PAOLO PISTONE

Finally, examples of third-level functions are the second-order quantifiers
∀X�(X), ∃X�(X).
The paragraphs Sections 29–31 of the Grundgesetze contain an argument
purported to show that every expression in G has a (unique) denotation,
i.e., is the name of a well-defined object or function. First, Frege provides
conditions for an expression of G to have a denotation.
Two cases are considered: if e is a saturated expression, Frege stipulates
that e has a denotation if the result f(e) of replacing by e the free vari-
able of any denoting unsaturated expression f(x) (of the appropriate type)
is a denoting saturated expression. If e(�x) is an unsaturated expression,
depending on the variables �x, Frege stipulates that e(�x) has a denotation
if the result e(�b) of replacing its free variables with denoting expressions �b
of the appropriate type always yields a denoting saturated expression. Here
one might object that Frege’s stipulations are circular, as the denotation of
saturated expressions and unsaturated expressions depend on each other.
Actually, the German logician denies that his stipulations form a definition
of the notion of “having a denotation”. He states that his stipulations

[. . .] are not to be construed as definitions of the words “to have a
reference” or “to refer to something”, because their application always
assumes that some names have already been recognized as having a
reference; they can however serve to widen, step by step, the circle of
names so recognized. [13]

This objection is discussed for instance by Dummett ([10], p. 215). We
will not enter this delicate aspect of Frege’s argument: we will concede that
Frege is right here.
The second part of Frege’s argument is aimed at showing that any proper
name has a denotation, hence in particular that propositions have a definite
truth-value. Frege argues by induction on the construction of a proper name,
by applying the stipulations at each step. As there is no primitive saturated
expression, proper names (as the propositions 5 + 5 = 2 · 5 or ∀x(x + x =
2 ·x), ∀X (X → X)) must be construed by filling the hole in a first, second or
third-level function name (x+x = 2·x, ∀xX (x), ∀X�(X), respectively)with
an expression of the appropriate type (the name 5, the first-level function
x + x = 2 · x, the second-level function X → X , respectively). Hence the
argument is reduced to showing that primitive unsaturated expressions, of
any level, have a denotation. Remark that, since any proposition is built
by opportunely composing function names, the conditions under which a
proposition denotes the True are univocally determined once the conditions
of what it means to denote for an unsaturated expression are determined.
Hence, if we exclude the case of course-of-values expressions, Frege’s second
stipulation should suffice to reconstruct, from the inductive argument, a
unique truth-value for propositions.
For first-level function namesf(x) one must show that, ifN is a denoting
name, then f(N) is too; for instance, if f(x) is the function name x → ¬x,
and P is, by hypothesis, a denoting proposition (corresponding to a definite

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 21

truth-value), then P → ¬P is a denoting proposition (as its truth-value is
univocally determined by the truth-value of P).
Frege argues in a similarway for second-level expressions, like the function

∀xX (x). On the assumption that f(x) is a denoting first-level function one
must show that the proposition ∀xf(x) denotes either the True or the False;
if f(x) is denoting, then, for any denoting proper name N , the proposition
f(N) denotes either the True or the False; now, either f(N) denotes the
True for all denotingN or, for some denotingN ,f(N) denotes the False. In
the first case, then ∀xf(x) denotes to the True; in the second case, it denotes
to the False; hence, in any case, the proposition ∀xf(x) denotes either the
True or the False.
An apparently circular dependency canbe found in this argument, though:
the verification that the unsaturated expression ∀xX (x) denotes depends
on the verification that the saturated expression ∀xf(x) denotes for every
choice of a denoting first-level function name f(x), hence including names
built using the unsaturated expression ∀xX (x).
This circularity can more clearly be detected in the case of third-level
expressions. Frege simply states that in this case one can argue similarly to
the second-level case. In order to show that the third-level function ∀X�(X),
where � is a variable which stands for the name of a second-level expression,
denotes, one must show, on the assumption that Φ(X) is a denoting second-
level expression, that the proposition ∀XΦ(X) denotes either the True or the
False; now, either Φ(f) denotes the True for all denoting first-level function
name f, or for some denoting f, Φ(f) denotes the False. In the first case,
then, ∀XΦ(X) denotes the True; in the second case it denotes the False;
hence, in any case, the proposition ∀XΦ(X) denotes either the True or the
False.
As remarked above, this argument should grant that a proposition built by
replacing the variable � with a denoting second-level expression Φ(X) in the
third-level expression ∀X�(X) denotes a definite truth-value. Let Φ(X) be
the second-level function name ∀X (X (x) → ¬X (x)); this function name
is denoting as we have shown that the second-level function ∀xX (x) is
denoting and that, if f(x) is a denoting first-level function, then f(x) →
¬f(x) is a denoting first-level function. Now the name ∀XΦ(X), that is,
∀X∀x(X (x) → ¬X (x)) denotes the True if and only if, for every denoting
first-level expression f(x), the name ∀x(f(x) → ¬f(x)) denotes the True;
hence, in particular, only if the name ∀x(g(x) → ¬g(x)) denotes the True,
where g(x) is the denoting expression ∀XΦ(X) → ¬(x = 2 · x), which is
the case if and only if ∀XΦ(X) denotes the True.
Similarly to Carnap’s example in the previous section, in order to know
whether ∀XΦ(X) denotes the True, we must verify whether all of its sub-
stitution instances Φ(f), where f is a denoting first-level function name,
denote the True. Now, if f is built from ∀XΦ(X), we are led into a trouble-
some epistemic position: we must already know whether ∀XΦ(X) denotes
the True in order to assess whether ∀XΦ(X) denotes the True.
A similar formof circularity appears in the case of course-of-values expres-
sions. Frege shows that the second-level function –εX (ε) has a denotation

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

22 PAOLO PISTONE

by arguing that, for any two denoting first-level function names f(x), g(x),
the expression g(–εf(ε)) has a denotation (exploiting his first stipulation).
For that he considers the possible cases for g(x), taking as basis case the
one of equality and appealing to the celebrated and unfortunate Basic Law
V (stating that two course-of-value expressions –εf(ε), –εg(ε) denote the
same object if and only if the proposition ∀x(f(x) ↔ g(x)) denotes the
True).
A vicious circle arises when we try to compute the denotation of an
arbitrary course-of-value expression –εh(ε): by the first stipulation, we must
show that, for any denoting first-level function name g(x), g(–εg(ε) has a
denotation. Let g(x) be the function x = –εh(ε); in order to show that the
proposition g(–εh(ε)), that is, –εg(ε) = –εh(ε) has a denotation, we must
show that the proposition ∀x(g(x) ↔ h(x)) has a denotation. This means
that we must show that, for every denoting proper name N , g(N)↔ h(N)
denotes either the True or the False. In particular, then, we are led to show
that g(–εh(ε)) denotes the True, i.e., that –εg(ε) = –εh(ε) has a denotation,
giving rise to a regress.
It is widely accepted that the main problem of Frege’s system lies in the
presence of course-of-value expressions (which reproduce a sort of naı̈ve
set-theory inside G), and which allow to construct the Russell sentence; in
particular, Heck [25] proved that the system G without course-of-values
is consistent. Nevertheless, from the remarks above it follows that, even
without such constructions, Frege’s consistency argument would be falla-
cious: as it is stipulated, the notion of denotation is circular (this view is
defended for instance by Dummett in his analysis of Frege’s argument,
[10]). Indeed, the denotation for unsaturated expressions is determined
directly in terms of the denotation of a class of expressions constitut-
ing possible substitution instances for their free variables, containing just
those unsaturated expressions for which the notion of denotation is being
stipulated.

3.2. Girard’s consistency proof. Since Frege’s failure, several proofs of
consistency for second order logic (without course-of-values expressions)
have been provided.
The standardmodel-theoretic interpretation of second order logic appeals
to an assignment of elements of a model to the free variables. More pre-
cisely, if A(�X , �x) is a formula, where �X denotes its predicate variables
(each one with a fixed arity) and �x its individual variables, the interpre-
tation AM[s] of A over a model M (of support M) depends on a map
s associating subsets of Mn to n-ary predicate variables and elements
of M to the individual variables. The model M satisfies the proposition
∀XA relatively to the assignment s , when, for all e ⊆ Mn (where n is
the arity of X), M satisfies A relatively to the assignment sX �→e , where
sX �→e is the assignment which differs from s only in that it assigns e to the
variable X .
Contrarily to Frege’s stipulation of denotations, the satisfaction property
depends on the choice of an assignment of values (denotations, one might

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 23

say) to variables. Contrarily to Frege’s property of denotation, the property
“the modelM satisfies proposition A relative to an assignment s” is cor-
rectly defined by induction over the complexity of formulas: the verification
thatM satisfies ∀XA depends on the verification thatM satisfies the sim-
pler proposition A in a (possibly uncountable) number of different cases,
depending on all assignments sX �→e , for each subset e ⊆ Mn. If we wish
to express the property as an infinite conjunction, we can use the infinitary
(uncountable, in general) rule below:

. . . M � A[sX �→e] . . .
e ⊆Mn

M � ∀XA[s] .

Following the inductive definition of the satisfaction relation, one can
correctly show that all formulas in second order logic have, under a given
assignment, a definite denotation, without falling into the regress of Frege’s
argument. Hence, every closed formula receives a unique truth-value under
a given interpretation.
We can compare the definition of denotation given in terms of a model-
theoretic satisfaction relation with Frege’s stipulations of the property of
having a denotations. Frege does not interpret expressions by elements of
an arbitrarily chosen model; in some sense, the language G comes with an
intended interpretation. Variables of an appropriate type are intended to
vary over the domain made of the “totality” of the objects or functions
of that type. Unsaturated expressions designate operations which can be
applied on the domains associated with their free variables (for instance,
the unsaturated expression x → x designates a well-defined operation over
truth-values).
While themodel-theoretic notionof denotation is relative to anassignment
of elements of the model to the free variables, Frege’s notion of denotation
is absolute and rests on the idea of the existence of a totality of the objects
or functions of a given level: the denotation of an unsaturated expression
depends on the denotation of all expressions obtained by closing the former
with saturated expressions. Hence, the denotation of an expression e(x)
depends on all substitution instances e(b), where b varies among names
for the objects or functions belonging to the appropriate “totality” (a more
detailed comparison, as well as the proposal of a different reading of Frege’s
argument, is provided by Heck [25]).
Even if circularity no more occurs in the verification of the truth-value
of a formula under an interpretation, a different epistemic difficulty arises,
if provability conditions are considered rather than truth-conditions: one
wouldhardly accept that, in order toprove an (interpreted) universally quan-
tified statement ∀XA one has to prove all possible instances A[sX �→e], where
e varies among the (possibly uncountably many) subsets of the domain of
interpretation. In a word, verification is no more circular, but it is wildly
infinitary.
A second epistemic objection is that the semantical explanation does not
seem in accordance with Dummett’s requirement that the consequences
of a logical proposition should be derivable already from the conditions

