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We present a theory that enables us to construct heteroclinic connections in closed form for

2uxx = Wu(u), where x ∈ �, u(x) ∈ �2 and W is a smooth potential with multiple global

minima. In particular, multiple connections between global minima are constructed for a class

of potentials. With these potentials, numerical simulations for the vector Allen-Cahn equation

ut = 2ε2∆u − Wu(u) in two space dimensions with small ε > 0, show that between any fixed

pair of phase regions, interfaces are partitioned into segments of different energy densities,

where the proportions of the length of these segments are changing with time. Our results

imply that for the case of triple-well potentials the usual Plateau angle conditions at the triple

junction are generally violated.

1 Introduction

In this paper we study solutions to

2uxx − Wu(u) = 0 in �, lim
|x|→∞

W (u(x)) = 0 (1.1)

where u = (u1, . . . , uN) is a vector valued function from � to �N and Wu = ( ∂W
∂u1 , . . . ,

∂W
∂uN

)

where W : �N → � is a (smooth) function satisfying

W > 0 in �N \ A, W = 0 on A = {a1, . . . , an}, lim inf
|u|→∞

W (u) > 0.

The equations in (1.1) can be regarded as Newton’s equations of motion for N material

points of equal mass under the potential −W (u), with x standing for time and |ux|2, −W (u)

the kinetic and potential energy, respectively. Alternatively, the Hamiltonian formulation

captures the motion from one well of the potential to another is a critical point of the
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action functional

E(u) := 1
2

∫
�

(
|ux|2 + W (u)

)
dx (1.2)

with (1.1) being the associated Euler-Lagrange equation.

In what follows A is called the set of wells and for a solution u to (1.1) with

ai = lim
x→−∞

u(x), aj = lim
x→∞

u(x),

the set {u(x) | x ∈ �} is referred to as a connection or trajectory connecting ai and aj .

For N = 1, constructing connections is elementary and is done either by utilizing

the first integral of (1.1) or by phase plane analysis [27, 30, 7]. For general N > 1 the

connection problem is difficult and has been analyzed only for certain special potentials.

In the present paper we restrict ourselves to N = 2. Thus, we study the O.D.E. system

2u1
xx =

∂W (u1, u2)

∂u1
, 2u2

xx =
∂W (u1, u2)

∂u2
.

Utilizing Jacobi’s geometric version of the least action principle (cf. [25, 34]) that relates

the critical points of E to the critical points of the parametric functional (transition

energy)

E1(u) =

∫
|ux|

√
W (u) dx

and employing complex analysis methods we can solve the connection problem (1.1) and

furthermore produce explicit solutions for a variety of potentials. In our approach we

employ � as a phase space and use a first integral of (1.1) corresponding to the principle

of equipartition of mechanical energy.

We can handle two kinds of potentials. Write

z = u1 + iu2, i =
√

−1, W (u1, u2) = |f(z)|2,

A potential is of type I if f is holomorphic and of type II if f(z) is meromorphic single-

valued or multiple valued with poles. (We remark that potentials of this form include the

natural class of potentials given as products of squares of distances from a finite set of

points, Πn
i=1|z − zi|2.)

For type I potentials, we show that there exists at most one connection between any

pair of wells. For type II potentials, multiple connections between a pair of wells may

exist. Here the poles play the role of obstacles and depending on the side we shoot from,

we obtain the one or the other connection. Indeed the first evidence of the existence of

multiple connections was numerical and based on a shooting method. Finally the potential

with the poles can be smoothened out near the poles without affecting the connections

(since they do not go through the pole) hence rendering a C∞ potential.

Particularizing to the following two potentials

WI (u) = |z3 − 1|2, WII (u) =
|z3 − 1|2
|z3 + α3| ,
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where α is a positive parameter, we can state the following:

• for WI we construct a unique connection in closed form between any pair of points

from the set A = {1, e2πi/3, e−2πi/3} of wells;

• for WII we show that there exist two connections for each pair of points from A. Both

connections correspond to local minima of E and are constructed in closed forms.

Depending on α, either connection can be energetically more efficient.

We also provide several other examples of potentials including

• a potential with no connection between two of its wells and

• a potential with a connection that makes a specified number of loops around a pole.

Our study of (1.1) is motivated by the vector Allen-Cahn equation

ut = 2ε2∆u − Wu(u), u : Ω × (0,∞) → �2 (1.3)

where Ω is a domain in �2 and W is a multiple-well potential. This system is known to

be capable of simulating the evolution of grain boundaries. It is a gradient flow of the

energy functional ∫
Ω

{
ε2 |∇u|2 + W (u)

}
dx.

For small ε > 0, one expects that typical initial data will evolve quickly at an O(1) time

scale towards the set A of wells, so that the domain Ω soon is partitioned into phase

regions in each one of which u is approximately constant. These regions are separated

by thin zones, the diffuse interfaces, of width O(ε). Subsequently, these interfaces start

evolving by mean curvature at an O(ε−2) time scale. At a junction, the meeting point of

three interfaces, the angles attain certain values that remain fixed as long as the junction

exists. We refer to [14, 16] for formal, numerical and rigorous evidence supporting these

scenarios, and to [31] for the study of the geometric problem.

The structure of u near the interface and away from the junction is essentially 1-

dimensional, varying only in the direction perpendicular to the interface with a profile

close to a scaled version of a solution of (1.1) [14]. This is plausible since at the interface

the Laplacian and the free term balance each other, to principal order in ε, and thus (1.1)

is satisfied approximately. The angle conditions are determined by the transition energies

connecting the pairs of the states [14].

We point out some of the implications of the non-uniqueness and the non-existence of

connections. On the positive side the examples of symmetric potentials that exhibit non-

uniqueness establish the conjecture made in Alama et al. [3] that this phenomenon can

occur, and substantiate the main result in that paper which presupposes non-uniqueness.

On the negative side, the non-existence examples show that the statement in lemma 1 in

Bronsard & Reitich [14] that any pair of global minima in a triple-well potential can be

connected as a byproduct of the work in [34] is false. Also, the non-uniqueness example

for a symmetric potential (example 7) that possesses two connections for each pair of

minima with unequal energies shows the assertion in Sternberg [14] p. 357 which is a

common perception that the Plateau angles should always be 120◦ is false. Indeed the

https://doi.org/10.1017/S095679250600667X Published online by Cambridge University Press

https://doi.org/10.1017/S095679250600667X


528 N. D. Alikakos et al.

angles are determined by the formula 5 of Bronsard & Reitich [14],

sin θ1

Φca
=

sin θ2

Φab
=

sin θ3

Φbc

which shows clearly that if Φab � Φac the angles can not all be equal. We note that

the non-uniqueness and non-existence are robust under perturbations of the potential

(examples 3 and 9).

