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The leading-edge vortex (LEV) is a powerful unsteady flow structure that can result
in significant unsteady loads on lifting blades and wings. Using force, surface
pressure and flow field measurements, this work represents an experimental campaign
to characterize LEV behaviour in sinusoidally surging flows with widely varying
amplitudes and frequencies. Additional tests were conducted in reverse flow surge,
with kinematics similar to the tangential velocity profile seen by a blade element in
recent high-advance-ratio rotor experiments. General results demonstrate the variability
of LEV convection properties with reduced frequency, which greatly affected the
average lift-to-drag ratio in a cycle. Analysis of surface pressure measurements
suggests that LEV convection speed is a function only of the local instantaneous flow
velocity. In the rotor-comparison tests, LEVs formed in reverse flow surge were found
to convect more quickly than the corresponding reverse flow LEVs that form on a
high-advance-ratio rotor, demonstrating that rotary motion has a stabilizing effect on
LEVs. The reverse flow surging LEVs were also found to be of comparable strength
to those observed on the high-advance-ratio rotor, leading to the conclusion that a
surging-wing simplification might provide a suitable basis for low-order models of
much more complex three-dimensional flows.
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1. Introduction

The leading-edge vortex (LEV) is an extremely common and powerful unsteady
flow structure. It forms when flow separates at the leading edge of a lifting surface
and the resulting shear layer rolls up into a coherent vortex near the surface of
the wing. The LEV typically grows as it is fed by the shear layer and absent any
mechanism for removing vorticity, eventually breaks off of the wing and convects
downstream into the wake. Many forms of flight found in nature would not be
possible without the LEV, but in other cases its presence can be detrimental. The
LEV is found in a broad spectrum of scenarios, including a wind turbine struck by
a gust or a change in wind direction, a helicopter or quad-rotor in forward flight or
any kind of flapping-wing flight. The scenarios in which LEVs exist are usually very
complex. In the flapping-wing context, the three-dimensional kinematics that create
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the lift-inducing LEV include combinations of in-plane velocity, out-of-plane velocity
and pitch-rate cycles on low-aspect-ratio flexible wings (Ellington 1984; Wu 2011).
LEVs also form on horizontal (Hansen & Butterfield 1993) and vertical (Ferreira et al.
2008; Buchner et al. 2015; Tsai & Colonius 2016) axis wind turbines. In this context,
the formation of the LEV typically occurs as part of the dynamic stall process and
is a result of unsteady inflow (e.g. gusty winds or wake interactions) and/or blade
motion relative to the inflow. Another common example of LEV formation is dynamic
stall on a helicopter-like edgewise rotor; flow separation and vortex formation has
been studied extensively in this context. Rotor blade elements encounter oscillatory
changes in angle of attack, yaw angle and local flow velocity according to changes in
the blade pitch, inflow, flap angle, lead/lag angle and other variables (Leishman 2006).
In all of these cases, however, it is difficult to fully understand the physics of LEV
formation in a flow where so many variables are changing simultaneously. In order
to study the problem of LEV formation and convection more fundamentally, these
complex flows are frequently decomposed into their constitutive components in works
which present the more fundamental side of LEVs, i.e. studies of LEV formation
on flat plates undergoing transient or periodic motions in surge, pitch, plunge and/or
rotation (Eldredge & Jones 2019).

An LEV that results from an unsteady pitch-up motion of the lifting surface is often
referred to as a dynamic stall vortex (DSV). Although the current work focuses on
flow separation due to surging rather than pitch-up motions, many similarities will
become evident, and pitch-up dynamic stall has been studied extensively in the context
of rotorcraft (McCroskey 1982), wind turbines (Hansen & Butterfield 1993), as well as
more fundamental flows (Eldredge & Jones 2019). Due to the extremely large body of
work in this area, it is not possible to provide a detailed literature review of dynamic
stall here, but some examples of more recent studies making use of flow visualization
(Panda & Zaman 1994; Choudhry et al. 2014), particle imaging velocimetry (PIV) (Ol
et al. 2009; Mulleners & Raffel 2012, 2013), surface pressure measurements (Gardner
et al. 2013; Disotell et al. 2016; Lind & Jones 2016) and computations (Ferreira et al.
2008; Visbal 2011; Gharali & Johnson 2013; Hodara et al. 2016; Tsai & Colonius
2016; Kaufmann, Merz & Gardner 2017; Visbal & Garmann 2018) can be found in
the references. Nearly all of this work focuses on a pitching wing in a constant free
stream. However, in practice, dynamic stall often occurs in a time-varying free stream,
and as the convection of vorticity into the wake is greatly dependent on the flow
velocity, we expect the convection of the LEV to depend greatly on flow velocity
as well. Therefore, while these studies provide much insight into the formation of
the LEV, the specifics of its convection may have limited applicability to real-world
kinematics.

Although dynamic stall and the ensuing LEV formation is typically attributed
to a rapid increase angle of attack, this is not the only source of LEV formation.
LEVs similar to the pitch-induced DSV have been observed in kinematics that have
dominant unsteady changes in velocity rather than angle of attack. This can be
shown to be the case for a high-advance-ratio rotor, just one example of a complex
three-dimensional flow in which dynamic stall is known to occur. The advance ratio
of a rotor, analogous to the tip speed ratio of a wind turbine, is the ratio of forward
flight speed U to a blade tip speed ΩR, such that the advance ratio µ is given by
µ = U/(ΩR). The high-advance-ratio rotor is a particularly convenient comparison
to the current study of surging wings in rectilinear motion in that while the flow
over a rotor blade has a high degree of three-dimensionality due to blade rotation,
the high aspect ratio of the blades allows for the effect of the tip vortex to be
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neglected. Furthermore, at high advance ratios, flow on a retreating edgewise rotor
blade reverses direction such that the net flow is from the sharp geometric trailing
edge to the blunt geometric leading edge. Dynamic stall thus occurs in reverse flow,
and the aerofoil acts very much like a flat plate on which flow separation occurs at
the sharp aerodynamic leading edge. This allows for a unique flow that bears close
resemblance to the oft-studied canonical flows over a flat plate, while also introducing
the complexities of a time-varying free stream, a high degree of three-dimensionality
and large rotational accelerations.

As an example of LEV formation in a complex environment, consider the dynamic
stall vortex observed by Lind et al. (2017) beneath the retreating rotor blade of a
high-advance-ratio rotor. Although dynamic stall is commonly attributed to pitch-up
motions, it can be shown that in the reverse flow region of the rotor disc, the greater
unsteadiness is the time-varying free stream. Furthermore, reconstruction of the blade
pitch from Lind’s rotor tests shows that the blade pitch was decreasing throughout
the entire reverse flow region. An unsteady angle of attack increase is necessary for
an LEV to be created via pitch-induced dynamic stall. It is therefore proposed that
this LEV was a result of the blade elements’ surge into greater reverse flow velocities
(i.e. the time-varying free stream), since angle of attack increase was not present. This
observation motivates an exploration of the aerodynamic properties of wings in pure
surging motions. In the same way that dynamic stall experiments simplify complex
kinematics into an angle of attack oscillation, pure surge experiments simplify the
problem into a velocity oscillation.

Early work on wings undergoing surging motions began with unsteady potential
flow models at low incidence. Because of added mass effects and the influence
of the aerofoil’s wake, traditional thin aerofoil theory could not be applied in a
quasi-steady manner to flows of variable velocity. Isaacs (1945) adapted thin aerofoil
theory to account for these effects in fixed incidence periodic flows and solved for
lift as a Fourier series. Greenberg (1947) simplified and adapted Isaacs’s theory by
assuming the wake was sinusoidal, and, incorporating the work of Theodorsen (1935),
obtained closed form expressions for the lift and moment of an aerofoil in attached
flow undergoing sinusoidal pitch, surge and plunge. Greenberg’s model is used as a
reference for collected data in the present work.