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

24 PAOLO PISTONE

for proving the proposition: among the immediate consequences of ∀XA
we must count all the substitution instances A[B/X], where B is an arbi-
trary proposition; however, such instances are not among the conditions
for deriving ∀XA, as these are all of the form A[sX �→e], where e is a set. In
short, where one would expect formulas, one actually finds sets (their possible
interpretations).
A consistency argument obtained by model-theoretic means will then
hardly satisfy the demands of the logician who sincerely doubts that justifi-
able provability conditions can be provided for second order logic. Rather,
following the arguments sketched in the previous section, he will demand
that consistency be derived as a consequence of theHauptsatz, i.e., the result
showing that all detours in a proof can be eliminated.
As we mentioned, the Hauptsatz for second order logic is a direct con-
sequence of the normalization theorem for System F. This is actually the
reason why this system was originally created. In the brief reconstruction
that follows, we will highlight how Girard’s normalization argument pro-
vides a sophisticated way to escape the problematic circularity in Frege’s
argument.
Girard’s proof is based on the generalization of a technique developed by
Tait to prove normalization for simple types. In 1967 Tait [48] had invented
a non-combinatorial technique to prove normalization for typed �-calculi,
and had applied it successfully to �→ and to themore complex type systemT,
first introduced byGödel, and essentially corresponding to first-order Peano
Arithmetics. Tait’s idea was to associate, with each type �, a special predicate
Comp� over �-terms, the computability of �, which intuitively expresses the
fact that the term is normalizable (in particular, if M is computable, then
it has a normal form). Computability predicates are defined by induction
over types. The most interesting case is that of a type of the form � → � :
the predicate Comp�→� is said to hold for a term M if, for every term N
for which the predicate Comp� holds, the predicate Comp� holds for the
term MN (i.e., the application of M to N). Hence, a term is computable
for a type � → � if, whenever applied to a term computable in �, it yields a
term computable in �. As we anticipated, this is an absolute definition, not
depending on any assignment.
Normalization is proved (see [48]) by showing, by induction on a deriva-
tion of a typing judgement of the form Γ 	 M ∈ � (where Γ denotes a
finite context made of typing assumptions of the form (Xi ∈ �i) for the
free variables xi occurring inM), that for every choice of computable terms
N1, . . . , Np for the types occurring in Γ, the termP =M [N1/x1, . . . , Np/xp]
is computable of type � (i.e., that Comp�(P) holds).
The technique of computability predicates is non combinatorial because
it exploits a sequence of predicates of growing logical complexity, making
the whole proof not formalizable in first-order Peano Arithmetics PA. This
is in accordance with Gödel’s second theorem, since with this technique
Tait was able to prove the normalization of system T, a result implying the
consistency of PA.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 25

Girard’s original idea was to extend Gödel’s Dialectica interpretation of
PA into System T to second order Peano Arithmetics PA2. This is the reason
why he introduced System F. In order to prove the normalization of this new
system, he generalized Tait’s technique to the types of System F. By Gödel’s
second theorem, as the normalization of System F implies the consistency
of PA2, such an argument should not be formalizable in the latter system.
Hence, it was expectable that the correct definition of computability for
System F types be not formalizable in the language of PA2.
Like Frege’s, Tait’s definition of computability [47] is absolute: it does not
depend on an assignment nor a model, but is given directly in terms of the
substitutions instances obtained by replacing computable terms for the free
variables occurring in a term. The extension of Tait’s technique to impred-
icative types, in an absolute way, produces circularities similar to those in
Frege’s stipulations: the computability predicate for an impredicative type
∀X� should depend upon all computability predicates Comp� , for all type
�, hence, in particular, it should depend on itself.

We would like to say that t of type ∀X.� is reducible19 if for all types
�, t� is reducible (of type �[�/X]) [. . .] but � is arbitrary—it might
be ∀X.�—and we need to know the meaning of reducibility of type �
before we can define it! We shall never get anywhere like this. (GLT
1989)

In other words, if one defined the computability for the type ∀X� in an
absolute way, i.e., by stating that Comp∀X� holds of M if, for all type �,
Comp�[�/X] holds of M{�}, one would reproduce the circularity in Frege’s
stipulations. Expressed as an infinite conjunction, the predicate Comp∀X�
would be defined by the inference rule below

. . . Comp�[�/X](M{�}) . . .
� type

Comp∀X�(M)
,

which is not well-founded. For instance, with � = X , the rule gives rise to
an infinite path:

...
Comp∀XX (M{∀XX}{∀XX}) ∀XX type
Comp∀XX (M{∀XX}) ∀XX type
Comp∀XX (M)

.

As previously discussed, satisfaction in model-theoretic semantics is
defined relatively to an assignment of sets to variables. Hence the quan-
tifier ∀ is interpreted as ranging not over formulas but over those sets which
can be the interpretation of a formula. The passage to a relative notion of
computability constitutes then one of the keys of the normalization argu-
ment for System F. Introducing a relative notion of computability means
to interpret the quantifier ∀ not as ranging over types but rather as ranging
19Actually, Girard calls “reducibility” the property Tait calls “computability”.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

26 PAOLO PISTONE

over those sets which can be the interpretation of a type, i.e., over computabil-
ity predicates. Girard’s tour-de-force technique was to introduce a general
notion of computability predicate of which the predicates of computability
for System F types are particular instances. For that he introduced reducibil-
ity candidates, which are sets of normalizable �-terms closed with respect to
certain properties related to the execution laws for �-terms.20

The computability predicates Comp� are defined relatively to an assign-
ment s of reducibility candidates to the type variables. If � is a variable X ,
thenCompX holds ofM relative to s whenM belongs to the candidate s(X).
If � is of the form � → �, then computability is obtained by appropriately
modifying Tait’s stipulation: the predicate Comp� holds of M relative to s
if, for all term N for which Comp� holds relative to s , Comp� holds ofMN
relative to s . Finally, in is a universally quantified type ∀X�, the predicate
Comp∀X� holds of M relative to s if, for all type � and for all reducibility
candidate E for the type �, the predicate Comp� holds of M{�} relative to
sX �→E , where sX �→E the assignment which differs from s only in that it asso-
ciates the candidate E to the variable X . This stipulation can be expressed
by the infinitary rule below:

. . . Comp� [sX �→E](M{�}) . . .
� type, E ∈ CR�

Comp∀X� [s](M)
,

where CR� indicates the set of reducibility candidates for the type �. The
definition is well-founded, as the property of relative computability for the
type ∀X� is defined only in terms of (possibly uncountably many) cases of
relative computability for the strictly simpler type �.
Generalizing Tait’s argument, Girard finally proved, by induction on the
derivation of a typing judgement of the form M ∈ �, that the term M is
computable of type � with respect to any assignment s .21 The most relevant
case of the inductive argument is that of a derivation ending with the rule
corresponding to type extraction:

M ∈ ∀X� Ext
M{�} ∈ �[�/X] .

If M is computable for the type ∀X� relative to s , then, for all type �, one
should be able to derive that M{�} is computable of type �[�/X] relative
to s ; however, among the conditions for deriving thatM is computable for
the type ∀X� relative to s , there is only the fact that M{�} is computable
of type relative to all sX �→E . Similarly to the model-theoretic case, where one
would expect a type, one finds a set. One might then suspect that, similarly
to the model-theoretic explanation, the computability explanation is not in
accordance with Dummett’s requirement that the consequences of a logical
proposition should be derivable already from the conditions from proving
the proposition.
20Several definitions of reducibility candidates exist in the literature. For a comprehensive

discussion, see [14].
21Here, again, due to the presence of free variables, the statement is actually more complex:

if M ∈ � then, for every assignment s and every choice of terms �N which are computable
(in the appropriate types) relative to s , the termM [�N/�x] is computable for � relative to s .

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 27

Nevertheless, in the normalization argument this problem is solved by
means of a lemma, usually referred to as the substitution lemma (elsewhere
as Girard’s trick, [14]), which, from a foundational viewpoint, constitutes
probably the most interesting part of the proof (and will be discussed in
detail in the next section):

Lemma 3.1 (substitution lemma). For any type � the computability of type
� relative to the assignment sX �→Comp� [s] is equivalent to the computability at
type �[�/X] relative to s .

If M is computable for the type ∀X� relative to s , then for all type �,
M{�} is computable for � relative to all sX �→E (where E is any reducibility
candidate for the type �). Hence in particularM{�} is computable of type
relative to sX �→Comp� [s]. Now, by the substitution lemma, this implies that
M{�} is computable of type �[�/X] relative to s . In other words, we can
argue, without falling into regress, that, ifM is computable for ∀X� relative
to s then, for all type �, M{�} is computable of type �[�/X] relative to s .
Hence the fact that, ifM is computable of type ∀X� relative to s , thenM is
computable of type �[�/X] relative to s , holds by proof (a proof appealing
to a quite delicate lemma, as we discuss in section 4) and not hold by the
very definition of computability.
The appeal to a relative notion of computability (obtained thanks to the
notion of reducibility candidates) and to the substitution lemma allows to
overcome the apparent circularity of the provability conditions for impred-
icative propositions: a “computable” proof for ∀XA yields “computable”
proofs for all possible substitution instances A[B/X], included those from
which one would expect a circularity to appear (i.e., B = ∀XA).
A first glance at Girard’s argument might give the impression that the sub-
stitution lemma makes circularity disappear as by a magician’s trick. In the
next section, starting with Martin-Löf’s unfortunate attempt to generalize
this argument, we will try to uncover the gimmick, and to reconstruct the
sophisticated form of circularity that the argument exploits.

3.3. Computability and uniform proofs. Though with a quite heavy con-
ceptual baggage, Girard’s argument shows that there exists a procedure
which eliminates, in a finite amount of time, all detours from a second
order proof. This argument, as we saw, seems to vindicate the idea that the
consequences of a universally quantified proposition are already implicit
in the conditions for proving such a propositions. However, as in the case
of the model-theoretic explanation, it seems implausible to identify such
conditions with a (possibly non countable) family of sub-derivations, as the
definition of computability seems to suggest.
Nevertheless, the computability argument does shed some light over the
problem of identifying the provability conditions for impredicative propo-
sitions. If one considers the infinitely many conditions for asserting that a
�-term M is computable of type ∀X�, one realizes that there is just one
thing which remains constant in all those conditions: this is the term M
itself. Indeed, for any type � and for any reducibility candidate E for �, it

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

28 PAOLO PISTONE

is the sameM for which computability of type � relative to sX �→E holds.22

This looks very similar to what happens with the program Map described in
the previous section: the program is not intended to provide, for any given
type, a specific behavior; rather, its behavior is described so as to be the
same for every type. In a sense, the fact that a program is computable at type
∀X� means that every program will be computable at type �, for any choice
of a type � and of an appropriate candidate, and hence, eventually (by the
substitution lemma), computable at type �[�/X].
With Girard’s own words,

In other words, everythingworks as if the rule of universal abstraction
(which forms functions defined for every type) were so uniform that
it operates without any information at all about its arguments. [20]

The uniformity of computability predicates constitutes, historically, one
of the first mathematical formalizations of the idea of parametric poly-
morphism introduced by Strachey in [45] (quoted above). The uniformity
of second order quantification is highlighted by a quite surprising result,
sketched in Girard’s thesis: as a consequence of the normalization theorem,
no programM in System F can be non-uniformly polymorphic in the sense
that, for two distinct types �, �, the termsM{�} andM{�} reduce to distinct
normal forms. Thismeans, intuitively, that polymorphic programs in System
F cannot behave differently depending on the type which is assigned to them,
coherently with the idea that a polymorphic program is insensible to the type
assigned. A very simple example of a non-uniform polymorphic program
would be, for instance, a program P of type ∀X∀Y (X → Y → Bool)23

deciding whether two closed types are equal, i.e., satisfying the instructions
below:

P{�}{�} =
{
T if �, � are closed and � = �,
F otherwise.