In Figure 1 we present a simulation for (1.3) with W (u) = |z3 − 1|2/|z3 + α3|. It shows

clearly the existence of interfaces possessing “ black” and “white” partitions corresponding

to one or the other connection. By adjusting the parameter α we can achieve coexistence

of these profiles for a long time, or we can make the one or the other disappear very

quickly.

All these facts are in sharp contrast to the well-known scalar version of (1.3), where the

associated geometric evolution is motion by curvature and is insensitive to the specifics

of the potentials. We shall pursue these issues on (1.3) in a subsequent paper [5].

Our method of construction of the connections can be adapted to

q
(
|ux|p−2ux

)
x

− Wu(u) = 0, p > 1,
1

p
+

1

q
= 1, (1.4)

that, up to a scaling, is the one-dimensional steady state of the vector equation

ut = qε2 div
(
|∇u|p−2∇u

)
− Wu(u). (1.5)

We close this introduction by sketching our method for the standard triple-well potential

W (z) = |z3 −1|2. Here, A = {1, e2πi/3, e−2πi/3}. For definiteness we construct the connection

between a = 1 and b = e2πi/3, by considering the variational problem for E1(u) =∫
|ux|

√
W (u)dx along embeddings in the plane connecting a to b. Since the specific

parametrization is not important we chose u : (0, 1) → �2 with u(0) = a, u(1) = b, and set

z(t) = u1(t) + iu2(t). Then

E1(u) =

∫ 1

0

|z′(τ)||z3(τ) − 1| dτ =

∫ 1

0

∣∣∣∣ ddτg(z(τ))
∣∣∣∣ dτ =

∫ 1

0

|w′(τ)| dτ

where w = g(z) = z − z4/4. Minimizing E1 over the set of curves connecting a to b

reduces to the simple problem of minimizing the length functional on the w plane, for

curves connecting g(a) = 3/4 and g(b) = 3e2πi/3/4. This of course is minimized by the line

segment connecting the image points. We can choose the following simple parametrization

for the line segment:

g(z(τ)) = τg(a) + (1 − τ)g(b) = 3
4
{τ + (1 − τ)e2πi/3}, 0 � τ � 1.

It is then straightforward to show that the curve z(τ) = r(τ)eiθ(τ) satisfies the parameter-free

equation

4r cos(θ − π/3) = r4 cos(4θ − π/3) + 3 cos(π/3), 0 � θ � π/3, 0 < r < 1. (1.6)

Following [34] we obtain the desired solution u = (Re(U), Im(U)) of (1.1) by defining
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Figure 1. The solution of the time-dependent Allen–Cahn equations, at three different stages of

the evolution. On the left of each image we show the two kinds of interfaces designated by black

and grey. On the right column, each image shows three different phases corresponding to the three

global minima of the potential. We caution the reader that the greyscale near or at the core of the

triple junctions has no significance.

t : � → (0, 1) and U : � → �2 via

U(x) = z(t(x)),
dt

dx
=

√
W (z(t))

|z′(t)| , t(0) = 1/2.

Some explanations are needed to clarify the apparent arbitrariness of the parametriza-

tions employed above. First, we note that if one chooses to parametrize the line segment
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connecting g(a) and g(b) in some different way, then by following through the steps

one discovers that the newly obtained u(x) differs from the one given above only by a

translation in x. Notice that the parametrization in x has the important property

|ux|2 = W (u);

we call it the equipartition parametrization. The other distinguished parametrization is

obtained by setting s = |g(α) − g(β)|τ, which satisfies
√
W (u)|us| = 1; it is called the

arclength parametrization.

This paper is organized as follows. In § 2, we discuss the parametrizations of a connection

and alternative representations of the energy functional E in (1.2). In § 3, we present our

theory on the explicit construction of connections for type I and type II potentials. This

theory is generalized in § 4 to equation (1.4). We provide a number of examples for type I

and type II potentials in §§ 5 and 6, respectively. Finally in § 7 we describe our numerical

schemes and results for the evolution equation (1.3).

2 Equipartition and arclength parameters

One way to reduce the order of the problem is by utilizing a first integral which in our

case is available since (1.1) is an equation that does not depend explicitly on x. In fact,

utilizing a first integral for (1.1) we obtain the following:

Lemma 2.1 (Equipartition of energy). Any solution u(·) to (1.1) satisfies

|ux|2 = W (u) on �, E(u) = E1(u) = E2(Γ (u))

where Γ (u) = {u(x) | x ∈ �} is the trajectory (or connection),

E1(u) :=

∫
�

∣∣∣√W (u) ux

∣∣∣dx, E2(γ) :=

∫
γ

√
W (u) |du|.

Proof Let u solve (1.1). Then,

[|ux|2 − W (u)]x = 2uxx · ux − Wu · ux = 0 in �.

Hence, |ux|2 −W (u) is a constant function. Utilizing the limit, as x → −∞, of u, we see that

|ux|2 −W (u) ≡ 0. Consequently, |ux|2 +W (u) = 2|ux
√
W (u)| and E(u) = E1(u) = E2(Γ (u)).

�

If �N \ A is equipped with the metric

(d�)2 =
√
W (u)δijdu

iduj ,

it becomes a Riemannian metric space and E2(γ) is the length of the curve γ under the

metric. This is a well known fact in Classical Mechanics [6]. In the context if interfaces, see
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[34]. Since the arclength of a curve is independent of parametrization, E2 is invariant under

the change of parameters. Given a curve, we are interested in two special parameters.

Definition 1. (1) The trajectory of a function u : t ∈ (a, b) → �N is the set

u((a, b)) := {u(t) | t ∈ (a, b)}.

(2) Let γ be a smooth curve in �N \ A. A parametrization of γ is a function u : t ∈
(a, b) → �N such that |ut| > 0 on (a, b) and γ = u((a, b)).

The parameter t is called an equipartition parameter if |ut|2 = W (u) for all t ∈ (a, b).

It is called an arclength parameter (under the
√
W (u)δij metric) if

√
W (u)|ut| = 1.

Here a, b may be chosen differently in (1) and in (2). The domain of the arclength

parameter will always be finite while the domain of the equipartition parameter may be

(−∞,∞).

Proposition 1. [6, 34] Any smooth curve on �N \A admits both an equipartition parameter

and an arclength parameter. All three energy functionals E,E1, E2 are equivalent in the

following sense:

(1) E1 and E2 are equal if functions are related to their trajectories and curves are related

to their parameterizations.