Experimental work in unsteady surge is far less common than that with pitch
oscillations. A few researchers first superimposed time-varying components of velocity
with pitch oscillations to determine the effect of free-stream variability on dynamic
stall (Pierce, Kunz & Malone 1978; Favier et al. 1988). Maresca, Favier & Rebont
(1979) conducted an extensive study of pure sinusoidal surge (without pitching) at
low and high incidence with variable frequency and amplitude. At high incidence,
Maresca observed vortex formation and lift characteristics similar to those traditionally
expected from pitch-induced dynamic stall. Later, Gursul & Ho (1992) also performed
experiments on a wing in an sinusoidally varying free stream and observed high
aerodynamic loads and the formation of large LEVs.

More recently, Dunne & McKeon (2015) studied a sinusoidally pitching and surging
wing in recirculating water channel. These experiments were designed to mimic
the blade kinematics of a vertical axis wind turbine, but in rectilinear rather than
rotational motion so as to remove the effect of Coriolis forces. Using dynamic mode
decomposition (DMD) on time-resolved velocity fields, they were able to identify the
most significant dynamic structures (i.e. the leading-edge and trailing-edge vortices)
and capture the process of dynamic stall including separation, LEV formation and
reattachment with only 5 modes. The most dynamically relevant time scale in the
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separation and reattachment process was found to be the that of the unsteady free
stream.

Granlund et al. (2014) and Granlund, Ol & Jones (2016) performed experiments
on sinusoidally surging wings in a water channel and an unsteady wind tunnel.
Granlund et al. (2014) compared two cases: a wing moving sinusoidally fore and
aft in a constant free stream, and a fixed wing in an unsteady free stream. The two
were shown to be equivalent in both attached and separated flow if added mass and
buoyancy effects are properly accounted for. Granlund et al. (2016) focused on more
aggressive wing motions in which the wing was driven at velocities large enough
to result in flow reversal. Both studies found excellent agreement with Isaacs’s and
Greenberg’s potential flow models throughout the velocity cycle at low wing incidence
(even in reverse flow), and surprisingly good agreement at high incidence in reverse
flow. During high incidence acceleration, however, large discrepancies between lift
measurements and model predictions were found to arise due to the formation of the
dynamic stall LEV.

Recent research on the fundamental physics of surging wings was conducted by
Manar & Jones (2017), who extensively studied and modelled the wake of a surging
flat plate at high incidence using PIV measurements and vorticity fields. For the full
length of flow acceleration, Manar observed that the change in circulation flux over the
wing, dΓ /dt, was remarkably linear in time. The slope of dΓ /dt in time (equivalently,
d2Γ /dt2) was found to be almost invariant with angle of attack as long as the flow
was separated. Manar’s experiments, which were conducted at Re < 20 000, suggest
that in separated surging flows, d2Γ /dt2 is only dependent on the acceleration of the
wing.

Using a similar type of analysis on the LEV found in the rotor’s reverse flow
region, Lind et al. (2017) demonstrated a linear increase of vortex strength Γv with
the distance travelled through the flow by the blade element. The rate of this linear
increase was found to be invariant with the advance ratio. Note that because Manar’s
kinematics were a linear acceleration from rest, his plots of circulation flux against
time are a scaled equivalent to Lind’s plots of circulation against blade element travel.
Yet, they do not show the same result: Manar’s data show a variance of d2Γ /dt2

with acceleration, while Lind’s (with different flow accelerations for different advance
ratios) show invariance.

The present work is an experimental campaign to further explore the nature of
surging-wing aerodynamics, with a particular focus on the LEV and its resulting forces
and pressures. The aim of this work is to characterize and quantify the formation and
evolution of the LEV and the resulting suction peak on a surging wing, to identify
similarities and differences with respect to the more common pitch-up dynamic stall
and to assess the potential for developing reduced-order models of these types of
flows. Expanding on the work of Maresca et al. (1979), sinusoidal velocity profiles
with a wider range of frequencies and amplitudes are explored with PIV, force and
surface pressure measurements. The model discrepancies found by Granlund et al.
(2016) are also recreated and further explored. Special consideration is given to the
convection of the LEV in each case using pressure measurements. Throughout this
work, several similarities with the onset of pitching-wing dynamic stall are observed
and references are made to previous work in that area for comparison. Finally, PIV
data are collected for high incidence reverse flow surge experiments for comparison
to the high-advance-ratio rotor tests from Lind et al. (2017), with particular attention
given to the development of LEV circulation and unsteady aerodynamic loading
throughout the wing motion.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

80
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.800


Vortex formation on surging aerofoils 63

2. Experimental methods
Experiments were performed in a 7 × 1.5 × 1 m water-filled tow tank. A gantry

moved over the length of the tank according to prescribed tow velocity kinematics.
The gantry held a rotary motor (with rotation about the vertical axis), which housed
two linear motors (that moved along the vertical axis). These vertically moving linear
motors were attached to control rods that reached below the surface of the water.
The test models were attached to these two control rods. The models’ speed, pitch,
elevation and rotation were all prescribed through carefully defined kinematics sent to
the motors.

In this case, the model was prescribed velocity kinematics at constant pitch and
elevation with zero rotation. The kinematics used in this experiment are

v(φ)= v0[1+ λ sin(φ)], (2.1)

where v0 is the average velocity of the sinusoid (i.e. its constant offset), λ is the
amplitude of the sinusoid expressed as a ratio to the average velocity, and the variable
φ gives the position within the sinusoid. When compared to a rotor, v0 corresponds to
the blade-tangential velocity UT directly induced by the blade’s rotation, λ corresponds
to the amplitude of oscillations that arise from forward flight and φ corresponds to the
blade azimuth.

The effects of varying oscillation amplitude and frequency were explored in these
experiments. Greenberg (1947) defined the reduced frequency k for a surging wing as

k=
ωvc
2v0

, (2.2)

where ωv is the circular frequency of velocity oscillation in rad s−1 and c is the chord
length of the wing. Recognizing that φ = ωvt, the definition of the kinematics could
also be written as

v(t)= v0

[
1+ λ sin

(
2kv0

c
t
)]

. (2.3)

The convective time is also introduced, t∗ = v0t/c, so the wing kinematics used here
can be written most neatly as

v(t∗)= v0[1+ λ sin(2kt∗)]. (2.4)

2.1. Full sinusoid tests
Two sets of experiments were performed with this kinematic definition. In the first
set of experiments, the average velocity v0 was fixed and corresponded to an
average Reynolds number Re0 of 40 000. The velocity sinusoids had amplitude
ratios of λ = {0.25, 0.5, 0.75, 1.0}, in combination with reduced frequencies,
k = {0.16, 0.217, 0.309, 0.511}, for a total of sixteen unique kinematic cases. These
kinematics were performed at a low incidence at α = 5◦ and at high incidence with
α = 25◦.

An example of the tow kinematics for a full run of these experiments is shown in
figure 1. For all cases, the wing entered the velocity sinusoid at the minimum velocity
point. Three quarters of a cycle after this point, data collection began. This continued
for as many cycles as possible, limited by the length of the tank and dependent on
the reduced frequency of the case. Data collection ended one quarter cycle before the
model exited the velocity sinusoid. With the amplitude ratio λ=0.75, the amplitude of
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Data collection periods

Position, x

Time, t

8
7
6
5
4
3
2
1
0

(÷ 104)

24 26 28 30 32 34

Re

36 38

t (s)
40 42

(a) (b)

FIGURE 1. (Colour online) Sample kinematics for full sinusoid cases. (a) Sketch of wing
motion in the tow tank. (b) Reynolds number as a function of time for a full run where
λ= 0.75, k= 0.217. Data collection began after 3/4 of a start-up cycle was completed.

oscillations in this case is λRe0 = 30 000. Every kinematic case (each combination of
λ and k) was performed a number of times such that there were at least 15 total data
collection periods for each case. For cases with k= {0.16, 0.217, 0.309, 0.511}, there
were correspondingly {1, 2, 3, 5} data collection periods per run. Notice in figure 1(b)
that within a data collection period the velocity profile took the shape of a negative
sine wave. A shift is therefore introduced to yield the final definition of the kinematics
during data collection, given by (2.5) and (2.6).

v(t)= v0(1− λ sin(φ)), (2.5)

φ =
2kv0

c
t= 2kt∗. (2.6)

The model towed by these kinematics, shown in figure 2(a), was a NACA 0012-64
wing with a 64 cm span and a 10.47 cm chord, resulting in an aspect ratio of 5.8.
For the highly unsteady motions and short times of interest here, a large region of
two-dimensional flow is expected over the centre region of this relatively high-aspect-
ratio model. The model was constructed from 15 separate segments aligned along
two stainless steel spars to provide rigidity. One segment, which was 3D printed,
housed eight pressure sensors aligned along the chord, as shown in figure 2(b). Silicon
sealant was injected below the sensors and around the sensor ring to prevent leakage.
A cap was then placed over the sensor to create a smooth surface. This chordwise
row of sensors was 17.1 cm (1.6 chord lengths) from the left edge of the wing. The
chordwise location of the sensors is given in figure 3.

