
Robotica (2015) volume 33, pp. 1491–1506. © Cambridge University Press 2014
doi:10.1017/S0263574714000873

Speeding up probabilistic roadmap planners with
locality-sensitive hashing
Mika T. Rantanen∗ and Martti Juhola
Computer Science, School of Information Sciences, Kalevantie 4, FI-33014, University of Tampere,
Tampere, Finland

(Accepted March 9, 2014. First published online: April 9, 2014)

SUMMARY
A crucial part of probabilistic roadmap planners is the nearest neighbor search, which is typically
done by exact methods. Unfortunately, searching the neighbors can become a major bottleneck
for the performance. This can occur when the roadmap size grows especially in high-dimensional
spaces. In this paper, we investigate how well the approximate nearest neighbor searching works
with probabilistic roadmap planners. We propose a method that is based on the locality-sensitive
hashing and show that it can speed up the construction of the roadmap considerably without reducing
the quality of the produced roadmap.

KEYWORDS: Motion planning; Probabilistic roadmaps; Locality-sensitive hashing; Obstacle
avoidance; Path planning.

1. Introduction
The motion planning is an important part of robotics (see e.g. refs. [1–3]). The objective is to find a
path for a robot from a start location to a goal location. The robot moves in an environment that has
obstacles and it must avoid collisions with them. One important application for the motion planning
is to guide unmanned vehicles autonomously.4 Other applications include, among others, computer
games, where motion planning can be used to move game characters,5 and molecular simulations.6

The location of the robot is typically represented as a configuration, and the configuration
space C contains all possible configurations.7 The free configuration space Cfree ⊆ C is a set of
all configurations where the robot does not collide with the obstacles or itself. The robot can now
be thought to be a single point in C whereas a path between two locations q1 and q2 is a continuous
function τ : [0, 1] → C, where τ (0) = q1 and τ (1) = q2. The path is free if it lies totally in Cfree.

The dimension of the configuration space depends on the robot. In case of a rigid body robot that
moves in a three-dimensional environment without rotations, three parameters are needed to represent
the location. Therefore, the configuration space is three-dimensional and the robot has three degrees
of freedom (3-DOF). If the robot can rotate itself freely, three additional parameters are needed (roll,
pitch, and yaw). In that case, the configuration space is six-dimensional. The robot can also be more
complex similar to a robot arm that has many joint angles. It is also possible that the robot consists
of multiple rigid bodies and that they form a single multibody robot. In that case the dimensionality
of C is the same as the sum of degrees of freedom of all the bodies.

The general motion planning problem is PSPACE-complete,8, 9 which means that exact algorithms
are not useful in practice. Luckily, there are many heuristic methods that can be used. Especially
probabilistic roadmap (PRM) planners10−12 have been shown to work well in difficult environments.
These planners construct a graph called a roadmap, which is a simplified representation of Cfree. Its
nodes are randomly sampled configurations from Cfree and an edge between two configurations means
that there is a simple and free path between them.

When using PRMs, most of the work is done during the construction of the roadmap, and
after the roadmap is ready, it can be used to solve different path planning queries quickly. The

* Corresponding author. E-mail: mika.t.rantanen@uta.fi

https://doi.org/10.1017/S0263574714000873 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000873

1492 Speeding up probabilistic roadmap planners with locality-sensitive hashing

roadmap is constructed by using information about the static obstacles of an environment. However,
PRM planners are versatile and it is possible to use them also in applications that have dynamic
environments.13, 14

While constructing the roadmap, the PRM planner must find a set of the nearest neighbor nodes
every time a new node is added to the roadmap. Using exact methods is fast when the roadmap is
small and the dimension of the configuration space is low, but it can become a major bottleneck for
performance when the roadmap size grows, especially in high-dimensional spaces. Therefore, more
efficient methods should be used.

The nearest neighbor search can be accelerated by using approximation methods such as ANN15 or
FLANN.16 In this paper, we concentrate on locality-sensitive hashing (LSH), which has successfully
been applied to a variety of applications lately.17−19 However, as far as we know, LSH has not been
used with PRM planners before. In this paper, we propose a simple LSH-based method that can speed
up the construction of roadmaps remarkably. We also investigate how the use of this approximation
method affects the quality of roadmaps.

Algorithm 1 Constructs the roadmap G = (V, E)
1: V ← ∅
2: E ← ∅
3: repeat
4: q ← sampled configuration from Cfree

5: V ← V ∪ {q}
6: Nq ← k nearest neighbor configurations of q chosen from V

7: for all q ′ in Nq do
8: if q and q ′ are not in the same component of the roadmap then
9: if local planner finds a path between q and q ′ then

10: E ← E ∪ {(q, q ′)}
11: until there are enough configurations in V

12: return G

2. Probabilistic Roadmap Planners
A typical PRM planner is depicted in Algorithm 1. It starts with an empty roadmap graph G = (V, E),
where V is a set of configurations and E is a set of edges. The configurations are added to V one by
one. Each time a new configuration q is added, a set of neighboring configurations is retrieved for
it from V . Then, the algorithm tries to find a free path from q to each of its neighbors with a local
planner. If the local planner can find a path, an edge between those configurations is added to E.

A good roadmap captures the connectivity of the free configuration space as good as possible. It
means that if there is a way for a robot to go from a location q1 to a location q2 without colliding
obstacles, then there should also be a path in G between configurations q1 and q2 after those
configurations are added to the roadmap with a local planner. If the connectivity is not good, it is
possible that q1 and q2 belong to different components and there is not a path between them.

In this paper, we are especially interested in searching the neighbors, and the following sections
will cover that topic. Here we go shortly through other important parts of PRM planners.

Node sampling. In line 4 of Algorithm 1, a new configuration is sampled from a free configuration
space. The simplest way to generate these new configurations is to sample them randomly
using uniform distribution. Another simple method is to use a low-discrepancy sequences to
produce the samples.3, 20

In fully random environments, these sampling methods are adequate. However, the
environments where the robots move are often more organized and structured. For example, if
the robot moves in a house, there are walls and furniture as obstacles, and large empty areas,
where the robot can move freely. In these kinds of environments it is possible to use sampling
methods that try to bias sampling toward difficult areas.
Many different methods have been suggested to enhance sampling. Some methods try sample
nodes near the obstacles,21−23 whereas others try to sample nodes as far of the obstacles as

https://doi.org/10.1017/S0263574714000873 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000873

Speeding up probabilistic roadmap planners with locality-sensitive hashing 1493

possible.24, 25 There are also methods that divide the configuration space into different regions
and then try to detect the best way to sample each region.26−28

Local planner. In line 9, a local planner is used to check whether a path between two configurations
is free. One commonly used local planner is a straight-line planner which just interpolates
a path between two configurations (see e.g. ref. [12]). The path is then divided into small
steps and each step is checked for collisions separately. Other local planners have also been
proposed (see e.g. refs. [29, 30]). These more advanced planners can typically find paths that
the straight-line planner cannot, but, on the other hand, they usually work slower.
The collision checks that the local planner does are one of the most time- consuming parts
of PRM planners. Therefore, it is not feasible to check all possible edges for collision, and
instead a set of neighbor nodes are selected in line 6 and a local planner is called just for them.
Moreover, if the goal is just to generate a roadmap that captures the connectivity of the free
configuration space well, it is not necessary to add cycles to the roadmap. That is why the
algorithm checks in line 8 whether a neighbor configuration is already on the same connected
component of the roadmap.

Distance metric. In line 6, a set of the nearest neighbor nodes is selected according to a metric which
should be such that the distance between two configurations, p and q, reflects the difficulty
of connecting them together with a local planner. One possibility would be to measure the
volume of the workspace that is swept by a robot when it moves between p and q. When this
swept volume is small, also the probability that the robot will collide with obstacles is small.
However, it is very difficult and slow to compute the swept volume exactly. Usually the metrics
used in motion planning are approximations.31 Next, we describe one common approach.
If the configuration space is a Cartesian product of n metric spaces and each has been
associated with a distance metric M1, M2, . . . , Mn, then the approximate distance between
two configurations, p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) can be defined as

dist(p, q) =
√√√√

n∑
i=1

wMi
dist2Mi

(pi, qi),

where wMi
∈ R are weight constants. The distance for two points p1, p2 ∈ R can be defined as

distT(p1, p2) = |p1 − p2|.

