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Steady streaming vortex flow from microbubbles has been developed into a
versatile tool for microfluidic sample manipulation. For ease of manufacture and
quantitative control, set-ups have focused on approximately two-dimensional flow
geometries based on semi-cylindrical bubbles. The present work demonstrates how the
necessary flow confinement perpendicular to the cylinder axis gives rise to non-trivial
three-dimensional flow components. This is an important effect in applications such
as sorting and micromixing. Using asymptotic theory and numerical integration of
fluid trajectories, it is shown that the two-dimensional flow dynamics is modified in
two ways: (i) the vortex motion is punctuated by bursts of strong axial displacement
near the bubble, on time scales smaller than the vortex period; and (ii) the vortex
trajectories drift over time scales much longer than the vortex period, forcing
fluid particles onto three-dimensional paths of toroidal topology. Both effects are
verified experimentally by quantitative comparison with astigmatism particle tracking
velocimetry (APTV) measurements of streaming flows. It is further shown that the
long-time flow patterns obey a Hamiltonian description that is applicable to general
confined Stokes flows beyond microstreaming.
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1. Introduction
Oscillations of a boundary relative to surrounding viscous fluid can give rise to

secondary steady currents. These steady flows, driven by non-zero Reynolds stresses
due to the inertia of the fluid oscillation, have been termed (boundary) ‘streaming
flows’ and are observed in a wide variety of applications (Longuet-Higgins 1953;
Nyborg 1958; Lighthill 1978). Classical studies of such streaming phenomena have
focused on translational oscillations of solids (Raney, Corelli & Westervelt 1954;
Riley 1965, 1966; Stuart 1966). More recently there has been increased interest in
streaming due to bubbles undergoing a combination of volume and shape oscillations,
primarily for two reasons: (a) bubbles allow a more powerful actuation of the
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Three-dimensional streaming 409

flow due to the large amplitudes that may be accessed (the streaming speed being
quadratic in the oscillation amplitude) and (b) flows over bubbles, which generally
permit slip, are subject to little frictional resistance compared to those over solid
no-slip surfaces. This makes acoustically excited bubbles particularly attractive for
microfluidics, where they have been successfully used for applications such as particle
trapping (Lutz, Chen & Schwartz 2006; Wang, Jalikop & Hilgenfeldt 2011; Rogers
& Neild 2011), size-selective sorting (Wang, Jalikop & Hilgenfeldt 2012), shear force
actuation (Marmottant & Hilgenfeldt 2003) and microfluidic mixing (Liu et al. 2002;
Ahmed et al. 2009; Wang et al. 2009; Wang, Rallabandi & Hilgenfeldt 2013).

In order to obtain streaming flows that are not only powerful, but conceptually
simple and easy to manufacture in a microfluidic context, initial work on hemispherical
bubbles (Marmottant & Hilgenfeldt 2003, 2004) has widely been replaced by a
two-dimensional geometry (Wang et al. 2011; Patel, Tovar & Lee 2012; Wang et al.
2012; Wiklund, Green & Ohlin 2012; Xie et al. 2012; Phan et al. 2014): in such
microstreaming devices, the bubble has a semi-cylindrical shape and is sessile on the
wall of the device (see figure 1a). The bubble is confined axially by two parallel walls
(henceforth called top and bottom walls), which establishes a stable interface attached
to the device by means of pinned contact lines. It has been shown that the symmetry
of the set-up establishes approximately two-dimensional flows close to the mid-plane
of the channel (where the flow is fastest) (Rallabandi, Wang & Hilgenfeldt 2014).
The two-dimensional theory, however, must have limitations close to the top and
bottom walls of the channel, where the flow speed approaches zero. It is important
to quantify any three-dimensional flow effects, which may affect applications such as
mixing or sorting either beneficially or adversely. Until now, no study has developed
a systematic theory of three-dimensional streaming.

In the present work, we build on our own two-dimensional streaming theory, and
show that the presence of the top and bottom walls, together with the oscillatory
properties of the bubble surface, introduce characteristic secondary axial flow
components that are not confined to the vicinity of the walls, but introduce qualitative
changes to the entire flow field. The superposition of the primary two-dimensional
streaming and the secondary axial flows results in a three-dimensional flow field that
explains recent experimental particle trajectory data measured by astigmatism particle
tracking velocimetry (APTV) experiments (Cierpka et al. 2011; Marin et al. 2015).
We show how our theory describes new aspects of particle motion in streaming flows
over both short and long time scales, adding important new insight. The results are
then generalized to any simple superposition of two-dimensional and axisymmetric
flow components in the framework of a Hamiltonian flow theory on long time scales,
establishing a broader applicability to general axially confined two-dimensional flows.

2. Problem definition and governing equations

Figure 1 illustrates the typical geometry of a microbubble used to drive streaming
flows in a microfluidic device: the semi-cylindrical bubble of radius a protrudes from
a blind side channel of width 2a branching off a main channel, whose opposite wall
(in the y-direction) is at a distance of H= ha. The entire structure has a uniform depth
D= da in the z-direction for ease of manufacture, so that the bubble axis spans the
depth of the microchannel, see figure 1(a). The bubble contact lines at (x=±a, y= 0)
are pinned to the side channel corners. The channel is filled with a fluid of kinematic
viscosity ν and density ρ. The application of an acoustic driving pressure at an angular
frequency ω = 2πf (via a piezoelectric transducer) drives harmonic oscillations of
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FIGURE 1. (Colour online) (a) Geometry of the microchannel, showing the bubble and the
coordinate system. (b) Experimental flow lines in a d= 2.5, h= 6.25 channel showing the
predominant two-dimensional ‘fountain mode’ streaming (indicated by arrows), visualized
using signals from tracer particles of 2 µm diameter in a region of ∼10 µm around the
channel mid-plane (z= 0).

the bubble surface at a characteristic amplitude εa, where ε � 1. Note that for the
typical sizes (a ∼ 50 µm) and frequencies (f ∼ 20 kHz) the acoustic wavelength is
much greater than the bubble size. Using a and ω−1 to normalize length and time
respectively, the interface shape for small-amplitude oscillations can in general be
written as

R(θ, z, t)= 1− iεeitζ (θ, z), (2.1)

where ζ (θ, z) is a complex function and it is understood that only the real part of any
complex expression has physical significance. Here, θ = tan−1(y/x) is the polar angle.
Oscillations of the interface drive a flow field which, in the limit of small oscillation
amplitude, is conveniently solved for by an expansion in powers of ε (Riley 1967;
Davidson & Riley 1971; Longuet-Higgins 1998; Riley 2001; Sadhal 2012; Rallabandi
et al. 2014).

