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Abstract

With the more and more growing demand for semantic Web services over large databases, an
efficient evaluation of Datalog queries is arousing a renewed interest among researchers and
industry experts. In this scenario, to reduce memory consumption and possibly optimize execu-
tion times, the paper proposes novel techniques to determine an optimal indexing schema for
the underlying database together with suitable body-orderings for the Datalog rules. The new
approach is compared with the standard execution plans implemented in DLV over widely used
ontological benchmarks. The results confirm that the memory usage can be significantly reduced
without paying any cost in efficiency.
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1 Introduction

Ontological reasoning services represent fundamental features in the development of the

Semantic Web. Among them, scientists are focusing their attention on the so-called

ontology-based query answering (OBQA), where a Boolean query has to be evaluated

against a logical theory (knowledge base) consisting of an extensional database paired

with an ontology (Cal̀ı et al. 2009; Ortiz 2013; Amendola et al. 2018). A number of

effective practical approaches proposed in the literature rewrite the query and the

ontology into an equivalent Datalog program (Carral et al. 2018; Eiter et al. 2012;

Kontchakov et al. 2011; Stefanoni et al. 2012; Xiao et al. 2018).

With the more and more growing availability of large databases, however, an efficient

yet memory-saving evaluation of Datalog queries is arousing a renewed interest among re-

searchers and industry experts. Typically, classical Datalog reasoners adopt sophisticated

internal policies to speed-up the computation trying to limit the memory consumption.

However, when the amount of data exceeds a certain size, these policies may result inad-

equate. This happens, for instance, for the full-fledged Datalog system i-dlv (Calimeri

et al. 2017; Calimeri et al. 2019) — originally conceived as grounding engine in dlv2

(Alviano et al. 2017). Recently, to cope with large-scale scenarios, i-dlv has been further

optimized and partially re-engineered by implementing novel techniques and heuristics to

reduce memory consumption and possibly optimize execution times. This process gave

rise to even two branches of the system called dlv2-server (Leone et al. 2019) and
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owl2dlv (Allocca et al. 2019). In this paper, we present and evaluate one of the key

approaches that is at the basis of the aforementioned improvements: the precomputation

via Answer Set Programming (ASP) (Gelfond and Lifschitz 1991a) of an “evaluation

plan” for a given Datalog program.

To understand the principles underlying the new technique, let us first recall that i-dlv

historically uses strategies for join orderings and indexing that are applied rule-by-rule at

runtime and that are based on local statistics over data that become available during the

computation. As a result, for databases up to a few millions tuples, these stategies ensure

fast evaluation at the expense of a reasonable amount of extra memory. Conversely, for

databases with billions of tuples, both the time and the space used for implementing these

strategies are too high. To regain usability, the idea is to precompute a global indexing

schema for the underlying database associated with suitable body-orderings for all the

program rules. On the one hand, this approach is less informed since, being implemented

as a preprocessing phase, it cannot rely on any relevant information known during the

computation, possibly leading to worsening in time. On the other hand, this allows to

save both the time and space needed for computing/storing this information. Moreover,

the global view on the program allows for a more parsimonious choice of the indices. To

make up for the lack of local statistics, our approach is based on the natural assumption

that, when dealing with very large databases, some information and statistics about the

user domain are known in advance since they do not vary as fast as the actual data. This

is the case, for example, for primary keys, foreign keys, small relations or selectivity of

attributes. Our contribution can be therefore summarized as follows:

• Given a Datalog program P, a database D and some domain properties, we define

the notion of evaluation plan, which consists of an indexing schema for D together

with a suitable body-ordering for each rule of P. Moreover, to target “optimal”

plans among all admissible ones, we identify a number of additional options, the

combination of which induces different preference orderings among all plans.

• We encode the problem of finding an optimal Datalog evaluation plan in ASP, by

making use of choice-rules, strong constraints, weak constraints, aggregates and

negation.

• We implement optimal plans by adding annotations (Calimeri et al. 2017) to the

original Datalog program P. The annotated program will be the actual input for

i-dlv. In this way, i-dlv execution is forced to follow the plan without the need

for any internal change to the system. Nonetheless, optimal plans are sufficiently

general to be implemented natively also in different Datalog engines that do not

benefit from features like annotations.

• We design a well-behaved setting in the context of ontological reasoning with the

aim of minimizing the memory consumption without paying in efficiency.

• We conduct an experimental evaluation over popular ontological benchmarks widely

used for testing both capabilities and performance of OBQA systems. In particular,

we compare performance in terms of time and memory usage of dlv when the

classical computation is performed, and when the computation is driven by the

planner. The results confirm that our plans improve the computation with a general

gain in both time and space.
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As a final remark, in case of reasoners with a server-like behavior, such as dlv2-server

and owl2dlv, evaluation plans play an extremely important role, and the advantage of

precomputing an evaluation plan is even more evident. Indeed, when the ontology is

known in advance, it is possible to determine “offline” the optimal plan, and therefore

further improve the reasoning phase with respect to both time and memory.

The present work builds on top of the extended abstract presented at JELIA 2019

(Allocca et al. 2019). In particular, apart from providing a comprehensive description of

the approach, in this paper we also enrich the planner from both the formal and practical

side. Indeed, we improve the notion of admissible ordering, we introduce and implement

the notion of preferences, we introduce extra preferences, we identify and exploit extra

info in the ontological context, and we enriched the experimental evaluation.