Special care must be taken when handling rotations to ensure that the shortest distance is
selected. This can be achieved for three-dimensional rotations that are represented as two
quaternions h1, h2 ∈ H by defining the distance as

distR(h1, h2) = arccos(|h1 · h2|).

One difficulty is to decide the values for the weight constants. Usually the translational distances
are more important than the rotational distances and, for example, the study in ref. [29] supports
this.

3. Nearest Neighbor Search
In the nearest neighbor search a set S of points in a metric space M is given and a goal is to find the
nearest point in S to a query point q ∈ M . Often one nearest neighbor is not enough but instead k

nearest neighbors for q is required. This is also the case with the PRM planners.
The nearest neighbor search is an important part of PRM planners since for each sampled

configuration we need to search for its neighbors. Unfortunately, this can become a very time-
consuming operation when the roadmap size increases. The neighbor search is one of the bottlenecks
of the PRM planners along with the collision checks.

The nearest neighbor search has many important applications also besides the robotics and it
has been researched extensively. Many applications require that the nearest neighbor search always

https://doi.org/10.1017/S0263574714000873 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000873

1494 Speeding up probabilistic roadmap planners with locality-sensitive hashing

returns an exact result. However, there are also many applications where it is not necessary and a
good approximation is enough. This is beneficial because while the exact nearest neighbor algorithms
can be slow, there are several approximation methods that can work much faster.

For example, the PRM methods themselves are not exact algorithms but still exact nearest neighbor
search is typically used in these methods. However, this is likely unnecessary and as we show in this
paper, the approximation methods are sufficient.

We consider a case where the roadmap is empty at the beginning and all nodes are added to the
roadmap one by one. This way it is possible to construct the roadmap without knowing how large it
will be in advance and adding new nodes to the roadmap is easy. Another approach would be that all
nodes are generated first and then added to the roadmap at once.

Next, we describe the nearest neighbor methods that we used in our experiments.

3.1. Brute-force search
The simplest way to find k nearest neighbors is to go through all points in S and for each one calculate
the distance from the query point q. While iterating through the points, a list of k nearest neighbors
found so far is maintained. At the end, the list has an exact result. The brute-force method is slow
since it requires that every point is checked. However, this method does not use any additional data
structures which could be difficult and slow to maintain. Therefore, it can outperform other exact
methods especially in high-dimensional spaces.32

3.2. kd-tree method
There are several space-partitioning methods that can be used in exact nearest neighbor searches.
One of the simplest is the kd-tree method that uses a binary tree to store the points.33, 34

In the kd-tree method each node contains a point from S. Every node divides the space into two
partitions by a plane that goes through the associated point. Every node is also associated with one
of the dimensions of the space M and the dividing plane is defined to be perpendicular to the axis of
that dimension. The left subtree of the node contains all the points that lie on one side of the dividing
plane and the right subtree contains the rest of the points.

The results in ref. [35] show that the kd-trees can dramatically increase the performance of
the PRM planners when compared with the brute-force search. However, kd-tree and other space-
partitioning methods work well only in low-dimensional spaces and they become inefficient when the
dimensionality grows large. In matter of fact, the results in ref. [32] show that a simple brute-force
method can outperform space-partitioning methods when the number of dimensions grows larger
than around 10.

3.3. Locality-sensitive hashing
The LSH can be used to accelerate the search of the nearest neighbors. It is a popular method and has
been used successfully in many different applications, for example, in audio and image retrieval (see
e.g. refs. [36, 37]). The method does not guarantee that it will find exactly the nearest neighbors, but
it will return a very good approximation with a high probability.

The LSH method is based on a hash table which contains several buckets. Each bucket is associated
with a unique hash value and a hash function g is used to calculate a hash value for points in metric
space M . By using this function, it is possible to store all points in S to the buckets. It should be noted
that one bucket should contain several points.

The hashing function g must be selected in such a way that it returns the same value for two points
with a high probability if the points are close to each other according to some distance metric. This
means that the hash function preserves the locality information, and the points that are near each
other are likely to be stored in the same bucket in the hash table.

To search for a set of points that are near to a query point q ∈ M , we first calculate a hash value for
q. Then we just retrieve all points from the bucket indicated by this hash value. The hash tables can
be implemented to work very efficiently, which means that in practice the searching of these points
can be done quickly. Unfortunately, it is not certain that the found points contain the actually nearest
neighbor for q.

It is possible to increase the probability that the method finds the nearest point by using multiple
hash tables. It means that instead of one hash table we create independently L tables and for each
table we use a different hash function. Now new points must be added to every table as shown in

https://doi.org/10.1017/S0263574714000873 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000873

Speeding up probabilistic roadmap planners with locality-sensitive hashing 1495

Algorithm 2. To retrieve the nearest points, we must get points from each table and then combine
them together as shown in Algorithm 3.

A variety of different hashing functions have been developed (see e.g. refs. [38, 39]). One simple
method is to use randomly chosen hyperplanes. Each plane divides the space into two partitions
and together they divide the space into several regions. Another method is to use lattices to create
regular-shaped regions into the space. In both cases, the hashing function can return the same hash
value for each point that lies in the same region.

The problem that remains is to decide how to choose an appropriate hashing function and how to
choose the number of buckets and the number of hash tables. The number of buckets is usually linked
to the hashing function, but in general the accuracy can be increased by adding the number of hash
tables. This, however, makes the method work slower and consume more memory. When choosing a
hashing function, it should be remembered that many proposed functions are designed to work only
in Euclidean spaces or in some other specific cases, which means that they may not be useful in all
applications. In the next section, we describe a centroid-based hashing that is easy to be implemented
and can be extended to satisfy the needs of PRM planners.

Algorithm 2 Adds a point q to the hash tables
1: for i = 1, 2, . . . , L do
2: h ← hash value for q in ith hash table
3: b ← bucket identified by a value h from ith hash table
4: Add point q to the bucket b

Algorithm 3 Returns k nearest nodes to a query point q

1: V ← ∅
2: for i = 1, 2, . . . , L do
3: h ← hash value for q in ith hash table
4: b ← bucket identified by a value h from ith hash table
5: V ′ ← all nodes from bucket b

6: V ← V ∪ V ′
7: return V

3.4. Centroid-based hashing
In centroid-based hashing,39 a set of c centroids are generated at the beginning. These centroids
belong to the space M , and an arbitrary point q ∈ M can be associated with one of the centroids by
calculating the distance from q to each centroid and then selecting the centroid that is the nearest.
This essentially divides the space M into c partitions. This division can also be thought to be the
Voronoi diagram40 where each centroid corresponds to one Voronoi cell.

We can now define the hashing function g in such a way that it takes a point, calculates which
Voronoi cell it belongs to, and then returns a hash value associated with that cell. By using this hash
function, the number of buckets will be the same as the number of centroids.

The centroid-based hashing is illustrated in two-dimensions in Fig. 1. In Figs. 1(a)–(c), three
different sets of centroids and corresponding Voronoi cells are shown. The centroids are marked with
a small dot, a query point q is shown in the middle as a small circle, and the cell in which q belongs
to is marked with a gray color. To retrieve a set of the nearest points for q, it is sufficient to retrieve
points from these three marked Voronoi cells. This is shown in Fig. 1(d), in which the point q, as well
as the union of the gray Voronoi cells from Figs. 1(a)–(c), is shown.

Next, we propose a simple centroid-based method that works well with PRMs. We address two
issues: How to choose the centroids, and how to handle cases where there are only a few nodes in the
roadmap.

The first issue is to choose the centroids. The simplest way to do it would be to generate c random
points and use them as centroids. This would work but would ignore some information that we have
from the environment. We propose a method that takes the static obstacles into account. Our method
to initialize the centroids is shown in Algorithm 4. We assume that the roadmap is empty at the

https://doi.org/10.1017/S0263574714000873 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000873

1496 Speeding up probabilistic roadmap planners with locality-sensitive hashing

(a) (b) (c) (d)

Fig. 1. An example of an LSH. In (a)–(c) the space is divided into several regions. Black dots represent centroids,
a small circle represents a query point, and the cell where the query point lies is marked with a gray color. In
(d), the marked cells from (a)–(c) are combined.

beginning, which means that it is not possible to use the information about the existing roadmap.
Therefore, the method chooses c centroids uniformly at random but requires that all of these must
lie in the free configuration space. This method yields good results as we show in our experiments.
To distribute the centroids in more evenly manner in the space, it is possible to generate these using
some low-discrepancy sequence.