The primary oscillatory flow u0 (characteristic scale εaω) is irrotational except
in viscous boundary layers of dimensionless thickness δ ≡ a−1√2ν/ω� 1, near the
boundaries of the domain (Longuet-Higgins 1953; Nyborg 1958; Longuet-Higgins
1998). Steady Reynolds stresses due to the oscillatory flow drive a secondary
steady Eulerian flow 〈u1〉 (〈·〉 denotes the time average over an oscillation cycle),
with a characteristic velocity scale us = ε2aω and a streaming Reynolds number
Res = usa/ν, which is �1 in many practical situations (Nyborg 1958; Wu & Du
1997; Longuet-Higgins 1998; Riley 2001), including microfluidics applications (Wang
et al. 2011, 2013; Sadhal 2012). The time-averaged motion of fluid elements under
the combination of the primary and secondary flows can be described in terms
of a steady Lagrangian velocity field U = 〈u1〉 + ud, where ud is the Stokes drift,
defined by

ud =
〈(∫

u0 dt · ∇
)

u0

〉
. (2.2)

It is this time-averaged Lagrangian motion of the fluid that is practically relevant
for fluid transport and is normally referred to as the ‘steady streaming’. Figure 1(b)
shows the typical appearance of the steady streaming flow from a sessile bubble as
viewed along the axis of the bubble. It was observed experimentally (Wang 2013;
Wang et al. 2013) and shown theoretically (Rallabandi et al. 2014) that this pattern
of a vortex pair in ‘fountain’ orientation (flow upwards at x = 0) persists virtually
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unchanged over a range of frequencies. It was also observed (Wang 2013) that the
pattern does not vary much with the depth z (compare out-of-focus tracks with the
in-focus tracks closer to z= 0, in figure 1b). However, the latter observations of the
two-dimensional character of the flow were limited by the microscopic depth of field
(&10 µm) and the general inability to follow individual particles over long times. We
will show here that new flow features appear beyond two-dimensional flow, and that
they can be verified by more sophisticated experimental techniques.

For a theoretical description of the streaming U, it is convenient to first write the
Reynolds stress term σ ≡ 〈u0 · ∇u0〉 as σ = 〈∇|u0|2/2〉 + 〈(∇ × u0) × u0〉. Using
the viscous stress scale ρνus/a to non-dimensionalize the time-averaged pressure, the
dimensionless governing equations for the Lagrangian steady flow in the limit Res� 1
are

∇ ·U = 0,

∇2U =∇2ud +∇p+ f ,

}
(2.3)

where

p= 〈p1〉 + 2
δ2

〈 |u0|2
2

〉
, and f = 2

δ2
〈(∇× u0)× u0〉. (2.4a,b)

Here, p is a dimensionless effective pressure that incorporates both the time-averaged
fluid pressure 〈p1〉 and the kinetic energy of the oscillatory flow, and f is a body
force related to the advection of oscillatory vorticity, which is confined to viscous
boundary layers (Riley 2001). The Lagrangian mean flow is no-penetration with a
vanishing tangential stress at the mean bubble surface ∂Ωb, and satisfies no-slip
boundary conditions at the rigid wall surfaces ∂Ωw,

U = 0 on ∂Ωw

Ur = 0 on ∂Ωb

Srθ = Srz = 0, on ∂Ωb,

 (2.5)

where S is the symmetric part of ∇U. Outside viscous boundary layers, where f
is exponentially small, the Eulerian steady flow 〈u1〉 = U − ud satisfies the Stokes
equations, supported by the effective pressure p.

3. Axial streaming
To motivate the streaming solutions that will be developed in this section, we first

provide the general form of the oscillatory flow u0, which ultimately drives (2.3)
through the Reynolds stress and the Stokes drift. For typical practical applications,
δ � 1, allowing u0 to be evaluated using matched asymptotic expansions, with an
‘outer’ potential flow outside boundary layers and ‘inner’ (viscous boundary layer)
solutions described by the unsteady Stokes equations (Longuet-Higgins 1953; Nyborg
1958; Riley 2001). The oscillatory outer flow may in general be expressed as a modal
decomposition

u0 =
∞∑

n=0

∞∑
m=0

umn
0 , (3.1)

where
umn

0 = eitAmn(2nαK′2m(2nα))−1
∇ϕmn, (3.2)

and
ϕmn =K2m(2nαr) cos 2mθ cos 2nαz (3.3)
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FIGURE 2. (Colour online) (a) Schematic of the flow superposition of modes in (3.18),
indicating the planar fountain u, the axisymmetric fountain c01v01, and the mixed axial–
azimuthal mode c11v11. (b) Streamline portrait of the planar flow u for a channel height
h= 6.25, indicating limiting streamlines ψ : ψ = ψm corresponds to the vortex centre of
the two-dimensional flow (smallest streamline) and ψ = 0, the largest streamline. (c) Flow
lines of the axisymmetric flow in an r–z plane, showing a fountain orientation (radially
outward velocities at z= 0). The shaded region r< 1 indicates the bubble.

is a cylindrical harmonic function (∇2ϕmn = 0). Here, Kν represents a modified
Bessel function of the second kind, with K′ν(z)= d/dz(Kν(z)) and α ≡ π/d. Amn are
the (generally complex) coefficients of the Fourier decomposition of the interface
deformation ζ (θ, z) and are determined by bubble interface dynamics and the pinning
of contact lines (Wang et al. 2013).

Of this general combination of modes, planar modes (n = 0) have the largest
amplitudes due to their relatively small damping, driving flows that decay algebraically
away from the interface. On the other hand, axial modes (n> 0), which drive flows
that decay exponentially (∼e−2nαr) away from the bubble surface are only weakly
excited due to greater damping (see e.g. Sanz & Diez 1989; Wang et al. 2013).
Therefore, to leading order, only planar modes of u0 contribute to (2.3), driving
two-dimensional streaming in the absence of the confining top and bottom walls
(Wang et al. 2013; Rallabandi et al. 2014), see figure 2(b). Such a two-dimensional
description of the flow has been used successfully to explain the experimentally
observed streaming patterns and velocity fields in the x–y plane in the case of
oscillating bubbles (Rallabandi et al. 2014), cf. figure 1(b), and solid cylinders (Lutz
et al. 2006). In general, however, steady axial flow components (in the z-direction)
should be present.

Such axial velocity components of the steady streaming may be excited by two
separate effects that are neglected in the two-dimensional theory: (i) the top and
bottom walls necessitate that the steady fluid velocity vanish identically at the top
and bottom walls (z=±d/2), and (ii) axial oscillation modes of the bubble introduce
Reynolds stress components that drive axial motion of the fluid.

We focus our attention on solutions of (2.3) that are valid outside steady boundary
layers of thickness δ � 1 near the boundaries of the domain. Formally, we are
interested in the outer steady solution of a matched asymptotic expansion; this will
be understood henceforth unless otherwise stated. Linearity of the governing equations
makes it convenient to express the (three-dimensional) Lagrangian steady velocity field
U as a superposition of a two-dimensional steady solution u (cf. figure 2a,b) and a
secondary solution v with non-zero axial velocity components, i.e.