We recall here a variant of Girard’s original argument (contained in [24]):
we suppose the existence of a non-uniformly polymorphic term, andwe use it
to construct a counterexample to the normalization theorem. Let us suppose
that System F contains a term J of type ∀X∀Y ((X → X) → (Y → Y))
whose execution depends upon the types instantiated for X and Y in the

22One might object that it is notM but ratherM{�}which is computable at type � relative
to sX �→E and hence that the term whose computability is predicated is not constant in all
premises. However, one can rewrite the normalization proof with the version à la Curry of
System F (see footnote 8), by exploiting an untyped variant of reducibility candidates (see
for instance [14]), where these are sets of untyped �-terms and do not depend on types. In
this setting the computability condition can be written in the form

. . . Comp� [sX �→E](M) . . . E ∈ CR
Comp∀X� [s](M)

,

where it is clear that it is the same M which is uniformly computable at type � for all
assignment sX �→E .
23Where Bool is the type ∀Z(Z → Z → Z) containing the codes T = ΛZ.(�x ∈ Z)

(�y ∈ Z)x and F = ΛZ.(�x ∈ Z)(�y ∈ Z)y for the truth-values.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 29

following sense: if the same closed type � is instantiated for X and Y , and
if M is a term of type � → �, then J, applied to M , gives M back; on
the contrary, if two distinct closed types and are instantiated for X and Y ,
respectively, and ifM is a term of type � → �, then J applied toM erases
M and outputs the term ID� . The program J satisfies then the instructions
below:

J{�}{�}M =
{
M if �, � are closed and � = �,
ID� otherwise.

The polymorphism of the term J is then non-uniform, since its output
depends, similarly to P, upon a former verification of the equality between
the types which are assigned to it.
We show now how, on the basis of our assumption, a term of type � =

∀Z(Z → Z) having no normal form can be constructed, contradicting the
normalization theorem: let Δ be the term (�x ∈ �)(x{�})x, of type � → �.
Then the term K := Λz.(J{�}{Z})Δ has type ∀Z(Z → Z). In definitive the
term (K{�})K has type � and reduces in a finite number of steps to itself:

(K{�})K → (J{�}{�}Δ)K → ΔK → (K{�})K;
hence it cannot be normalizable.
From the logical viewpoint, the argument canbe summarized as follows: as
soon as one admits that, in order to devise a proof of a universally quantified
proposition ∀XA, one can choose a different argument for different possible
substitution instances for X , then one can actually exploit the circularity
of second order types to construct a proof whose redundancies cannot be
eliminated. Hence, the Hauptsatz of second order logic implies, in addition
to consistency, that the proofs of an impredicative proposition cannot be
non-uniform (in the sense of J).
These considerations have a quite strong consequence regarding the first
form of circularity discussed in the first section, i.e., the idea that the prov-
ability conditions are described by an infinite conjunction. We are forced
to consider “naı̈ve” the view according to which a proof of a universally
quantified statement is a family of arbitrary proofs of all of its substitution
instances: the Hauptsatz forces us to accept that this family of proofs must
satisfy some uniformity requirement.
For instance, one might add to the explanation of the second order
quantifier provided by the infinitary rule below

. . .

DA
A[B/X] . . .

B prop,∀XA
the demand that the family of derivationsDB satisfies a uniformity condition
expressing the fact that the derivationsDB are “the same”, independently of
the proposition B . This can be expressed by the condition that the equation
below

DX [B/X] ≡ DB

holds for all proposition B , where the symbol ≡ denotes syntactic equality
between derivations. This uniformity condition states that the family of

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

30 PAOLO PISTONE

derivations (DB)B prop is uniform in B . The uniformity condition offers then
a way-out of the circularity problem: the derivation DB , for B of arbitrary
logical complexity, can be constructed starting from the “finite” derivation
DX , whose conclusion has a logical complexity strictly bounded by that of
∀XA, simply by replacing, in the latter, all occurrences of X by B .
Hence, even if ∀XA can still be instantiated as a value of its variable X
(i.e., even if the VCP is violated), no vicious circle occurs at the level of
provability conditions.
This simple syntactical condition should be compared with the mutilation
condition and the naturality condition described in Appendix 6, which are
technical conditions used in the categorial interpretation of polymorphism.
All these uniformity conditions share the fact that potentially circular cases
become computable starting from non circular (or “finite”) ones, i.e., those
which respect a complexity constraint.
At first glance, it seems quite tempting to say that the uniformity of
polymorphism provides a mathematical vindication of Carnap’s argument,
stating that a proof of a universally quantified proposition ∀XA does not
amount to a proof of all of its possible substitution instances, but rather to
a proof of A[X] in which the variable X occurs as a parameter. In [32] it is
argued, for instance, that Carnap’s argument is vindicated by a particular
way of formalizing parametric polymorphism, i.e., by means of the technical
notion of genericity [33], stating, roughly, that polymorphic programs which
are indistinguishable on one of their types, are indistinguishable on all of
their types. A reference is also made to a remark byHerbrand in [23], stating
that proofs of universal statements (in general, not only second order) can
be seen as “prototype proofs”, which can be used schematically to produce
proofs of all substitution instances.

Indeed, we want to argue that these impredicative constructions are
safe, along the lines of Carnap’s argument, by showing that System F
contains a precise notion of prototype proof, in the sense ofHerbrand,
and of generic types, with strong “coherence” properties. [32]

Many different mathematical characterizations of parametric, or uniform,
polymorphism can be found in the literature, and actually this constitutes a
still lively field of research in theoretical computer science. Reynolds’ rela-
tional parametricity [40] is probably the most well-known and investigated
theory of parametric polymorphism (see [26] for a reconstruction); other
important examples are Bainbridge’s functorial polymorphism [2, 21] and
Girard’s theory of stable functors [17]. It must be admitted that, with very
few exceptions (like [32]), the huge literature on polymorphism of the last
forty years has gone practically unnoticed in the philosophical debate on
impredicativity. It is out of the scope of this article to make a complete
survey of all of these advances. The reader interested in the mathematical
counterpart of the problem of impredicativity will find in Appendix 6 a
brief reconstruction of some key aspects in the theory of stable functors
and, more generally, in the functorial approach to polymorphism. These
approaches provide a good example of the technical challenges constituted

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 31

by the mathematical interpretation of impredicative type disciplines and of
some non trivial solutions that have been proposed.

§4. The type of all types. The problem of circularity in the elimination of
redundant impredicative concepts in a proof is investigated by comparing
two arguments: an argument for the normalization of Martin-Löf’s impred-
icative type theory [34] and Girard’s normalization proof, already discussed
in the previous section. A particular form of circularity, that we call reflect-
ing circularity, will be distinguished from the vicious circularity detected in
Frege’s argument. A conjecture is proposed which, if true, would allow to
make a distinction between the harmful reflecting circularity inMartin-Löf’s
argument and the apparently harmless reflecting circularity in Girard’s one.

4.1. Martin-Löf’s proof. The fundamental idea of Martin-Löf’s original
1971 intuitionistic type theory [34], ITTV for short, arises naturally from
the conjunction of the following three demands: first, Russell’s principle T1
that the range of application of a function must form a type; second, the
possibility of quantifying over propositions, that is, the demand that the
system contains System F polymorphism; third, a strict interpretation of
the propositions-as-types correspondence, that is, the identification of every
proposition with a type and, viceversa, of every type with a proposition.
As we already remarked in the first section, the conjunction of Russell’s
principle T1 with the demand that quantification over propositions be pos-
sible implies the existence of a type of all propositions. Now, the complete
identification of propositions and types makes the type of all propositions
the type of all types: Martin-Löf’s type theory is a dependent type theory
with a type V of all types, i.e., endowed with the axiom

V ∈ V.
This axiom is clearly incompatible with the VCP and with Russell’s ban
on self-application: V can appear as a value of any variable which has
type V .
The theory ITTV is extremely simple to formulate, as it essentially contains
two constructions: a dependent product (Πx ∈ �)� and the type V ∈ V .
In order to appreciate how these two simple constructions allow to build
an extremely powerful impredicative type theory, muchmore expressive than
System F, let us first recall the notion of dependent type.
Dependent types were introduced by De Bruijn [8]; the basic idea is that,
given a type � and a type �(x), depending on a variable x ∈ �, one can
construct the dependent product (Πx ∈ �)�(x), which is the type of all
functions associating, with each x ∈ �, an object of type �(x). The terms of
type a dependent product are constructed, similarly to the case of implication
types, by an abstraction and an application operation: if, on the assumption
that x ∈ �, the term M has type �(x), then one can form the abstracted
term (�x ∈ �)M of type (Πx ∈ �)�(x). Conversely, given terms M and
N of type, respectively, (Πx ∈ �)�(x) and �, one can form the application
termMN which has type �(N).