(2) For every u : � → �N , E(u) � E1(u) = E2(Γ (u)); for every (smooth) curve γ in �N ,

there is a parametrization u(·) such that γ = Γ (u) and E(u) = E1(u) = E2(γ).

Proof We need only show the existence of the two parameterizations. Let γ be a smooth

curve in the phase space. Here smooth means that γ can be parametrized by a smooth

function u : t ∈ (a, b) → �N . Fix c ∈ (a, b). Define

x(t) =

∫ t

c

|ut(t)|√
W (u(t))

dt, s(t) =

∫ t

c

√
W (u(τ))|ut(τ)| dτ.

Then dx
dt

= |ut|/
√
W (u) and ds

dt
=

√
W (u)|ut|. For the new parameters x and s,

∣∣∣du
dx

∣∣∣2 =
∣∣∣du
dt

dt

dx

∣∣∣2 = W (u),
√
W (u)

∣∣∣du
ds

∣∣∣ =
√
W (u)

∣∣∣du
dt

dt

ds

∣∣∣ = 1.

Thus, x is an equipartition parameter and s is an arclength parameter. �

3 Expressing trajectories in closed form

In the sequel, we shall focus our attention to the case N = 2. Hence we identify �2 with

the complex plane �, and identify u = (u1, u2) with the complex number z = u1 + iu2.

Similarly, we write W (u) as W (z). Since W (·) is non-negative, we can write W (z) = |f(z)|2
for some f. From now on we focus our attention to the case that f is analytic. It is easy

to verify that the equation 2uxx = Wu(u) is equivalent to

zxx = f(z)f′(z) (3.1)
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where the bar represents complex conjugation and f′ the derivative of f. We use Im(z),

Re(z), and Arg(z) to denote the imaginary part, real part, and argument of a complex

number z, respectively.

Theorem 1 Identify the point (u1, u2) with the complex number z = u1 + iu2 and write

W (u1, u2) = |f(z)|2. Assume that f = g′ is holomorphic in D, an open set in �2. Let

γ = {u(x) | x ∈ (a, b)} be a smooth curve in D where x is an equipartition parameter, i.e.

|ux|2 = |W (u)|. Set α = u(a), β = u(b).

Then u is a solution to 2uxx = Wu(u) on (a, b) if and only if

Im
( g(z) − g(α)

g(β) − g(α)

)
= 0 ∀ z ∈ γ. (3.2)

In addition, in the case of u being a solution, the set g(γ) := {g(z) | z ∈ γ} is a line segment

with end points g(α) and g(β) and the (partial) transition energy is given by

1
2

∫ y

a

(
|ux|2 + W (u)

)
dx =

∫ y

a

∣∣∣ d

dx
g(u)

∣∣∣dx = |g(u(y)) − g(α)| ∀y ∈ (a, b]. (3.3)

This theorem states in geometric terms that geodesics in the
√
W (u)δij metric are

mapped under g to straight line segments in the complex plane. This is the essence of the

calculation at the end of the introduction.

The theorem implies the following:

(i) A trajectory to (1.1) satisfies the parameter free equation (3.2), for some α, β ∈ A.

(ii) An equipartition parametrization of any curve satisfying (3.2) is a solution to 2uxx =

Wu(u).

(iii) The energy of a connection is the magnitude of the difference of g between the end

points.

Proof (“⇒”) Suppose u = (u1, u2) : (a, b) → D is a solution to

2uxx = Wu(u), |ux|2 = W (u).

Set z(x) = u1(x) + iu2(x). Then zxx = f(z)f′(z) and |zx|2 = f(z)f(z).

Let L be the total arclength and � be the arclength parameter defined by

L =

∫ b

a

|ux|
√

W (u) dx, � =

∫ x

a

|ux(x̂)|
√
W (u(x̂)) dx̂.

Then d
d�

= (
√
W (u)|ux| )−1 d

dx
= (ff̄)−1 d

dx
, so that

dg(z)

d�
=

g′(z)zx

f(z)f(z)
=

f(z)zx

f(z)f(z)
=

zx

f
,

d2g(z)

d�2
=

f̄ zxx − zxf′ zx

f
2
f f

=
f̄ zxx − |zx|2f′

ff
3

=
zxx − ff′

ff
2

= 0.

Thus, d
d�
g(z) = m is a constant.1

1 If m = 0 it follows that g(z(t)) = g(α), and since g is analytic z(t) = α. Thus, if u(x) is a

heteroclinic it follows that m� 0 and so g(zi)� g(zj).
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Integrating this equation and evaluating it at � = L gives, respectively, g(z) = g(α)+m�

and mL = g(β) − g(α). Upon noting that m = d
d�
g(z) = zx/f(z) has unit length, we then

obtain

L = |g(β) − g(α)|, m =
g(β) − g(α)

|g(β) − g(α)| , g(z(�)) =
L − �

L
g(α) +

�

L
g(β).

These equations imply (3.2) and (3.3).

(“⇐”) Next assume that γ = u((a, b)) satisfies (3.2) and the parameter x for u is an

equipartition parameter, namely, |ux|2 = W (u). Equation (3.2) can be written as

g(z) − g(α) = s(x)(g(β) − g(α))

where s(·) is a real valued function. Upon differentiation, we obtain

sx(g(β) − g(α)) = g′(z)zx = f(z)zx.

This equation implies that |sx| = |f(z)||zx|
|g(β)−g(α)| = |f(z)|2

|g(β)−g(α)| > 0. As s(x) is a real valued function,

s(a) = 0 and s(b) = 1, we must have sx(x) > 0. Hence, sx(x) = |f(z)|2
|g(β)−g(α)| . Consequently,

zx =
sx(g(β) − g(α))

f(z)
=

|f(z)|2(g(β) − g(α))

f(z)|g(β) − g(α)| = mf(z)

where m = g(β)−g(α)
|g(β)−g(α)| . Thus,

zxx = mf′(z)zx = mf′(z)mf(z) = |m|2ff′ = f(z)f′(z).

This equation is equivalent to u being a solution to 2uxx = Wu(u). �

Remark 3.1 (1) The proof implies that (1.1) is equivalent to the first order ode:

zx = mf(z), m ∈ �, |m| = 1. (3.4)

(2) Multiplying (3.4) by f(z)/m gives

d

dx

g(z)

m
= |f(z)|2 = W > 0.

Integrating this equation gives

Im
(g(z) − g(α)

m

)
= 0,

g(z) − g(α)

m
=

∫ x

a

W (z(x̂)) dx̂ = �.

This in particular implies that the map x → g((z(x)) is a one-to-one map.