U(r, θ, z)= u(r, θ)+ v(r, θ, z), (3.4)

so that v satisfies (2.3), with ud, p and f now taken expressly to be axially non-
uniform, while planar components are addressed by u.
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The outer flow must also satisfy appropriate matching conditions for proper
asymptotic matching with the boundary layer solutions at the mean bubble surface
(r= 1) and at the top and bottom walls (z=±d/2). Since normal velocity variations
are small over the boundary layer thickness, kinematic boundary conditions are
directly applicable to the outer solution at all boundaries ∂Ω = ∂Ωw + ∂Ωb,

v · n∂Ω = 0 on ∂Ω, (3.5)

where n∂Ω is the unit normal to ∂Ω .
No-slip conditions at the top and bottom walls are enforced with the help of steady

boundary layers, which in general support large axial gradients of planar velocity
components near z=±d/2. This establishes effective slip conditions on the Lagrangian
outer flow at the top and bottom walls (generally a slip velocity of O(1)) that depend
on the particulars of the oscillatory flow u0 (see e.g Longuet-Higgins 1953; Nyborg
1958). Consider now the mixed boundary layer region near the contact line at the
bottom wall, defined by r= 1+O(δ), z=−d/2+O(δ), where the structure of the no-
slip wall boundary layer must conform to that of the no-stress bubble boundary layer.
Within this region, the pinning of contact lines, reflected in (3.5), ensures that Ur ∼
Uz∼O(δ), which along with no-stress conditions at the bubble (∂r(r−1Uθ)+ r−2∂θUr=
0), requires that Uθ ∼O(δ2). By symmetry, the same arguments are applicable to the
flow in the vicinity of the contact line between the bubble and the top wall r =
1, z= d/2. All boundary layer velocity components are therefore O(δ) or smaller in
the vicinity of the contact lines at the top and bottom walls. For proper asymptotic
matching, the Lagrangian outer flow must therefore, to leading order in δ, satisfy
no-slip conditions at r= 1, z=±d/2, which may be written as

v =−u on r= 1, z=±d/2. (3.6)

The bubble boundary conditions are more involved, since Reynolds stresses at
the bubble may in general depend on a large number of mode combinations that
are sensitive to the oscillatory boundary layer structure (see e.g. Davidson & Riley
1971; Longuet-Higgins 1998; Rallabandi et al. 2014). Rather than compute these
conditions exactly, we analyse the azimuthal and axial symmetries of these terms,
which are ultimately manifested in the streaming through the bubble boundary
conditions (2.5) enforced at r=1. Let us consider the Reynolds stress term engendered
by the product of two arbitrary oscillatory flow modes ukl

0 and umn
0 of (3.2), defined

by σ kl,mn = 〈umn
0 · ∇ukl

0 + ukl
0 · ∇umn

0 〉. Outside steady boundary layers, we have

σ kl,mn = A∗mnAkl

8nlα2 K′2m(2nα)K′2k(2lα)
∇(∇ϕmn · ∇ϕkl)

= A∗mnAkl

8nlα2 K′2m(2nα)K′2k(2lα)
∇

2∑
i=1

2∑
j=1

λkl,mn
ij (r) cos[2(m+ (−1)ik)θ ]

× cos[2(n+ (−1)jl)αz], (3.7)

where the asterisk denotes the complex conjugate and

λkl,mn
ij = 1

4 g′mn(r)g
′
kl(r)− [(−1)imk+ (−1)jα2nl]gmn(r)gkl(r), (3.8)
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with gmn(r) ≡ K2m(2αnr). The same azimuthal and axial symmetries also appear in
analogous modes of the Stokes drift terms ukl,mn

d defined by

ukl,mn
d ≡

〈(∫
umn

0 dt · ∇
)

ukl
0 +

(∫
ukl

0 dt · ∇
)

umn
0

〉
. (3.9)

Through (2.3), these axial and azimuthal dependences of σ kl,mn and ukl,mn
d are reflected

directly in the steady outer solution (see e.g. Wang 1968; Davidson & Riley 1971;
Longuet-Higgins 1998).

To first approximation, due to their large amplitudes, products of planar modes
(n = 0) contribute most strongly to (3.7), driving two-dimensional flow. Non-trivial
axial dependences of σ arise predominantly from the product of the most strongly
excited axial mode m = 0, n = 1 (oscillating axisymmetric quadrupole) with the
dominant two-dimensional mode k = l = 0 (oscillating line source). The resulting
forcing σ 00,01, by (3.7), is axisymmetric, with an axial wavelength equal to the channel
depth d, forming the most strongly excited mode of the forcing term σ . Decomposed
into its components in cylindrical coordinates, and neglecting higher-order mode
combinations, σ therefore takes the approximate form

σ ≈ σ 00,01 = A00A∗01{σr(r) cos 2αz, 0, σz(r) sin 2αz}, (3.10)

where σr(r) and σz(r) are determined by the oscillatory flow functions. Note also
that retaining the same axial modes (0, 1), but including higher-order planar modes
(k > 0, l = 0) results in Reynolds stresses with both axial and azimuthal variation.
Reynolds stress terms quadratic in axial mode amplitudes, as well as contributions
involving higher-order axial modes, are subdominant due to their weak excitation and
will be ignored here. As we shall show presently, flows excited due to these modes
are further suppressed by their strong radial decay away from the bubble surface.

3.1. Separable Stokes solutions
Motivated by the axial and azimuthal symmetries of the Reynolds stresses at the
bubble (3.7), we seek separable solutions of (2.3). In general, the velocity field
v may be decomposed into its irrotational (conservative) part vC and a rotational
(non-conservative) part vN (Doinikov 1997; Doinikov & Bouakaz 2010). The
irrotational part of the flow has a form similar to (3.2) and is expressible in terms
of the cylindrical harmonics ϕmn given by (3.3), allowing vC

mn ≡ ∇ϕmn to satisfy the
kinematic condition at all solid walls, but not at the bubble. For completeness, we
give the expression for the components of vC

mn in cylindrical coordinates (r, θ, z):

vC
mn = {uC

mn(r) cos 2mθ cos 2nαz, vC
mn(r) sin 2mθ cos 2nαz,wC

mn(r) cos 2mθ sin 2nαz},
(3.11)

where
uC

mn(r)=−
2nα

2
(K2m+1(2nαr)+K2m−1(2nαr))

vC
mn(r)=−

2m
r

K2m(2nαr)

wC
mn(r)=−2nαK2m(2nαr).

 (3.12)

The no-penetration condition at the bubble is satisfied by making use of the
rotational, pressure-dependent solutions of the Stokes equations (vC is, by definition,
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pressure independent). The effective pressure p itself is harmonic outside boundary
layers (∇2p = 0) due to (2.3), and may be decomposed into cylindrical harmonics
(3.3). For the dimensionless pressure mode pmn = ϕmn, rotational solutions vN

mn of the
Stokes equations (∇2vN

mn =∇pmn) take the form

vN
mn = {uN

mn(r) cos 2mθ cos 2nαz, vN
mn(r) sin 2mθ cos 2nαz,wN

mn(r) cos 2mθ sin 2nαz},
(3.13)

where
uN

mn(r)=−
m

2nα
K2m+1(2nαr)+ r

2
K2m+2(2nαr)

vN
mn(r)=

m+ 1
2nα

K2m+1(2nαr)

wN
mn(r)=

r
2

K2m+1(2nαr).