In the following, after recalling ASP syntax and semantics, we formalize the concept

of evaluation plan for Datalog and we illustrate the modelling of such plans via ASP;

eventually, we report about our experiments before drawing some conclusions.

2 Preliminaries

The standard input language for ASP systems is referred to as ASP-Core-2 (Calimeri et al.

2012). For the sake of simplicity, we focus next on the basic aspects of the language; for a

complete reference to the ASP-Core-2 standard, and further details about advanced ASP

features, we refer the reader to (Calimeri et al. 2012) and the vast literature.

A term is either a constant or a variable. If t1, . . . , tk are terms and p is a predicate

symbol of arity k, then p(t1, . . . , tk) is an atom. A literal l is of the form a or not a,

where a is an atom; in the former case l is positive, otherwise negative. A rule r is of

the form α1 | · · · | αk :- β1, . . . , βn, not βn+1, . . . , not βm. where m ≥ 0, k ≥ 0;

α1, . . . , αk and β1, . . . , βm are atoms. We define H(r) = {α1, . . . , αk} (the head of r)

and B(r) = B+(r) ∪ B−(r) (the body of r), where B+(r) = {β1, . . . , βn} (the positive

body) and B−(r) = {not βn+1, . . . , not βm} (the negative body). If H(r) = ∅ then r

is a (strong) constraint; if B(r) = ∅ and |H(r)| = 1 then r is a fact. A rule r is safe if

each variable of r has an occurrence in B+(r)1. An ASP program is a finite set P of safe

rules. A program (a rule, a literal) is ground if it contains no variables. In the following,

a Datalog program is referred to as a finite set P of safe rules stratified with respect to

negation and without disjunction in the heads. A program (a rule, a literal) is ground if it

contains no variables. A predicate is defined by a rule r if it occurs in H(r). A predicate

defined only by facts is an EDB predicate, the remaining are IDB predicates. The set of

all facts in P is denoted by Facts(P ); the set of instances of all EDB predicates in P is

denoted by EDB(P ).

Given a program P , the Herbrand universe of P , denoted by UP , consists of all ground

terms that can be built combining constants and function symbols appearing in P . The

Herbrand base of P , denoted by BP , is the set of all ground atoms obtainable from the

atoms of P by replacing variables with elements from UP . A substitution for a rule r ∈ P is

a mapping from the set of variables of r to the set UP of ground terms. A ground instance

of a rule r is obtained applying a substitution to r. The full instantiation Ground(P ) of

1 We remark that this definition of safety is specific for the syntax considered herein. For a complete
definition we refer the reader to (Calimeri et al. 2012).
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P is defined as the set of all ground instances of its rules over UP . An interpretation I

for P is a subset of BP . A positive literal a (resp., a negative literal not a) is true w.r.t.

I if a ∈ I (resp., a /∈ I); it is false otherwise. Given a ground rule r, we say that r is

satisfied w.r.t. I if some atom appearing in H(r) is true w.r.t. I or some literal appearing

in B(r) is false w.r.t. I. Given a program P , we say that I is a model of P , iff all rules

in Ground(P ) are satisfied w.r.t. I. A model M is minimal if there is no model N for

P such that N ⊂ M . The Gelfond-Lifschitz reduct (Gelfond and Lifschitz 1991b) of P ,

w.r.t. an interpretation I, is the positive ground program P I obtained from Ground(P )

by: (i) deleting all rules having a negative literal false w.r.t. I; (ii) deleting all negative

literals from the remaining rules. I ⊆ BP is an answer set for a program P iff I is a

minimal model for P I . The set of all answer sets for P is denoted by AS(P ).

3 Datalog Evaluation Plans

In its default computational process, for optimizing the evaluation of each rule, i-dlv

determines body orderings and indices on demand, according to strategies taking into

account only local information for the rule at hand. In more detail, before instantiating

some Datalog rule, i-dlv reorders the body literals on the basis of some join-ordering

heuristics (Calimeri et al. 2017); then, according to the chosen ordering, it determines

and creates needed indices. However, when memory consumption must be limited, an

approach based on a global view over all rules, allowing for a more parsimonious creation

of indices, is preferable.

In this section, we describe our approach for computing optimal evaluation plans for

a set P of positive Datalog rules to be evaluated over an extensional database D . We

define an evaluation plan of P as an indexing schema over P ∪ D together with a

suitable body-ordering for each rule of P. An indexing schema consists of the set of

indices adopted to instantiate all rules in P over D . Our approach makes use of an ASP

program for computing an optimal evaluation plan E of P in a preprocessing phase; then

P is annotated with directions that force dlv computation to follow E when evaluating

P.

In the following, after a formal definition of an evaluation plan, we introduce the notion

of strategy and then we specify the concept of optimal evaluation plan w.r.t. a certain

strategy.

3.1 Admissible Plans

Let P be a set of positive Datalog rules with non-empty body and let D be a database,

i.e. a set of facts. We indicate with pred(P ∪ D) the set of all predicates occurring in

P ∪ D and with rel(p) the set {α ∈ D : pred(α) = p} of the elements of D sharing

the predicate name p. We write p[i] to indicate the i-th argument of the predicate p. In

the following, after formalizing the standard notions of ordering of a rule and indexing

schema of a Datalog program, we introduce the novel notion of evaluation plan along

with some preliminary definitions.