(3) We will be applying the theorem above to the solutions of (1.1) connecting at

infinity two wells, thus we would like to take (a, b) = (−∞,∞). The question then is

whether L = E1(u) =
∫ ∞

−∞ |ux|
√
W (u) dx is finite. Certainly, this is the case if the matrices

Wuu(u(±∞)) are non-degenerate (i.e. det(Wuu) � 0), since then by standard linear ODE

theory the convergence of u(x) to u(±∞) is exponential and |ux| decays exponentially, so

L < ∞.
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(4) The assumption that x in Theorem 1 is an equipartition parameter is in a sense

superfluous since any solution to (1.1) satisfies the equipartition identity and any curve

admits an equipartition parametrization.

As an important application of the above theorem, we can show the following.

Theorem 2 There exists at most one trajectory connecting any two wells of a holomorphic

potential; that is, if W (z) = |f(z)|2 where f is holomorphic on �, there exists at most one

trajectory of (1.1) that connects any two roots of W (z) = 0.

Proof Let g be an antiderivative of f and suppose that γ1 and γ2 are two trajectories to

(1.1) with the same end points α, β. Since the energy |g(β) − g(α)| is positive, g(β) � g(α)

and we can define an entire function

g̃(z) =
|g(β) − g(α)|
g(β) − g(α)

(g(z) − g(α)) ∀z ∈ �.

Then g̃ is real on γ1 ∪ γ2. Now if γ1 � γ2, then γ1 and γ2 will enclose an open domain D in

�. As the imaginary part of g̃ on ∂D = γ1 ∪ γ2 ∪ {α, β} is zero, it has to be identically zero

in D. This implies that g̃ is a constant function in � which is impossible. Thus γ1 = γ2.

�

To construct potentials having multiple connections between roots of zeros, we use

meromorphic potentials. For these potentials, their antiderivative may have branches. For

this purpose, we extend our Theorem 1 as follows:

Theorem 3 Assume that W (z) = |f(z)|2 where f is meromorphic in an open domain D. Let

Di, i = 1, . . . , k, be a family of overlapping subdomains of D in the sense that Di ∩ Di+1 � ∅
for i = 1, . . . , k − 1. Let gi be an antiderivative of f in Di. Assume that gi+1 is an analytic

extension of gi in the sense that gi+1 = gi on Di ∩ Di+1 � ∅.
Let γ be a smooth curve in D with parametrization z = z(t), t ∈ (a, b). Assume that

z((ai, bi)) ⊂ Di and (a, b) = ∪k
i=1(ai, bi) where a1 = a, bk = b, and ai < ai+1 < bi < bi+1.

Then z((a, b)) is a trajectory to (1.1) if and only if ∪k
i=1gi(z(ai, bi)) is a line segment, or

equivalently, if and only if

Im

(
gi(z(t)) − g1(z(a))

gi(z(b)) − g1(z(a))

)
= 0 ∀t ∈ (ai, bi), i = 1, . . . , k. (3.5)

In addition, in case γ is a trajectory, its total energy is given by |gk(z(b)) − g1(z(a))|.

Proof Since gi+1 is an analytic extension of gi, the function h : (a, b) → � given by

h(t) = gi(z(t)) if t ∈ (ai, bi)

is well-defined and is a smooth function on (a, b).

https://doi.org/10.1017/S095679250600667X Published online by Cambridge University Press

https://doi.org/10.1017/S095679250600667X


Multiple-well dynamics 535

Suppose γ is a trajectory to (3.1). Since g′
i = f in Di and h(t) = gi(z(t)) for t ∈ (ai, bi),

h((ai, bi)) is a line segment and the map t ∈ (ai, bi) → h(t) is a one-to-one map. Thus,

h((a, b)) is a line segment with end points h(a) = g1(z(a)) and h(b) = gk(z(b)).

On the other hand, if (3.5) holds, then z((ai, bi)) is a trajectory of (3.1) for each

i = 1, . . . , k, and therefore γ = z((a, b)) is also a trajectory of (3.1). �

Remark 3.2 The feature of the potential with poles is that it is multivalued and that

paths on the complex plane connecting two wells lie on distinct Riemann surfaces.

4 An extension

Given a constant p > 1, define

Ep(u) :=

∫
�

(
|ux|p
p

+
W (u)

q

)
dx,

1

p
+

1

q
= 1.

By Young’s inequality, αβ � |α|p/p + |β|q/q,

Ep(u) � E1p(u) :=

∫
�

|ux| q
√

W (u) dx =

∫
Γ (u)

q
√

W (u)| du|.

Note that the second expression of E1p is in parametric form.

The Euler-Lagrange equation associated with Ep is

q
(
|ux|p−2ux

)
x

= Wu(u) (4.1)

which together with the conditions lim|x|→∞ W (u(x)) = 0 constitutes the analog to (1.1).

The analogous energy equipartition relationship is

|ux|p = W (u) ⇐⇒ Ep(u) = E1p(u).

The potentials are those of the form

W (u, v) = |f(z)|q, z = u + iv,

where f(z) is analytic, or analytic modulo poles. For example the analog of the standard

triple-well potential in this context is

W (z) = |z3 − 1|q.

Comparing with the method presented in the introduction for |z3 − 1|2 we see that the

minimizer on the transformed plane is again a line segment, and the trajectory is exactly

the same as before, given by (1.6), being independent of p. The dependence on p is through

the parametrization

dt

dx
=

q
√
W (z(t))

|z′(t)| , t(0) = 1/2
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which leads to the connection u(x) = z(t(x)). We expect that all the results in this paper

extend for p > 1.

The analog of the vector Allen–Cahn equation is (1.5).

5 Examples of entire potentials

In this section, we provide several examples of potentials W = |f|2 where f is an entire

function, i.e., analytic on �. We remark that if we are working with equation (4.1), the

only change we need is to set W = |f|q .

Example 1. W (z) = |zn − 1|2 where n � 2 is an integer. The set A of wells is given by

A = {e2ki/n | k = 0, . . . , n − 1}.

In this case we take

f(z) = 1 − zn, g(z) =

∫ z

0

f(ζ) dζ = z
(
1 − zn

n + 1

)
.

Given two different wells e2kπi/n and e2lπi/n, a trajectory to (1.1) is determined by the

preimage under g of the line segment connecting g(e2kπi/n) and g(e2lπi/n). This amounts to

finding z(t), for each t, from the equation

z
(
1 − zn

n + 1

)
=

n

n + 1

(
te2kπi/n + (1 − t)e2lπi/n

)
, t ∈ (0, 1). (5.1)

We observe the following:

(i) Restricted to the closed disk D = {z ∈ � | |z| � 1}, the map g is one-to-one.

(ii) min|z|=1 |g(z)| = n
n+1

; hence g(D) contains the disk {w ∈ � | |w| � n
n+1

}.
(iii) The right-hand side of (5.1) is contained in the disk {w ∈ � | |w| � n

n+1
}.