(3.14)

Neglecting any axial Stokes drift contributions to the Lagrangian flow, the
corresponding Lagrangian streaming mode vmn that satisfies the no-penetration
condition at the interface r = 1 and at the walls ∂Ωw, normalized to have unit
peak axial velocity at ∂Ωb, may be written as

vmn =
(

wC
mn(1)

uC
mn(1)

− wN
mn(1)

uN
mn(1)

)−1 (
vC

mn

uC
mn(1)

− vN
mn

uN
mn(1)

)
. (3.15)

A general class of no-penetration Stokes solutions may be constructed using
linear combinations of vmn (over m and n), determined simultaneously by boundary
conditions at the bubble and at the walls. Note, however, that vmn are characterized by
exponential radial decays (∝e−2nαr). The dominance of the lowest axial mode in the
Reynolds stress, together with the exponential radial decays of (3.15) into the fluid
away from the bubble surface, ensures that the lowest (non-trivial) axial modes are
both (i) the most strongly forced, and (ii) the predominant axial streaming solutions
in the bulk of the flow. It is therefore appropriate to consider only the lowest axial
modes (n= 1) of (3.15), so that

v ≈
∞∑

m=0

cm1vm1, (3.16)

where the cm1 are determined by the slip condition (3.6) at the top and bottom wall.
Since (3.16) is only a truncated representation of the flow, rather than satisfying the
slip condition rigorously for all r > 1, we will focus on satisfying it only at r = 1.
This is an appropriate simplification since the axial solutions presented here modify
the flow significantly only near ∂Ωb, where the slip at walls due to the planar solution
u is the greatest (Rallabandi et al. 2014). At r= 1, the slip condition (3.6), along with
(3.16) when decomposed into a Fourier series in θ , yields the coefficients

cm1 =−

∫ π

0
u(1, θ) · θ̂ sin 2mθ dθ∫ π

0
v(1, θ, d/2) · θ̂ sin 2mθ dθ

, (3.17)

where θ̂ is the unit vector in the azimuthal direction.
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Note that (3.17) does not determine the strength of the axisymmetric solution c01,
since (3.17) is specifically a statement of vanishing azimuthal velocity at the interface.
It should be expected, however, that such a flow component is in general excited,
in particular due to bubble oscillations that set up axisymmetric Reynolds stresses
(3.10). The structure of the axisymmetric flows (r, z) is entirely analogous to planar
flows (r, θ) in the x–y plane with respect to the governing equations and boundary
conditions, albeit weaker in overall magnitude due to weaker forcing (smaller axial
oscillation amplitudes). This suggests that the axisymmetric solution also inherits the
‘fountain’ structure of the two-dimensional solution due to the pinning of contact lines
at the top and bottom walls (see e.g. Wang et al. 2013; Rallabandi et al. 2014), with
radially outward velocities at the mid-plane (z= 0) and radially inward velocities near
the top and bottom walls (cf. figure 2b,c).

In principle c01 may be evaluated from a detailed calculation of the Reynolds
stresses. This however requires both (i) a resolution of the axial oscillation mode
amplitudes Amn as functions of frequency (see e.g. Gelderblom et al. 2012; Wang
et al. 2013), and (ii) a detailed description of both oscillatory and steady no-stress
boundary layers due to these flow modes, accurate up to O(δ2) (see e.g. Davidson
& Riley 1971; Longuet-Higgins 1998; Rallabandi et al. 2014). We do not attempt
to carry out this analysis rigorously here, but rather estimate c01 by considering the
ratio between the damping coefficient γ00 of the monopole (m= 0, n= 0) and that of
the lowest axial mode (m= 0, n= 1), denoted by γ01; cf. equation (21) of Wang et al.
(2013). In the limit of small damping, the relative mode amplitude scales inversely
with the relative damping coefficient; for the channel aspect ratio used in the present
experiments (d/a= 2.5), this results in |A01|/|A00| ≈ γ00/γ01≈ 0.32. Under the present
normalization (|A00| = 1), the velocity scale due to the product of the monopole and
the axisymmetric quadrupole is therefore ∼0.32us, resulting in |c01| ∼ 0.32. The value
of c01 inferred from experimental measurements, described in more detail in § 5,
agrees closely with this estimate.

For m> 1, the coefficients cm1 may be computed directly from the two-dimensional
theory, using (3.17). The ‘fountain’ structure of the planar flow u (one vortex per
quadrant, cf. figure 2b), naturally leads by (3.17) to |c11|� |cm1| for m> 1. Retaining
therefore only terms of (3.16) proportional to c01 and c11, the leading contributions to
the three-dimensional streaming flow may be written as

U = u+ c01v01 + c11v11 (v = c01v01 + c11v11). (3.18)

The two axial contributions c01v01 and c11v11 represent, respectively, the lowest
axisymmetric and axial–azimuthal modes, and are depicted in figure 2(a). These
contributions address, respectively, the excitation of steady flow due to axial bubble
oscillations (axial oscillatory flow gradients) and the observance of no-slip conditions
at axially confining walls.

4. Results and discussion
Before we discuss the resultant flow U in detail, it will prove useful to write the

planar flow u= {ur, uθ , 0} in terms of a stream function ψ(r, θ) so that ur = r−1∂θψ
and uθ = −∂rψ . The steady two-dimensional flow is in general composed of a
dominant fountain vortex and a sub-dominant anti-fountain vortex near the wall at
y = 0 (Wang et al. 2013; Rallabandi et al. 2014). Here, we neglect the effect of
the anti-fountain near the wall, which is typically confined to a region comparable
in extent to the boundary layer thickness δ, and is therefore greatly suppressed
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by the (no-slip) wall boundary layer structure. The stream function ψ describing
the two-dimensional Lagrangian streaming flow in a channel of finite height h is in
general obtained by a modification of the solution obtained in the half-space (h→∞),
by the procedure outlined in appendix A. Focusing on the quadrant (x > 0, y > 0),
the two-dimensional steady flow is characterized by a single vortex system (closed
streamlines) governed by ψ ∈ (ψm, 0), where ψ = 0 delineates the boundaries of
the domain (largest enclosed area), and ψ = ψm < 0 identifies the two-dimensional
vortex centre (vanishing enclosed area, see figure 2b). The fountain vortex flow of
figure 2(b), with its outward flow near the symmetry plane θ = π/2 (Wang et al.
2012, 2013; Rallabandi et al. 2014) has a simple far-field approximation to the
stream function for large channel height (h→∞), namely,

ψ ∼ 4e1

r
sin2 θ cos θ, as r→∞, (4.1)

where e1 is an O(1) constant related to planar oscillation mode amplitudes and phases
and is negative for fountain-mode streaming (Rallabandi et al. 2014).

The superposition of the two-dimensional Lagrangian streaming with the flows
computed in the previous section yields a three-dimensional steady flow that
satisfies (i) the Stokes equations, (ii) no-penetration conditions at all boundaries and
(iii) no-slip conditions at the confining walls close to the interface. We will focus on
material trajectories in this flow, given by solutions x(t) of ẋ(t)=U(x(t)), which are
integrated numerically using a fourth-order Runge–Kutta scheme. Due to the symmetry
of the problem, we focus our results on the region x> 0, 0< y< h, 0< z< d/2. The
smallest time scale relevant to the steady flow is the time scale of fluid advection
along the bubble interface, which we define as Ts ≡ a/us = 1/(ε2ω), and use to
non-dimensionalize time for all the results following below.