Algorithm 4 Initializes L hash tables with c centroids
1: Create L hash tables
2: for i = 1, 2, . . . , L do
3: P ← ∅
4: for j = 1, 2, . . . , c do
5: q ← a random free configuration
6: P = P ∪ {q}
7: Associate centroids P with ith hash table

The second issue is to handle cases when the roadmap has only a few nodes. For example, if we
want to retrieve k nearest neighbors for a query point and the roadmap has only k nodes, all nodes
from the roadmap should be returned. However, the method shown in Algorithm 3 would probably
return only a small subset of all nodes because it returns nodes only from some of the buckets. An
improved method is shown in Algorithm 5. It immediately returns all nodes if the roadmap has less
than k nodes and otherwise ensures that k nearest nodes are always returned.

Algorithm 5 Returns k nearest nodes to a query point q from a set of roadmap nodes R

1: if |R| ≤ k then
2: return R

3: V ← ∅
4: for i = 1, 2, . . . , L do
5: h ← hash value for q in ith hash table
6: b ← bucket identified by a value h from ith hash table
7: V ′ ← all nodes from bucket b

8: V ← V ∪ V ′
9: if |V | < k then

10: return k nearest nodes to q from R

11: else
12: return k nearest nodes to q from V

If both constants c and L are equal to 1, it means that the algorithm works just like the brute-force
search. It should be noted in the case of PRM methods that if c is larger than 1, then L must also be
larger than 1. Otherwise, the roadmap would be built separately in each Voronoi cell and they would
not be connected together. By increasing L there will be overlapping between the cells which helps
the roadmap to get connected.

https://doi.org/10.1017/S0263574714000873 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000873

Speeding up probabilistic roadmap planners with locality-sensitive hashing 1497

Fig. 2. An asteroids environment. All robot bodies are shown at a start location (left side) and at a goal location
(right side).

4. Experiments
In our experiments, we tested how different nearest neighbor methods work with PRM planners.
The methods we used were the brute-force search, the kd-tree method, and the centroid-based LSH.
We used three environments in our tests: an asteroids environment, a house environment, and a
wall environment (see Figs. 2–4). In each environment we tested the neighbor methods with three
robots. The robots comprised a different number of rigid bodies, which means that for each robot the
configuration space had a different dimension. Each method was also tested with two values for k

which determines how many neighbors are retrieved each time the planner wants to find the nearest
neighbors (see line 6 in Algorithm 1). To minimize the effect of randomness we made 1000 test runs
for each test case.

Our goal was to measure how much different neighbor methods affected the time required to
construct a roadmap and to investigate whether the LSH method reduces the quality of the produced
roadmap. We also tested several different parameters for the LSH method to demonstrate their effects.

The size of the roadmap that we built was 20,000 nodes for the asteroids and wall environments,
and 30,000 nodes for the house environment. We also had a predefined query that we tried to solve.
We measured the used time, number of roadmap components, length of the found path, and how often
the method failed to solve the predefined query. The measurements were taken when the construction
of the roadmap was finished, at the point when the predefined query had just been solved and when
the roadmap had 10,000 nodes.

4.1. Test setup
In every test, the node sampling method, local planner, and used distance metric were the same.
Besides the used environments and robots, the only thing that changed between the tests was
the used nearest neighbor method. This makes the results that we obtained comparable with each
other.

In the node sampling we used a random method where new configurations were sampled from
the free configuration space uniformly. The local planner we used was a simple straight-line planner.
The distance metric was the sameas described in Section 2. We made these choices because these are
probably the simplest methods and require only a minimal number of additional parameters.

All methods were implemented in C++ to the same software framework. Proximity Query Package
(PQP) library41 was used for collision detection. All tests were run on a PC with Intel i7-2600
(3.40 GHz) processor and 8 GB of memory.

4.2. Environments
Each test environment comprised static obstacles and a robot that had several independent rigid body
parts. The obstacles and the robot were represented as triangle mesh. Next, we describe the used
environments in more detail.

https://doi.org/10.1017/S0263574714000873 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000873

1498 Speeding up probabilistic roadmap planners with locality-sensitive hashing

Fig. 3. A house environment (shown without roof and exterior walls). All robot bodies are shown at a start
location (downstairs) and at a goal location (upstairs).

Fig. 4. A wall environment. All robot bodies are shown at a start location (left side) and at a goal location (right
side).

Asteroids environment. Obstacles are small asteroids of different sizes and shapes that are spread
throughout the space. The environment was generated randomly. A robot consists of several
spaceship-shaped parts. There are three different robots: the first has one part, the second has
three parts, and the third has five parts. In a predetermined query, the robot must go through
the asteroids from one side to the other. The workspace size is 400 × 100 × 100 units. There
are 100 asteroids and together they have 32,000 triangles. Each spaceship has 64 triangles. The
environment is illustrated in Fig. 2.

House environment. Obstacles of the house consist of walls, floors, stairs, and a roof. There are
three different robots: the first is just a piano, the second consists of a piano and one chair, and
the third consists of a piano and two chairs. In a predetermined query, all robot parts are located
on the first floor and the goal is to find a way to move them to the second floor. The workspace
size is 511 × 354 × 220 units. The house consists of 500 triangles in total. The piano has 519
triangles and each of the chairs has 136 triangles. The environment is illustrated in Fig. 3.

Wall environment. An obstacle is a wall that has several circular holes in it and a robot consists of
several tetromino-shaped parts. There are three different robots: the first has three parts, the
second has five, and the third has seven parts. In a predetermined query, the robot must find a
way to go from one side of the wall to the other side. The work space size is 100 × 100 × 100
units. The wall consists of 572 triangles. Each robot part has 20 triangles on average. The
environment is illustrated in Fig. 4.

https://doi.org/10.1017/S0263574714000873 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000873

Speeding up probabilistic roadmap planners with locality-sensitive hashing 1499

All three environments have their own characteristic properties. The asteroids environment is a
cluttered environment that is filled with obstacles. There are not large empty areas anywhere, which
makes it difficult for the local planner to find free paths. On the other hand, the wall environment has
large empty areas. The only obstacle is the wall that divides the space into two parts. The difficulty is
to find a path through the holes in the wall. The house environment can be thought to be a combination
of these other environments. It has many obstacles, but also many empty areas where the robot can
move freely.

In addition to the obstacles, the environments also differ by their size and shape. The work space
where the robot moves is bounded and the wall environment has the smallest working area in contrast
to the house environment which has the largest area. In the wall environment the shape of the work
space is a cube whereas in other environments it is rectangular cuboid. The shape of the work space
can have an impact on the performance of the nearest neighbor methods, such as kd-tree, which
depends on dividing the space by axis-aligned planes.

5. Results
Results of our experiments are shown in Tables I–III. Except for the success rate, all results are
the averaged values of 1000 test runs with standard deviation shown in parentheses. The method
column shows the used nearest neighbor method, and in the case of the LSH method, used values
for parameters L and c are also shown. The column k shows how many neighbors were retrieved at
maximum in each time neighbors were searched for. The robots column shows how many bodies the
robot had. The columns marked with text “Path found” show roadmap properties at the time when a
predetermined query was solved. The rest of the columns show properties for certain roadmap sizes.
It should be noted that once the predetermined query has been solved, the length of the found path
does not change even if the number of roadmap nodes grows. This is because the roadmap does not
contain cycles and therefore there can be only one path between two nodes.

Since the brute-force method and the kd-tree method are exact, it is expected that they give similar
results when applied to PRM planners. The only difference should be the time required to build the
roadmap. By looking at the results in Tables I–III, we can see that it is the case. The number of
roadmap components is approximately the same, as well as the success rates and the lengths of the
found paths. The numbers are not exactly the same because of the random nature of PRM planners.
This effect can also be seen by looking at standard deviations as they can be quite high at some cases.
The results also show that the kd-tree method slows down when the dimension of the configuration
space increases and that it will eventually be slower than the brute-force method.