The pressure sensors (MS5401-BM, produced by Intersema Sensoric) were
each configured as one arm of a Wheatstone bridge with a signal sensitivity of
approximately 2 mV kPa−1. Each sensor signal was run through an electrical first-
order low-pass filter with a cutoff frequency of 67 Hz to reject strong high-frequency
noise created by the gantry motors. The pressure signals were collected by a National
Instruments USB-6341 DAQ board at a sampling rate of 1 kHz. The sensors were
calibrated at the beginning of each run using the hydrostatic pressure difference
associated with a commanded change in the model’s height.

The wing was mounted to a dynamically calibrated force balance, highlighted in
figure 2(a). The balance is an ATI Mini 40, which saturates at 40 N of total force or
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Control
rods

Force
balance

Camera

Caps
Pressure sensors,

laser sheet

Silicon
sealant

Pressure
sensorTow direction x*/c

x*/c

FIGURE 2. (Colour online) Experimental set-up. (a) The model used in these experiments,
installed in the water tank and shown at α= 0◦. (b) Sealed pressure sensors embedded in
one segment of the model.

0.4

0.2

0

-0.2
0 0.2 0.4 0.6

y/c

0.8 1.0

NACA0012-64 outline
Pressure sensor

x*/c

FIGURE 3. (Colour online) The placement of pressure sensors on the wing, viewed at
α = 0◦. Sensors are located at x∗/c= {0.05, 0.125, 0.2, 0.35, 0.45, 0.55, 0.725, 0.80}.

a 2 N-m moment. Load measurements were collected during each test with a sampling
frequency of 1 kHz.

Particle imaging velocimetry (PIV) data were also collected for a selection of cases:
(λ= 0.25, k= 0.16), (λ= 0.25, k= 0.511), (λ= 0.75, k= 0.217), (λ= 0.75, k= 0.309),
(λ= 1.0, k= 0.16), (λ= 1.0, k= 0.511). The laser optics were set such that the laser
sheet was emitted from a Powell lens fixed to the gantry, and then passed through an
acrylic block to allow a clean transition into the water. The laser sheet was aligned
to the chord of the wing, and contacted the wing 1.3 cm inboard of the pressure
sensors, or 1.8 chords from the left wing tip. The camera, which was synchronized
with the firing of the laser, was attached to an arm that was also fixed to the gantry.
The camera, laser, and model therefore all moved with the tow kinematics prescribed
for the gantry so that the view seen by the camera was unchanged throughout each
data collection period; time-resolved velocity fields were measured in a wing-fixed
reference frame. The selected cases were run such that PIV was collected for at least
five data collection periods for each case. These five cycles were phase averaged to
obtain the data presented in § 3. Five cycles were found to be sufficient to capture the
converged properties of the large-scale vortex that is of primary interest in the current
work. Due to the relatively small number of cycles in the ensemble average, however,
small-scale flow structures do still appear in these images although they are much less
repeatable.
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2.2. Reverse flow tests
In order to compare the present work on a canonical surging wing to previous work
on high-advance-ratio rotors, additional experiments were performed using parameters
corresponding to the experiments of Lind et al. (2017). That rotor had a radius of R=
0.85 m, rotation speed of Ω = 30π rad s−1 and blade chord c= 0.08 m. The reverse
flow vortex was observed at a non-dimensional radial location η = 0.4 for advance
ratios µ of 0.6, 0.7, 0.8 and 0.9. For the current work, these rotor parameters were
translated into pure surge experiments using only the tangential velocity component,
UT , incident on the rotor blade element at 40 % radius. (In this translation, the effects
of inflow, as well as rotor blade flap and lead/lag motions were neglected.) In the rotor
case, the dimensional oscillation magnitude of the corresponding UT sinusoid is equal
to the rotor’s free-stream velocity, and the oscillation frequency of the UT sinusoid is
equal to the rotor’s rotational frequency. The average velocity is equal to the product
of rotational speed and the radial location of a blade element. This translates to a
reduced frequency that depends only on chord length and radial location,

k=
ωvc
2v0
=
Ωc
2Ωr
=

c
2r
, (2.7)

and to an amplitude ratio that depends on the advance ratio of the rotor and the non-
dimensional radial location of the blade element,

λ=
U∞
v0
=

U∞
(ΩR)η

=
µ

η
. (2.8)

While it is possible to characterize the kinematics of a rotor blade element with
these parameters, it should be emphasized that by translating the rotational motion of
the rotor blade into a purely rectilinear motion, three-dimensional effects including
those of radial flow, vortex tilting and Coriolis forces are necessarily neglected.
We therefore expect that some differences in the flow field will arise between the
previously reported rotor results and the present case of interest – the surging wing.

The rotor parameters of Lind et al. (2017) correspond to a reduced frequency
of k = 0.117 and a mean Reynolds number of Re0 ≈ 170 000. Converting the rotor
advance ratios µ = {0.6, 0.7, 0.8, 0.9} to the canonical pure surge kinematics results
in amplitude ratios of λ= {1.50, 1.75, 2.00, 2.25}. Due to the physical limitations of
the tow tank, these kinematics could not be implemented as a full sinusoid. However,
because the flow situation of interest was the surge into reverse flow, the sinusoid
could be trimmed to include only the reverse flow portion of the cycle as shown
in figure 4. To ensure a clean entry into reverse flow, the tow kinematics entered
and exited the sinusoid when it crossed v = 0.1 m s−1 forward flow. In addition to
this modification from the true UT profile, the Reynolds numbers achieved in wind
tunnel tests could not be matched in the tow tank, so a Re0 of 60 000 was used for
these experiments. This was not expected to significantly change the results because
flow separates from the sharp aerodynamic leading edge (in reverse flow) regardless
of Reynolds number (Lind et al. 2016). In order to match the aerofoil shape of the
rotor blades in Lind et al. (2017), the model used for this set of experiments was a
NACA 0012 wing with 56 cm span and 11.4 cm chord. The wing was 3D printed
and rigidity was provided by a stainless steel spar. The wing was mounted at an
angle of attack of αrev = 25◦.

Only PIV data were collected for this set of experiments. The laser sheet contacted
the wing 9.5 cm (0.83 chords) from the left wing tip. This position was selected
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Position, x

Time, t

Reverse flow

1.8

1.2

0.6Re
0

-0.6
Entrance into 

sine wave
Reverse flow

boundary

Rotor UT
(full sine)

0 45 90 135 180 225

ƒ (deg.)

270

¬ = 1.5
¬ = 1.75
¬ = 2
¬ = 2.25

315 360 405

(÷ 105)(a) (b)

FIGURE 4. (Colour online) Sample kinematics for reverse flow cases. (a) Sketch of
surging-wing motion in the tow tank. (b) Reverse flow surge test kinematics, shown in
relation to UT for a rotor blade element.