Thus, equation (5.1) is uniquely solvable in D. By the uniqueness, we thus know that

the solution in D to (5.1) provides the needed trajectory. In terms of the polar coordinates

z = reiθ , (5.1) with |z| � 1 can be written in the non-parametric form

⎧⎨
⎩

(n + 1)r cos
(
θ − k+l

n
π
)

= rn+1 cos
(
(n + 1)θ − k+l

n
π
)

+ n cos
(

k−l
n

π
)
,

kπ
n

� θ � lπ
n
, 0 < r � 1.

(5.2)

In conclusion, we have the following.

Proposition 5.1 Suppose W (z) = |zn − 1|2 where n � 2 is an integer. For each pair of roots

of W = 0, there exists exactly one trajectory of (1.1) that connects the two roots. The energy

of the connection between e2kπi/n and e2lπ/n, l, k integers, is given by

2n

n + 1

∣∣∣ sin
k − l

n
π
∣∣∣.
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Figure 2. Trajectories and level sets of W for Example 1 with n = 2, 3, and 4 respectively. For

n = 4 there are also vertical and horizontal lines representing trajectories connecting the wells, that

are not shown above.

Moreover the trajectory is given in non-parametric closed form by (5.2) or alternatively in

parametric form by the solutions to (5.1) in the unit disk.

Example 2. W (z) = |(1 − z2)(z2 + ε2)|2, 0 < ε < ∞.

In this case, we can take

f(z) = (1 − z2)(z2 + ε2), g(z) = z(ε2 + 1
3
(1 − ε2)z2 − 1

5
z4),

g(±1) = ±( 2
3
ε2 + 2

15
), g(±iε) = ±iε3( 2

3
+ 2

15
ε2).
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Figure 3. A trajectory in Example 2 for ε = 0.3. The other two connections are horizontal and

vertical straight line segments connecting the wells.

(i) Since g(t), t ∈ [−1, 1] is monotone, g([−1, 1]) = [g(−1), g(1)], g−1([g(−1), g(1)]) =

[−1, 1], the line segment [−1, 1] is the trajectory of (1.1) connecting −1, 1.

(ii) Since ig(it), t ∈ (−ε, ε), is monotone, the line segment joining −iε and iε is the

trajectory of (1.1) connecting −iε and iε.

(iii) By checking the boundary behavior of g on the square [0, 1]×[0, ε], one can see that

there is a connection from 1 to iε lying entirely in the square [0, 1] × [0, ε]. By symmetry,

we can obtain connections from ±1 to ±iε.

In conclusion, between each pair of wells of W , there is a unique connection.

In the above two examples, there is always a connection between each pair of wells.

Next we provide an example where certain wells may not be connected.

Example 3. W (z) = |(1 − z2)(z − iε)|2, 0 � ε < ∞.

In this case we take

f(z) := i(1 − z2)(z − iε), g(z) = εz(1 − 1
3
z2) − 1

4
i(z2 − 1)2.

g(±1) = ± 2
3
ε, g(iε) =

i

12
(ε4 + 6ε2 − 3).

It is not very hard to show that there is a connection between ±1 and iε. Now

we investigate the possibility of existence of a connection from −1 to 1. By a simple

comparison of |g(1) − g(−1)| with |g(1) − g(iε)| it is expected that there is no connection

between 1 and −1 when ε is small and there is a connection when ε is large. More

precisely we see that for ε > 0 (and small), |g(1) − g(0)| = 4ε/3, (|g(iε) − g(1)| ∼ 1/4).

If there is a connection between −1 and 1 then its energy by Theorem 1 should equal√
2|g(1)−g(−1)| = 4

√
2ε/3. It is unlikely that this energy would be sufficient for connecting

two points a fixed distance away if ε is very small. This is the intuition behind this example.
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Figure 4. Trajectories in Example 3 with two values of ε, one (= 0.75) slightly above and the

other (= 0.6) slightly below the critical value (= 0.68 . . . ).

.

Here we would like to find the critical ε. The issue in this example is the non-invertibility

of g.

Suppose there is a connection γ between −1 and 1. Then γ has to intersect the

imaginary axis, say at it where t ∈ �. Since g(γ) is the line segment [− 2
3
ε, 2

3
ε], g(it) =

i(εt(1 + 1
3
t2) − 1

4
(1 + t2)2) must be real. Hence,

εt(1 + 1
3
t2) − 1

4
(1 + t2)2 = 0.

The left-hand side, as a function of the real variable t, attains its maximum at t = ε with

value

1
12

(ε4 + 6ε2 − 3).

Hence, when the above quantity is non-positive, e.g. ε2 � 2
√

3 − 3, there is no connection

between −1 to 1. On the other-hand, when ε2 > 2
√

3−3, g(it) = 0 has exactly two positive

roots t1, t2 where 0 < t1 < ε < t2. In this case, one can show that the preimage under g

of [− 2
3
ε, 2

3
ε] contains a smooth curve joining −1,1 that goes through it1. This curve is the

trajectory connecting −1 and 1. We summarize our result as follows.

Proposition 5.2 Let W (z) = |(z2 −1)(z− iε)|2 where ε ∈ �. Then the dynamics (1.1) admits

a connection between −1 and 1 if and only if |ε| >
√

2
√

3 − 3 = 0.68125 . . .

6 Singular potentials

As demonstrated in Theorem 2, for holomorphic potentials, there exists at most one

connection between any given pair of wells. To construct examples of multiple connections,

we shift our attention to potentials with poles. We work only on (1.1) so W = |f|2. For

(4.1), the only change needed is to set W = |f|q . We remark that since the connections

do not go through the pole, the potential can be smoothened out near the pole without

affecting the connection hence rendering examples of C∞ potentials with non-uniqueness

of the connections.
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Example 4. W (z) = |(z − 1)(z + a)/z|2, 0 < a < 1.

We take

f(z) = z + (a − 1) − a

z
, g(z) = 1

2
(z2 − 1) + (a − 1)(z + 1) − a log z.

To find all possible connections, we use the Riemann surface by defining

z = reiθ, log z = ln r + iθ ∀ r ∈ (0,∞), θ ∈ (−∞,∞).

We seek a connection from b := e0i to ak := ae(2k+1)πi where k is an integer. This amounts

to finding a smooth curve zk(t), 0 � t � 1 such that zk(1) = ae(2k+1)πi, and

zk(0) = e0i, g(zk(t)) = tg(ae(2k+1)πi) + (1 − t)g(e0i) ∀ t ∈ (0, 1]. (6.1)

Let k be fixed. We use the Taylor expansion g(z) ∼ g(e0i) + 1
2
(1 + a)(z − 1)2 to conclude

that for small positive t, (6.1) admits exactly two solutions, z+
k (t), on the upper-half plane,

and z−
k (t), on the lower half plane.