Definition 3.1

Let r be a rule in P and B(r) be the set of the atoms appearing in the body of r. Let

Fa be a (possibly empty) subset of atoms in B(r) and Fp be a subset of {1, · · · , |B(r)|}.
A position assignment on r is a one-to-one map pr : Fa → Fp. A pair (α, p) such that
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pr(α) = p is called a fixed position w.r.t. pr. An ordering on r is a bijective function

pos(r, ·) : B(r) → {1, · · · , |B(r)|}. Having fixed a position assignment pr on r, we define

a pr-ordering on r as an ordering on r such that pos(r, α) = pr(α) for each α ∈ Fa.

The definition above presents a body ordering as a rearrangement of the literals in the

body, but notably, allows for having a certain number of atoms in the body in some fixed

positions. This is because, according to the knowledge of the domain at hand, if one is

aware that a particular choice for the orderings is convenient, the planner can be driven

so that only plans complying with this choice are identified.

Definition 3.2

Let U := {p[i] : p ∈ pred(P ∪ D), 1 ≤ i ≤ a(p)}, where a(p) represents the arity of the

predicate p. An indexing schema S over P ∪D is a subset of U . Given a subset I ⊆ U ,

we say that S fixes I if I ⊆ S .

Intuitively, an indexing schema is a subset of the arguments of all predicates in

pred(P ∪ D). Furthermore, similarly to the definition of ordering that may allow for

fixed positions, we give the possibility to fix also a set of indices.

Example 3.1

As a running example in this section, consider the following positive Datalog rule r :

h(X,Z,W) :- a(X,Z), b(V,W), c(Z), d(V), e(Y,Z).

Let’s consider the position assignment pr which fixes the atom b(V,W ) in first position.

A possible pr-ordering may be:

pos(r, a(X,Z)) = 3, pos(r, b(V,W )) = 1, pos(r, c(Z)) = 5,

pos(r, d(V )) = 2, pos(r, e(Y, Z)) = 4.

By means of such ordering the body atoms of r are rearranged as follows:

h(X,Z,W) :- b(V,W), d(V), a(X,Z), e(Y,Z), c(Z).

The set S := {a[2], c[1], d[1], e[2]} is an example of indexing schema over the predicates

appearing in r.

With a rule r ∈ P we can associate a hypergraph H(r) = (V,E) whose vertex set V

is the set of all terms appearing in B(r) and the edges in E are the term sets of each

atom in B(r). Given a rule r of P, a connected component of r is a set of atoms in B(r)

that define a connected component in H(r).

Example 3.2

Let r be the rule of Example 3.1. The hypergraph H(r) associated to r has V =

{X,Y, Z, V,W} and E = {{X,Z}, {V,W}, {Z}, {V }, {Y, Z}}. The connected compo-

nents of r are C1 = {a(X,Z), c(Z), e(Y, Z)} and C2 = {b(V,W ), d(V )}.
Let us introduce now the notions of separation between two connected components

and well ordering of a component of a rule.

Definition 3.3

Let r be a rule of P and pos(r, ·) be an ordering on r. Two connected components C1 and

C2 of r are separated w.r.t. pos(r, ·) if max{pos(r, α) : α ∈ C1} < min{pos(r, β) : β ∈ C2}
or vice versa.
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An argument of an atom appearing in the body of a rule r, is said to be bound, w.r.t.

an ordering on r, if it is either a constant or a variable appearing in a previous atom,

and is said to be indexBound, w.r.t. an ordering on r and an indexing schema S, if it is
bound and it belongs to the schema S . The definition below provides the notion of well

ordering of a connected component in a rule.

Definition 3.4

Let r be a rule of P, S be an indexing schema and pos(r, ·) be an ordering on r. A

connected component C of r is well-ordered w.r.t. S and pos(r, ·) if, assuming m =

min{pos(r, α) : α ∈ C}, for each β ∈ C with pos(r, β) = j and j > m, it holds that: (i)

β has at least an argument which is indexBound, and (ii) either all the arguments of β

are bound or there is no other atom in a later position (in the same component) that,

placed in place of β, would have all the arguments bound.

Example 3.3

Let’s consider the rule r with the ordering pos(r, ·) and the indexing schema S as in

our running example. The two connected components of r are clearly separated w.r.t.

pos(r, ·). The indexBound arguments w.r.t. pos(r, ·) and S are c[1], d[1] and e[2]. It can

be easily seen that the connected component C2 is well-ordered w.r.t. S and pos(r, ·).
The same cannot be said for the component C1; in fact, not all the arguments of the

atom e(Y, Z) are bound and the atom c(Z), positioned in place of e(Y, Z), would have

all the arguments bound.

The notion of separation among connected components is needed for identifying, within

rule bodies, clusters of literals that do not share variables. The idea is that the ordering

computed by the planner should keep separated these clusters in order to avoid, as much

as possible, the computation of Cartesian products during the instantiation; at the same

time, literals within the clusters are properly rearranged in order to comply with the

selected indexing schema, thus avoiding the creation of further indices.

Next, we provide the admissibility property which, in turn, characterizes the evaluation

plans.

Definition 3.5

Given a rule r ∈ P and an indexing schema S , we say that an ordering pos(r, ·) is

admissible w.r.t. S if the connected components of r are mutually separated (w.r.t.

pos(r, ·)) and well-ordered (w.r.t. pos(r, ·) and S ).

We define below an evaluation plan for a Datalog program.