By comparing the different methods, it can be seen that LSH speeded up the construction of
the roadmap almost in all cases when compared with the exact methods. When looking at the time
required to build the whole roadmap, it can be seen that the only exceptions were the cases where
there was only one robot body, i.e. the dimension of the configuration space was small. In these cases,
the kd-tree method was slightly faster. With higher dimensions, the LSH method is considerably
faster than either exact method. When looking at the results, it should be remembered that when
the roadmap size is very small, our LSH-based method works similar to the brute-force method.
Figures 5–7 illustrate how the different methods affect the time used to build the roadmap. In these
figures, the used value for parameter k was 100 and the values for LSH parameters L and c were 150
and 20 respectively.

One important aspect that must be taken under consideration when using approximation neighbor
methods is the quality of the produced roadmap, which should not differ too much between the exact
and approximate methods. We measured the quality of each method by calculating the number of
roadmap components in certain roadmap sizes and solving a predetermined path query. On average,
all methods should solve the query with the same number of nodes, and the length of the found path
should be the same. Moreover, the success rate and the number of components should also be the
same and the success rate should increase as the number of roadmap nodes grows. The results in
Tables I–III show that LSH can achieve a similar quality as the exact methods with faster running
time. However, the quality of the LSH method depends on its parameters.

For comparison, we ran the tests with three different sets of parameters for the LSH method. From
these parameters we obtained the best results with 20 hash tables (parameter L) and 150 centroids
(parameter c). These parameters gave quite good results in all environments and with different

https://doi.org/10.1017/S0263574714000873 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000873

1500
Speeding

up
probabilistic

roadm
ap

planners
w

ith
locality-sensitive

hashing

Table I. Average results of 1000 test runs for asteroids environment, with standard deviations shown in parentheses. SR means success rate. L means the number of hash tables,
and c means the number of clusters.

Path found 10,000 nodes 20,000 nodes

Method k Robots Time (s) Nodes Components Length Time (s) Components SR Time (s) Components SR

Brute-force 50 1 <0.05 41.1 (17.0) 2.3 (1.1) 641.1 (104.1) 8.1 (0.1) 4.1 (1.7) 100 29.3 (0.3) 7.0 (2.3) 100
kd-tree 50 1 <0.05 42.0 (16.9) 2.3 (1.2) 643.9 (107.8) 2.7 (0.1) 4.1 (1.7) 100 5.7 (0.2) 7.0 (2.2) 100
LSH (L: 20, c: 150) 50 1 <0.05 41.2 (15.9) 2.4 (1.2) 640.9 (104.9) 2.7 (<0.05) 4.0 (1.7) 100 6.2 (0.1) 6.9 (2.2) 100
LSH (L: 5, c: 150) 50 1 <0.05 42.1 (17.1) 2.3 (1.1) 644.4 (106.8) 2.5 (<0.05) 4.2 (1.7) 100 5.0 (<0.05) 7.0 (2.4) 100
LSH (L: 20, c: 300) 50 1 <0.05 40.5 (16.6) 2.3 (1.2) 641.5 (111.1) 3.3 (<0.05) 4.1 (1.7) 100 6.5 (0.1) 7.0 (2.3) 100

Brute-force 100 1 <0.05 41.6 (16.9) 2.3 (1.1) 639.2 (108.0) 8.4 (0.1) 4.1 (1.7) 100 30.1 (0.2) 6.9 (2.3) 100
kd-tree 100 1 <0.05 41.7 (16.2) 2.3 (1.1) 645.5 (104.7) 3.2 (0.1) 4.0 (1.6) 100 7.2 (0.2) 6.9 (2.3) 100
LSH (L: 20, c: 150) 100 1 <0.05 41.1 (16.2) 2.3 (1.1) 646.3 (106.1) 3.3 (<0.05) 4.0 (1.7) 100 6.9 (0.1) 6.9 (2.3) 100
LSH (L: 5, c: 150) 100 1 <0.05 40.8 (16.4) 2.2 (1.1) 644.3 (112.5) 3.9 (0.1) 4.1 (1.7) 100 6.5 (0.1) 6.9 (2.3) 100
LSH (L: 20, c: 300) 100 1 <0.05 42.1 (16.6) 2.3 (1.1) 644.9 (110.4) 5.2 (0.1) 4.1 (1.8) 100 8.4 (0.1) 7.0 (2.4) 100

Brute-force 50 3 2.2 (0.5) 625.8 (162.7) 147.7 (15.0) 3505.3 (922.1) 35.6 (0.3) 290.9 (17.1) 100 100.5 (0.4) 348.3 (19.3) 100
kd-tree 50 3 2.2 (0.5) 616.3 (162.3) 147.9 (15.6) 3517.1 (959.6) 31.7 (1.0) 291.4 (17.3) 100 79.3 (3.6) 350.5 (18.6) 100
LSH (L: 20, c: 150) 50 3 2.2 (0.5) 621.1 (168.9) 148.3 (16.1) 3555.5 (928.2) 20.4 (0.2) 291.6 (17.0) 100 39.2 (0.4) 350.4 (19.3) 100
LSH (L: 5, c: 150) 50 3 2.2 (0.5) 622.3 (169.9) 148.9 (16.2) 3473.7 (936.3) 19.7 (0.3) 330.8 (18.7) 100 35.5 (0.4) 388.4 (20.6) 100
LSH (L: 20, c: 300) 50 3 2.2 (0.5) 616.0 (162.8) 147.9 (15.8) 3451.2 (911.0) 20.8 (0.2) 290.5 (17.6) 100 38.4 (0.3) 349.1 (19.1) 100

Brute-force 100 3 3.3 (0.7) 592.5 (144.2) 140.9 (13.4) 3474.8 (857.7) 40.0 (0.4) 201.7 (14.5) 100 105.9 (0.5) 227.9 (15.1) 100
kd-tree 100 3 3.4 (0.7) 596.7 (155.2) 141.5 (13.3) 3431.2 (915.5) 36.8 (1.0) 201.8 (14.0) 100 87.9 (3.5) 228.2 (15.3) 100
LSH (L: 20, c: 150) 100 3 3.3 (0.8) 595.1 (158.4) 140.6 (13.4) 3455.7 (932.6) 25.1 (0.3) 202.1 (14.2) 100 44.9 (0.4) 228.2 (14.7) 100
LSH (L: 5, c: 150) 100 3 3.3 (0.8) 598.5 (156.6) 140.8 (13.3) 3471.4 (929.6) 25.8 (0.3) 240.6 (16.5) 100 42.7 (0.4) 265.8 (16.1) 100
LSH (L: 20, c: 300) 100 3 3.4 (0.8) 600.6 (156.8) 141.4 (13.2) 3472.7 (928.4) 26.2 (0.3) 203.4 (14.6) 100 44.7 (0.4) 228.8 (15.3) 100

Brute-force 50 5 132.8 (37.0) 14736.9 (2832.4) 7122.4 (889.5) 10638.1 (3512.0) 74.6 (0.3) 5586.2 (71.7) 4 207.0 (0.4) 8685.1 (92.9) 79
kd-tree 50 5 133.4 (35.5) 14877.3 (2806.8) 7166.0 (885.6) 10687.8 (3570.3) 75.1 (1.3) 5587.3 (68.6) 4 202.6 (4.2) 8685.3 (88.5) 79
LSH (L: 20, c: 150) 50 5 76.9 (17.1) 14772.0 (2983.9) 7134.2 (950.1) 10530.9 (3681.8) 49.8 (0.3) 5590.5 (68.6) 4 107.3 (0.6) 8691.0 (89.4) 80
LSH (L: 5, c: 150) 50 5 73.8 (15.0) 15041.0 (2891.2) 7386.4 (930.1) 10949.9 (3734.6) 47.7 (0.3) 5723.0 (70.7) 4 99.5 (0.4) 8888.4 (93.0) 79
LSH (L: 20, c: 300) 50 5 76.0 (16.0) 14768.7 (2926.6) 7131.4 (927.1) 10858.1 (3707.3) 50.0 (0.4) 5587.6 (69.3) 5 104.6 (0.8) 8692.8 (87.1) 79