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

32 PAOLO PISTONE

All types of System F can now be obtained in ITTV as special cases of
the product type. In particular, the type � → � corresponds to the product
(Πx ∈ �)� where � does not depend on x, and the type ∀X� corresponds
to the product (Πx ∈ V)� over all types. For instance, the type ∀X (X →
X) of System F can be written as the product (Πx ∈ V)(Πy ∈ x)y or,
equivalently, as (Πx ∈ V)(x → x).
In ITTV any type � occurring in righthand position in a judgment, say
M ∈ �, can also appears as a term, i.e., in lefthandposition, in the judgement
� ∈ V . In ITTV there is no meta-theoretical distinction between types and
terms: the fact that a term a denotes a type is expressed, in the theory,
by the judgement a ∈ V . Indeed, the system ITTV combines and unifies
the idea that every proposition must be assigned a type (the type prop of
propositions, V in this case) and the idea that every proposition is identified
with a type: for instance, the impredicative proposition ∀X (X → X) is
well-typed (of type V) and is a type (as any object of type V).
A strongly related system is Girard’s System U− [16]. This is an exten-
sion of System F in which the type discipline of System F is essentially
used to type propositions. In System U−, types are not identified with
propositions; rather propositions constitute a special class of types, those
of type prop. However, this theory is extremely impredicative, due to the
existence of impredicative universes (corresponding to impredicative types)
whose elements can be seen as polymorphic proposition constructors. Sys-
tem U−, which can be embedded in ITTV , was proved inconsistent by
Girard’s paradox (see below).
The theory ITTV is much stronger than System F: in addition to quantifi-
cation over types, one can explicitly define functions of type V → V , i.e.,
functions over types (for instance the power-set functionP = (�x ∈ V)(x →
V)), functions over functions over types (i.e., of type (V → V) → V),
and so on; one can further extend this hierarchy by considering functions
of an impredicative type. For instance the type (Πx ∈ V)(x → V) can
be taken as the type of all functions from objects of an arbitrary type to
types.
In spite of the overwhelming impredicativity of ITTV , Martin-Löf
was able to devise a notion of computability for this system, by
generalizing Girard’s reducibility candidates technique in a very ele-
gant way. With this notion, in an article which remained unpublished
[34], he provided a normalization argument for ITTV , purported to show
the consistency of the theory. However, ITTV is not consistent: a not nor-
malizing term of type ⊥ = (Πx ∈ V)x was found by Girard in 1971, by
exploiting a variant of Burali-Forti paradox. Girard’s paradox was actually
constructed for System U−. Girard’s paradox is much more complex than
Russell’s paradox (for a reconstruction, see [5, 28]). Indeed, the circularity
at work in ITTV , as we will try to show, is much harder to identify than that
of Frege’s system.
In what follows we sketch a definition of reducibility candidates for ITTV ,
inspired from Martin-Löf’s argument as well as from Girard’s work on
SystemU−. The aimof this presentation is not to reconstruct in full detail the

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 33

normalization argument, but rather to show that a definition of reducibility
candidates for this extremely impredicative theory can be given without
falling in the tough circularity of Frege’s stipulations.
By comparing this argument with the normalization proof of System F,
we will try to understand what actually goes wrong in the case of ITTV .
In particular, it will be argued that a precise answer might depend on the
solution of a conjecture concerning the expressive power of ITTV , which
will be discussed in the next subsections.
Let Λ be the set of all terms of ITTV . When no ambiguity occurs, we will
indicate by small letters a, b, c, . . . the terms of occurring at the lefthand side
of a judgement (i.e., in term position) and by capital letters A,B,C, . . . the
terms of occurring at the righthand side (i.e., in type position).
A reducibility candidate will be a pair (s, C) where s is a set and C ∈
℘(Λ×s) is a relation over terms and elements of s . Intuitively, one can think
of this relation as a “candidate” for a relation of computability expressing
the property “� is a computation of a”. Indeed, we’ll demand that, from the
fact that (a, �) is in C , it follows that a is normalizable.
An interpretation of the terms of Λ obtained as follows:

• to every type A(x1, . . . , xn) (i.e., every term of type V), depending
on variables x1 ∈ A1, x2 ∈ A2(x1), . . . , xn ∈ An(x1, . . . , xn−1), a pair
αA(�) =

(
sA(�),CompA(�)

)
, depending on an assignment � = �1 ∈

sA1 , �2 ∈ sA2(�1), . . . , �n ∈ sAn(�1, . . . , �n−1), is associated, where sA is
a class and CompA(�)(a, �) is the predicate of computability of type A,
which is a predicate over terms of type A and objects of sA expressing
the property “� is a computation of a, under the assignment �”;

• to every term a(x1, . . . , xn) of type A(x1, . . . , xn) depending on vari-
ables x1 ∈ A1, x2 ∈ A2(x1), . . . , xn ∈ An(x1, . . . , xn−1), an object αa(�)
belonging to the class sA(�), depending as above on an assignment �, is
associated (αa(�) represents, intuitively, the computation of a).

In particular, if A is the type V , then sA is the class of all reducibility
candidates and CompV (A, (s, C)) expresses the property “A is normal and
(s, C) is a pair such that, for all term a ∈ A and all � ∈ s , C (a, �) implies
that a is normalizable”. The impredicativity of V as the type of all types is
thus reflected by its associated computability predicate, which expresses the
property of being a reducibility candidate.
As the product type A = (Πx ∈ B)C (x) generalizes and unifies implica-
tion types (when C does not depend on x) and polymorphic types (in the
case in which A = V), the definition of αA(�) in this case generalizes and
unifies Tait’s and Girard’s definitions of computability for implication and
polymorphic types: αA(�) is the pair

(
sA(�),CompA(�)

)
, where

• sA(�) is the type of all functions � associating, with any �′ ∈ sB(�), an
element �(�′) ∈ sC (��′);

• CompA(�)(a, �′) holds when, for every term b and every � ∈ sB , if
CompB(�)(b, �) holds, then CompC (��

′)(ab, �′(�)) holds.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

34 PAOLO PISTONE

Let us see in what sense the definition generalizes Tait’s and Girard’s
ones:
1. if the type C (x) does not depend on x, i.e., if A = B → C , then �′ is
a computation of a of type B → C (under an assignment �) when for
every term b and � ∈ sB(�) such that � is a computation of b (under
�) of type B , then the application �′(�) of �′ to � is a computation of
ab of type C (under �);

2. if B is the type V , i.e., if we can write A as ∀XC [X], then �′ is a
computation of a of type ∀XC [X] (under an assignment �) when, for
every type B and pair (s, C), if (s, C) is a reducibility candidate for the
type B (i.e., ifCompV (B, (s, C)) holds), then �

′(s, C) is a computation
of aB (under �(s, C)). In other words, �′ is a computation of a (under
an assignment �) if, for every type B and reducibility candidate (s, C)
for that type, the computation �′(s, C) is a computation for aB (under
the assignment �(s, C) in which the variableX is associated to (s, C)).

In order to show that every term is computable, one can now argue that,
for every term a(x1, . . . , xn) of type A(x1, . . . , xn) and assignment �, αa(�)
is a computation of a of type A (under �), i.e., CompA(�)

(
a, αa(�)

)
holds.

In particular, since A has type V , this implies that CompV
(
A, (sA,CompA)

)
holds, whichmeans that, ifCompA(�)(a, �

′) holds for some �′, then a is nor-
malizable. From CompA(�)(a, αa(�)) it follows then that a is normalizable.
The argument can be given by induction on the derivation of a judge-
ment a(x1, . . . , xn) ∈ A(x1, . . . , xn) under the hypotheses x1 ∈ A1, . . . , xn ∈
An(x1, . . . , xn−1). Some steps of this argument will be made explicit in the
next subsections.
The problem in the argument just sketched cannot reside, like for Frege,
in the induction hypotheses in the definition of computability: the predicates
of computability are defined by a well-founded induction over types. In the
case of V the predicate CompV (a, �), expressing the property of being a
reducibility candidate, is defined without reference to other computability
predicates. In the case of an impredicative type ∀XB = (Πx ∈ V)B , the
computability predicateComp∀XB is defined in termsof a (countably) infinite
class of computability predicates CompB of types of strictly smaller com-
plexity. The predicate Comp∀XB can be expressed as an infinite conjunction
by the rule below:

. . . CompB (�(s, C))(cA, �((s, C))) . . .
for any A ∈ V , (s, C) ∈ sV s.t. CompV (A, (s, C))

Comp(Πx∈V)B (�)(c, �)
,

which is well-founded because in all premisses there appear computability
predicates on strictly simpler types and, as we have just seen, the verifications
of computability for V is always well-founded.
Nevertheless, by inspecting the stipulations defining the notion of com-
putability, a set-theory closely imitating the type structure of ITTV is
presupposed: on the one had, the predicate CompV is defined over the
class of all reducibility candidates; on the other hand, the axiom V ∈ V
requires thatCompV

(
V, (CR,CompV)

)
holds, whereCR denotes the class of

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 35

all reducibility candidates: hence (CR,CompV) is a reducibility candidate,
which implies that the class CR must be a set, a set containing, in partic-
ular, the pair (CR,CompV). Clearly, neither ZF nor its most well-known
consistent extensions contain such a set.
Hence, on the one hand the stipulations provided for computability do not
involve vicious circles: while Frege’s notion of having a denotation would
not be well-defined in any universe, computability for the type of all types
would be well-defined in a universe containing a set of all sets. On the other
hand, reasonably, if a set-theory can be devised in which computability can
be formalized, then in this theory a false proposition expressing the fact that
ITTV is consistent should be derivable. Since such a theory should plausibly
be able to derive the true proposition that ITTV is not consistent (through
a formalization of Girard’s paradox), the set-theory in question should be
inconsistent.

4.2. Reflecting circularity in the normalization of System F. In the last
subsection we sketched an argument for the normalization of ITTV and
we argued that the circularity in it is not the vicious circularity consisting
in the definition of a notion which presupposes that very notion to be
already defined, but rather in the circularity arising from the fact that the
whole argument must be formalized in a (meta-)theory which reflects the
(impredicative) structure of the theory.
This form of circularity, that we will call reflecting circularity, can be
described in more clear terms already by inspecting Girard’s normalization
proof and, in particular, the substitution lemma. This lemma states that the
computability of type � relative to an assignment sX �→Comp� [s] which assigns
to X the computability of type � is the same as the computability of type
�[�/X] relative to s . This is the part of the proof which essentially validates
the extraction rule, i.e., the elimination rule of the universal quantifier, as it
implies that a term computable of type ∀X� relative to s , hence computable
of type � relative to all assignments sX �→E , is in particular computable of
type �[�/X] relative to s .
The proof of the lemma can be decomposed in two parts: first one has to
show that the predicate of computability of type � (relative to s) defines
a reducibility candidate (hence, that it defines a set); then one proves
that the computability of type relative to sX �→Comp� [s] is the same that the
computability of type �[�/X] relative to s .
While the second part can be carried over by induction over types in a
rather straightforward way, the first part cannot be proved by induction, as
it rests on the use of an instance of the comprehension schema. Indeed, the
fact that computability predicates define sets cannot be proved by induction,
precisely because of the definition of computability for universally quantified
types: stating that a termM is computable of type ∀X� relative to s when,
for every type � and candidate E for �, M is computable at type � relative
to sX �→E , corresponds to defining a predicate by an intersection over a
family of computability predicates indexed by all candidates for � (where
� can be of arbitrary logical complexity). Hence one cannot prove that
computability at type ∀X� is a candidate (hence a set) starting from the

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

36 PAOLO PISTONE

“induction hypothesis” that all computability predicates of type � relative
to sX �→E are candidates: by taking � to be ∀X� the candidate we are defining
appears among the candidates of the induction hypothesis! In a word, we
would get back to the regress of Frege’s argument.
However, that the computability of type ∀X� is a candidate (a candidate
depending on all candidates, including himself), can be stated directly by
an instance of the comprehension schema of set theory:24 the VCP is clearly
violated, but infinite intersections of candidates indexed by all candidates
can be shown to exist in ZF, as candidates are subsets of the power-set of
the set of all �-terms (see [14]).
The passage which justifies the impredicative elimination rule of System
F relies thus on an impredicative set-theoretical construction at the level of
reducibility candidates. In some sense, the set-theory in which reducibility
candidates are formalized closely imitates the structure of System F types.
Hence, also the normalization argument of System F manifests some form
of reflecting circularity.
We can make this remark more precise by exploiting the fact that the
theory of reducibility candidates can be expressed directly in the language
of second order Peano Arithmetics PA2, without relying on set-theory, as
the following hold:
1. the definitions of reducibility candidates and computability predicates
can be expressed in the language L2of PA2. More precisely,
• there exists a predicate CR[X] of L2, depending on a predicate
variableX , expressing the property “X is a reducibility candidate”;

• for every type � there exists a predicate Comp� [X1, . . . , xn](x) of
L2 (where contains exactly n free type variables) expressing the
property “x is the code of a term computable of type � relative
to the assignment X1, . . . , Xn”. For instance, for � = ∀X�, the
predicate Comp� can be defined inductively as follows:
Comp∀X�[X1, . . . , Xn](x) := ∀Z(CR[Z]⇒ Comp�[X1, . . . , Xn, Z](x)

)
;

2. since the consistency of System F implies that ofPA2, the normalization
proof cannot be entirely formalized in PA2, because of Gödel’s second
theorem (the argument is developed in detail in [18]);

3. however, locally, i.e., for every term of System F, the argument showing
that a term is computable of its type and, hence, normalizable, can be
formalized in PA2. In particular, for every termM of type �, it can be
proved in PA2 that CR[X1] ∧ · · · ∧ CR[Xn] ⇒ Comp� [X1, . . . , Xn](�M)
(where �M indicates the code ofM).