Reduced frequency, k
0.16 0.217 0.309 0.511

Amplitude
ratio, λ

0.25
Loads,

pressures
PIV (25◦)

Loads,
pressures

Loads,
pressures

Loads,
pressures,
PIV (25◦)

0.5 Loads,
pressures

Loads,
pressures

Loads,
pressures

Loads,
pressures

0.75 Loads,
pressures

Loads,
pressures,
PIV (25◦)

Loads,
pressures,
PIV (25◦)

Loads,
pressures

1
Loads,

pressures,
PIV (25◦)

Loads,
pressures

Loads,
pressures

Loads,
pressures,
PIV (25◦)

TABLE 1. Experimental test matrix and data collection types for full sinusoid test cases
in forward flow at Re0 = 40 000, α = {5◦, 25◦}.

so that the data collection area was sufficiently outboard to avoid any wake effects
downstream of the control rods. Each run was performed five times, with one data
collection period per run.

2.3. Summary
The experimental test matrix for the full sinusoid tests is summarized in table 1. In
addition, reverse flow experiments were performed at a fixed reduced frequency and
four amplitude ratios. Force and surface pressure measurements were phase averaged
over 15 data collection cycles. PIV was phase averaged across five data collection
periods.

3. Results
The two sets of experimental results are presented below. The fundamental physics

of LEV convection in surge are explored first, using results from full sinusoid tests
at low and high incidence, as described in § 2.1. We begin by comparing force
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measurements at low and high incidence to the force prediction from Greenberg’s
potential flow model.

3.1. Comparison to Greenberg’s force model
Low incidence control tests were performed to validate the experimental set-up.
The wing was towed in sinusoidal free-stream oscillations at a 5◦ angle of attack.
Greenberg’s potential flow model for the total force on a thin aerofoil subject to
simultaneous heave, pitch, and surge oscillations can be simplified to model this case.
Setting the heave and pitch terms equal to zero, Greenberg’s model for the total force
per unit span P reduces to (3.1).

P=−
c
2
πρα

( c
2
v̇ + 2vv0 + (2vv0λ)R{C(k)eiωv t

}

)
. (3.1)

Values for density ρ and chord c are fixed for this experimental set-up and
constant for all full sinusoid runs. Other constants α, λ, k and v0 are parameters of
the kinematics. The circular frequency of the velocity cycle, ωv, is proportional to
the reduced frequency as ωv = 2kv0/c. Theodorsen’s constant C(k) is obtained from
Bessel functions. As shown by Theodorsen (1935), C(k) is only dependent on reduced
frequency. Therefore for the test cases where k={0.16,0.217,0.309,0.511}, the values
are C(k) = {0.7628 − 0.1876i, 0.7147 − 0.1879i, 0.6606 − 0.1781i, 0.5955 − 0.1492i},
respectively. Arrays of v, v̇ and t are obtained from the kinematics for a particular
case, and a phase shift is introduced to apply the equation (which takes the shape of
+ cos) to the data collection period (which takes the shape of −sin).

Greenberg’s model can therefore be evaluated over the data collection cycle. This
potential flow solution is shown with the measured force (as well as its lift and drag
decomposition) for four combinations of amplitude ratio and reduced frequency in
figure 5. As shown in the figure, measurements agree well with Greenberg’s model
for cases of low incidence. Most of the net force is in the lift direction and, especially
at low amplitude ratios, drag is nearly negligible. The greatest lift-to-drag ratio occurs
for the (k= 0.16, λ= 0.75) case where (L/D)max≈ 7.5. The other cases produce lower
lift and/or greater drag and (L/D)max ≈ {5.3, 5.8, 5.9} for the (k = 0.16, λ = 0.25),
(k= 0.309, λ= 0.25) and (k= 0.309, λ= 0.75) cases, respectively.

At high incidence, however, Greenberg’s potential flow solution does not match
experimental results well for some cases. Normalized force measurements for these
same kinematics performed at α = 25◦ are compared with Greenberg’s model in
figure 6. While Greenberg’s model assumes an attached flow condition that is not
present at this high angle of attack, the normalization allows the model to reasonably
approximate the force at low frequencies and amplitudes, e.g. for k= 0.16, λ= 0.25.
However, increasing the frequency or amplitude of the velocity sinusoid results in
greater disparity between the measurements and Greenberg’s model. In particular,
measurements diverge from the model near φ = 150◦ and remain significantly
above model predictions through the end of the cycle. As the reduced frequency
and amplitude increase, Greenberg’s model increasingly under-predicts the force
measurements in this region. At high reduced frequencies, the relative contribution of
the non-circulatory term in Greenberg’s model becomes large (see also Theodorsen
1935), and we therefore expect large non-circulatory forces. It will also be shown that
strong LEVs form at the higher reduced frequencies tested here. Greenberg’s model
assumes attached flow and therefore does not account for any force contributions that
may arise from LEV formation and so under-predicts the resulting force. Note that
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FIGURE 5. (Colour online) Phase averaged force measurements along with Greenberg’s
model at different velocity oscillation amplitude and frequency combinations at α = 5◦.
The measurements are normalized by the measured force when λ= 0. Greenberg’s model
is normalized by its steady state output, P=−παρcv2
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FIGURE 6. (Colour online) Phase averaged force measurements along with Greenberg’s
model at different velocity oscillation amplitude and frequency combinations at α = 25◦.
The same normalizations are used as in figure 5.

this trend may not be extrapolated to extremely high reduced frequencies beyond the
current test matrix where wing motion may be too fast to allow for the development
of strong LEVs.

Decomposing the total force measured on the wing into lift and drag (as shown in
figure 6) highlights the large component forces that occur during unsteady motions at
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FIGURE 7. (Colour online) Phase averaged pressure coefficient from each sensor at
different velocity oscillation amplitude and reduced frequency combinations, α = 5◦.

high incidence. Despite very large net forces, lift-to-drag ratios are lower here than at
low incidence as the net force in separated flow tends to be nearly normal to the wing
surface. At high incidence, the greatest lift-to-drag ratio occurs for the (k= 0.309, λ=
0.75) case where (L/D)max≈ 3.2. (L/D)max≈{2.0, 2.3, 2.5} for the (k= 0.16, λ= 0.25),
(k= 0.309, λ= 0.25) and (k= 0.16, λ= 0.75) cases, respectively.

It should also be noted that, at high incidence, the peak force measurement
significantly leads the peak force prediction (which occurs at the maximum velocity,
φ = 270◦). This is particularly true at lower reduced frequencies. In the case of
k = 0.16, λ = 0.75, the first force peak occurs at φ = 215◦, while at k = 0.309, the
force peak occurs at φ = 235◦. This observation is consistent with the high incidence
results of Granlund et al. (2016). We now turn to pressure measurements of these
cases to further investigate these differences and the origin of the forces.

3.2. Pressure signals
In order to validate the experimental set-up, the pressure signals are first explored
for the low angle of attack cases accurately modelled by Greenberg. Phase averaged
pressure coefficients are plotted over the cycle length for four cases at low angle of
attack in figure 7. Note that here the pressure coefficient is defined using the constant
steady state velocity v0, which is equal for all cases (i.e. Cp = p(φ)/q∞, where p(φ)
is the pressure measurement and q∞ = ρv2

0/2). These pressure signals (plotted with
suction on the ordinate), vary closely with the instantaneous velocity. This suggests
that these cases are relatively quasi-steady. The sensor placement given in the legend
can be seen overlaid on the aerofoil in figure 3.