Next, we follow the path of z+
k . By the implicit function theorem, z+

k (·) can be locally

uniquely extended as long as g′(z+
k (t)) = f(z+

k (t))� 0. Since {tg(ae(2k+1)πi)+(1−t)g(e0i) | t ∈
(0, 1)} is bounded and has an empty intersection with the set {g(e2lπi), g(ae(2m+1)πi)}∞

l,m=−∞,

z+
k (·) can be uniquely extended for all t ∈ (0, 1). We now determine z+

k (1) = limt↗1 z
+
k (t).

Consider the map g restricted on

D+ = {reθi | 0 < r < ∞, 0 < θ < π}.

By considering the image, under g, of the boundary of the set

D+
ε,R = {reiθ | ε < r < R, 0 < θ < π}

and letting ε ↘ 0 and R → ∞, one can conclude that the function g maps D in a

one-to-one manner onto the whole complex plane, taking away the half line [2(a − 1),∞)

and the half line −aπi + [− 1
2
(a2 − 1) − a ln a,∞). Let us denote the inverse of g restricted

to D+ by g−1
∗ .

Since z+
k (t) ∈ D+ for small positive t and since tg(ae(2k+1)πi)+(1− t)g(e0i) ∈ g(D+) for all

t ∈ (0, 1), we see that z+
k (t) ∈ D+ for all t ∈ (0, 1). In particular, z+

k (1) = g−1
∗ (g(ae(2k+1)πi).

Thus, when k = 0, z+
0 (1) = aeπi. When k � 0, z+

k (1) = g−1
∗ (g(ae(2k+1)πi)) is a complex

number with a positive imaginary part, i.e. z+
k (1)� ae(2k+1)πi; thus z+

k (·) is not a connection.

Similarly, the uniquely defined z−
k (·) is a connection if and only if k = −1.

In conclusion, we obtain the following.

Proposition 6.1 Suppose W (z) = |(z − 1)(z + a)/z|2 where a ∈ (0, 1). There are exactly two

connections from −a to 1, one in the upper half plane and one in the lower half plane. These

two connections are symmetric about the real line; see Figure 5a.

Example 5. W (z) =
∣∣∣ z2 + 1

z2 − ε2

∣∣∣2, 0 < ε < ∞.
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Figure 5. Level sets and Trajectories for Examples 4 (left) and 5 (right.)

We take

f(z) =
z2 + 1

z2 − ε2
, g(z) = z +

1 + ε2

2ε
log

z − ε

z + ε
.

We find, for integers k and l,

g(i) = i +
1 + ε2

ε

(
arctan ε + kπ

)
i, g(−i) = −i − 1 + ε2

ε

(
arctan ε + lπ

)
i.

Equation (3.2) then takes the form Re(g(z) − g(i)) = 0, or writing z = x + iy,

x +
1 + ε2

4ε
ln

(x − ε)2 + y2

(x + ε)2 + y2
= 0.

This gives us three solutions. One being the line segment i[−1, 1]. The other two are the

left and right halves of the curve given by

y2 = 2εx coth
2εx

1 + ε2
− x2 − ε2, x� 0. (6.2)

By a slightly more detailed analysis, it can be shown that the curve encloses the poles ε

and −ε; see Figure 5b. Indeed we can have the following.

Proposition 6.2 Let W (z) =
∣∣∣ z2 + 1

z2 − ε2

∣∣∣2 where 0 � ε < ∞.

(1) For ε = 0, there are exactly two trajectories connecting −i and i, the right and left

part of the unit circle.

(2) For ε > 0, there are three trajectories γ1, γ2, γ3 that connect i and −i, where γ1 is the

line segment joining i and −i, γ2 is the left-half and γ3 is the right-half of the curve given

by (6.2).
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Figure 6. Trajectories in Example 6 with ε = 0.2, k = 0 and 1 respectively.

Their energies E(·) are

E(γ1) =
1 + ε2

ε

(
π − 2 arctan ε

)
− 2, E(γ2) = E(γ3) = 2 +

2(1 + ε2)

ε
arctan ε.

Consequently, denote by ε∗ = 0.4416 . . . the unique positive solution to ε∗

1+ε2
+ arctan ε∗ = π

4
.

Then

E(γ2) < E(γ1) when 0 < ε < ε∗, E(γ2) > E(γ1) when ε > ε∗.

Example 6. W (z) = |(1 − z2)zε−1|2, 0 < ε < 1.

Proposition 6.3 Let W (z) = |(z2 − 1)zε−1|2 where 0 < ε < 1. Denote by K be the largest

positive integer such that (2K − 1)ε < 1. All trajectories connecting 1 and −1 consist of

K pairs, in each of which the two trajectories are symmetric about the real axis and make

exactly k+ 1
2

loops (one clockwise, the other counterclockwise) around the origin with energy

4

ε(2 + ε)
sin

(
(k + 1

2
)επ

)
, k = 0, . . . , K − 1.

Proof As before, we use the Riemann surface �∗ = {reiθ | r > 0,−∞ < θ < ∞} and set

z = reiθ, zε = rεeiεθ.

We can take

f(z) = (1 − z2)zε−1, g(z) = zε
(1

ε
− z2

2 + ε

)
,

g(e0i) =
(1

ε
− 1

2 + ε

)
, g(e(2k+1)πi) =

(1

ε
− 1

2 + ε

)
e(2k+1)επi.

We know that if γ is a trajectory connecting −1 and 1, then g(γ) is a line segment from
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g(e0i) to g(e(2k+1)πi) for some integer k. Using Theorem 4 we know that γ = z([0, 1]) where

z(·) is a smooth solution to g(z(t)) = (1−t)g(e0i)+tg(e(2k+1)πi) ∀ , t ∈ [0, 1]. Hence, writing

z(t) = r(t)eiϕ(t), t ∈ [0, 1], we seek smooth real valued functions r(t) and ϕ(t) such that

⎧⎨
⎩
r(t)e εϕ(t)i

(
1
ε

− r2(t)e2ϕ(t)i

2+ε

)
=

(
1
ε

− 1
2+ε

){
(1 − t) + te(2k+1)επi

}
, t ∈ [0, 1],

r(0) = 1, ϕ(0) = 0.
(6.3)

If (2k + 1)ε is an integer, a continuous solution to (6.3) corresponds to the real axis.

Such a trajectory must go through the origin. Since we are concerned about classical

solutions, this solution, if it exists, is excluded from our discussion.