The two-dimensional vortex motion occurs over the nominal orbit time along closed
two-dimensional streamlines (under the action of u alone), which is much greater than
Ts due to the algebraic decay of the flow velocity away from the bubble. In units of
Ts, the dimensionless planar orbit time on a streamline T(ψ) is in general defined by

T(ψ)=
∮
ψ

1
|u| ds=

∮
ψ

1
|∇ψ | ds, (4.2)

where ds= |u| dt is a differential arclength element along the streamline and the path
of integration along ψ is counterclockwise. Using the far-field solution (4.1), one may
estimate T(ψ) as

Th→∞(ψ)≈
∫ 0

π/2

r(ψ, θ)
uθ(ψ, θ)

dθ =− πe2
1

2ψ3
. (4.3)

This estimate, valid for h→∞, becomes quantitatively modified for flow fields with
finite h (see appendix A), but the order of magnitude of T(ψ)∼ 10Ts–100Ts obtained
from (4.3) remains valid.

4.1. Three-dimensional effects on short and long time scales
The axial flows modify the two-dimensional motion in at least two significant ways.
Perhaps most strikingly, a fluid particle trajectory close to the bubble (r . 1+ d/(2π))
shows strong bursts of axial displacement on the short time scale ∼Ts, much shorter
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FIGURE 3. (Colour online) (a) Axial motion z(t) of a typical fluid particle trajectory,
showing the strong bursts of axial displacement (when the trajectory is close to the bubble
surface) and the net axial displacement 1z over one cycle of radial motion. (b) Fluid
particle trajectories for two different initial conditions, showing the nested torus structure:
light red is a trajectory of large axial extent, while black indicates a trajectory close to the
‘core’ of the torus. The solid black line at (x= 1, y= 0) indicates the bubble contact line
with the bounding wall, dashed lines indicate the locations of symmetry planes intersecting
the bubble surface at (z= 0, r= 1) and (x= 0, y= 1).

than the two-dimensional orbit time. Figure 3(a) shows an example of such a
trajectory: as axial flow components of v very close to the bubble are in general
comparable to planar velocity components due to the coupling (3.6), the fluid element
approaches the bubble and is advected along the interface (in the direction θ→π/2),
suffering O(1) axial displacements over the time scale Ts. The axial confinement
necessitates a spatial reversal of the axial velocity components, so that a fluid element
experiences axial displacements both towards and away from the mid-plane during the
course of its motion near the bubble. As a consequence, the net axial displacement
(1z) of a fluid element over the intermediate time scales T(ψ), averaged over its
nominal two-dimensional orbit, is typically small compared to the bubble radius
(figure 3a).

Figure 3(b) illustrates the long-time effect of these net displacements: similar to the
axial 1z, planar components of v result in small deviations of the planar projections
of fluid trajectories from nominally closed two-dimensional orbits. If the depth of the
channel is on the order of the bubble radius (or greater), the small axial and planar
drifts result in a motion over time scales longer still than T(ψ), over which a fluid
element explores a significant fraction of the half-channel by systematically sampling
a succession of planar orbits of varying planar extents (varying ψ) at different depths
z (cf. figure 8). The superimposed axial and radial motions result in quasi-periodic
trajectories that fill toroidal structures in three dimensions (figure 3b). It can be
seen that fluid elements at different initial positions follow toroidal trajectories of
considerably varying spatial extents, none of which intersect. At the core of this
nested system of tori is a singly periodic trajectory of vanishing toroidal volume.

The long-time toroidal motion of a fluid element is further illustrated in figure 4(a):
its quasi-period τ depends on the initial position of the fluid particle, with net motion
towards the mid-plane z= 0 occurring over the widest planar orbits (ψ ∼ 0), followed
by motion towards the wall (z = d/2) occurring over ‘tight’ planar orbits that are
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FIGURE 4. (Colour online) Typical toroidal trajectory, as (a) predicted by the theory for
a fluid element, and (b) measured experimentally for an approximately passive tracer by
APTV, cf. Marin et al. (2015). The motion is towards the channel walls on the tight orbits
(close to the nominal two-dimensional vortex centre), indicated in red, and towards the
channel mid-plane during wider planar orbits, coloured grey. Arrows indicate these axial
motions as well as the two-dimensional fountain orientation (blue).

closer to the two-dimensional vortex centre (ψ ∼ ψm). Reversals in the direction of
the slow axial motion occur near the wall and the mid-plane, involving relatively large
changes in the planar extent of the quasi-planar orbits, i.e. a widening of tight orbits
near the wall, and a tightening of wide orbits close to the mid-plane (see figure 4).
As discussed in § 5, all elements of this motion are observed in experiment as well
(figure 4b).

4.2. Generalized Hamiltonian theory of three-dimensional effects
The wide spatial range explored by different material points underscores the
importance of understanding the kinematics of these trajectories, particularly in
the context of applications such as fluid mixing and manipulation of microparticles
in these flows.

By definition, the displacement in the z coordinate of a fluid element is simply
the time integral of the axial component of the velocity field as a function of its
instantaneous position x(t). However, the drift in the z coordinate of a fluid element
over a time T(ψ), denoted by 1z, is typically much smaller than the channel depth
d (see figure 3a), with significant axial motion only occurring over much longer time
scales. In the limit 1z/d� 1 (or otherwise |v|� |u|), the motion of the particle over
a time T(ψ) is therefore approximately planar to leading order in 1z, i.e. x(t) ≈
x̃(t) = {r(t), θ(t), z} such that z and ψ = ψ(r(t), θ(t)) are approximately constant
over the motion. For 1z/d� 1, one may therefore compute 1z as the integral axial
displacement of a fluid element as it traverses a nominally closed two-dimensional
orbit (constant z and ψ), over the time T(ψ). To first approximation, we may write

1z(ψ, z)=
∫ T(ψ)

0
vz(x(t)) dt≈

∫ T(ψ)

0
vz(x̃(t)) dt. (4.4)

Note that the absolute values of the limits in the time integral are unimportant as long
as their difference is T(ψ) – this ensures an integral over the entire closed orbit ψ ,
valid for all material points on ψ . The 1z defined by (4.4) therefore represents the
deviation of a material orbit from planarity over the time T(ψ).
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The deviation from closedness of orbits over a time T(ψ), when projected on the
x–y plane, may be similarly quantified by a drift in ψ (denoted by 1ψ) of a fluid
element. The time rate of change of the stream function value ψ sampled by a fluid
element as it is advected by the three-dimensional flow field U is simply the material
derivative of ψ , which for steady flow is given by U · ∇ψ = v · ∇ψ . If we again
assume small deviations from closedness over a planar orbit time scale, 1ψ over the
time T(ψ) is computed to first approximation as

1ψ(ψ, z)=
∫ T(ψ)

0
v(x(t)) · ∇ψ(x(t)) dt≈

∫ T(ψ)

0
v(x̃(t)) · ∇ψ(x̃(t)) dt. (4.5)

It may be shown (see appendix B) that for an arbitrary incompressible velocity field
v, the approximate drifts 1z and 1ψ (using x̃(t)) defined respectively by (4.4) and
(4.5), identically satisfy the differential continuity equation