The measured pressure signals can be further examined by plotting the instantaneous
pressure coefficients, given in figure 8. In this figure, the dimensional pressure
is normalized by the dynamic pressure at the time of the measurement (i.e.
Cp,i= p(φ)/q(φ) where q(φ)= ρv(φ)2/2), effectively leaving only the contributions to
the pressure coefficient that are not quasi-steady. Through this figure we principally
see that the sinusoidal oscillations in the pressure coefficient (visible in figure 7) are
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FIGURE 8. (Colour online) Phase averaged instantaneous pressure coefficient from each
sensor at different velocity oscillation amplitude and reduced frequency combinations, α=
5◦. Note that the low velocity portion of the cycle, 0◦ <Φ < 150◦, is omitted for clarity.

not present in the instantaneous pressure coefficient, even at large amplitude ratios
and reduced frequencies. While Cp,i does increase gently in this portion of the cycle,
there are no highly unsteady changes in the signal. In addition, the signals from
sensors closer to the leading edge always show suction levels greater than any sensor
closer to the trailing edge, as expected for this aerofoil at low angle of attack. This
is a clear indication of attached flow in the α = 5◦ cases.

These properties do not always hold when Cp,i is plotted for high angle of attack
cases, shown in figure 9. Here, the pressure signals are not neatly stacked according to
sensor location, indicating separated flow as expected for α= 25◦. More interestingly,
at this angle of attack, high amplitude surging (λ= 0.75) results in powerful unsteady
structures which begin near φ= 150◦. In these cases, a large wave of suction pressure
convects across the wing. In the case of k = 0.309 and λ = 0.75, the beginning of
the pressure wave is detected by the first sensor at about φ = 150◦. This corresponds
closely to the divergence of force measurements from Greenberg’s model; the model
first exits the measurement’s 95 % confidence interval at about φ = 147◦ (shown in
figure 6).

It is therefore reasonable to attribute the disparity between the model and force
measurements to this suction wave. In the low amplitude, low frequency case (λ =
0.25, k = 0.16), the suction wave is not present at all, and accordingly this case
shows little divergence from Greenberg’s model. The low amplitude, high-frequency
case (λ = 0.25, k = 0.309) does show a weak pressure wave, and there the force
measurements show only minor divergence from Greenberg’s model. Furthermore, the
difference between the two low amplitude cases suggests that increased frequency of
the velocity sinusoid, in addition to increased amplitude, increases the strength of
the suction wave. This observation from measurements of Cp,i agrees well with the
performance of Greenberg’s model in these cases, which increasingly under-predicts
forces at larger amplitudes and reduced frequencies.
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FIGURE 9. (Colour online) Phase averaged instantaneous pressure coefficient from each
sensor at different velocity oscillation amplitude and reduced frequency combinations, α=
25◦. Note that the low velocity portion of the cycle, 0◦<Φ < 150◦, is omitted for clarity.
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FIGURE 10. (Colour online) Phase averaged pressure coefficients plotted with chordwise
location and cycle phase angle for all cases with α = 25◦.

3.3. Pressure contours

The convection of the pressure wave can be more easily seen by plotting it as a
pressure contour as shown in figure 10. In these contour charts, the chordwise position
is plotted on the ordinate, the abscissa shows the phase angle and the colour scale
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shows the pressure coefficient at the corresponding phase angle and chordwise position
(interpolated from sensor measurements, whose locations are given by dotted lines).

Take for example the case of k= 0.309, λ= 0.75. In this case, the maximum suction
pressure occurs near the midchord of the wing; the flow structure that causes it gains
strength as it convects over the front of the wing. The strength of the pressure wave
decreases after it passes the midchord, suggesting that the flow structure then either
weakens or moves away from the surface of the wing. The suction pressure wave also
convects chordwise nearly linearly with time, such that we can define a convection
speed of the pressure wave, as will be discussed later.

The relative characteristics of the pressure wave between test cases are also
important to consider. Figure 10 gives the pressure contours of all runs, with each
row having constant amplitude ratio, and each column having constant reduced
frequency. By comparing these charts, we see an increase in the strength of the
suction peak with both reduced frequency and velocity amplitude. In some cases,
such as k = 0.217 with λ= 1, there are secondary suction peaks occurring just after
the initial peak. In all cases with clearly defined suction waves, the maximum appears
to occur near the midchord, and the wave convects nearly linearly in time.

3.4. Convection analysis
As mentioned previously, the linearity with which the suction wave convects makes
it possible to determine its convection speed. In the following analysis of vortex
convection speed, we consider each run individually (as opposed to the phase average
of all runs for a case). As will become evident in the flow field images presented
later, the coherent LEV does not fully form until the near the midchord of the wing.
Very near the leading edge, the separated shear layer has not yet rolled up and
the pressure signal that it leaves on the aerofoil is not as consistent as it is farther
downstream. We therefore neglect data from the three sensors closest to the leading
edge; the pressure wave convects most linearly from the midchord to the trailing
edge.

To determine the speed of convection, we first find the convective time t∗ (as
opposed to phase angle) at which each sensor’s pressure signal passes a specified
threshold. Because the strength of the detected pressure wave changes with chordwise
sensor location, a relative threshold criterion (one half of each signal’s peak value)
is used. The convection times resulting from this criterion are then plotted against
the non-dimensional sensor locations, and a linear fit is applied. The slope of this
line represents the non-dimensional speed, u∗conv, of the suction wave’s convection,
computed for each run individually. Cases without clear pressure wave convection
were ignored (all cases where λ= 0.25 and the case where λ= 0.5, k= 0.16). Out of
135 runs, 133 had a linear fit with R2 > 0.93, and the two runs which did not were
discarded from the analysis. Results were averaged for each case, and the final result
is shown with 95 % confidence intervals in figure 11(a). These results show that the
non-dimensional convection speed u∗conv increases with both the amplitude ratio λ and
reduced frequency k.

A particularly interesting result is found when convection speeds are normalized
by flow conditions at the time of convection. This normalization is found by first
calculating the average convection time t∗conv for each run. Converting this into
dimensional time tconv = t∗convc/v0, the velocity of the wing v(tconv) at convection
can be found from the definition of the kinematics for that case. The dimensional
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FIGURE 11. (Colour online) Average suction wave convection speed for all cases: (a) in
chords per unit of convective time, t∗, (b) normalized by local velocity at the time of
convection.

convection time is then normalized by this velocity at the time of convection such
that

ūconv =
u∗convv0

v(tconv)
=

uconv

v(tconv)
. (3.2)

The values of this flow-normalized convection speed, ūconv, were calculated for each
run and averaged for each case. The result, shown in figure 11(b), suggests that there
is little variation in the ratio of convection speed to local flow velocity with either the
amplitude ratio or reduced frequency of the kinematics. The results of this experiment
therefore suggest that the pressure wave convection speed is some constant fraction
near 28 % of the local flow velocity at the time of convection, and is invariant with
cycle amplitude or frequency. In general, this fraction may vary with angle of attack;
the data shown here are all for α = 25◦. If this observation holds for other angles,
it would provide one piece of information helpful in modelling and predicting the
flow over surging wings at high incidence. The convection speed, however, is not the
only important parameter of a surging flow; the origin of the suction wave and the
behaviour of the flow after convection must also be investigated.

3.5. Velocity and vorticity fields
More information about the pressure wave can be obtained by relating the pressure
signals to flow field measurements obtained via PIV. For the case where λ= 0.75 and
k= 0.309, the phase averaged velocity field, vorticity field and pressure measurements
are plotted for multiple phase angles in figure 12. At φ = 180◦, (when the wing is
accelerating and at the average velocity), the vorticity field reveals a shear layer that
separates close to the leading edge and reattaches to the aerofoil before the midchord.
During this initial stage of flow separation, a small low pressure region can be seen
near the leading edge of the wing under the separated shear layer. This leading-edge
suction peak is a result of the small region of recirculating flow that forms in this
area. By φ = 210◦, the shear layer has rolled up into a leading edge vortex (LEV)
and the low pressure region on the aerofoil has grown in both in strength and size.
Note that as the LEV develops and moves downstream, the pressure distribution along
the aerofoil does not have a sharp suction peak directly under the vortex, but rather
a relatively large region of low pressure under the area of recirculation. The process
of flow separation, LEV formation, and the resulting low pressure regions observed
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FIGURE 12. (Colour online) Evolution of LEV and suction wave with k = 0.309 and
λ= 0.75, viewed with the vorticity field, velocity field and surface pressure measurements.