Definition 3.6

Let (i) {pr ; r ∈ P} be a given set of position assignments, and (ii) I be a given subset

of {p[i] : p ∈ pred(P ∪ D), 1 ≤ i ≤ a(p)}. An evaluation plan E of P consists of

an indexing schema S that fixes I together with a pr-orderings for each r ∈ P being

admissible w.r.t. S . We say that P enjoys an efficient evaluation if it is associated to

an evaluation plan.

Example 3.4

In our running example, the ordering ord(r, ·) is not admissible w.r.t. the schema S. Thus,
S and ord(r, ·) do not represent an evaluation plan of the program P = {r}. However,
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an evaluation plan of P could be obtained by exchanging the assignments of the atoms

c(Z) and e(Y, Z) in ord(r, ·). It would be appropriate to note that, in the latter case, we

would obtain a further evaluation plan by excluding the argument a[2] from the indexing

schema (and thus saving an index). Starting from this consideration, we introduce the

concepts of preference and evaluation strategy in the next section.

3.2 Preferences

Let P be a positive Datalog program, EP be the set of all the evaluation plans of P and

w : EP → N be a function that we call cost function on EP . Given two evaluation plans

E1,E2 ∈ EP , we say that E1 is preferable to E2 w.r.t. the function cost w if w(E1) < w(E2),

while we say that E1 is equivalent to E2 w.r.t. w if w(E1) = w(E2). Moreover, consider

a finite set W = {w1, . . . , wn} of cost functions on EP , we define an evaluation strategy

for P as a finite sequence Σ = (wδ1 , . . . , wδk) of distinct elements in W . We say that

E1 ∈ EP is preferable to E2 ∈ EP w.r.t. the strategy Σ = (w1, . . . , wk) if either:

• E1 is preferable to E2 w.r.t. w1, or

• there exists j ∈ {2, . . . , k} such that E1 is equivalent to E2 w.r.t. wi for each

i = 1, . . . , j − 1, and E1 is preferable to E2 w.r.t. wj .

According to the notion of preference of an evaluation plan over another w.r.t. a strategy,

we can now introduce the definition of “optimal” plans w.r.t. that strategy.

Definition 3.7

Let EP be the set of all the evaluation plans for a positive Datalog program P and Σ be

an evaluation strategy for P. An evaluation plan E0 is said to be optimal w.r.t. Σ if it is

either preferable or equivalent to each E ∈ EP w.r.t. Σ.

Intuitively, finding the optimal evaluation plans against a strategy Σ = (w1, . . . , wk)

means finding those that minimize the cost function w1, then, among these, find those

that minimize the function w2, and so on. We report next four functions used for defining

our evaluation strategies. From now on when we talk about the functions w1, w2, w3 and

w4 we will refer to the following:

• w1(E ) :=
∑

p[i]∈S c(p, i), where c(p, i) is the cost of building an index over p[i] in

the indexing schema S. Note that we presuppose the knowledge of c(p, i) values.

Such costs can be estimated via heuristics or actually computed, depending on

the application domain at hand. As said in the introduction, the novel approach

is based on the natural assumption that, when dealing with very large databases,

some information and statistics about the user domain are known in advance since

they do not vary as fast as the actual data. Apart from primary keys and foreign

keys, which in OBQA are related to the ontological schema, some statistics on the

data can be also taken into account. This is the case, for example, of the estimation

of the selectivity of an attribute, which gives an indication of the average number

of times that a constant (or individual) occurs in the relation in correspondence of

the given attribute (note that, the special case of estimation of the selection equal

to 1 indicates that the given attribute is actually a key). This value can be taken

into account for estimating the size (and thus, the cost) of an index for the given

attribute.
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• w2(E ) is defined as the sum of the positions of atoms involved in recursion. We

prefer that atoms involved in recursion are placed as soon as possible. The extension

of such atoms might considerably grow and change during computation; placing

them before other atoms in the body could avoid the creation of expensive indices.

• w3(E ) is the number of indices set on arguments that are not primary keys. In

other words we prefer indices set on arguments representing primary keys.

• w4(E ) :=
∑

r∈P

∑
α∈B(r)[maxArity − u(α, r)] ∗ pos(r, α), where maxArity repre-

sents the maximum arity of the atoms appearing in P and u(α, r) is the number

of unbound arguments of the atom α in the rule r. We prefer that atoms having

large number of unbound arguments (that is, those that minimize the first factor

in the above summation) are placed as soon as possible as they possibly will lead

to have new completely bound atoms to be placed in successive positions.

4 ASP-based Implementation

In the following we describe the ASP code devised in order to compute optimal evaluation

plans. For the sake of simplicity, as the program is rather long and involved, we report

here only some key parts; the full ASP code is available online.2

The program is based on the classical “Guess/Check/Optimize” paradigm and com-

bines: (i) choice and disjunctive rules to guess an indexing schema S over P ∪ D and,

for each rule r in P, an ordering ord(r, ·); (ii) strong constraints to guarantee, for each

rule r, the admissibility of ord(r, ·) w.r.t. S ; (iii) weak constraints to find out the optimal

evaluation plans of P w.r.t. the chosen strategy.

4.1 Data Model

The planner consists of an ASP program taking as input a set of facts representing P

and the database D ; each rule of P is represented by means of facts of the form:

rule(Rule ,Description ,NumberOfBodyAtoms).
headAtom(Rule ,Atom ,Predicate).
bodyAtom(Rule ,Atom ,Predicate).
sameVariable(Rule ,Atom1 ,Arg1 ,Atom2 ,Arg2).
constant(Rule ,Atom ,Arg).