The circularity occurring in the first part of the proof of the substi-
tution lemma can be now exposed by formalizing the argument for the
computability of a term within PA2: the justification of the extraction/∀E
rule

M ∈ ∀X� Ext
M{�} ∈ �[�/X]

24More precisely, by an instance of the restricted comprehension schema, as Comp∀X� is a
subset of the set of all terms of type ∀X�.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 37

is formalized by an application of ∀E in PA2, i.e., (essentially) the same
rule, applied to computability predicates (expressing the fact that Comp� is a
reducibility predicate):

Comp∀X� [�X](n) ∀E
CR[Comp�]⇒ Comp�[�X , Comp�](n)

.

In a word, comprehension applied to the type � is justified by comprehen-
sion applied to the predicate Comp� . Here’s how Girard comments on this
aspect:

Speaking of circularity, take for instance comprehension: this schema
is represented by extraction, but the reducibility of extraction requires
comprehension, roughly the one under study. [. . .] If one carefully
looks at the proof of reducibility for System F, one discovers that the
reducibility of type A closely imitates the formula A. Which makes
that the extraction on B—the only delicate point—is justified by a
comprehension on something which is roughly B . [20]

4.3. Reflecting circularity in the normalization of Martin-Löf’s system.
The normalization argument for System F with the reducibility candidates
technique exploits a set-theoretical translation of the rule of extraction (i.e.,
of the ∀E logical rule). The normalization argument sketched for ITTV gen-
eralizes the reducibility candidates technique and exploits a set-theoretical
universe closely imitating the type structure of the theory. Both arguments
manifest a form of what we called reflecting circularity. In order to compare
the forms of reflecting circularity at work in them, we reconstruct the part
of the argument for ITTV which plays a role analogous to the substitution
lemma in Girard’s proof.
Our presentation of the argument highlights the distinction between com-
putability predicates of the form CompA(�) and reducibility candidates
(s, C), in which the relation C , a set, is a “candidate” for being a com-
putability predicate. Due to the existence of a type of all types, the role of
Girard’s substitution lemma (whose relevant impredicative step is the one in
which it is affirmed that the stipulations defining a computability predicate
actually define a set, hence a reducibility candidate) is internalized by the
computability predicate CompV : in order to justify judgments of the form
A(�X) ∈ V one has to verify that CompV

(
A, (sA(�),CompA(�))

)
holds,

i.e., that the pair (sA(�),CompA(�)) is a reducibility candidate. In a word,
CompA(�), a predicate, becomes a set.
Computations of the form CompV

(
A, (sA(�),CompA(�))

)
occur in two

cases in the proof: in the justification of the axiom V ∈ V and in the
justification of the elimination rule for the product type, which corresponds
to the application operation, in the case of a product over V :

a ∈ (Πx ∈ V)B(x) C ∈ V
ΠE

aC ∈ B(C) .

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

38
PA
O
L
O
P
IST
O
N
E

a ∈ (Πm ∈ N)(Πw ∈ �V)(CompV (m,w)⇒ CompB(w)(App(n, m), vw)) �C ∈ N
ΠE

a�C ∈ (Πw ∈ �V)(CompV (�C,w)⇒ CompB(w)(App(n, �C), vw)) (αC , CompC) ∈ �V
ΠE

(a�C)(αC , CompC) ∈ (CompV (�C, (αC , CompC))⇒ CompB(CompC)
(App(n, �C), v(αC , CompC))) b ∈ CompV (�C, (αC , CompC))

ΠE
((a�C)(αC , CompC))b ∈ CompB((αC , CompC))(App(n, �C), v(αC , CompC))

Figure 1. Justification of the rule ΠE.

https://doi.org/10.1017/bsl.2017.43 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 39

Similarly to what has been shown for System F, the definitions of com-
putability predicates and reducibility candidates presented for ITTV can be
expressed in the language of ITTV and the normalization argument, for a
given term a ∈ A, can be simulated in the theory. More precisely,
• there exists a predicate CR(s, C) of type V → V → V expressing the
property “(s, C) is a reducibility candidate”;

• for every typeA(�x) there exists a predicate �u.�v.CompA(�z)(u, v) of type
N → �A(�z) → V (depending on variables �z), where N is the type of
integers (Πx ∈ V)((x → x)→ (x → x)), �A(�z) is a type, depending on
�z, representing the set sA(�), expressing the property “v is a computation
of the term coded by u under the assignment �z”;

• for every term a(�x) ∈ A, there exists a term αa(�z) ∈ �A(�z) as well as a
term of type CompA(�z)(�a,αa(�z)).

We can reconstruct the form of the predicate CompA(�z) in the two most
significative cases:

i.: CompV (n, v) is the conjunction of the predicates expressing the
properties “n is the code of a type in normal form” and CR(v),
respectively;

ii.: Comp(Πx∈A)B(x)(�z)(n, v) := (Πm ∈ N)(Πw ∈ �A)(CompA(�z)(m,w) ⇒
CompB(�zw)(App(n,m), vw)), where App(x, y) is a function coding
application, i.e., such that App(�a, �b) = �ab.

The two steps in the normalization argument discussed above can then be
simulated inside ITTV . First, in the case of the axiom V ∈ V , the justifica-
tion corresponds to constructing a term of type CompV (�V, (αV , CompV)),
that is, proving that �V is the code of a normal term and that
CR((αV , CompV)) holds. However, the delicate part comes before the proof
of these facts: in order to type the expression CompV (�V, (αV , CompV)), we
must show that CompV has type N → V → V : for this the axiom V ∈ V
must then be invoked several times.
In the case of the elimination rule ΠE, we must exploit two occurrences of
the same rule, along with the usual “comprehension axiom”, which is just
the fact that CompC ∈ V (the derivation is displayed in Figure 1).
Similarly to the normalization argument for System F, the steps of the
computability argument for a term can be simulated in the theory itself,
and the justification of an impredicative rule is represented by one or more
occurrences of the same rule.
As we alreadymentioned, in accordance withGödel’s second theorem, the
normalization argument for System F cannot be entirely formalized in PA2;
in particular, the notion of computability is not definable in the language
L2: there exists no second order formula in the language of arithmetics
Comp(�A, y) such that, for all A, Comp(�A, y) is equivalent to CompA(y)
(which is definable).
The notion of computability behaves thus in a similar way to the model-
theoretic notion of validity: by Tarski’s theorem we know that the set of
(codes of) valid second order formulas is not definable by a second order

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

40 PAOLO PISTONE

formula, though the set of codes of valid second order formula of fixed
complexity is definable.
However, as ITTV is inconsistent,25 Gödel’s second theorem cannot be
invoked in this case. This is where a difference might well be made between
the two arguments: there is no apparent obstacle to express, in the language
of ITTV :
1. a function �(x) ∈ N→ V such that, for all type A, �(�A) = �A;
2. a predicate (�x ∈ N)(�y ∈ N)(�z ∈ �(x))Comp(x, y, z) ∈ (Πx ∈
N)(N → �(x) → V) such that, for all type A, Comp(�A, y, z) is
equivalent to the predicate CompA(y, z) (which has typeN→ �A → V).

Technically speaking, this possibility arises from the fact that in ITTV ,
contrarily to PA2, predicates can be defined by induction over codes of for-
mulas (this fact is shown in Appendix 7). Hence, given a suitable coding, the
clauses defining computability (which are given by induction over formulas)
can be translated into clauses defining the function � and the predicate Comp
by induction over the codes of formulas.
Given these remarks, it does not seem unreasonable to conjecture that a
normalization argument for ITTV might well be formalizable in the theory
itself.26 In a word, ITTV might well prove its own consistency in a non
trivial way (i.e., without deriving it from the proof of a contradiction, as, by
Girard’s paradox, contradictions are derivable in ITTV).

§5. Harmless and harmful circularities. In this article three consistency
arguments (Frege’s, Girard’s and Martin-Löf’s one, respectively) for three
impredicative logical systems were discussed. Only one of these arguments
is generally considered a correct proof. Apparently, the second and the third
argument exploit a form of circularity, that we styled reflecting circularity,
which is not the vicious circularity diagnosed in the first argument. Rather,
it is the circularity of justifying the rules of the system by exploiting the
same rules in the argument. However, while the second system, System F,
is consistent, the third system, Martin-Löf’s system ITTV , just like Frege’s
system, is not consistent.
Hence, three different forms of circularity should be distinguished: a
vicious one, a not vicious, reflecting and apparently harmless one, and a
not vicious, reflecting, though harmful, one. We argued at length why the
25A note for the reader whowent through Appendix 6. Itmust be observed that, though the

theory ITTV is inconsistent, there exists an interesting literature on its denotational models
(see [6] for a reconstruction). This should not surprise the reader: in denotational semantics
one is interested in the interpretation of the computation content of programs, a question
which is, by itself, independent from the fact that a program represents a valid proof. A
logically inconsistent programming languages can be nevertheless sound from a computa-
tional perspective. Hence, for instance, interesting denotational models of inconsistent typed
�-calculi can be constructed, by relying on the existence of domains satisfying equations of
the form X = X → X and, in general, fixed point equations of the form X = Φ(X), where
Φ is a functor over the category Dom of domains (see for instance [1, 6]).
26This means constructing a program of type (Πx ∈ N)(Typable(x)→ Norm(x)), where

the (recursive) predicate Typable(x) expresses the fact that x is the code of a well-typed term
and the (recursive) predicate Norm(x) expresses the fact that x is normalizable.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 41

first one should be distinguished from the last two. The most interesting
challenge seems thus to make a distinction between the last two.
Obviously, a difference exists between the normalization arguments for
System F and the one for ITTV : we trust the normalization argument for
System F because it can be formalized in standard set-theory ZF, a the-
ory which we believe to be consistent. On the contrary, the normalization
argument for System ITTV cannot be formalized in set-theory (and, as we
argued, plausibly, cannot be formalized in any consistent set-theory). In
other words, while we surely have no reason to trust the second argument,
as we are aware of a contradiction derivable in ITTV , we have external rea-
sons to trust the first argument, as we are not aware of any contradiction
derivable in ZF and we are confident that no one will be found.
One might object that the alleged consistency of ZF is only an external
reason for our trust in the apparently “good” impredicativity of System F,
with respect to the “bad” impredicativity of ITTV , and sheds no light on the
different forms of circularities involved.
The distinction between vicious and reflecting circularity reminds a noto-
rious distinction made by Dummett between two different ways in which an
argument for the justification of a logical law can be blamed of circularity:
on the one side he considers