here are very similar to those reported previously on pitching wings by Mulleners
& Raffel (2012, 2013) and Visbal & Garmann (2018) in their detailed studies of
the onset of dynamic stall. Note that while the flow field images shown here are
phase averaged and thus the small-scale flow structures are indistinct, in instantaneous
images (see, for example, Mulleners & Raffel 2012, 2013; Visbal & Garmann 2018),
it is clear that both the separated shear layer and the LEV are made up of small-
scale vortices and there exist small regions of secondary vorticity along the surface
of the wing underneath the separated flow. While some work has suggested that the
minimum surface pressure on the wing occurs directly underneath the LEV (Visbal
& Garmann 2018), others report that due to localized flow reversal and small regions
of alternating favourable/adverse pressure gradients, the minimum surface pressure on
the wing may be upstream of the LEV (Eslam Panah, Akkala & Buchholz 2015;
Akkala & Buchholz 2017). The precise location of the minimum pressure is likely
to be a function of the balance of circulatory (e.g. the LEV) and non-circulatory
effects, and therefore a function of the reduced frequency of motion. In the current
work, the minimum surface pressure appears to occur upstream of the centre of the
LEV (see figure 12), but underneath the larger recirculating vortex structure. As the
surging motion continues to larger φ, it can be seen that at φ = 240◦ the LEV has
convected significantly downstream, almost off of the aerofoil, and the low pressure
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FIGURE 13. (Colour online) Vorticity field, velocity field and surface pressure
measurements for case k= 0.16 and λ= 1.00.

region has expanded with it. At φ=270◦, (the maximum velocity portion of the cycle),
the LEV has mostly dissipated and the suction wave has passed, leaving behind a
weaker suction pressure that is relatively constant over the wing chord. Here, where
the LEV is larger, the small-scale structures that make up the LEV are more visible
in the phase averaged flow fields. At this point in time, and for the remainder of the
cycle, flow over the aerofoil is largely separated, with clear reversal along the wing
surface.

The pressure contours previously given in figure 10 can be more fully understood
using the flow field images as a guide. For example, in the pressure contours for the
k= 0.309, λ= 0.75 case, we see a linear convection of the suction wave that begins
at φ= 180◦ and reaches the final sensor at approximately φ= 240◦. This corresponds
to the development and passage of the LEV in the flow field images of figure 13. The
region of large suction caused by the LEV and associated recirculating flow (shown
in dark blue), fades to weaker suction as the LEV dissipates and the wing enters full
stall, indicated by a lack of pressure change over both chord and cycle time (a large
region of solid light blue).

Examining all the pressure contours of figure 10 in this context reveals an important
point: cycles at lower reduced frequencies spend a greater portion of the cycle in a
fully stalled state. In the case of k= 0.16, λ= 1, shown in figure 13, the wing enters
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FIGURE 14. (Colour online) (a) Lift and drag decomposition of phase averaged force
measurements for sample cases. Note that the normalization uses the mean velocity, v0.
(b) The lift-to-drag ratio plotted from φ = 150◦ to φ = 360◦ for sample cases.

a fully stalled condition without a strong LEV immediately after the first pressure
wave, and remains there from about φ = 225◦ to φ = 330◦, with only two small
vortices providing additional suction during this period. In contrast, at an equal λ but
greater reduced frequency, k = 0.511, the pressure contour reveals a stronger suction
peak that lasts for a large portion of the cycle; little cycle time is spent fully stalled.
This relationship is very important, as the fully stalled state present at low reduced
frequencies represents a condition with a large amount of drag but low lift.

3.6. Lift-to-drag ratio
The effect of the LEV and the stalled state can be clearly seen in lift and drag
decompositions of the force measurements. These are given for sample cases in
figure 14(a). In the case k = 0.309 and λ = 0.75, recall that the pressure signals
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indicated the start of vortex convection at φ = 150◦. It is at this point, where the
LEV is forming and beginning to convect, that the lift begins to grow rapidly without
a proportional increase in drag. The flow field images show a vortex mostly convected
off of the aerofoil at φ = 240◦. It is at approximately φ = 240◦ where we see the
lift measurements begin to level off after the rapid increase. At φ = 270◦, the flow
fields show the wing in full stall, and it is at φ = 270◦ where we see the lift begin
to decrease steadily.

If we look specifically at the lift-to-drag ratio during this portion of the cycle,
shown in figure 14(b), we see that it is greatest in the period of LEV formation and
convection, but drops off sharply at φ = 240◦, where the LEV begins to convect off
of the wing. The presence of the LEV over the wing is therefore a major contributor
to the lift-to-drag ratio.

With equal amplitude and lower reduced frequency (k= 0.16), the pressure contour
in figure 10 indicates a longer period of full stall (more area of constant colour in
both the chord and phase directions), with the suction wave hitting the final sensor
at about φ = 210◦. Similarly, for this case we see the lift level off at about φ =
210◦, and the lift-to-drag ratio falls steadily at this point. The drop in the lift-to-drag
ratio begins earlier in this cycle than in the higher-frequency case (at about φ = 200◦
rather than φ= 240◦) and also occurs more gradually than in the high-frequency case.
Additionally, the magnitude of the lift coefficient is not as high as that of the higher
frequency case; the pressure contours indicate weaker suction at lower frequencies.

It therefore follows that, in order to maximize the lift-to-drag ratio over a cycle
(in a flapping-wing application, for example), the LEV should be over the wing for
as long as possible. The highest frequency case, shown in figure 15, accomplishes
this well. As in other tests, the suction wave starts at about φ = 150◦, with a strong
LEV appearing at φ = 240◦. In this case, the LEV remains over the aerofoil until
slightly after φ= 300◦ – much later in the cycle than for lower-frequency tests. At this
point in the cycle, the wing is decelerating rapidly, so the vortex (which has begun to
dissipate) does not convect fully into the wake, but instead its remnants move toward
the leading edge (as seen at φ = 330◦). In this case, the wing never encounters the
fully stalled condition seen in lower-frequency cases. However, the stagnation of the
wake over the wing induces a reverse flow on the aerofoil’s surface, causing suction
pressure to remain past the midchord. While its origin is different and it acts on a
smaller portion of the wing, this suction is similar to the pressure distribution caused
by full stall. The stagnation of the wake is therefore undesirable, and because the
wake stagnation is caused by the high-frequency motion, this case is at a higher than
optimal frequency. At an ideal frequency, the wing would cleanly shed the LEV into
the wake and quickly return to conditions with less suction pressure throughout the
entire wing.

However, the prolonged presence of the LEV over the wing has benefits that
outweigh this effect. Figure 16 presents the average lift-to-drag ratios (L/D)avg of
each case from the beginning of convection (φ ≈ 150◦) to the end of the cycle,
including the 95 % confidence interval. This phase range was selected to avoid
singularities at φ = 90◦ in the high λ cases. Also note that measurement saturation
occurred in cases with λ= 1, k= 0.309 and k= 0.511, so results from these cases are
not presented. At every amplitude ratio tested, higher reduced frequencies resulted in
greater (L/D)avg. Restated, this is because it takes most or all of the high velocity
portion of the cycle for the LEV to convect in a high-frequency case, whereas at low
frequency, the LEV convects quickly and the wing is left in full stall for much of
the cycle. In the current experiments, high (L/D)avg is achieved via a phenomenon
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FIGURE 15. (Colour online) Vorticity field, velocity field and surface pressure
measurements for k= 0.511, λ= 1.