Facts over the predicate rule associate each rule r to an identifier and provide the number

of its body atoms. Atoms in the body and in the head of each rule r are represented by

bodyAtom and headAtom predicates respectively. The predicate sameVariable provides

the common variables related to every pair of atoms appearing in r, whereas constant

states that a constant term occurs in the argument of an atom of r. An example of the

basic input concepts described above is the following:

Example 4.1

The following program P :

h1(X) :- a(X,Y),b(Y).
h2(Y) :- a(Y,X).

2 See https://www.mat.unical.it/perri/iclp2019.zip.
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is represented by means of the facts:

rule(0,"h1(X):-a(X,Y),b(Y)." ,2).
headAtom (0,"h1(X)","h1/1").
bodyAtom (0,"a(X,Y)","a/2").
bodyAtom (0,"b(Y)","b/1").
sameVariable (0,"h1(X)" ,1,"a(X,Y)" ,1).
sameVariable (0,"a(X,Y)" ,2,"b(Y)" ,1).

rule(1,"h2(Y):-a(Y,X)." ,1).
headAtom (1,"h2(Y)","h2/1").
bodyAtom (1,"a(Y,X)","a/2").
sameVariable (1,"h2(Y)" ,1,"a(Y,X)" ,1).

The database D is represented by means of facts over predicate relation, while the

costs of building indices over arguments are given by facts over predicate index.

relation(Predicate ,Arity).
index(Predicate ,Arg ,Cost).

Furthermore, the planner allows for having a certain number of atoms in the body in

some previously fixed positions and a set of indices fixed in S. This is because, according
to the knowledge of the domain at hand, if one is aware that a particular choice for the

orderings and the indexing policy is convenient, the planner can be driven so that only

plans complying with this choice are identified. The planner can also exploit the presence

of arguments representing primary keys for predicates in P ∪ D . Such information, if

available, can be given in input to the ASP planner by means of facts of the form:

fixedPosition (Rule ,Atom ,Pos).
fixedIndex(Predicate ,Arg).
key(Predicate ,Arg).

4.2 Guess Part

The following choice rule (Calimeri et al. 2012) guesses a subset of the arguments of all

predicates, namely an indexing schema S , over P ∪ D . Notably, the arguments to be

indexed are chosen among a restricted set of arguments, called indexable, in order to keep

the search space smaller. For instance, arguments that are not involved in joins are not

indexable.

{setIndex(Predicate ,Arg)} :- indexable(Predicate ,Arg).

Beside this choice rule, the guess part contains also the following rule for guess-

ing a body-ordering for each rule r in P. In particular, the choice guesses a po-

sition in the body for each atom whose position has not been previously fixed

(fixedAtomRule). Clearly, only positions not already occupied by another body atom

in the same rule (fixedPositionRule) are guessable. The predicates fixedAtomRule

and fixedPositionRule are computed according to the predicate fixedPosition de-

scribed above.

{pos(Atom ,Rule ,Pos):position(Pos),Pos >=1,Pos <=Size ,
not fixedPositionRule (Rule ,Pos)}=1 :- rule(Rule ,Size),
bodyAtom(Rule ,Atom ,_),not fixedAtomRule (Rule ,Atom).
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4.3 Check Part

This part discards, by means of strong constraints, solutions that do not satisfy (according

to the definitions in Section 3.1) the conditions to be considered admissible evaluation

plans. In particular, conditions that have to be necessarily satisfied are the following:

1. The connected components of each rule of P must be kept separate. According to

the definition 3.3, this is ensured by the following constraint.

:- pos(Atom1 ,Rule ,Pos1),pos(Atom2 ,Rule ,Pos2),
sameComponent (Rule ,Atom1 ,Atom2),pos(Atom3 ,Rule ,Pos3),
not sameComponent (Rule ,Atom1 ,Atom3),Pos1 <Pos3 ,Pos3 <Pos2.

2. According to the first point of the definition 3.4, to guarantee that each connected

component is well-ordered, each atom, except those in the first position of each

component, must have at least an argument indexBound. This condition is guar-

anteed by the constraint below, where predicates firstPosition and indexBound

suggest, respectively, the first positions of the components in each rule, and the

indexBound arguments of each atom in a rule.

:- pos(Atom ,Rule ,Pos),firstPosition (Rule ,FirstPos),
Pos >FirstPos ,# count{Arg:indexBound(Arg ,Atom ,Rule)}=0.

3. The second condition of the definition 3.4 is modeled by means of the following

constraint. Here the predicate atomVars indicates the number of variables occurring

in every atom.

:- pos(Atom ,Rule ,Pos),not boundAtom(Atom ,Rule ,Pos),
pos(Atom1 ,Rule ,Pos1),not boundAtom(Atom1 ,Rule ,Pos1),
Pos1 >Pos ,Pos2 >Pos1 ,boundAtom(Atom2 ,Rule ,Pos2),
atomVars(Atom2 ,Rule ,N),
#count{Arg2:sameVariable(Rule ,Atom2 ,Arg2 ,Atom ,_)}=N.

The checking part contains also an additional constraint encoding the following basic

check for guaranteeing the correctness of the plans. In particular, this basic check ensures

that two different atoms do not occupy the same position in any rule:

:- pos(Atom1 ,Rule ,Pos),pos(Atom2 ,Rule ,Pos),Atom1 != Atom2.