Brute-force 100 5 162.7 (46.3) 13887.6 (3033.0) 6279.6 (797.0) 10083.6 (3407.6) 104.9 (0.4) 5242.3 (71.8) 9 262.5 (0.6) 7748.9 (92.9) 89
kd-tree 100 5 166.5 (46.3) 13831.3 (2982.6) 6265.8 (789.7) 10262.5 (3413.3) 108.3 (0.9) 5242.9 (66.1) 10 268.9 (3.2) 7753.2 (82.3) 90
LSH (L: 20, c: 150) 100 5 111.5 (25.0) 13793.8 (3035.7) 6252.3 (806.0) 10172.0 (3399.0) 80.2 (0.3) 5246.5 (69.9) 11 162.4 (0.5) 7753.9 (87.1) 90
LSH (L: 5, c: 150) 100 5 111.6 (22.2) 14103.0 (2898.4) 6583.0 (789.0) 10415.3 (3550.8) 80.0 (0.4) 5432.5 (68.3) 8 156.2 (0.7) 8057.9 (88.3) 89
LSH (L: 20, c: 300) 100 5 113.5 (23.7) 13939.1 (2960.7) 6305.5 (776.0) 10164.7 (3335.4) 81.9 (0.4) 5258.1 (71.2) 10 161.4 (0.6) 7762.4 (90.3) 89

https://doi.org/10.1017/S0263574714000873 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0263574714000873

Speeding
up

probabilistic
roadm

ap
planners

w
ith

locality-sensitive
hashing

1501
Table II. Average results of 1000 test runs for house environment, with standard deviations shown in parentheses. SR means success rate. L means the number of hash tables,

and c means the number of clusters.

Path found 10,000 nodes 30,000 nodes

Method k Robots Time (s) Nodes Components Length Time (s) Components SR Time (s) Components SR

Brute-force 50 1 10.2 (13.6) 7917.1 (6995.0) 9.7 (3.7) 1407.1 (228.4) 10.0 (0.1) 8.1 (2.2) 63 68.8 (0.4) 3.9 (1.4) 90
kd-tree 50 1 3.7 (3.0) 8080.2 (7320.6) 9.6 (3.8) 1406.6 (237.1) 4.4 (0.1) 8.2 (2.3) 63 12.9 (0.4) 3.9 (1.4) 90
LSH (L: 20, c: 150) 50 1 4.0 (3.4) 8234.5 (7353.1) 9.4 (3.7) 1397.7 (213.9) 4.6 (0.1) 8.3 (2.3) 61 15.3 (0.1) 3.9 (1.3) 89
LSH (L: 5, c: 150) 50 1 3.9 (3.0) 8553.2 (7716.8) 9.7 (3.7) 1405.0 (234.6) 4.4 (0.1) 8.8 (2.4) 60 12.8 (0.1) 4.3 (1.6) 89
LSH (L: 20, c: 300) 50 1 4.5 (3.4) 8507.1 (7441.7) 9.5 (3.7) 1413.3 (244.5) 5.2 (0.1) 8.3 (2.3) 60 14.8 (0.1) 4.0 (1.4) 90

Brute-force 100 1 7.4 (10.0) 5743.0 (5593.0) 9.2 (3.4) 1409.2 (233.2) 11.1 (0.2) 6.2 (1.9) 83 68.8 (0.2) 2.7 (0.8) 98
kd-tree 100 1 3.8 (2.6) 5679.9 (5389.9) 9.3 (3.4) 1392.0 (231.8) 5.8 (0.2) 6.3 (1.9) 83 15.6 (0.3) 2.6 (0.8) 98
LSH (L: 20, c: 150) 100 1 4.2 (2.7) 5617.6 (5251.5) 9.1 (3.3) 1411.9 (237.3) 6.3 (0.2) 6.2 (1.9) 82 17.2 (0.2) 2.7 (0.9) 98
LSH (L: 5, c: 150) 100 1 4.4 (2.9) 5674.2 (5640.4) 9.3 (3.4) 1405.8 (229.4) 6.9 (0.2) 6.4 (1.9) 81 15.5 (0.2) 2.9 (1.0) 98
LSH (L: 20, c: 300) 100 1 5.0 (3.4) 5686.0 (5541.2) 9.2 (3.3) 1387.6 (236.2) 8.1 (0.2) 6.2 (1.9) 82 17.8 (0.2) 2.7 (0.9) 97

Brute-force 50 2 46.4 (35.6) 13486.9 (7586.5) 140.9 (11.2) 4580.3 (1121.5) 26.6 (0.3) 138.1 (9.8) 34 141.5 (0.6) 147.2 (10.5) 88
kd-tree 50 2 26.9 (14.4) 13405.1 (7285.8) 140.9 (10.7) 4571.8 (1100.0) 20.1 (0.4) 137.9 (10.2) 33 60.2 (1.6) 147.2 (10.5) 87
LSH (L: 20, c: 150) 50 2 20.9 (11.0) 13142.5 (7388.6) 140.8 (10.6) 4692.3 (1172.6) 16.2 (0.2) 138.2 (10.4) 36 47.1 (0.4) 146.9 (10.2) 87
LSH (L: 5, c: 150) 50 2 20.5 (9.1) 14092.3 (7349.5) 149.6 (11.0) 4677.7 (1158.2) 15.7 (0.2) 148.6 (10.9) 30 40.3 (0.3) 154.9 (10.6) 87
LSH (L: 20, c: 300) 50 2 20.7 (9.7) 13124.8 (7136.1) 140.5 (10.9) 4667.0 (1140.7) 16.6 (0.2) 137.6 (10.1) 35 43.8 (0.4) 146.5 (10.5) 86

Brute-force 100 2 37.9 (29.7) 10517.4 (6565.2) 128.0 (11.8) 4575.1 (1124.9) 31.8 (0.6) 124.1 (9.2) 53 149.1 (1.1) 129.4 (9.2) 97
kd-tree 100 2 29.1 (17.1) 10547.3 (6490.6) 128.0 (11.6) 4601.9 (1111.0) 27.6 (0.8) 123.7 (9.4) 53 80.7 (2.3) 129.3 (9.2) 97
LSH (L: 20, c: 150) 100 2 22.5 (11.3) 10639.8 (6671.6) 127.8 (11.7) 4643.1 (1121.3) 21.9 (0.6) 123.5 (9.3) 52 54.7 (1.0) 129.4 (10.0) 96
LSH (L: 5, c: 150) 100 2 23.7 (10.4) 11348.8 (6840.5) 135.1 (10.4) 4598.6 (1147.9) 22.6 (0.7) 134.3 (9.9) 47 49.6 (1.1) 138.9 (10.2) 94
LSH (L: 20, c: 300) 100 2 23.6 (10.7) 10755.7 (6667.4) 127.6 (11.7) 4609.7 (1128.5) 23.3 (0.6) 123.4 (9.7) 52 52.3 (1.0) 129.0 (10.0) 96

Brute-force 50 3 188.9 (52.9) 23718.1 (4983.7) 2488.3 (130.8) 9969.3 (2393.7) 57.1 (0.3) 2069.3 (40.0) 0 263.5 (0.6) 2604.7 (45.6) 6
kd-tree 50 3 165.3 (40.2) 23519.5 (4618.2) 2486.3 (116.1) 9968.1 (2462.5) 56.3 (0.6) 2070.6 (38.5) 0 224.9 (3.7) 2607.8 (44.8) 7
LSH (L: 20, c: 150) 50 3 102.9 (19.9) 23839.2 (4426.2) 2510.0 (96.7) 10260.0 (2340.1) 42.5 (0.3) 2072.6 (39.0) 0 130.9 (0.6) 2605.6 (47.6) 6
LSH (L: 5, c: 150) 50 3 94.9 (20.5) 23999.6 (5369.6) 2702.9 (147.8) 11066.4 (3196.6) 41.0 (0.3) 2253.1 (42.0) 0 117.7 (0.6) 2799.6 (50.3) 4
LSH (L: 20, c: 300) 50 3 98.2 (17.7) 23854.8 (4389.1) 2504.8 (113.4) 9951.1 (2608.4) 42.2 (0.3) 2075.6 (40.6) 0 122.8 (0.7) 2610.0 (46.9) 7