∂1ψ

∂ψ
+ ∂1z

∂z
= 0. (4.6)

This automatically allows them to be expressed in terms of a Hamiltonian H (ψ, z)
as

1ψ = ∂H
∂z

, 1z=−∂H
∂ψ

, (4.7a,b)

where H (ψ, z) may be written as

H (ψ, z)≡−
∫ ∮

ψ

v · n ds dz, (4.8)

and n ≡ −∇ψ/|∇ψ | is the local unit normal to streamlines in the x–y plane; see
appendix B for a more detailed discussion. Since these drifts occur over a planar orbit
time T(ψ), one may define mean drift velocities as

vψ(ψ, z)≡ 1
T
∂H

∂z
, vz(ψ, z)≡− 1

T
∂H

∂ψ
. (4.9a,b)

The system (4.9) constitutes precisely an incompressible two-dimensional flow field
in the abstract ψ–z space, governed by the Hamiltonian H (ψ, z), which plays the role
of a stream function and remains invariant over the long-time three-dimensional steady
motion of a fluid element. Since both u and v involve vanishing normal velocities
on ∂Ω , it follows from (4.8) and (4.9) that the flow in the abstract space does not
penetrate its boundaries, i.e.

vψ(ψm, z)= vψ(0, z)= vz(ψ, 0)= vz(ψ, d/2)= 0. (4.10)

This automatically ensures the existence of at least one elliptic point (ψc, zc) at which
∂ψH = ∂zH = 0, which represents a two-dimensional curve in real space given
by ψ(r, θ) = ψc, z = zc. Any material point on this curve, by virtue of lying on a
(stable) stagnation point of the ψ–z flow, remains confined to it under the action
of the three-dimensional flow field, i.e. the curve in real space defined by (ψc, zc)
approximates the core of the system of nested toroidal fluid trajectories (cf. figure 3b).
Curves of constant H in the vicinity of the core are concentric about it, spanning

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

33
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.336


Three-dimensional streaming 421

0.5

1.0
(a)

–3

–2

–1

0
(b)

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

FIGURE 5. (Colour online) (a) Phase portrait of the Hamiltonian system in ψ–z space,
computed for h → ∞. Closed dashed lines are curves of constant H representing
three-dimensional tori in real space, with the light red and black solid-line trajectories
corresponding to the respective tori in figure 3(b). (b) Functions η(ψ) at f = 20 kHz and
d= 2.5 for different channel heights h.

finite ranges of axial coordinates z and streamlines ψ , and therefore delineate surfaces
of the tori on which fluid elements move in real space. Figure 5(a) shows the ψ–z
phase portrait that provides this simplified description of the three-dimensional
motion. It is noteworthy that this description assumes no particular forms for u and
v, only requiring that the two-dimensional flow is steady and characterized by closed
streamlines, and is therefore in principle applicable to any perturbed two-dimensional
flow under confinement.

For v given by (3.18) (single axial wavenumber), the Hamiltonian is separable and
takes the form

H = η(ψ) sin 2αz, (4.11)

so that

vψ = 2α
T(ψ)

η(ψ) cos 2αz, vz =− 1
T(ψ)

η′(ψ) sin 2αz. (4.12a,b)

The core trajectory is therefore located at zc = d/4 and η′(ψc) = 0; note that η′(ψ)
is guaranteed to have at least one zero within the relevant range of stream function
values (ψm, 0). The temporal evolution of the stream function is therefore given by

dψ
dt
=± 2α

T(ψ)

√
η2 −H 2. (4.13)

The characteristic function η(ψ) itself is obtained from evaluating (4.8) and (4.11),
and displayed in figure 5(b). Its shape is relatively insensitive to the channel width
for h not too small.

Equation (4.13) may be solved numerically for given initial conditions (z0, ψ0).
For trajectories that approach the core, H ∼H (ψc, zc), orbits in the ψ–z plane are
elliptical so that ψ(t) and z(t) both vary sinusoidally with a single frequency. For
arbitrary H , the temporal motion is asymmetric over a three-dimensional period τ
due to the dependence of the drift velocities on 1/T(ψ), so that the axial dynamics
are faster for smaller orbits ψ/ψm ∼ 1, and slower for larger planar orbits ψ/ψm ∼ 0.
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FIGURE 6. (Colour online) (a) Axial coordinate z and (b) normalized stream function
ψ/ψm as functions of time, over approximately one three-dimensional quasi-period τ .
Blue lines represent the numerical integration of particle trajectories, while red lines show
the predictions of the Hamiltonian theory, which captures the long-time kinematics while
averaging over the shorter time scales.

In real space, this corresponds to the faster axial motion towards the top wall (z=d/2)
over tight planar orbits, and the slower axial drift towards the mid-plane (z= 0) over
wider orbits, as depicted in figure 6(a), where the red line indicating the Hamiltonian
theory captures the asymmetry of the long-time motion. The ψ-motion depicted in
figure 6(b) is much more symmetric, but is also subject to abrupt jumps on the short
time scale.

5. Experimental data for three-dimensional streaming flows
A microbubble streaming set-up of the type depicted in figure 1(a) was used to

obtain three-dimensional trajectory data for approximately passive tracer particles
(polystyrene beads of diameter 2 µm) utilizing APTV (Cierpka et al. 2011; Cierpka
& Kähler 2012; Rossi & Kähler 2014). In this optical imaging technique, the image
of a spherical tracer particle is distorted by a cylindrical lens into elliptic shapes
whose eccentricity depends on the depth coordinate of the particle along the optical
axis. This allows the quantification of all three velocity components of moving tracer
particles in a three-dimensional domain with a single camera. The experiments were
conducted using a = 40 µm, f = 20 kHz, d = 2.5, and h = 25, with particle images
taken by a high-speed camera connected to an inverted microscope, at a recording
speed of 500 f.p.s. The measurement uncertainty of this technique arises primarily
from errors in particle detection and tracking, and the degree to which the elliptical
shapes of the particle images can be accurately determined (see Rossi & Kähler 2014
for details). For the present experiments, the measurement uncertainty in the position
of a particle is ≈±0.1 µm in the x and y directions and ≈±1 µm in the z direction,
much smaller than typical length scales of interest (∼10 µm). More details about this
use of the technique in a microfluidic context and more experimental data on bubble
microstreaming are presented in Marin et al. (2015). Figure 4(b) displays an example
trajectory that shows all the qualitative features predicted by the three-dimensional
streaming theory: one trajectory typically occupies half the channel (between one wall
and the mid-plane) and consists of approximately two-dimensional trajectory loops
whose radial extent is small as the particle is displaced towards the wall, then widens
to a greater radial extent as the z-motion reverses and the particle moves towards the
mid-plane.
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FIGURE 7. (Colour online) (a) Axial motion of a particle over short time scales in the
vicinity of the bubble, predicted by the theory (solid line) and measured experimentally
(markers). Note the large O(1) axial excursion of the particle on the shortest time scales
∼Ts as it passes close to the bubble, which ultimately results in a smaller net axial
displacement 1z, informing the long-time three-dimensional motion. (b) Projection of a
part of a three-dimensional particle trajectory in the x–y plane computed from U (red),
showing the radial drift as a systematic spiralling deviating from the two-dimensional
periodic orbits (blue), with deviations concentrated at locations close to the bubble surface.