very similar to wake capture, which has been studied extensively in the context of
flapping wings. (See, for example, Dickinson, Lehmann & Sane 1999; Srygley &
Thomas 2002; Birch & Dickinson 2003; Lua, Lim & Yeo 2011.) Figure 16 reveals a
clear maximum average lift-to-drag ratio in the case where λ= 0.5, k= 0.511. Recall
that, as shown in figure 11(a), this case at low λ has a slower convection speed
than cases of equal frequency at higher λ. This lower convection speed allows the
LEV to be present over a longer portion of the cycle than a higher amplitude case
with faster convection speeds. Because of this, and reduced drag at lower speeds,
the net effect is a better lift-to-drag ratio, even though this LEV is weaker than one
created by a higher amplitude cycle. The current results agree with the work of both
Maresca et al. (1979) and Choi, Colonius & Williams (2015), both of whom reported
achieving resonance-like phenomena on surging wings through proper selection of the
amplitude and frequency. In fact, Maresca et al. (1979) reported an optimum ratio of
velocity amplitude to reduced frequency, ε= λ/k≈ 1; ε= 0.98 for the optimum found
in the current test matrix. Choi et al. (2015) found that the parameter that governs
the formation of the LEV is the reduced frequency, k. On a flat plate at α = 15◦,
they found that the separation streamline emanating from the leading edge did not
reattach for motions where k was less than 0.5. A stagnation point appeared at the
trailing edge when k was increased to 0.5, and moved forward as k was increased
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FIGURE 16. (Colour online) Average lift-to-drag ratio from φ = 150◦ to φ = 360◦ for
each case.

further. Both of these results support the optimum L/D found in the present work at
λ = 0.5, k = 0.511. Furthermore, for sinusoidal kinematics of the type used here, it
can be shown that ε = λ/k= A/c, where A is the amplitude of the wing motion (i.e.
the stroke length in meters). This provides some physical intuition for the optimal
motion – it is the stroke whose length allows the LEV to be cleanly shed into the
wake. Longer strokes result in deep stall; shorter strokes cause the LEV to stagnate
over wing during deceleration, resulting in a loss of lift similar to that caused by
stall.

3.7. Reverse flow results
Additional tests were performed in reverse flow, where flow separation occurs at the
sharp aerodynamic leading edge (geometric trailing edge) of the wing, resulting in a
flow similar to that of previous studies on flat plate wings (e.g. Taira & Colonius 2009;
Chen, Colonius & Taira 2010; Pitt Ford & Babinsky 2013; Mancini et al. 2015; Manar
& Jones 2017). The specific wing kinematics for the current experiments were selected
for comparison with the previous work of Lind et al. (2017). Lind observed a reverse
flow LEV that appeared to grow linearly in reduced time, but, as previously discussed,
this LEV cannot have been a result of dynamic angle of attack change because the
angle of attack was decreasing at the time the LEV formed. The current experiments
focus on the time-varying free stream as an alternative cause of LEV formation and
aim to determine whether the LEV observed by Lind can be recreated with a pure
surge into reverse flow in the absence of rotational motion, pitch or heave.

Vorticity and velocity fields of the reverse flow experiment at λ= 1.5 are given in
figure 17. Much like on a flat plate wing at high incidence, vorticity is shed from the
sharp aerodynamic leading edge as soon as the wing enters reverse flow and a shear
layer forms. From 230◦ 6 φ 6 250◦ this shear layer rolls up into a coherent vortex.
The vortex slowly moves closer to the aerodynamic trailing edge until approximately
φ = 270◦, when the wing begins to decelerate. By φ = 290◦, the initial vortex has
mostly shed and a weaker second vortex is forming. However, the wing’s velocity is
decreasing quickly at this point, and these two vortices then stagnate over the wing
and gradually decrease in strength as shown at φ = 310◦. The stagnation of the wake
over the aerofoil in this case is similar to that seen in high reduced frequencies of
the full sinusoid cases.

A more aggressive case with λ= 2.25 is given in figure 18. The LEV forms much
more quickly in this case and is thoroughly developed by φ = 230◦. This initial LEV
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FIGURE 17. (Colour online) Vorticity and velocity fields for the reverse flow test at λ=
1.5. The relative flow is from left to right. The circulation box is shown in green.

convects off the wing near φ = 250◦, when a second vortex also begins to form. As
the second vortex convects off the wing shortly after φ = 270◦, the wing enters full
stall and remains in this state until forward flow is restored. The shedding of multiple
vortices and the entrance into full stall makes this flow conceptually similar to the full
sinusoid cases at low reduced frequencies.

While these results do show an LEV forming from reverse flow surge at high
incidence, there are some important differences between this LEV and that found
on Lind’s rotor. As discussed in the introduction, Lind observed a linear increase in
vortex strength with reduced time for all advance ratios tested. This result is presented
graphically in figure 19(a). The vortex strength, Γν , was computed via a summation
of the positive vorticity in a circulation box:

Γν =

∫
ω+ · dA. (3.3)

Reduced time is equivalent to the number of semi-chords travelled by the wing, given
by

s(t)=
2
c

∫ t

0
v(t) dt, (3.4)

where s= 0 at the entrance into reverse flow.
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FIGURE 18. (Colour online) Vorticity and velocity fields for the reverse flow test at λ=
2.25. The relative flow is from left to right. The circulation box is shown in green.

A circulation box is defined for the reverse flow surge cases of the present work,
denoted by the green lines in figures 17 and 18. Using the same definition as Lind
et al. (2017), circulation is calculated in every case for each frame where the wing
is within the rotor kinematics (i.e. in transition to reverse flow or in reverse flow).
Plotting this circulation against reduced time yields the results shown in figure 19(b).
Note that in order to match the dimensional circulation given in Lind et al. (2017), the
circulation measurements from the present work are normalized by the value of cv0
from the present work, then multiplied by the value of cv0 from Lind et al. (2017).

There are important differences and similarities between the growth in vortex
strength seen on the rotor and that observed in the surge experiments. First, the
rotor LEV grows at a constant linear rate with reduced time, regardless of advance
ratio (i.e. all advance ratios have equal slope in figure 19a). However, the growth
rate of the initial surging-wing LEV (the first period of linear growth for all λ in
figure 19b), is much greater than the growth rate of the rotor case and increases with
λ up to λ = 2. Because the slope of the circulation growth with reduced time does
appear to converge with increased λ (or equivalently, increased Re), the variance of
growth rate is suspected to result from the difference in flow acceleration between
the tests. In the λ = 1.5 case, the flow accelerates to a maximum Reynolds number
of 30 000, while the corresponding µ = 0.6 rotor blade element accelerates to a
maximum reverse flow Reynolds number of approximately 85 000. The reduced time
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FIGURE 19. (Colour online) (a) Variation of vortex strength and reduced time found for
the reverse flow LEV, from Lind et al. (2017). (b) Variation of circulation with reduced
time from the surging reverse flow experiments of the present work.

rate of circulation growth, or equivalently, the leading-edge vorticity flux, has been
shown by Manar & Jones (2017) to be a function of acceleration at low Reynolds
numbers. It is possible that this measure of LEV growth eventually converges as the
magnitude of acceleration increases. Thus, all of Lind’s rotor cases might be beyond
this critical acceleration, and therefore show equal circulation growth with reduced
time. The λ= 1.5 and 1.75 cases of the current experiments might have acceleration
below this critical level, which would explain their reduced growth with reduced time
compared to the more aggressive cases. The discrepancy in growth rate magnitude,
which is much greater in the surge case than in the rotor case, is suspected to be a
result of the transport of vorticity along the rotor blade due to the spanwise flow that
develops on the three-dimensional rotor.