Brute-force 100 3 209.7 (57.7) 23398.6 (4985.5) 2238.0 (101.9) 9641.4 (2746.8) 70.2 (0.4) 1902.4 (37.3) 0 292.4 (1.2) 2331.1 (42.9) 16
kd-tree 100 3 201.1 (51.7) 23293.6 (4885.1) 2240.7 (98.9) 9637.0 (2571.8) 71.6 (0.7) 1902.4 (37.6) 0 275.0 (3.7) 2330.0 (43.8) 16
LSH (L: 20, c: 150) 100 3 125.8 (25.9) 23290.2 (4950.2) 2240.5 (121.2) 9908.8 (2670.1) 56.2 (0.5) 1907.6 (37.2) 0 161.2 (1.6) 2332.5 (43.2) 15
LSH (L: 5, c: 150) 100 3 123.0 (22.2) 24118.9 (4804.3) 2468.8 (98.6) 10139.9 (2508.8) 56.1 (0.5) 2091.9 (41.5) 0 149.6 (1.5) 2551.9 (44.5) 9
LSH (L: 20, c: 300) 100 3 121.3 (20.8) 23424.8 (4409.4) 2250.4 (79.3) 9852.7 (2426.8) 56.3 (0.4) 1912.9 (37.9) 0 152.1 (1.3) 2335.7 (43.0) 14

https://doi.org/10.1017/S0263574714000873 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0263574714000873

1502
Speeding

up
probabilistic

roadm
ap

planners
w

ith
locality-sensitive

hashing

Table III. Average results of 1000 test runs for wall environment, with standard deviations shown in parentheses. SR means success rate. L means the number of hash tables, and
c means the number of clusters.

Path found 10,000 nodes 20,000 nodes

Method k Robots Time (s) Nodes Components Length Time (s) Components SR Time (s) Components SR

Brute-force 50 3 0.7 (0.5) 1008.7 (557.6) 2.7 (1.3) 1744.0 (539.2) 18.6 (0.1) 9.3 (3.0) 100 71.4 (0.2) 17.6 (4.1) 100
kd-tree 50 3 0.8 (0.5) 1044.2 (587.3) 2.7 (1.3) 1748.7 (525.8) 19.2 (0.4) 9.3 (2.9) 100 67.3 (1.0) 17.5 (4.1) 100
LSH (L: 20, c: 150) 50 3 0.6 (0.3) 1066.4 (615.6) 2.8 (1.3) 1786.2 (552.0) 4.2 (0.1) 9.4 (2.9) 100 12.5 (0.2) 17.7 (4.2) 100
LSH (L: 5, c: 150) 50 3 0.7 (0.4) 1052.9 (616.9) 2.8 (1.3) 1730.3 (517.6) 2.9 (0.1) 9.3 (2.9) 100 6.6 (0.2) 17.6 (4.1) 100
LSH (L: 20, c: 300) 50 3 0.8 (0.4) 1063.2 (647.4) 2.9 (1.3) 1758.2 (534.0) 4.1 (0.1) 9.4 (2.9) 100 10.0 (0.2) 17.6 (4.1) 100

Brute-force 100 3 0.7 (0.3) 606.3 (287.6) 2.4 (1.2) 1689.8 (502.1) 19.1 (0.2) 9.4 (2.9) 100 72.4 (0.2) 17.7 (4.1) 100
kd-tree 100 3 0.7 (0.3) 596.0 (271.9) 2.4 (1.1) 1676.7 (479.5) 22.3 (0.4) 9.4 (2.8) 100 80.9 (1.1) 17.8 (4.1) 100
LSH (L: 20, c: 150) 100 3 0.7 (0.3) 590.7 (270.6) 2.4 (1.2) 1704.2 (533.5) 4.6 (0.2) 9.4 (2.9) 100 13.0 (0.2) 17.8 (4.1) 100
LSH (L: 5, c: 150) 100 3 0.7 (0.3) 599.9 (273.6) 2.5 (1.2) 1709.0 (541.1) 4.6 (0.2) 9.3 (2.9) 100 8.5 (0.3) 17.6 (4.1) 100
LSH (L: 20, c: 300) 100 3 0.7 (0.3) 599.8 (281.7) 2.4 (1.2) 1681.1 (517.7) 5.2 (0.2) 9.2 (2.9) 100 11.2 (0.2) 17.5 (4.0) 100

Brute-force 50 5 12.8 (7.0) 4901.0 (1715.4) 11.9 (3.7) 5426.9 (2047.6) 35.6 (0.5) 13.4 (3.5) 98 123.2 (0.6) 25.2 (4.9) 100
kd-tree 50 5 15.2 (9.7) 4919.4 (1749.2) 11.8 (3.7) 5656.3 (2068.0) 46.3 (0.8) 13.5 (3.8) 98 175.6 (1.3) 25.2 (5.1) 100
LSH (L: 20, c: 150) 50 5 7.0 (2.4) 4978.8 (1783.5) 11.9 (3.7) 5540.5 (1945.6) 13.1 (0.6) 13.4 (3.5) 98 32.7 (0.8) 25.1 (4.8) 100
LSH (L: 5, c: 150) 50 5 7.0 (1.8) 5453.7 (1967.6) 15.2 (4.4) 5742.0 (2035.8) 10.2 (0.6) 15.4 (3.8) 97 18.8 (0.6) 26.5 (5.1) 100
LSH (L: 20, c: 300) 50 5 7.4 (2.2) 5097.2 (1779.0) 12.0 (3.8) 5634.1 (2149.7) 12.4 (0.6) 13.4 (3.4) 98 26.2 (0.6) 25.2 (4.8) 100

Brute-force 100 5 8.8 (3.4) 3085.3 (1035.4) 9.5 (3.7) 5195.7 (1981.0) 37.3 (0.8) 12.8 (3.3) 100 125.3 (0.8) 24.4 (4.8) 100
kd-tree 100 5 9.9 (4.2) 3160.8 (1059.4) 9.3 (3.6) 5295.4 (1909.1) 48.1 (1.0) 12.9 (3.5) 100 177.8 (1.5) 24.6 (4.8) 100
LSH (L: 20, c: 150) 100 5 7.0 (1.8) 3234.8 (1161.9) 9.5 (3.7) 5315.4 (1944.5) 15.0 (0.8) 12.9 (3.5) 100 34.6 (0.9) 24.6 (4.9) 100
LSH (L: 5, c: 150) 100 5 8.0 (1.9) 3263.7 (1193.4) 10.1 (3.6) 5298.3 (1960.5) 13.2 (0.9) 13.7 (3.5) 100 21.9 (0.9) 25.1 (4.9) 100
LSH (L: 20, c: 300) 100 5 7.9 (1.8) 3297.4 (1136.4) 9.5 (3.7) 5347.8 (1967.1) 14.7 (0.8) 12.8 (3.5) 100 28.4 (0.8) 24.4 (5.0) 100

Brute-force 50 7 158.7 (26.8) 17681.7 (1827.5) 129.4 (12.4) 11655.2 (4808.5) 60.4 (0.2) 165.2 (11.1) 0 195.5 (0.6) 126.4 (12.1) 15
kd-tree 50 7 204.6 (37.4) 17722.0 (1957.7) 128.7 (12.6) 11757.0 (4587.6) 72.7 (0.5) 165.0 (11.4) 0 253.3 (1.0) 126.4 (12.2) 15
LSH (L: 20, c: 150) 50 7 63.4 (8.0) 17684.2 (1694.8) 128.8 (12.4) 11318.4 (4435.1) 30.4 (0.2) 164.9 (11.0) 0 74.7 (0.9) 125.8 (11.9) 14
LSH (L: 5, c: 150) 50 7 47.5 (4.8) 18193.5 (1704.4) 247.9 (24.0) 11782.1 (4904.7) 25.1 (0.1) 310.1 (20.2) 0 52.7 (0.4) 244.9 (19.7) 5
LSH (L: 20, c: 300) 50 7 57.1 (5.8) 18014.0 (1572.0) 127.2 (10.1) 11539.6 (4034.4) 29.1 (0.2) 166.3 (11.3) 0 64.7 (0.7) 125.9 (11.5) 12