In order to model the axial motion quantitatively, we obtain the value of c01
from the experimentally measured azimuthal profile of the axial velocity component
Uz(θ) near the bubble (r ≈ 1), which determines the ratio c01/c11. This yields c01,
since c11 ≈ −1.41 is given automatically by (3.17) and the theoretical u, thereby
fixing the shape of the flow. The value of c01 ≈ −0.34 obtained by this procedure
confirms that the axisymmetric component flow in the experiment (i) has the
‘fountain’ orientation (c01 < 0) and (ii) is weaker than the planar component, with a
magnitude that agrees well with the theoretical estimate (using damping coefficients)
of |c01| ∼ 0.32 (cf. § 3). In order to non-dimensionalize the experimental times, we
first extrapolate the experimentally measured velocity onto the bubble surface, which
yields a maximum slip velocity umax at the interface, which is then translated into
an experimental oscillation amplitude ε using the prediction (from two-dimensional
theory) of umax/(ε

2aω) ≈ 1.54. The computed value of ε determines the time scale
Ts = 1/(ε2ω), which is used to scale time in the experiments for a comparison with
theory. It should be stressed that, therefore, all theoretical figures and computations in
the present work (unless explicitly stated otherwise) directly use parameters employed
in practical bubble microstreaming experiments: d = 2.5, h = 6.25 for the channel
geometry, a= 40 µm, f = 20 kHz, and the appropriate c01 inferred above.

We show here that the experiment confirms the theoretical results on all three
distinct time scales: (i) the fast time scale ∼Ts of strong axial displacement; (ii) the
intermediate time scale ∼10Ts–100Ts of the approximately two-dimensional vortex
motion; and (iii) the very long time scale τ ∼ 1000Ts involving the toroidal motion
with systematic variation of the axial position of the particle, accompanied by a
slow variation of the extent of the planar motion. Figure 7(a) demonstrates that the
strong, fast displacements along the z-axis are temporally resolved in experiments and
in very good agreement with the theoretical prediction, including the characteristic
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FIGURE 8. (Colour online) Axial and radial positions of a fluid element determined
by numerical integration (a) and of an approximately passive tracer in experiment (b).
Both show that the long-time three-dimensional motion is organized into simpler
two-dimensional orbits (constant z). The slow axial motion is towards the wall z = d/2
on tight orbits (small maximum r in regions of constant z) and in the opposite direction
for wide orbits (large maximum r in regions of constant z), quantifying the toroidal motion
seen in figure 4(b).

asymmetry between the positive and negative portions of the z-displacement motion,
which ultimately leads to the drifts 1z. Figure 7(b) shows that the motion projected
into the x–y plane still reproduces the ‘typical’ two-dimensional fountain dynamics.
Limitations in the experimental time resolution prevent us from verifying directly
the predicted deviations of the projected three-dimensional trajectories (red) near
the bubble from the streamlines resulting from the two-dimensional theory (blue). It
is interesting to note, though, that the xy-projection of a tracer particle on such a
trajectory shows a spiralling motion towards the two-dimensional vortex centre, an
observation commonly made in cylinder streaming (Lutz, Chen & Schwartz 2005;
Lutz et al. 2006) and ascribed to inertial forces on the particles (as supported by
numerical computations, cf. Chong et al. 2013). Finally, figure 8 confirms that the
pattern of motion over long time scales τ ∼ 1000Ts is also modelled successfully:
both the pattern of slow displacement along the z-axis and the pattern of widening
and tightening radial extent of trajectories are confirmed in experiments, as is the
strong correlation between the two motion patterns. Figure 8 thus allows a quantitative
verification of the toroidal motion pattern of figure 4(b).

Prior to these new APTV experiments, there has only been one report of
three-dimensional boundary streaming flow, for a cylinder oscillated along a diameter
(Lutz et al. 2005), cf. figure 9(a). The patterns of streaming along the cylinder
axis show significant differences to the bubble streaming, but it must be realized
that even a strictly two-dimensional theory of cylinder streaming (Holtsmark et al.
1954; Wang 1968; Bertelsen, Svardal & Tjøtta 1973) reveals very different patterns
from two-dimensional bubble streaming. In particular, a ‘DC boundary layer’ is
typically present, i.e. every quadrant of the streaming flow in the x–y plane has two
radially stacked vortices. Thanks to the general nature of our approach to describing
three-dimensional flows as a perturbation of the two-dimensional patterns, however,
it is possible to obtain a three-dimensional solution for cylinder streaming as well.
This is helped by the absence of axial oscillations of the (solid) cylinder, so that
c01 is identically zero. The only flow mode magnitude c11 is determined again by
(3.17), with u now representing the steady streaming flow outside the no-slip cylinder
boundary layer, as given by a leading-order expansion in powers of δ of the solution
derived by Bertelsen et al. (1973).
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FIGURE 9. (Colour online) (a) Fluid trajectories under three-dimensional streaming due
to an oscillating solid cylinder under axial confinement, projected in a plane containing
the cylinder axis z and the axis of oscillation x. The right-hand part of the figure sketches
the direction of motion of some tracer particles (reprinted with permission from Lutz et al.
(2005), AIP Publishing LLC). (b) Analogous figure utilizing the present theory, showing
qualitative agreement with the flow directions and the flow organization, including the ‘DC
boundary layer’ region indicated by boxed outlines in experiment and theory. The length
of the cylinder axis relative to its radius in both the experimental image of Lutz et al.
(2005) and the present theory is d= 3.

The qualitative experimental image of figure 9(a) from Lutz et al. (2005) does
not contain three-dimensional information, but is a projection with finite depth of
field showing multiple flow lines. Likewise, figure 9(b) shows characteristic flow lines
projected onto the x–z plane (x being the axis of oscillation of the cylinder), the same
plane as in figure 9(a). Streamlines point away from the bubble and towards the walls
outside the nominal ‘DC boundary layer’, whose radial extent is marked by the ‘box’
outlines in the experimental and theoretical figures. Close to the mid-plane, the flow
appears two-dimensional, with axial motion being restricted to regions close to the
wall; these flow features are in qualitative agreement with the results of Lutz et al.
(2005) and demonstrate the wider applicability of our formalism to three-dimensional
streaming flows.

6. Conclusions
We have developed the first description of three-dimensional boundary streaming

flow patterns by employing a perturbation approach to microbubble streaming of
planar symmetry. We found that the requirement of no-slip boundary conditions at the
top and bottom walls (where the axis of the cylindrical bubble ends), as well as the
presence of axial oscillations on the bubble surface, cause steady streaming modes that
break the cylindrical symmetry, but do so in a very systematic fashion: axisymmetric
modes are excited by axial bubble oscillations, while higher azimuthal modes are
excited to satisfy no-slip conditions at the top/bottom walls. These flow contributions
modify the two-dimensional trajectories in distinctive ways and on different time
scales: while the flow remains two-dimensional to very good approximation over
times comparable to the orbit time of this idealized two-dimensional motion, tracer
particles experience (i) strong axial excursions over short time scales, when they
are in the vicinity of the bubble surface, and (ii) systematic small radial and axial
displacements over long times, which give rise to a longer-time periodicity of motion,
in which the particles follow quasi-periodic orbits on a toroidal surface. All of these
features are observed and confirmed in quantitative APTV experiments.
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The long-time motion allows an analytical description as a Hamiltonian flow in an
abstract space, giving a reduced-order description of the flow in the spirit of a time-
scale separation. The very general character of this approach should make it applicable
to a large class of confined Stokes flow problems where the three-dimensionality of
the confinement interferes with an original greater symmetry of the imposed flow. The
formalism has shown its merits by comparison with streaming from a solid cylinder.