Hence, we consider the case that (2k + 1)ε is not an integer. By conjugation, we need

only consider the case when the line segment from g(e0i) to g(e(2k+1)πi) lies in the upper-half

plane. Then there are two branches, γ+
k and γ−

k , of solutions to (6.3); for small t > 0, γ+
k

lies on the upper-half plane and γ−
k lies on the lower half plane.

For γ−
k , we study the image, under g, of the set {reiθ | r > 0,−2π < θ < 0}. By studying

the images, under g, of the half lines e0i[0,∞) and e−2πi[0,∞) and the circle ∞e[−2π,0]i, one

checks that the map from z ∈ {reiθ | r > 0, θ ∈ (−2π, 0)} to g(z) is one-to one. Denote the

inverse of this map by g−1
1 . Then the branch γ−

k of the solution to (6.3) is the image, under

g−1
1 , of the line segment from g(e0i) to g(e(2k+1)πi). This image lies completely outside of

the unit circle and does not land at the point −1. Thus, γ−
k is not a trajectory.

Next we consider γ+
k , the branch of the solution to (6.3) that lies in the upper-half plane

for small positive t. It is easy to see that γ+
k lies inside of the unit circle for small positive

t. Let K be as in the statement of Proposition 6.3. One notices the following:

(i) The map from z to g(z) = zε(1/ε − z2/(2 + ε)) is one-to-one on

DK := {reiθ | 0 < r < 1, 0 < θ < (4K − 1)π}.

(ii) The image g(DK ) contains the sector

{reiθ | 0 < r < 1
ε

− 1
2+ε

, 0 < θ < (4K − 1)επ}.

Indeed, both facts can be shown by checking the image, under g, of the boundary of the

unit circle {reiθ | 0 < r < 1, 2lπ < θ < (2l + 2)π} for l = 0, . . . , 2K − 1. We denote the

inverse by g−1
∗ . Since it is assumed that the line segment {tg(e0i +(1− t)e(2k+1)i) | 0 < t < 1}

lies in the upper-half plane, it lies in g(DK). Hence, γ+
k is the image, under g−1

∗ , of the line

segment {[ 1
ε

− 1
2+ε

][(1 − t) + te(2k+1)επi] | t ∈ [0, 1]}. It is then relatively easy to show that

γ+
k ends at −1 if and only if 0 < (2k + 1)ε < 1 (always keeping in mind the assumption

that the line segment from g(e0i) to g(e(2k+1)πi) lies in the upper-half plane). In addition,

when 0 < (2k + 1)ε < 1, we have r(t) ∈ (0, 1) and ϕ(t) ∈ (0, (2k + 1)π) for all t ∈ (0, 1) and

ϕ(1) = (2k + 1)π. That is, γ+
k makes k + 1/2 loops around the origin and lies completely

inside the unit circle. �

Finally, we remark that for ε = 0, this potential reduces to the one in Example 4

with a = 1, which does not have solutions with loops around the origin. Actually, loop

https://doi.org/10.1017/S095679250600667X Published online by Cambridge University Press

https://doi.org/10.1017/S095679250600667X


544 N. D. Alikakos et al.

solutions for positive ε approach, as ε ↘ 0, (2k + 1) copies of the connection in the limit

problem.

The analysis and conclusion for this example extends easily to the case W = |(zn −
1)zε−1|2 for any ε ∈ (0, 1) and integer n � 2.

For the purpose of applications, we provide examples of triple wells.

Example 7. W (z) =
∣∣∣z3 + 1

z3 − 1

∣∣∣2.
To avoid the use of multiple-valued functions and to make our presentation as simple

as possible, we shall utilize the following symmetries of the potential: (i) The potential is

invariant under 2kπ
3

rotation (k integer) so that if z is a trajectory, so is e2kπ/3z. (ii) The

potential is invariant under conjugation, W (z) = W (z) so that if γ is a trajectory, then its

complex conjugate (reflection about the real line) is also a trajectory.

Now let γ be a trajectory to (1.1) that connects two wells, that is, two roots of W = 0.

Since any of the three lines ekπi/3�, k = 1, 2, 3 are trajectories, by uniqueness γ cannot

intersect any of them in a tangential manner. Also, as it turns out, γ stays away from the

origin. Hence, we can divide γ into finitely many pieces, γj , j = 0, . . . , m, each piece lying in

one of the six sectors {z | Arg(z) ∈ [kπ/3, (k + 1)π/3]}, k = 0, 1, . . . , 5. Now using rotation

and conjugation, we can map each γi uniquely to a corresponding piece γ∗
i in the sector

D := {z | Arg(z) ∈ [0, π/3]} \ {1}. (6.4)

These new pieces are trajectories and have the following properties: (i) γ∗
0 starts and γ∗

m

ends at eπi/3; (ii) for i = 1, . . . , m − 1, the last point qi of γ∗
i is the first point of γ∗

i+1 and qi
lies either in (0, 1) ∪ (1,∞) or in eπi/3((0, 1) ∪ (1,∞)). In addition, their tangent lines at qi
are symmetric about the normal line of the boundary of the sector D at qi.

Now let g be one of the antiderivatives of f defined in the sector D. Then for each

i, Li := g(γ∗
i ) is a line segment in g(D) with end points on ∂g(D) = g(∂D) (by the open

mapping theorem of analytic functions). In addition, g(γ∗
i ) and g(γ∗

i+1) share a common

point pi := g(qi) at the boundary of g(D) and are symmetric about the normal line of

g(∂D) at pi, since g is a conformal mapping. Thus, finding a solution to (1.1) is equivalent

to finding a finite sequence of line segments {Li}mi=0 in g(D) ∪ ∂g(D), with the properties

just mentioned above.

Now we pick a special antiderivative g of f in D. For convenience, we denote the poles

and the zeroes of W by

p0 = 1, p1 = e2πi/3, p2 = e−2πi/3, z0 = −1, z1 = eπi/3, z2 = e−πi/3.

We take

f(z) =
z3 + 1

z3 − 1
= 1 +

2

3

∑ pj

z − pj
,

g(z) :=

∫ z

0

f(ζ) dζ = z +
2

3

∑
pj log

(
1 − z

pj

)
∀z ∈ D.

where we use the branch of the logarithm log[reiθ] = log r+ iθ for all r > 0 and θ ∈ [0, 2π).
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Figure 7. The map z → g(z) in Example 7. The doted circular part on z plane corresponds to

dotted parts on the ζ = g(z) plane. The two thick curves on the z plane are halves of two trajectories,

one inside the circle, the other other outside the unit circle. Their image on the ζ = g(z) plane are

the vertical line segments connecting the thick dashes. The preimage of the three thin line segments

is not a homoclinic orbit.