Brute-force 100 7 140.0 (35.5) 15157.2 (2552.0) 58.8 (10.6) 13131.6 (5109.7) 73.5 (0.3) 85.3 (9.0) 2 212.1 (2.2) 50.7 (6.9) 72
kd-tree 100 7 174.6 (45.5) 15253.5 (2462.0) 58.6 (10.6) 13055.3 (5029.1) 86.2 (0.4) 85.3 (9.0) 2 270.4 (2.3) 50.6 (7.2) 72
LSH (L: 20, c: 150) 100 7 70.1 (12.3) 15340.6 (2479.1) 59.6 (10.7) 12939.8 (5193.8) 43.7 (0.3) 87.5 (8.9) 1 91.7 (2.3) 51.3 (7.1) 72
LSH (L: 5, c: 150) 100 7 65.1 (7.0) 16876.3 (1975.0) 111.0 (15.8) 13700.1 (5004.6) 39.9 (0.2) 163.6 (13.0) 0 74.9 (2.0) 99.8 (11.8) 51
LSH (L: 20, c: 300) 100 7 65.1 (9.4) 15445.5 (2322.8) 60.8 (10.8) 13231.0 (4862.5) 42.5 (0.4) 89.8 (9.1) 0 81.7 (2.3) 52.1 (7.4) 66

https://doi.org/10.1017/S0263574714000873 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0263574714000873

Speeding up probabilistic roadmap planners with locality-sensitive hashing 1503

● ● ● ● ●
●

●
●

●
●

●

5

10

15

20

25

30

T
im

e
(s

)

0 5000 10,000 15,000 20,000
Nodes

●

Brute−force
kd−tree
LSH

(a) 1 robot body

●

●

●

●

●

●

●

●

●

●

●

20

40

60

80

100

T
im

e
(s

)

0 5000 10,000 15,000 20,000
Nodes

●

Brute−force
kd−tree
LSH

(b) 3 robot bodies

●
●

●

●

●

●

●

●

●

●

●

50

100

150

200

250

T
im

e
(s

)

0 5000 10,000 15,000 20,000
Nodes

●

Brute−force
kd−tree
LSH

(c) 5 robot bodies

Fig. 5. Graphs show how much time was used to build the roadmap in asteroids environment with different
methods.

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10

20

30

40

50

60

70

T
im

e
(s

)

0 7500 15,000 22,500 30,000
Nodes

●

Brute−force
kd−tree
LSH

(a) 1 robot body

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

25

50

75

100

125

150

T
im

e
(s

)

0 7500 15,000 22,500 30,000
Nodes

●

Brute−force
kd−tree
LSH

(b) 2 robot bodies

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

50

100

150

200

250

300

T
im

e
(s

)

0 7500 15,000 22,500 30,000
Nodes

●

Brute−force
kd−tree
LSH

(c) 3 robot bodies

Fig. 6. Graphs show how much time was used to build the roadmap in house environment with different methods.

● ●
●

●

●

●

●

●

●

●

●

10

20

30

40

50

60

70

80

T
im

e
(s

)

0 5000 10,000 15,000 20,000
Nodes

●

Brute−force
kd−tree
LSH

(a) 3 robot bodies

●
●

●
●

●

●

●

●

●

●

●

25

50

75

100

125

150

175

T
im

e
(s

)

0 5000 10,000 15,000 20,000
Nodes

●

Brute−force
kd−tree
LSH

(b) 5 robot bodies

●
●

●

●

●

●

●

●

●

●

●

50

100

150

200

250

T
im

e
(s

)

0 5000 10,000 15,000 20,000
Nodes

●

Brute−force
kd−tree
LSH

(c) 7 robot bodies

Fig. 7. Graphs show how much time was used to build the roadmap in wall environment with different methods.

dimensions for a configuration space. By decreasing the number of hash tables to five, the planner
worked faster, but the quality of the roadmap decreased. Increasing the number of centroids to 300
did not have as large effects, but, for example, the success rates in the wall environment decreased,
as can be seen in Table III. However, it seems that there is no need for a major fine tuning of the
parameters to get good results with the LSH method.

By comparing the time required to build the whole roadmap with different values for k, it can
be seen that increasing the value also increases the used time. On the other hand, when k is large,
the success rates are higher and the predefined query can be solved with a smaller roadmap. This
is because k determines the number of configurations to which each new configuration is tried to
be connected with a local planner. The planner requires more computation time with large values,
but at the same time the connectivity of the roadmap increases. When the connectivity is high, the
predetermined query can be solved with a smaller number of nodes and with a better success rate
than with lower connectivity.

https://doi.org/10.1017/S0263574714000873 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000873

1504 Speeding up probabilistic roadmap planners with locality-sensitive hashing

It can be noted from the results that the time required to build the roadmap grows also when
the number of robot bodies increases, no matter what the nearest neighbor method is used. There
are several reasons for this. The first reason is that the collisions must be checked for each robot
body, which obviously requires more time as the number of bodies grows. The second reason is that
when the robot consists of multiple bodies, the robot can collide with itself in some configurations.
Therefore, it is not enough to check collisions with static obstacles because also self-collisions must
be checked. The third reason has to do with a local planner which tries to connect a new configuration
with only those configurations that do not belong to the same component (see line 8 in Algorithm 1).
When the number of robot bodies grows, it will be increasingly difficult for the local planner to find
a free path between two configurations. Therefore, more and more paths must be checked. This can
also be seen from the number of components that grows rapidly when the number of robot bodies
increases.

6. Conclusions
Probabilistic roadmap planners must use the nearest neighbor methods to retrieve a set of neighboring
configurations when a new configuration is added to the roadmap. Neighbors are usually searched for
by exact methods, which can unfortunately became a major bottleneck for the performance. This can
occur when the roadmap size grows and especially when the configuration space is high-dimensional.

In this paper, we investigated how approximate the nearest neighbor methods work with PRM
planners. We focused on LSH, which is nowadays quite a popular method for approximate neighbor
search and has been successfully used in many applications. We compared the LSH method with two
exact methods, which were the brute-force search and the kd-tree method.

Our experiments showed that it is indeed feasible to use approximate nearest neighbor search
when constructing the roadmap. The approximate search can speed up the roadmap construction
phase considerably. Our experiments also showed that kd-tree is not a good method to be used in
high-dimensional spaces as it will eventually became even slower than the brute-force method.

We also compared the quality of the roadmaps produced with different methods. With good
parameters for the LSH method, there were no significant differences in quality between the LSH
method and the exact methods. The roadmap was able to solve the predetermined query with the same
success rate, and the length of the found path was approximately the same. We also measured the
number of roadmap components in certain roadmap sizes and noted that there were no big differences
between the methods.

The problem with the LSH method is that it requires parameters that must be selected manually
to suit each motion planning problem. However, the LSH methods generally work faster than exact
algorithms and produce reasonably good quality roadmaps even with bad choices of parameter values.
Because of this, it seems that there is no need for an extreme fine tuning of parameters. Still it would
be worth to investigate whether these parameters could be selected automatically. Another interesting
idea for the future research is to compare how other approximate the nearest neighbor methods work
when compared with LSH.

Acknowledgment
The research of the first author was supported by the Tampere Doctoral Programme in Information
Science and Engineering (TISE).

References
1. J.-C. Latombe, Robot Motion Planning (Kluwer, Boston, MA, 1991).
2. H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun, Principles of

Robot Motion: Theory, Algorithms, and Implementations (MIT Press, Cambridge, MA, 2005).
3. S. M. LaValle, Planning Algorithms (Cambridge University Press, Cambridge, UK, 2006).
4. N. Dadkhah and B. Mettler, “Survey of motion planning literature in the presence of uncertainty:

Considerations for UAV guidance,” J. Intell. Robot. Syst. 65, 233–246 (2012).
5. J. Smed and H. Hakonen, “Path Finding,” In: Algorithms and Networking for Computer Games (John

Wiley, 2006) pp. 97–113.

https://doi.org/10.1017/S0263574714000873 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000873

Speeding up probabilistic roadmap planners with locality-sensitive hashing 1505

6. I. Al-Bluwi, T. Siméon and J. Cortés, “Motion planning algorithms for molecular simulations: A survey,”
Comput. Sci. Rev. 6(4), 125–143 (2012).