4.4 Optimize Part

Eventually, in this section we describe the part for identifying the optimal evaluation plan

according to the evaluation strategy that one decides to apply. Remember that a strategy

is a finite combination of cost functions. Currently, the planner is equipped with the four

cost functions described in Section 3.2, each of which is represented by a specific weak

constraint. Note that, weak constraints allow for expressing preferences possibly having

different importance levels. The planner allows to fix these priority levels according to

the chosen strategy by providing in input facts which indicate that the cost function wN

has priority level P .

priorityCostFunction(N,P).

For instance, suppose we want to represent the strategy Σ = (w1, w3, w2), then we

need the following input facts to indicate that the cost function w1 has priority level 3,

w3 has priority level 2 and w2 has priority level 1. Note that in this case the cost function

w4 is not activated.
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priorityCostFunction (1,3).
priorityCostFunction (3,2).
priorityCostFunction (2,1).

This means that the planner is customizable. Indeed, depending on the knowledge of

the domain at hand, one can choose to adapt the strategy to his own needs simply by

exchanging the priority levels of the cost functions among those already present in the

planner, or even by integrating new cost functions (with the addition of new constraints

in the encoding). In the following we illustrate the weak constraints representing the cost

functions defined in Section 3.2.

1. The rule below aims to minimize index occupation. To this end, we presuppose the

knowledge of the costs (or their estimation) of building indices over arguments and

we represent them by facts of form index(Predicate, Arg, Cost).

:∼ setIndex(Predicate ,Arg),index(Predicate ,Arg ,Cost),
priorityCostFunction (1,P). [Cost@P ,Predicate ,Arg ,Cost]

2. We prefer that atoms involved in recursion are placed as soon as possible. The weak

constraint makes uses of the auxiliary predicate recursivePredicate providing

information about which predicates of the program are recursive. We do not report

its definition for the sake of readability.

:∼ pos(Atom ,Rule ,Pos),bodyAtom(Rule ,Atom ,Predicate),
recursivePredicate (Predicate),priorityCostFunction (2,P).
[Pos@P ,Rule ,Pos]

3. Indices set on arguments representing primary keys are possibly preferred:

:∼ setIndex(Predicate ,Arg),not key(Predicate ,Arg),
priorityCostFunction (3,P). [1@P ,Predicate ,Arg]

4. Atoms having large number of unbound arguments should be placed as soon as

possible in the body. Also in this case we make use of an auxiliary predicate:

numBoundArgs provides the number of bound arguments of an atom in a rule.

:∼ numBoundArgs(Atom ,Rule ,Pos ,B),maxArity(N),
bodyAtom(Rule ,Atom ,Predicate),relation(Predicate ,Arity),
priorityCostFunction (4,P). [(N-Arity+B)*Pos@P ,Rule ,Pos]

5 Experimental Evaluation

Hereafter we report the results of an experimental activity carried out to assess the

effectiveness of the ASP-based evaluation planner.

5.1 Benchmarks

Our experimental analysis relies on four benchmarks: LUBM (Lehigh University Bench-

Mark), LUBM-LUTZ, Stock Exchange and Vicodi.

LUBM. It is one of the most popular ontologies for testing both capabilities and per-

formance of OBQA systems; indeed, it has been specifically developed to facilitate the

evaluation of Semantic Web reasoners in a standard and systematic way. In particular,

the benchmark is intended to evaluate performance of those reasoners with respect to ex-

tensional queries over large databases that refer to a single realistic ontology. The LUBM
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benchmark consists of a university domain OWL 2 ontology along with customizable

and repeatable synthetic data and a set of 14 SPARQL queries3. Queries 2, 6, 9 and

14 involve constants, while the other queries are constant-free. In our experiments, the

original LUBM ontology and the official 14 queries have been translated into Datalog via

the clipper system (Eiter et al. 2012). The official LUBM generator has been adopted to

generate four databases of increasing sizes: LUBM-500, LUBM-1,000, LUBM-2,000 and

LUBM-4,000, where the number associated to each database name indicates the number

of universities composing it. The number of facts in the databases ranges from about

67,000,000 to about half a billion facts.

LUBM-LUTZ. It is a variant of LUBM designed by Lutz et al. (2013). This bench-

mark consists of an OWL2 ontology and 11 queries (both different from those of LUBM)

along with a modified version of the LUBM official generator allowing to set the level

of incompleteness in the database. As done for LUBM, the ontology and the queries

have been translated into Datalog via the clipper system (Eiter et al. 2012). All queries

are without constants. We generated five databases of increasing sizes and having an in-

completeness percentage of 10%: LUTZ-500, LUTZ-1,000, LUTZ-2,000, LUTZ-4,000 and

LUTZ-8,000. Again, the number associated to each database name indicates the number

of universities composing it.

Stock Exchange and Vicodi. These are two real world ontologies widely used in

literature for the evaluation of query rewriting systems (Mora and Corcho 2013). For

each of these two ontologies, we selected 5 queries featuring constants and we used the

SyGENiA generator (Grau et al. 2012) to produce five databases having from 1, 000 to

40, 000 tuples and a number of individuals varying from 100 to 4, 000. These are the

maximum sizes that can be generated using SyGENiA.

5.2 Setting

Experiments on LUBM-LUTZ have been performed on a Dell Linux server with an Intel

Xeon Gold 6140 CPU composed of 8 physical CPUs clocked at 2.30 GHz, with 297GB

of RAM. Experiments on LUBM, Vicodi and Stock Exchange have been performed on a

NUMA Linux machine equipped with two 2.8 GHz AMD Opteron 6320 processors and

128GB RAM. Unlimited time and memory were granted to running processes. Bench-

marks and executables used for the experiments are available at https://www.mat.unical.

it/perri/iclp2019.zip.