Another difference of particular importance is that the rotor LEV shows continuous
growth in reduced time, while the surging-wing LEV shows regions of growth,
followed by periods of decline. Physically, the increase of Γ corresponds to portions
of the cycle when the LEV is steadily growing from the vorticity shed by the
aerodynamic leading edge. Periods of decrease in Γ indicate the convection of a
vortex into the wake, as the positive vorticity associated with it moves out of the
circulation box. This is a quantitative approach to describing what we already knew
from analysis of the flow field images – that in all but the λ= 1.5 case the primary
LEV fully convects into the wake (seen as a Γ decrease), and is then followed by the
formation of a second vortex (Γ increase). This difference makes Lind’s data quite
remarkable; it suggests that the LEV formed in the rotary surge into reverse flow
does not convect as far or as fast as the LEV resulting from an equivalent pure surge
does. In other words, rotary motion has a stabilizing effect on the reverse flow LEV.
This result is already well established in research of flapping-wing aerodynamics, but
its application to rotorcraft is not commonly realized. Thus, a large body of research
on the stability of LEVs in the context of rotating and flapping wings may also be
applicable to the reverse flow LEV observed on rotorcraft. (See, for example, Birch
& Dickinson 2001; Shyy et al. 2009; Carr & Ringuette 2014; Garmann & Visbal
2014; Wojcik & Buchholz 2014; Wolfinger & Rockwell 2014; Manar et al. 2016;
Medina & Jones 2016; Jardin 2017; Eldredge & Jones 2019.) On relatively low
Reynolds number flapping and rotating wings, LEV attachment is achieved through
a balance of vorticity transport mechanisms: convection, stretching, Coriolis tilting
and annihilation (Wojcik & Buchholz 2014; Jardin 2017). However, due to radial
variations in the local velocity of a rotating wing, the relative strengths of these
effects vary along the wing span in different ways. It remains to be seen how the
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balance of vorticity generation and transport shifts at the much greater Reynolds
numbers typical of full-scale rotorcraft.

Among the many differences, a remarkable similarity between the rotor LEV and
the reverse flow surge LEV is also present. The peak circulation measurements from
reverse flow surge are of similar magnitude to the corresponding rotor cases. For rotor
cases µ = {0.6, 0.7, 0.8, 0.9} corresponding to surge cases λ = {1.5, 1.75, 2.0, 2.25},
the per cent difference between the maximum vortex strength in the rotor experiment
and the maximum circulation in the surge experiment is {2.5 %, 11 %, 22 %, 1.1 %}.
While we cannot be sure that the rotor LEVs in Lind et al. (2017) have reached
their peak strength before data collection ends (at the maximum reduced time), we
can expect, since the flow has begun to decelerate by that point, that any further
growth would be limited. (Additional growth from rotor LEVs would also decrease
the reported differences.) Thus, while the characteristics of the LEV in surge are not
precisely the same as the rotor LEV (i.e. the vortex remains attached on the rotor,
but not on the surging wing), the maximum strength of a reverse flow LEV might
be reasonably approximated by a pure surge with equivalent reduced frequency and
amplitude ratio.

4. Conclusion
4.1. Full sinusoid tests

Experiments on surging wings in a water tank demonstrated that large-scale flow
separation and vortex formation occurs at high incidence, the process of which bears
many similarities to the onset of dynamic stall on pitching wings. The full sinusoid
surging-wing results presented here demonstrate the balance between amplitude ratio
and reduced frequency in surging wings. Higher-frequency oscillations have shorter
cycles, allowing the LEV to be over the wing for a greater fraction of the cycle,
whereas low-frequency cycles experience full stall after the LEV sheds from the wing.
Higher-frequency cycles also have greater LEV strength, increasing the lift resulting
from the LEV. High amplitude cycles create a stronger LEV, but also show slightly
faster LEV convection times, so that the LEV is over the wing for less of the cycle.
This, coupled with additional drag in high amplitude cases, can result in a reduction
of (L/D)avg with increased amplitude in some cases.

Analysis of convection speeds suggests that the LEV’s convection velocity at a
fixed angle of attack is a constant fraction of the free-stream velocity at the time of
convection. If this relationship is true for a broad angle of attack range, and the phase
of convection can be predicted, it could form the basis for a reliable model of force
production. If the goal is to maximize (L/D)avg in each cycle, these results suggest
it is most important to pick a reduced frequency that maximizes the amount of cycle
time where the LEV is over the wing, yet allows the LEV to convect into the wake
rather than weaken and stagnate over the wing.

Depending on the application, this optimal reduced frequency could be estimated
based on the assumption that the LEV convects at a constant fraction of the local
stream velocity at the time of convection. Using the current problem as an example,
the results showed a convection speed ratio ūconv ≈ 0.28 for all cases. Using the
average phase of convection from the k = 0.309, λ = 0.5 case, φ ≈ 210◦, we know
the wing’s velocity at convection to be v(φ = 210◦) = 0.474 m s−1. The velocity of
the LEV over the wing is then approximately uconv ≈ 0.133 m s−1. The wing’s chord
is c = 0.1047 m, so the LEV will convect in approximately 0.79 s. For this length
of time to pass in a sinusoidal free stream between approximately φ = 180◦ (where

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

80
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.800


Vortex formation on surging aerofoils 85

we know the vortex to form) and φ = 330◦ (where we might like the vortex to have
shed), would require a full cycle length of T = 1.90 s. With this wing’s chord and
the mean velocity of these kinematics, this translates into a reduced frequency of
k = 0.45. These are rough calculations, but measurements of the cases with λ = 0.5
case do show a very large (L/D)avg at k= 0.511, which is not far from the result of
this estimate, k= 0.45. Based on the flow field images, it was also proposed that the
k = 0.511 case is at a higher frequency than optimum due to the stagnation of the
weakening LEV over the wing.

There are, however, some complications. Here, the phase of convection is
experimentally measured, but in a design situation there is an additional challenge of
predicting when convection occurs. A full model would also need to include a means
of estimating the LEV strength to predict the (L/D)avg – not simply an estimate
of the kinematics that would maximize it. Finally, most applications include flow
elements other than surge that may greatly alter the convection speed of the vortex
(e.g. rotary motion). Still, with refinement a method of this type could show promise.

4.2. Reverse flow
Results of the reverse flow experiments described here show that high incidence surge
of the rotor blade into reverse flow may have been the source of the reverse flow LEV
previously observed by Lind et al. (2017). However, in the present case of pure surge,
the LEV was found to shed from the wing and convect into the wake while the rotor
LEV did not. Rotary motion could therefore be described as having a stabilizing effect
on the reverse flow LEV, much like that previously observed on rotating wings at
much lower Reynolds numbers in the context of flapping wings and micro air vehicles.

The maximum vortex strengths measured in pure reverse flow surge were similar to
the maximum vortex strengths measured for the rotor. This result, combined with the
observation of linear vortex growth in reduced time from Lind et al. (2017), could
form the basis for a low-order model of LEV formation in separated three-dimensional
and rotary flows. For example, for a blade element of a particular rotor (or other
lifting surface at high incidence), the maximum vortex strength Γmax might be
estimated from a corresponding case of pure surge as detailed in the present work.
Then, one might assume a linear growth in circulation with reduced time from (s= 0,
Γ = 0), to (smax, Γmax), where smax is the reduced time at which Γ is maximized
(likely corresponding to a time not far after the maximum reverse flow velocity).
Some approximation would also have to be made for the decrease in circulation
from s= smax to the exit of the reverse flow region (or cessation of wing motion). If
circulation near the blade can be estimated in the presence of separated flow and a
strong LEV, estimations of surface pressures and forces would shortly follow.

4.3. Future work
There is much further investigation required in the convection of surging-wing LEVs.
First, a study of the variation of LEV convection speed with static angle of attack
would further expand upon a major observation in this experiment – that LEV
convection speed is a constant ratio of the local free-stream velocity. It is likely
that if a constant convection speed ratio can be found for all angles of attack, the
ratio itself is a function of angle of attack. Secondly, a study at fixed amplitude
and many variations of frequency could help to pinpoint exactly what conditions
produce optimum (L/D)avg. Flow field images and pressure distributions of a case
with maximum (L/D)avg would provide a better qualitative understanding of the ideal
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flow structure, including at what point in the cycle the LEV should convect to avoid
stagnating over the wing. Finally, a specific study of convection speed in various
rotary motions would test the observations of these fundamental experiments in
kinematics closer to a final application. A greater range of experimental comparison
is needed between the surging-wing LEV and more practical applications such as the
reverse flow LEV found on high-advance-ratio rotors. If the similarity in maximum
circulation between these cases can be verified over a wider range of parameters,
work can begin on the formation of a low-order flow model based on canonical
kinematics.
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