7. T. Lozano-Pérez, “Spatial planning: A configuration space approach,” IEEE Trans. Comput. C-32(2),
108–120 (1983).

8. J. H. Reif, “Complexity of the Mover’s Problem and Generalizations,” Proceedings of the IEEE Symposium
on Foundations of Computer Science, San Juan, Puerto Rico (Oct. 29–31, 1979) pp. 421–427.

9. J. F. Canny, The Complexity of Robot Motion Planning (MIT Press, Cambridge, MA, 1988).
10. M. H. Overmars, “A Random Approach to Motion Planning,” Technical Report RUU-CS-92-93, Department

of Computer Science, Utrecht University, the Netherlands (1992).
11. L. Kavraki and J.-C. Latombe, “Randomized Preprocessing of Configuration Space for Fast Path Planning,”

Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, CA (May 8–13,
1994) pp. 2138–2145.

12. L. E. Kavraki, P. Švestka, J.-C. Latombe and M. H. Overmars, “Probabilistic roadmaps for path planning
in high-dimensional configuration spaces,” IEEE Trans. Robot. Autom. 12(4), 566–580 (1996).

13. L. Jaillet and T. Siméon, “A PRM-Based Motion Planner for Dynamically Changing Environments,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan (Sept.
28–Oct. 2, 2004) pp. 1606–1611.

14. A. Sud, R. Gayle, E. Andersen, S. Guy, M. Lin and D. Manocha, “Real-Time Navigation of Independent
Agents Using Adaptive Roadmaps,” Proceedings of the ACM Symposium on Virtual Reality Software and
Technology, Newport Beach, CA (Nov. 5–7, 2007) pp. 99–106.

15. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman and A. Y. Wu, “An optimal algorithm for approximate
nearest neighbor searching in fixed dimensions,” J. ACM 45(6), 891–923 (1998).

16. M. Muja and D. G. Lowe, “Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration,”
Proceedings of the International Conference on Computer Vision Theory and Application, Lisboa, Portugal,
(Feb. 5–8, 2009) pp. 331–340.

17. P. Indyk and R. Motwani, “Approximate Nearest Neighbors: Towards Removing the Curse of
Dimensionality,” Proceedings of ACM Symposium on Theory of Computing, Dallas, Texas, USA (May
23–26, 1998) pp. 604–613.

18. A. Gionis, P. Indyk and R. Motwani, “Similarity Search in High Dimensions via Hashing,” Proceedings of
International Conference on Very Large Data Bases, Edinburgh, Scotland (Sep. 7–10, 1999) pp. 518–529.

19. A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions,” Commun. ACM 51(1), 117–122 (2008).

20. L. Kocis and W. J. Whiten, “Computational investigations of low-discrepancy sequences,” ACM Trans.
Math. Softw. 23(2), 266–294 (1997).

21. N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones and D. Vallejo, “OBPRM: An Obstacle-Based PRM for
3D Workspaces,” Proceedings of Workshop on Algorithmic Foundations of Robotics, Houston, Texas (Mar.
5–7, 1998) pp. 155–168.

22. V. Boor, M. H. Overmars and A. F. van der Stappen, “The Gaussian Sampling Strategy for Probabilistic
Roadmap Planners,” Proceedings of IEEE International Conference on Robotics & Automation, Detroit,
MI (May 10–15, 1999) pp. 1018–1023.

23. D. Hsu, T. Jiang, J. Reif and Z. Sun, “The Bridge Test for Sampling Narrow Passages with Probabilistic
Roadmap Planners,” Proceedings of IEEE International Conference on Robotics & Automation, Taipei,
Taiwan (Sep. 14–19, 2003) pp. 4420–4426.

24. S. A. Wilmarth, N. M. Amato and P. F. Stiller, “MAPRM: A Probabilistic Roadmap Planner with Sampling
on the Medial Axis of the Free Space,” Proceedings of IEEE International Conference on Robotics &
Automation, Detroit, MI (May 10–15, 1999) pp. 1024–1031.

25. C. Holleman and L. E. Kavraki, “A Framework for Using the Workspace Medial Axis in PRM Planners,”
Proceedings of IEEE International Conference on Robotics & Automation, San Francisco, CA (Apr. 24–28,
2000) pp. 1408–1413.

26. M. Morales, L. Tapia, R. Pearce, S. Rodriguez and N. M. Amato, “A Machine Learning Approach
for Feature-Sensitive Motion Planning,” In: Algorithmic Foundations of Robotics VI (M. Erdmann,
M. Overmars, D. Hsu and F. van der Stappen, eds.) (Springer, Berlin, 2005), pp. 361–376.

27. S. Rodriguez, S. Thomas, R. Pearce and N. M. Amato, “RESAMPL: A Region-Sensitive Adaptive Motion
Planner,” In: Algorithmic Foundation of Robotics VII (S. Akella, N. M. Amato, W. H. Huang and B. Mishra,
eds.) (Springer, Berlin, 2008) pp. 285–300.

28. M. T. Rantanen, “A connectivity-based method for enhancing sampling in probabilistic roadmap planners,”
J. Intell. Robot. Syst. 64(2), 161–178 (2011).

29. N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones and D. Vallejo, “Choosing good distance metrics and
local planners for probabilistic roadmap methods,” IEEE Trans. Robot. Autom. 16(4), 442–447 (2000).

30. R. Geraerts and M. H. Overmars, “Reachability-based analysis for probabilistic roadmap planners,” Robot.
Auton. Syst. 55(11), 824–836 (2007).

31. J. J. Kuffner, “Effective Sampling and Distance Metrics for 3D Rigid Body Path Planning,” Proceedings
of IEEE International Conference on Robotics & Automation, New Orleans, LA (Apr. 26–May 1, 2004)
pp. 3993–3998.

32. R. Weber, H.-J. Schek and S. Blott, “A Quantitative Analysis and Performance Study for Similarity-Search
Methods in High-Dimensional Spaces,” Proceedings of International Conference on Very Large Databases,
New York City, New York, USA (Aug. 24–27, 1998) pp. 194–205.

https://doi.org/10.1017/S0263574714000873 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000873

1506 Speeding up probabilistic roadmap planners with locality-sensitive hashing

33. J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Commun. ACM 18(9),
509–517 (1975).

34. M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, Computational Geometry: Algorithms and
Applications, 2nd ed. (Springer-Verlag, Berlin, Germany, 2000).

35. A. Yershova and S. M. LaValle, “Improving motion-planning algorithms by efficient nearest-neighbor
searching,” IEEE Trans. Robot. 23(1), 151–157 (2007).

36. M. Ryynänen and A. Klapuri, “Query by Humming of MIDI and Audio Using Locality Sensitive Hashing,”
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Las Vegas,
NV (Mar. 31–Apr. 4, 2008) pp. 2249–2252.

37. R. Buaba, A. Homaifar, M. Gebril and E. Kihn, “Satellite Image Retrieval Application Using Locality
Sensitive Hashing in L2-Space,” Proceedings of IEEE Aerospace Conference, Big Sky, MT, USA (Mar.
5–12, 2011) pp. 1–7.

38. M. Datar, N. Immorlica, P. Indyk and V. S. Mirrokni, “Locality-Sensitive Hashing Scheme Based on p-
Stable Distributions,” Proceedings of Symposium on Computational Geometry, Brooklyn, New York, USA
(Jun. 8–11, 2004) pp. 253–262.

39. L. Paulevé, H. Jégou and L. Amsaleg, “Locality sensitive hashing: A comparison of hash function types
and querying mechanisms,” Pattern Recognit. Lett. 31(11), 1348–1358 (2010).

40. F. Aurenhammer, “Voronoi diagrams–a survey of a fundamental geometric data structure,” ACM Comput.
Surv. 23(3), 345–405 (1991).

41. E. Larsen, S. Gottschalk, M. C. Lin and D. Manocha, “Fast Proximity Queries with Swept Sphere Volumes,”
Technical Report TR99-018, Department of Computer Science, University of North Carolina, Wilmington,
NC (1999).

https://doi.org/10.1017/S0263574714000873 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000873