[. . .] the ordinary gross circularity that consists of including the con-
clusion to be reached among the initial premisses of the argument.
[11]

On the other side, he considers arguments that purport

to arrive at the conclusion that such-and-such a logical law is valid;
and the charge is not that this argument must include among its
premisses the statement that the logical law is valid, but only that at
least one of the inferential steps in the argument must be taken in
accordance with that law. We may call this a “pragmatic” circularity.
[11]

A pragmatically circular argument is one which employs the rule it is up to
justify. For instance, an argument for the justification of the rule of modus
ponens (i.e., (⇒E)) is “pragmatically circular” if it employs somewhere an
instance of the rule of modus ponens.
While everybody would agree that a viciously circular proof bears no
epistemic value, according to Dummett, a “pragmatically” circular proof
might bear some epistemic value:

[. . .] if the justification is addressed to someone who genuinely doubts
whether the law is valid, and is intended to persuade him that it is, it
will fail of its purpose, since he will not accept the argument. If, on
the other hand, it is intended to satisfy the philosopher’s perplexity
about our entitlement to reason in accordance with such a law, it may
well do so. [11]

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

42 PAOLO PISTONE

Coherently with his views on the VCP and on the meaning of univer-
sal quantification, Dummett claims that the justification of second order
quantification is a viciously circular one (see [10, 12]). Rather, he con-
sider pragmatic the circularity occurring in the case of the justification of
first-order logical rules by means of a normalization argument.
However, our analysis of the normalization arguments highlighted how
the circularity involved in the proof-theoretic justification of second order
logic is not vicious but reflecting: the extraction on a polymorphic term,
corresponding to the rule ∀E of second order intuitionistic logic, is justified
by an argument whose only logically complex part (the only impred-
icative step) can be formalized in PA2 by an occurrence of the same
rule ∀E.
Hence, on the one hand, reflecting circularity wouldmake a normalization
argument powerless in a debate over the legitimacy of second order quan-
tification: a Russellian logician should accept that VCP be violated before
assessing the argument justifying the violation of the VCP. On the other
hand, a reflectingly circular argument for the justification of second order
logic might satisfy the logician who is already convinced of the legitimacy
of the laws of this system.
Moreover, also the circularity involved in the proof-theoretic justification
of system ITTV is reflecting, rather than vicious: the existence of a type of all
types (axiom V ∈ V), as well as the extraction on a polymorphic term (rule
E) are justified by arguments whose only logically questionable part (the
only impredicative step) can be formalized in ITTV by the axiom V ∈ V
and the rule ΠE, respectively.
The fact that an inconsistent system can be justified on reflectingly cir-
cular grounds contradicts the impression of the substantial harmlessness
of this form of circularity, that one might get from Dummett’s discussion
on “pragmatic” circularity. Moreover, the distinction between “pragmatic”
and vicious circularity seems to fail to capture the difference between the
apparently harmless circularity of System F and the harmful circularity of
ITTV .
A positive answer to the conjecture proposed in the last subsection might
shed some light: if the conjecture were true, that is, if a normalization
argument for ITTV could be entirely formalized inside ITTV , then wewould
have some definite reason to say that the harmful circularity arising in the
normalization argument for ITTV is not of the same kind as the circularity
in the normalization argument for System F. Two distinct forms of reflecting
circularity could be distinguished:

• a strong form, corresponding to the fact that the entire normalization
argument for a system can be formalized within the system. This circu-
larity, by Gödel’s second theorem, is necessarily harmful, as it leads to
inconsistency;

• a weak form, corresponding to the fact that the justification argument
can be locally (i.e., for every single term or proof) formalized in the
system. This circularity is present in the normalization argument for

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 43

System F and, being compatible with Gödel’s second theorem, is not
necessarily harmful.

In any case, the thesis (advocated by Dummett as well as by others—
see Section 1) that any justification of second order logic must be viciously
circular seems contradicted by a closer look at how theHauptsatz for second
order logic is actually demonstrated. The circularity at work in this argument
is that of justifying a disputed logical rule by an argument whose only
disputable part is represented by the application of instances of that very
rule.
Rather, our analysis indicates that a justification of a second order impred-
icative logical system can be provided which is not circular in the sense in
which Frege’s justification of the Grundgesetze was circular (i.e., viciously
circular), but circular in the apparently less harmful sense of justifying
impredicative quantification in a way which should be judged logically
correct from an impredicative standpoint.

§6. Appendix A: Denotational semantics and the functorial interpretation
of polymorphism. The brief journey in domain theory and category theory
that follows is thought to give the reader a first flavor of the interesting
mathematical problems which constitute the technical counterpart of the
proof-theoretic problem of impredicativity. It will be suggested that a coher-
ent understanding of the provability conditions for second order logic arises
from the functorial interpretations of category theory, where the uniformity
of polymorphism finds a simple and elegant explanation through the notion
of natural transformation.

6.1. Continuity and the mutilation condition. Denotational semantics is
the branch of theoretical computer science dedicated to the mathematical
description of programs. As the name suggests, at the basis of this discipline
stands the “Fregean” intuition that the denotation of a program should
be independent of the transformations the latter runs through during its
execution: for instance, the denotation of the trivial program Add(5, 7) which
sums 5 and 7 should be the same of the result of its execution, i.e., of the
output 12.
From a logical point of view, a major difference exists between denota-
tional semantics and model-theoretic semantics: while the latter character-
izes provability only, the former provides a semantics of proofs, that is, an
interpretation in which proofs are assigned “denotations” which are invari-
ant under normalization, i.e., under the transformations which eliminate
detours.
The denotational semantics of typed �-calculi are usually given by inter-
preting types as particular mathematical structures, called domains, and by
interpreting terms as certain subsets of these domains. Intuitively, a domain
canbe thought as a set of information states, endowedwith anorder relation,
corresponding to the fact of a state being “more informative” than another:
a state a′ is more informative than a state a if the information provided by
a′ is coherent with that in a, and the former has more information than a.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

44 PAOLO PISTONE

A different way to present a domain is as a set of informations plus a
relation of coherence between informations. An information state is then
defined as a set of coherent informations and the order relation between
information states is given by inclusion.
Given a domain A, let us call then coh(A) the set of information states of
A (i.e., the set of coherent subsets of A). Given two domains A,B , one can
define the domain A → B whose elements are pairs (a, z) made of a finite
information state ∈ coh(A)27 and of a state in B . A function f from coh(A)
to coh(B) can be thought as the infinite information state of A → B made
of all the pairs (a, z) such that z ∈ f(a). These pairs are then single pieces
of information about f. The coherence relation for A→ B is the following:
two pairs (a, z), (a′, z ′) are coherent when, anytime the informations in a
and a′ are (distinct and) pairwise coherent for A, then z and z ′ are (distinct
and) coherent for B . In particular, if a′ is more informative than a, then
z ′ cannot be incoherent with z. Hence, the information states of A → B
correspond to partial functions from coh(A) to coh(B).
From the fact that, in a pair (a, z), a is a finite information state, it follows
that the functions f from coh(A) to coh(B) corresponding to information
states inA→ B satisfy a continuity condition: the value off for an arbitrary
(possibly infinite) ∈ coh(A) can be approximated from the values of f on
the finite information states contained in a. Indeed, if z ∈ f(a), for some
a ∈ coh(A), then there exists a′ ⊂fin a such that z ∈ f(a′).28
The continuity condition has a natural interpretation in terms of com-
putability: in order to compute the result of applying a program to an input
containing a possibly infinite amount of information (think of a real num-
ber, i.e., to an infinite list of digits), one cannot exploit more than a finite
amount of information about the input. For instance, a function from real
numbers to integers giving value 1 only if all digits of its input are, say, minor
than 3, would not be continuous (nor computable).29 In a word, programs
must correspond to continuous functions over information states.
The interpretation of System F in domains requires a delicate abstraction:
one has to interpret polymorphic programs, i.e., special functions whose
domain is the class of all types. These functions should then correspond to
information states over a domain of the form A→ B , where A is a domain
27We refer here to a special class of domains, called coherence spaces, see [20].
28This property can be stated as the fact that f(a) is the direct union of all f(a′), where

a′ varies among all finite subsets of a.
29From a mathematical point of view, the situation is analogous to that of continuous

functions in real analysis: since every real number is the limit of a converging series of
rationals, the value of a continuous function f over a real number r can be approximated
from its “finite” approximations, i.e., the values of f over the rationals converging to r.
Moreover, the fact that continuous functions over the reals are determined by their rational
values implies that the cardinality of the set C(R) of continuous functions over the reals
is exactly that of the reals (|C(R)| = |R|). Similarly, one can show that, if A and B are
countable domains, the set of continuous functions from A to B is countable (contrarily to
the set of all functions fromA to B). This fact is at the heart of the great flexibility of domain
theory, which allows to define domains Awhich are isomorphic to the domain of continuous
functions A→ A.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 45

whose information states are all domains! From the story of ITTV we know
that looking for a domain of all domains is not the right direction to follow.
In particular, since domains form a proper class, there can be nothing like a
domain (i.e., a set) of all domains. Nevertheless, a way out of this circularity
is provided by category theory: one can define a category of domains and
use it as if it were a domain itself.
Actually, several distinct categories of domains can be defined, depending
on the choice of the class of morphisms between domains. For reasons
connected with the interpretation of implication, it is convenient to restrict
the class of morphisms not to contain all continuous functions, but just
injective continuous functions.30