Two different executions have been compared: (i) a classical execution of i-dlv which,

given as input the so generated encodings, chooses body orderings and indexing strategies

with its default policies, and (ii) an execution driven by the planner in which i-dlv

is forced to follow the precomputed evaluation plan that decided body orderings and

indices in order to reduce memory consumption. These constraints have been defined

via annotations, that represent specific means to express preferences over its internal

computational process (Calimeri et al. 2017).

3 LUBM is available at http://swat.cse.lehigh.edu/projects/lubm/.
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5.3 Planner customization

In the context of OBQA, where the objective is to answer a query, the rewritten Dat-

alog program typically benefits from the application of the so-called Magic Sets tech-

nique (Alviano et al. 2012). This produces a new equivalent program containing extra

intensional predicates that could have very small extensions during the computation.

These predicates, in a setting where memory consumption should be limited, could be

moved towards the end of the body so that it is more likely saving space for needed in-

dices. Hence, to instantiate our planner, we consider this additional domain information

and use facts of the form fixedPosition(Rule,Atom,Pos) to specify it. It is worth re-

marking that in i-dlv this customization has an impact only in case of queries featuring

constants since magic atoms are not generated for queries without constants. Further-

more, for all attributes involved in extensional relations, we provide, via facts of the form

index(Predicate,Arg,Cost), an estimation of the size of an index for that attribute.

In particular, in our experiments, to have available this information we generate and

analyze a “small” database for each benchmark.

In our experiments, we considered different planner customizations depending on the

domain at hand. In particular, for LUBM, Vicodi and Stock Exchange, consisting mainly

of queries featuring constants, we adopted the strategy Σ1 = (w2, w4). The idea underly-

ing this choice is that, in such domains, i-dlv can benefit from the Magic Sets technique

and fixing the positions of magic atoms as described above is already sufficient to drive

the planner. On LUBM-LUTZ, having instead constant-free queries, we adopted the

strategy Σ2 = (w1, w2, w3, w4); indeed, since Magic Sets are not active, no fixed posi-

tions can be provided and a richer strategy is necessary for avoiding an almost blind plan

computation.

5.4 Discussion

The results of our experiments are reported in Table 1 and in Figure 1 and 2.

Table 1 shows performance in terms of average running time and memory usage of i-

dlv (with and without planner) computed over all considered databases per each bench-

mark query. Columns 2 and 3 refer to the classical computation, while columns 4 and

Fig. 1. Experiments on LUBM. Queries are ordered by increasing values w.r.t. the No-Planner
execution.
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Fig. 2. Experiments on LUBM-LUTZ. Queries are ordered by increasing values w.r.t. the
No-Planner execution.

5 to the computation driven by the planner. In the 6th column, we reported the time

spent to compute the optimal plan, in the 7th column, the memory saving per query

computed as difference of the corresponding fields in columns 3 and 5. Similarly, the 8th

column reports the time saving per query computed as difference of the corresponding

fields in columns 2 and 4. The table reports also some aggregated data per benchmark. In

particular, it shows information on the average/maximum saved memory/time, as well

as the number of queries where an improvement in terms of saved memory (resp. saved

time) has been obtained. In addition, to provide a clearer picture of the behavior of the

two versions of i-dlv, we reported in Figures 1 and 2 plots of the average running time

and memory usage over all considered databases for the largest benchmarks: LUBM and

LUBM-LUTZ.

As it can be seen, we obtained a significant saving of memory on LUBM where, for

instance, the planner allows to save 11.4 GB on query q13 (about 40% less) w.r.t. the

no-planner version, and a gain both in terms of memory and time over almost all queries.

Only on query q01 we experimented a small worsening on memory. In general, no signif-

icant increase of computation time is observable and, in several cases, the planner-driven

approach leads also to improvements in terms of time. This can be explained considering

that indices selected by the planner, being on the overall less memory expensive, are

more efficiently computable.

Concerning LUBM-LUTZ, we first note that the benefits appear less evident. This is

due to the nature of the queries in the benchmark which are constant-free and require

a different (less informed) customization, as described in Section 5.3. Nonetheless, the

execution of i-dlv driven by the planner performs generally better (both in time and

memory) of the standard execution. On the queries q08, q09 and q11 we have a memory

saving of 9-10% w.r.t. the no-planner version; moreover, we observe no worsening in

memory consumption and only one case in which there is a negligible worsening in time.

As for Stock Exchange and Vicodi, although these are not data intensive domains,

i-dlv can benefit by the planner as well. Indeed, worsenings in terms of memory range

from 1% to 7% in a few queries which are somehow expected when measuring memory

of the order of megabytes.

Further aggregated data and statistics on the results are given in Table 2. This shows,

for both the tested versions of i-dlv and for each benchmark, the maximum peak of
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Table 1. Experiments on LUBM, LUBM-LUTZ, Stock Exchange and Vicodi. Time is in

seconds, memory is in GB for LUBM and LUBM-LUTZ and in MB for Stock Exchange

and Vicodi.