The three-dimensional flow effects in bubble streaming discussed here have
important implications for applications of this microstreaming technique. In micro-
mixing set-ups using such bubbles (Liu et al. 2002; Ahmed et al. 2009; Wang et al.
2013; Rallabandi et al. 2015) the basic two-dimensional character of the flow makes
it difficult to achieve strong (exponential) mixing, necessitating specific protocols of
unsteadiness. The presence of axial flow components, in particular when it can be
enhanced over the case presented here, should help achieve mixing more efficiently
and quickly. In applications of particle sorting (Wang et al. 2011, 2012; Thameem,
Rallabandi & Hilgenfeldt 2015), selective displacement of particles by size is achieved
close to the bubble over very short time scales – while the long-time motion of the
three-dimensional trajectories is of no concern in this case, the axial displacements
of particles near the bubble need to be figured into the description of the sorting
phenomenon. Three-dimensional flow features could potentially be used to concentrate
particles near the centre of the channel, and thus assist a sorting of greater selectivity.
For a much wider range of microfluidics set-ups, the tools developed here will be
helpful to assess, model, and either minimize or enhance three-dimensional flow
effects that could be desirable or undesirable in numerous applications e.g. in the
context of lab-on-a-chip, cell diagnostic, or microTAS devices.
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Appendix A. Two-dimensional bubble streaming in a channel
We outline a method to modify the steady two-dimensional half-space streaming

flow solution ψ given by Rallabandi et al. (2014) so as to incorporate a no-slip wall at
y= h, while leaving boundary conditions at the bubble and the y= 0 wall undisturbed.
We will employ the modification

ψ 7→ψ + χ, (A 1)

where χ is a correction flow to account for finite h. If ψ already satisfies the
appropriate boundary conditions at r= 1 and y= 0, and χ is a Stokes flow (neglecting
boundary layer terms), we have (temporarily neglecting bubble boundary conditions)

∇4χ = 0 in Ω
∂xχ = ∂yχ = 0, on y= 0

∂yχ =−∂yψ ≡ u(x), on y= h
∂xχ =−∂xψ ≡−v(x), on y= h.

 (A 2)

Solutions to (A 2) can be obtained using a Fourier transform pair in x defined by

f̂ (k)=
∫ ∞
−∞

f (x)e−ikx dx, f (x)= 1
2π

∫ ∞
−∞

f̂ (k)eikx dk. (A 3a,b)
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The solution to the Fourier transform of χ is then

χ̂(k, y)= â cosh ky+ b̂ sinh ky+ ĉy cosh ky+ d̂y sinh ky, k 6= 0, (A 4)

where
â= 0

b̂=−2i
k
v̂kh cosh kh+ (iûkh+ v̂) sinh kh

1+ 2k2h2 − cosh 2kh
ĉ=−b̂k

d̂= 2
ûkh cosh kh− (û+ iv̂kh) sinh kh

1+ 2k2h2 − cosh 2kh
.


(A 5)

The superposition ψ + χ obeys both y = 0 and y = h wall boundary conditions, but
now ignores bubble boundary conditions, applying inhomogeneous normal velocities
and tangential stresses at r = 1. These inhomogeneities are accommodated by a
second complementary flow obtained by a combination of half-space no-slip Stokes
solutions (see e.g. Rallabandi et al. 2014), which introduce new inhomogeneities at
y = h. Iterative application of (i) Fourier analysis to satisfy boundary conditions at
y= h and (ii) half-space no-slip solutions to satisfy bubble boundary conditions yields
the appropriate two-dimensional streaming solution ψ for arbitrary h. For h & 4, two
of these iterations are sufficient to implement all boundary conditions to excellent
accuracy.

Appendix B. Proof of the continuity equation (4.6)
We present here a proof of the continuity equation (4.6) in ψ–z space, valid for

small perturbations v of an incompressible two-dimensional flow u characterized by
closed streamlines. This automatically yields the Hamiltonian structure of the three-
dimensional motion (4.7), governed by the Hamiltonian H (ψ, z) defined in (4.8).

Consider a two-dimensional vortex characterized by closed streamlines ψ about a
vortex centre ψ =ψm. If v only slightly perturbs the two-dimensional fluid motion due
to u, one may approximate fluid trajectories as being two-dimensional (constant ψ , z)
to leading order over short times, i.e. x(t)≈ x̃(t), discussed in § 4.2. It is useful under
this approximation to define a differential arclength element ds= |u| dt= |∇ψ | dt, and
a local unit outward normal n, given for counterclockwise flow by n≡−∇ψ/|∇ψ |. To
leading order, time integration over a two-dimensional orbit time T(ψ) may therefore
be replaced by a path integral over a streamline ψ . Using definitions for ds and n
and the divergence theorem, (4.5) may be recast as

1ψ(ψ, z)=−
∫ T(ψ)

0
v · n|∇ψ | dt=−

∮
ψ

v · n ds=−
∫

A(ψ)
∇2 · v dA, (B 1)

where A(ψ) is the area enclosed by a streamline ψ and ∇2 is the two-dimensional
gradient operator in the x–y plane. The differential area element may in general be
written as

dA= ds(n · dx). (B 2)

For counterclockwise flow, the definitions for n and ds yield dA=−dt dψ , allowing
(B 1) to be written as

1ψ(ψ, z)=
∫ ψ

ψm

∫ T(ψ)

0
∇2 · v dt dψ. (B 3)
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It follows directly from the definitions of 1ψ (B 3) and 1z (4.4) that

∂1ψ

∂ψ
+ ∂1z

∂z
=
∫ T(ψ)

0

(
∇2 · v + ∂vz

∂z

)
dt=

∫ T(ψ)

0
∇ · v dt, (B 4)

where ∇ is the gradient operator in three dimensions. The integrand vanishes
identically for incompressible flows v, yielding the continuity equation (4.6)
in the abstract ψ–z space, and consequently the Hamiltonian structure of the
three-dimensional transport. The derivation for a clockwise vortex follows similarly,
bearing in mind that n = −∇ψ/|∇ψ | in this case represents the inward pointing
normal. The expression (4.8) for the Hamiltonian H (ψ, z) is obtained as H =∫
1ψ dz using (4.7) and (B 1). It is worth noting that the Hamiltonian formalism

developed here formally represents the leading-order modification of two-dimensional
trajectories in the limit |v| � |u|. The description holds generally for arbitrary
time-dependent perturbations v, only requiring the condition of incompressibility.
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