The category Dom of domains can be seen as a special domain itself:
finite domains play the role of informations, two finite domains A,B being
coherent when there exists a domainC andmorphisms f : A→ C, g : B →
C . An arbitrary domain can then be seen as the information state made of
all its finite subdomains. The order relation between information states is
simply given by the morphisms, i.e., injective continuous functions, between
domains.
A polymorphic program, say a program of type ∀X (X → X), should then
correspond to a continuous function f associating, with any domain A, a
morphism from A to A; as usual, a problem of circularity arises here, as
we are trying to define a new domain (the interpretation of ∀X (X → X))
whose information states correspond to functions defined over all domains,
including the one we are defining.
A way out of this circularity is provided by the continuity condition:
as soon as f is continuous, its values over an arbitrary domain can be
approximated from its values over finite domains. Hence the “circular”
values off, as the value off over the domain containingf, canbe computed
from the values of f on finite domains, making circularity disappear. We do
not enter into the technical details of this delicate construction (the reader
can look at [1, 6, 17]). The important aspect is that the interpretation of
∀X (X → X) is an infinite domain whose elements can be entirely described
in terms of finite domains.
The continuity condition can be considered as a uniformity condition. For
instance, a term of type ∀X (X → X) is interpreted as a family (tA)A∈Dom
of morphisms, where for any domain A, tA is a morphism from A to A;
now, continuity implies that the morphism tA can be approximated from the
morphisms tA′ , whereA′ is a finite subdomain ofA. This means that tA must
be the union of all tA′ , for A′ a finite subset of A or, equivalently, that the
restriction (the “mutilation”) of tA to a finite subset A′ must be exactly tA′ .
This condition (called mutilation condition in [17]) says, intuitively, that the
dependency of tA on A is so flawed that one can compute tA starting from
finite objects A′ and then extend by continuity. In particular, the family

30More precisely, the standard choice are retraction pairs (see [1, 6, 17]). The important
property is the fact that a morphismf always has an inversef−1. Technically, this restriction
makes the interpretation of implication a covariant functor.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

46 PAOLO PISTONE

(tA)A∈Dom, seen as an application from domains to morphisms between
domains, cannot distinguish between distinct infinite domains.
Continuous families are very scarce: themutilation condition dramatically
collapses the degrees of freedom in the construction of the family (tA)A∈Dom.
For instance, there is exactly one continuous family (tA)A∈Dom (up to iso-
morphism) such that tA ∈ A → A: this is the identity family (idA)A∈Dom,
corresponding to the polymorphic identity ID.

6.2. Functors and natural transformations. The mutilation condition can
be seen as an example of a functorial interpretation of polymorphism. It is
well-known that logical connectives correspond to functorial constructions
(see [9, 31]). Usually, a construction leading from objects A1, . . . , An to an
object κ(A1, . . . , An) in a given category C is called functorial when it can
be extended in a somehow canonical way into a construction κ defined on
all the objects in the category.
The canonicity of the extension is expressed as follows: let the object
κ(A1, . . . , An) be constructed from objects A1, . . . , An and the object
κ(B1, . . . , Bn) be constructed from objects B1, . . . , Bn such that all Bi can
be mapped to Ai by some morphism fi . Then the two constructions can
be related: a morphism κ(f1, . . . , fn) from κ(B1, . . . , Bn) to κ(A1, . . . , An)
can be constructed from the morphisms f1, . . . , fn. In a sense, a functorial
construction is so general that, when applied to arbitrarily related objects,
it produces related objects.31 A functor F (X) over a category C can thus be
defined as a map acting over the objects of C and over its morphisms.32

The starting point of the functorial interpretation is the acknowledgement
that most constructions over types are functorial. For instance, the construc-
tion F (X) = X × X which, to any object A of a category C (with finite
products), associates its product A×A, is functorial: take another object B
and a morphism f : A → B ; then there exists a morphism F (f) = f × f
which goes from F (A) = A×A to F (B) = B × B .
In usual categorial interpretations of typed �-calculi (and proof systems),
types correspond to the objects of a given category C and terms correspond
to morphisms between such objects. In particular, a term of type � → � is
associated with a morphism between the objects associated, respectively, to
� and �.
A more abstract categorial interpretation arises then from the remark
that a type �, depending on a free variable X , corresponds to a functorial
construction F�(X) i.e., to a functor over the category C. When types are
interpreted as functors F�(X) andF�(X), a term of type � → � is interpreted

31This is also the starting point of Reynolds’ parametricity, based on an extension of the
notion of functorial constructions from preservation of morphisms to preservation of binary
relations (see [26, 40]).
32More precisely, a covariant functor F (X) over a category C is given by a map over

the object of C and a map over the morphisms of C, where for all objects A,B and f :
A → B, F (f) : F (A) → F (B), preserving identity morphisms and composition, i.e., such
that F (idA) = idF (A) and F (g) ◦ F (f) = F (g ◦ f) for all objects A, B,C and morphisms
f : A→ B, g : B → C .

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 47

as a natural transformation33 between F� and F� , i.e., a family of morphisms
(tA)A∈Ob(C) fromF�(A) toF�(A) satisfying a naturality condition of the form

F�(A)
tA ��

F� (f)
��

F�(A)

F�(f)
��

F�(B) tB
�� F�(B)

for all objects A,B and morphism f : A → B . The naturality condition
warrants that the morphisms tA behave in the same way for all A. For
instance, ifwe consider the case of a natural family (dA)A∈Ob(C) ofmorphisms
from the identity functor X to the product functor X × X , the naturality
condition becomes

A
dA ��

f
��

A×A
f×f
��

B
dB

�� B × B

The above diagram says that dA and any other dB , withB related toA by a
morphism f, are related by the equation (f ×f) ◦ dA = dB ◦f. Intuitively,
the only way to pass from A to A × A without any information about A is
by duplication. Indeed there is exactly one family satisfying the naturality
condition above, the diagonal family dA(x) = (x, x): natural families are,
in a sense, so uniform that they have very few degrees of freedom.
The mutilation condition, which says that tA can be computed from the
finite tA′ , with A′ related to A by an inclusion morphism, can be seen
as a special case of the naturality condition. In the category Dom types
�, � become continuous functors F�, F�, i.e., functors whose values can be
approximated from values on finite domains, and, inclusion morphisms can
be inverted, one has the diagram below:

F�(A)
tA ��

F�(�)−1
��

F�(A)

F�(A′)
tA′

�� F�(A′)

F�(�)

��

(where � : A′ → A is the inclusion morphism) which says that tA can be
computed starting from tA′ and �. The naturality condition appears as a very
perspicuous characterization of the uniformity of polymorphic programs,
as the latter should correspond to functions over types “that behave in the
same way for all types” [40].
Functorial interpretations of typed �-calculi and natural deduction (see
[2,21]) show that terms (i.e., proofs) correspond to natural transformations,

33In the general case, terms are actually interpreted by dinatural transformations, a gen-
eralization of the notion of natural transformations in the case in which the functors F (X)
and F (X) are multivariant (as is the case when and contain an implication), see [2, 21].

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

48 PAOLO PISTONE

i.e., to uniform families (see [50] for a functorial view of natural deduction
within natural deduction itself).

§7. Appendix B: Predicates defined by recursion in ITTV . We show how
to define predicates by recursion in ITTV . This fact marks a basic differ-
ence with respect to PA2. As discussed in Section 4.3, in PA2one cannot
define a predicate Comp(x, y) such that, for each formula A ∈ L2, the pred-
icate CompA(y) is equivalent to Comp(�A, y). On the contrary, by defining
predicates by recursion over the codes of formulas and by using standard
recursive techniques, the stipulations given in Section 4.3 can be turned into
a definition in ITTV of the following:

• a function � ∈ (Πx ∈ N)FV(x)→ V , where FV ∈ N→ V is a predicate
such that, for each type A(x1, . . . , xn) ∈ V , for x1 ∈ A1, . . . xn ∈
An(x1, . . . , xn−1), FV(�A) = �(�A1) × · · · × �(�An) (and FV(�a) = 1 =
(Πx ∈ V)(x → x) if a has no free variable), �(�A) ∈ FV(�A)→ V and
for all (�1, . . . , �n ∈ FV(�A), �(�A)(�1, . . . , �n) ∈ V represents the set
sA(�1, . . . , �n);

• a predicate Comp ∈ (Πx ∈ N)(FV(x) × N × �(x) → V) such
that, for each type A(x1, . . . , xn) ∈ V , where x1 ∈ A1, . . . , xn ∈
An(x1, . . . , xn−1), Comp(�A) ∈ FV(�A) × N × �(�A) → V is a
predicate N over �A (with parameters in FV(�A) corresponding to
CompA;

• a function α ∈ (Πx ∈ N)(Πz ∈ FV(x))�z(typ(x)), where
– FV(�a(x1, . . . , xn)), for x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1), is
�(�A1)× · · · × �(�An);
– typ ∈ N → N is a primitive recursive predicate such that, for all
a ∈ A, typ(�a) = �A;
– �z(�a) is (�u ∈ FV(�a))�(�a)

(
�(1)(q1) . . . �(m)(qm)

) ∈ FV(�a) → V ,
where m is the number of free occurrences of A and qi is either z or
u depending on whether xi occurs free in both a or only in A (the
primitive recursive function �z can be constructed by standard coding
techniques).
α is such that, for each closed term a ∈ A, α(�a) ∈ �(�A) represents
αa .

The definition of predicates by recursion is showedby the two propositions
below.

Proposition 7.1. Let k1, . . . , km ∈ N → N be functions such that, for all
x ∈ N, ki(x + 1) < x + 1. Then, then, for all type A, g ∈ Np → A and
h ∈ Np+m+1 → A, there exists a function f ∈ Np+1 → A such that

f(�x, 0) = g(x1, . . . , xn),

f(�x, y + 1) = h(�x, y + 1, f(�x, k1(y + 1)), . . . , f(�x, km(y + 1))).

Proof. Let F (�x, y) = Πz≤y�(y)�f(�x,z) ∈ Np+1 → List[A], where �(x)
is the recursive function which enumerates primes and List[X] = (Πx ∈

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 49

V)(x → (X → x → x) → x) is the type of lists of type X . F (�x, y) can be
defined by primitive recursion as follows:

F (�x, 0) = g(�x),

F (�x, y + 1) = F (�x, y) conc h(�x, �V (k1(y), F (�x, y)), . . . , �V (km(y), F (�x, y))),

where �X ∈ N→ List[X]→ X is the primitive recursive function such that
�X (i, 〈x1, . . . , xn〉) = xi , for i ≤ n. Then we can put f(�x, y) =
�A(y, F (�x, y)) ∈ Np+1 → A. �
The construction of this proposition enables, for instance, the construct-
ion of a function � : N→ V such that ��A = A. The definability of � marks
a sensitive difference with System F (and PA2): in those systems there’s no
way to pass from the code of a type (or of a proposition) to the type (or
proposition) itself.
A more general result can be shown with the aid of the � function:

Proposition 7.2. Let k1, . . . , km ∈ N → N be functions such that, for all
x ∈ N, ki(x+1) < x+1. LetC (x1, . . . , xn) andD(x1, . . . , xn, y, y1, . . . , yn)
be types. Then, for all g ∈ (Πx1, . . . , xn ∈ N)C (x1, . . . , xn)34 and
h ∈ (Πx1, . . . , xn, y, y1, . . . , ym ∈ N)D(x1, . . . , xn, y, y1, . . . , ym), there
exists a type A(x1, . . . , xn, y) and a function f ∈ (Πx1, . . . , xn, y ∈ N)
A(x1, . . . , xn, y) such that

A(�x, 0) = C (�x),

f(�x, 0) = g(�x),

A(�x, y + 1) = D(�x, y + 1, f(�x, k1(y + 1)), . . . , f(�x, km(y + 1))),

f(�x, y + 1) = h(�x, y + 1, f(�x, k1(y + 1)), . . . , f(�x, km(y + 1))).