Time Memory Time Memory Planning TimeSaved Memory Saved Time

q01 1949.24 17.27 1526.94 17.67 0.01 -0.4 422.3
q02 2292.53 19.22 1121.70 17.27 0.14 2.0 1170.8
q03 1643.14 17.89 1026.31 17.27 0.01 0.6 616.8
q04 2250.26 37.21 1241.08 33.28 0.3 3.9 1009.2
q05 1303.48 28.28 1087.97 17.27 0.17 11.0 215.5
q06 1485.75 23.74 1383.24 21.12 0.05 2.6 102.5
q07 1284.16 25.94 1124.31 21.23 0.18 4.7 159.9
q08 1349.36 32.47 1162.35 22.49 0.32 10.0 187.0
q09 1464.82 23.74 1326.15 21.32 0.22 2.4 138.7
q10 1271.19 24.94 1101.55 20.84 0.14 4.1 169.6
q11 1016.69 17.27 1014.10 17.27 0.01 0.0 2.6
q12 1275.24 27.13 1115.07 18.68 0.2 8.4 160.2
q13 1281.30 30.06 1129.73 18.66 0.17 11.4 151.6
q14 1122.83 17.27 1080.39 17.27 0 0.0 42.4

q01 353.88 8.17 328.94 8.15 0 0.0 24.9
q02 237.25 6.19 232.24 6.20 0.04 0.0 5.0
q03 268.90 6.63 274.70 6.20 0.26 0.4 -5.8
q04 249.86 6.67 240.43 6.63 0.02 0.0 9.4
q05 246.67 6.21 240.60 6.21 0.08 0.0 6.1
q06 273.83 6.88 258.81 6.63 0.28 0.2 15.0
q07 219.15 6.20 218.20 6.20 0.05 0.0 0.9
q08 293.97 7.59 284.52 6.80 0.11 0.8 9.5
q09 260.12 6.80 247.42 6.20 0.01 0.6 12.7
q10 289.85 7.19 283.63 7.22 0.04 0.0 6.2
q11 288.08 7.14 280.95 6.44 0.07 0.7 7.1

q01 0.83 11.98 0.83 12.16 0 -0.2 0.0
q02 1.10 23.48 1.15 21.10 0.02 2.4 -0.1
q03 2.06 39.64 2.41 36.60 0.03 3.0 -0.4
q04 1.31 29.04 1.32 25.28 0.04 3.8 0.0
q05 2.35 46.40 2.44 41.34 0.09 5.1 -0.1

q01 0.83 9.88 0.83 9.96 0.01 -0.1 0.0
q02 0.93 20.56 0.83 12.02 0.01 8.5 0.1
q03 0.82 11.38 0.78 10.72 0.02 0.7 0.0
q04 0.70 12.88 0.70 13.84 0.02 -1.0 0.0
q05 0.78 12.54 0.78 13.10 0.08 -0.6 0.0

LUBM (Memory in GB, Time in seconds)

LUTZ  (Memory in GB, Time in seconds)

Average: 4.34
Average: 324.94

Query
No Planner Planner

Maximum: 11.4
Maximum: 1170.83

Improvements: 13/14
Improvements: 14/14

Saved Memory
Saved Time

Improvements: 11/11
Improvements: 10/11

Average: 2.81
Average: -0.1

Maximum: 5.06
Maximum: 0

Stock Exchange  (Memory in MB, Time in seconds)

Saved Memory
Saved Time

Saved Memory
Saved Time

Average: 0.26
Average: 8.28

Maximum: 0.79
Maximum: 24.94

Saved Memory
Saved Time

Improvements: 4/5
Improvements: 2/5

Average: 1.52
Average: 0.03

Maximum: 8.54
Maximum: 0.11

Improvements: 2/5
Improvements: 5/5

Vicodi (Memory in MB, Time in seconds)

memory and the total sum of execution times computed over all databases and queries,

along with the corresponding profits. In all benchmarks, the peak of memory when the
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Table 2. Statistics on LUBM, LUBM-LUTZ, Stock Exchange and Vicodi: the maximum

peak of memory and the total sum of execution times computed over all databases and

queries, along with the corresponding profits. Time is in seconds, memory is in MB.

No Planner Planner Profit (%) No Planner Planner Profit (%)
LUBM 81439.90 72733.30 10.7% 83960.03 65763.48 21.7%
LUBM-LUTZ 21701.70 21634.20 0.3% 14907.74 14452.21 3.1%
Stock Exchange 77.40 68.90 11.0% 38.25 40.72 -6.5%
Vicodi 38.50 26.60 30.9% 20.32 19.58 3.7%

Domain
Peak of Memory Sum of Times

planner is used is less than the one obtained using the standard version of i-dlv. Regard-

ing times, although we experimented a small worsening for Stock Exchange (6.5%), we

observe a general improvement which is greater than 20% in our large-scale benchmark.

6 Conclusion

In this work we introduced an evaluation planner for Datalog programs. The planner has

been conceived to be applied to ontology-based query answering contexts, where often,

in case of large databases, standard approaches are not convenient/applicable due to

memory consumption. It relies on an ASP program that computes the plan, intended

as an indexing schema for the database together with a body-ordering for each rule

in the program. The computed plan minimizes the overall cost (in term of memory

consumption) of indices; moreover, the usage of the plan with the dlv system allows

to further reduce memory usage since some expensive internal optimizations of dlv can

be disabled. Results of the experiments conducted on popular ontological benchmarks

confirm the effectiveness of the approach. Eventually, precomputing offline an evaluation

plan plays an extremely important role in reasoners with a server-like behavior, since

this allows for further reducing the time required by the actual computation.
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