Proof. Let T (�x, y) = Πz≤y�(y)�A(�x,z) and F (�x, y) = Πz≤y�(y)�f(�x,z)

which are defined by mutual recursion as follows:

T (�x, 0) = 2�C (�x),

F (�x, 0) = 2�g(�x),

T (�x, y + 1) = T (�x, y) · �(y + 1)�D(�x,�(k1(y),�F (�x,y)),...,�(km(y),F (�x,y))),
F (�x, y + 1) = F (�x, y) · �(y + 1)�h(�x,�(k1(y),�F (�x,y)),...,�(km(y),F (�x,y))),

where � ∈ N2 → N is the primitive recursive function such that
�(i, �(x1, . . . , xn)) = xi , for i ≤ n. Thenwe can putA(�x, y) = ��(y, T (�x, y))
and f(�x, y) = ��(y, F (�x, y)). �

§8. Acknowledgment. I wish to thank Luca Tranchini for his careful read-
ing and his remarks on an earlier version of this article, and an anonymous
referee for his suggestions.

34Where (Πx1, . . . , xn ∈ A)B(x1, . . . , xn) denotes the product (Πx1 ∈ A) . . . (Πxn ∈ A)
B(x1, . . . , xn).

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

50 PAOLO PISTONE

REFERENCES

[1] A. Asperti and G. Longo, Categories, Types and Structures: An Introduction to
Category Theory for the Working Computer Scientist, The M.I.T. Press, Cambridge, MA,
1991.
[2] E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott, Functorial polymorphism.

Theoretical Computer Science, vol. 70 (1990), pp. 35–64.
[3] R. Carnap, The logicist foundations of mathematics (1931), Philosophy of Matemath-

ics: Selected Readings (P. Benacerraf and H. Putnam, editors), Cambridge University Press,
Cambridge, 1983, pp. 41–52.
[4] A. Church, A formulation of the simple theory of types. The Journal of Symbolic Logic,

vol. 5 (1940), no. 2, pp. 56–68.
[5] T. Coquand, An analysis of Girard’s paradox, First IEEE Symposium on Logic

in Computer Science, Boston, IEEE Computer Society Press, Washington, DC, 1986,
pp. 227–236.
[6] T. Coquand, C. Gunter, and G. Winskel, Domain theoretic models of polymorphism.

Information and Computation, vol. 81 (1989), no. 2, pp. 123–167.
[7] H. B. Curry and R. Feys, Combinatory Logic, vol. I, North-Holland, Amsterdam,

1958.
[8] N. G. De Bruijn, The mathematical language AUTOMATH, its usage and some

of its extensions, Symposium on Automatic Demonstration (Versailles 1968) (M. Laudet,
D. Lacombe, and M. Schuetzenberger, editors), Lecture Notes in Mathematics, vol. 125,
Springer-Verlag, Berlin, 1970, pp. 29–61.
[9] K. Dosen, Cut Elimination in Categories, Kluwer, Dordrecht, 1999.
[10] M.Dummett,Frege: Philosophy ofMathematics,Duckworth,Cambridge,MA, 1991.
[11] , The Logical Basis of Metaphysics, Duckworth, London, 1991.
[12] , The vicious circle principle, Cambridge and Vienna: Frank P. Ramsey and the

Vienna Circle (M. C. Galavotti, editor), Vienna Circle Institute Yearbook, vol. 12, Springer,
Dordrecht, 2006, pp. 29–33.
[13] G. Frege, The Basic Laws of Arithmetic (1893), trans. M. Furth, University of

California, Berkeley, 1967.
[14] J. Gallier, On Girard’s “Candidats de Réductibilité”, Logic and Computer Science

(P. Odifreddi, editor), Academic Press, London, 1990, pp. 123–203.
[15] G. Gentzen, Investigations into logical deduction (1934). American Philosophical

Quarterly, vol. 1 (1964), no. 4, pp. 288–306.
[16] J.-Y. Girard, Interprétation fonctionnelle et élimination des coupures de l’arithmetique

d’ordre supérieur, Ph.D. thesis, Université Paris VII, 1972.
[17] , The system F of variable types, fifteen years later. Theoretical Computer

Science, vol. 45 (1986), no. 2, pp. 159–192.
[18] , Proof Theory and Logical Complexity, vol. 1, Studies in Proof Theory,

Elsevier Science, Napoli, 1990.
[19] , Light linear logic. Information and Computation, vol. 143 (1998), pp. 175–

204.
[20] J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types, Cambridge Tracts

in Theoretical Computer Science, vol. 7, Cambridge University Press, New York,
1989.
[21] J.-Y. Girard, A. Scedrov, and P. J. Scott, Normal forms and cut-free proofs as

natural transformations, Logic from Computer Science (Y. Moschovakis, editor), Mathe-
matical Sciences Research Institute Publications, vol. 21, Springer-Verlag, New York, 1992,
pp. 217–241.
[22] K. Gödel, Russell’s mathematical logic, The Philosophy of Bertrand Russell

(P. A. Schilpp, editor), Northwestern University, Evanston, IL, 1944, pp. 123–153.
[23] W. D. Goldfarb, Jacques Herbrand, Logical Writings, Harvard University Press,

Cambridge, MA, 1987.
[24] R. Harper and J. C. Mitchell, Parametricity and variants of Girard’s J operator.

Information Processing Letters, vol. 70 (1999), no. 1, pp. 1–5.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

POLYMORPHISMAND THE OBSTINATE CIRCULARITY OF SECONDORDER LOGIC 51

[25] R. G. Heck, Grundgesetze der Arithmetik I §§29–32 29–32. Notre Dame Journal of
Formal Logic, vol. 38 (1998), pp. 437–474.
[26] C. Hermida, U. S. Reddy, and E. P. Robinson, Logical relations and parametricity.

A Reynolds programme for category theory and programming languages. Electronic Notes in
Theoretical Computer Science, vol. 303 (2014), pp. 149–180.
[27] W. A. Howard, The formula-as-types notion of construction (1969), To H.B. Curry.

Essays on Combinatory Logic, LambdaCalculus and Formalism (J. P. Seldin and J.R.Hindley,
editors), Academic Press, New York, 1980.
[28] A. J. C. Hurkens, A simplification of Girard’s paradox, Second International

Conference on Typed Lambda Calculi and Applications (M. Dezani-Ciancaglini and
G. Plotkin, editors), Springer-Verlag, Berlin, Heidelberg, New York, 1995, pp. 266–278.
[29] F. Kamareddine, T. Laan, and R.Nederpelt,AModern Perspective on Type Theory,

from its Origins until Today, Kluwer Academics, Dordrecht, 2004.
[30] J.-L. Krivine, Realizability in classical logic, Interactive Models of Computation and

Program Behaviour. Panoramas et synthèses, vol. 27, Société Mathématique de France, Paris,
2009, pp. 187–229.
[31] J. Lambek and P. J. Scott, Introduction toHigherOrderCategorical Logic, Cambridge

University Press, Melbourne, 1986.
[32] G. Longo and T. Fruchart, Carnap’s remarks on impredicative definitions and the

genericity theorem, Logic and Foundations of Mathematics (A. Cantini, E. Casari, and
P. Minari, editors), Synthese Library (Studies in Epistemology, Logic, Methodology, and
Philosophy of Science), vol. 280, Springer, Dordrecht, 1999, pp. 41–55.
[33] G. Longo, K. Milsted, and S. Soloviev, The genericity theorem and the notion of

parametricity in the polymorphic �-calculus. Theoretical Computer Science, vol. 121 (1993),
pp. 323–349.
[34] P. Martin-Löf, A theory of types, unpublished manuscript, 1970.
[35] M. Parigot, Classical proofs as programs, Kurt Gödel Colloquium (G. Gottlob,

A. Leitsch, and D. Mundici, editors), Lecture Notes in Computer Science, vol. 713,
Springer-Verlag, Berlin, Heidelberg, New York, 1993, pp. 263–276.
[36] H. Poincaré, Les mathématiques et la logique. Revue de Métaphysique et de Morale,

vol. 14 (1906), no. 3, pp. 294–317.
[37] D. Prawitz, Hauptsatz for higher order logic. The Journal of Symbolic Logic, vol. 33

(1968), no. 3, pp. 452–457.
[38] , Ideas and results in proof theory, Proceedings of the 2nd Scandinavian Logic

Symposium (Oslo) (J. E. Fenstad, editor), Studies in Logic and Foundations ofMathematics,
vol. 63, North-Holland, Amsterdam, 1971, pp. 235–307.
[39] J. C. Reynolds, Towards a theory of type structure, Programming Symposium

(B. Robinet, editor), Lecture Notes in Computer Science, vol. 19, Springer-Verlag, Berlin,
Heidelberg, New York, 1974, pp. 408–423.
[40] , Types, abstraction and parametric polymorphism, Information Processing ’83

(R. E. A. Mason, editor), North-Holland, Amsterdam, 1983, pp. 513–523.
[41] B. Russell, On some difficulties in the theory of transfinite numbers and order types.

Proceedings of the London Mathematical Society, vol. 4 (1906), pp. 29–53.
[42] , Mathematical logic as based on the theory of types. Americal Journal of

Mathematics, vol. 30 (1908), no. 3, pp. 222–262.
[43] , The Principles of Mathematics, second ed. [first published 1903],

W.W. Norton & Company, New York, 1938.
[44] B. Russell and A. N. Whitehead, Principia Mathematica, Cambridge University

Press, London, 1910.
[45] C. Strachey, Fundamental concepts in programming languages. Higher Order and

Symbolic Computation, vol. 13 (1967), pp. 11–49.
[46] G. Sundholm, Intuitionism and logical tolerance, Alfred Tarski and the Vienna Circle

(J. Wolenski and E. Köhler, editors), Vienna Circle Institute Yearbook, vol. 6, Springer,
Dordrecht, 1999, pp. 135–148.

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

52 PAOLO PISTONE

[47] W. W. Tait, Intensional interpretation of functionals of finite type I. The Journal of
Symbolic Logic, vol. 32 (1967), no. 2, pp. 198–212.
[48] , A nonconstructive proof of Gentzen’s Hauptsatz for second order predicate

logic. The Journal of Symbolic Logic, vol. 33 (1968), no. 2, pp. 289–290.
[49] M. Takahashi, A proof of the cut-elimination theorem in simple type-theory. Journal

of the Mathematical Society of Japan, vol. 19 (1967), no. 4, pp. 399–410.
[50] L. Tranchini, P. Pistone, andM. Petrolo,The naturality of natural deduction. Studia

Logica (2017), online first, https://doi.org/10.1007/s11225-017-9772-6.

DIPARTIMENTO DI MATEMATICA E FISICA
UNIVERSITÀ ROMA TRE
L.GO S. LEONARDOMURIALDO 1
00146 ROME, ITALY

E-mail: paolo.pistone@uniroma3.it

https://doi.org/10.1017/bsl.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.43