We now investigate the image of the boundary of D (defined in (6.4)) under the mapping

g. We divide the boundary of D into seven segments,

(1,∞), 1 + 0ei[0,π], [0, 1), eπi/3[0, 1), eπi/3(1 + 0e−[π,0]i), eπi/3(1,∞), ∞ei[0,π/3].

Their images are calculated as follows; see Figure 7.

(i) g([1,∞)) = − 2
3
πi + � (the line at the bottom);

(ii) g(1 + 0ei[0,π]) = −∞ + i[− 2
3
π, 0] (the dashed line on the left);

(iii) g((0, 1)) = (−∞, 0) (the negative real axis);

(iv) g(eπi/3(0, 1]) = e−2πi/3(0, a0] where a0 := 2
√

3π
9

+ ln 4
3

− 1 ≈ 0.67 (we caution the reader

that the actual bottom line −2π/3 + � lies much lower than plotted in the figure);

(v) g(eπi/3 + 0e[−2π/3,π/3]i) = a0e
−2πi/3 + 0e[−5π/3,π/3]i] (the small disk);

(vi) g(eπi/3[1,∞)) = eπi/3[−a0,∞);

(vii) g(∞e[0,π/3]i) = ∞e[0,π/3]i (the dashed line and arc on the right).

Thus, g : D → g(D) is one-to-one. The boundary of g(D) consists of the full line

l1 := − 2
3
πi + �, the half line l2 = e−πi(0,∞), the line segment l3 = e−2πi/3[0, a0], and the

half line l4 = l3 ∪ eπi/3(0,∞). Here l3 should be regarded as lying above l4.

Now any solution to (1.1) corresponds to a finite sequence {Lj}mj=0 of line segments in

g(D) with end points on g(∂D) = ∂g(D) = ∪4
i=1li that have the following properties:

(1) L0 begins and Lm ends at a0e
−2πi/3;

(2) For i = 1, . . . , m−1, Li ends and Li+1 begins at the same point pi on ∪4
i=1li. In addition,

Li and Li+1 are locally symmetric about the normal line of ∪4
i=1li at pi.

Upon checking all the possibilities, we can show that there are exactly two options:
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(1) m = 1, both L0 and L1 are the same vertical line segments from a0e
−2iπ/3 to the real

line.

(2) m = 1, both L0 and L1 are the same vertical line segments from a0e
−2iπ/3 to − 2

3
πi+�.

One can verify that (1) and (2) correspond to two different trajectories, denoted by γ1

and γ2 respectively. Both connect e−πi/3 and eπi/3, are symmetric about the real line, and

lie in the sector {reθi | r > 0, |θ| < π/3}; see Figure 7 for γ1 and γ2 restricted on D.

To see the relative position of γ1 and γ2 with respect to the unit circle, we find the

image of the unit circle under g. For θ ∈ (0, π/3),

g(eiθ) = g(eπi/3) +

∫ θ

π/3

(e3iθ + 1)deiθ

e3iθ − 1
= a0e

−2πi/3 −
∫ π/3

θ

2 sin(3θ)(cos θ + i sin θ)

|2 sin(3θ/2)|2 dθ.

Thus, the image of the circular parts eiθ , 0 < θ < π/3, under g, is an increasing curve

from − 2π
3
i − ∞ to a0e

−2πi/3. This implies that γ1 lies inside the unit circle, and that γ2 lies

outside the unit circle. In summary, we have the following.

Proposition 6.4 Assume that W (z) =
∣∣∣z3 + 1

z3 − 1

∣∣∣2. Then,

(i) (1.1) does not have any non-trivial homoclinic orbits.

(ii) Between any pair of different roots of W = 0, there are exactly two connections of

(1.1). These connections lie inside the sector determined by the pair of roots, and one of

them, γ1, lies inside the unit circle while the other, γ2, lies outside of the unit circle. Their

respective energies are

E(γ1) = 2a0 sin
π

3
=

2π

3
−

(√
3 − ln 4√

3

)
,

E(γ2) =
4π

3
− E(γ1) =

2π

3
+

(√
3 − ln 4√

3

)
> E(γ1).

To reduce the singularity of the potential just studied, we now consider the following.

Example 8. W (z) = |(z3 + 1)(z3 − 1)−α|2, 0 < α < 1.

Define D as in (6.4). As before, we need only to find a finite sequence of line segments

in g(D) that are obtained from a sequence of reflections about the boundary of g(D), of

light rays that begin and end at the same point g(eπi/3).

We adapt the convention

Arg(z3 − 1) ∈ [0, π] ∀z ∈ D,

and take

(reiθ)−α = r−αe−αθi,

f(z) = (z3 + 1)(z3 − 1)−α,

g(z) =

∫ z

0

f(ζ) dζ ∀z ∈ D.

We calculate the value of g on ∂D (cf. Figure 8).
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Figure 8. The image of the boundary g(∂D), with different values of α. From left to right: α =

1/6, 1/3, 1/2, 5/6, 11/12. In the rightmost figure, the preimage of the light line segment corresponds

to a homoclinic orbit that cover three copies of the region D.

(i) g(eπi/3[1,∞)) = e(4/3−α)πi(−b0,∞) := l1, b0 :=
∫ 1

0
(1 − r3)(1 + r3)−αdr.

(ii) g(eπi/3[0, 1]) = e(1/3−α)πi[0, b0] =: l2; in particular, g(eπi/3) = b0e
(1/3−α)πi.

(iii) g([0, 1]) = e−απi[0, a0] =: l3, a0 :=
∫ 1

0 (r3 + 1)(1 − r3)−αdr.

(iv) g([1,∞)) = a0e
−απi + [0,∞) =: l4;

(v) g(∞ei[0,π/3]) = ∞ei[0,(4/3−α]π =: l5 (the dashed arc).

Here one should regard l2 as if it was below l1 for α < 5/6 and above for α > 5/6.

Next we show that g(eπi/3) = b0e
(1/3−α)πi lies above l4 (this is not obvious in the case

α > 1/3) so that g(D) is a domain bounded by l1, . . . , l5 and that z ∈ D → g(z) is

one-to-one. For this, we need only to show the positivity of the imaginary part of

Z := b0e
(1/3−α)πi − a0e

−απi = g(eπi/3) − g(1)

=

∫ π/3

0

(e3iθ + 1)(e3iθ − 1)−αdeiθ.

Using e3θi − 1 = 2 sin(3θ/2)e(π+3θ)πi/2 we obtain

Z = 21−α

∫ π/3

0

{
sin

απ + 3αθ − 5θ

2
+ i cos

απ + 3αθ − 5θ

2

}
sin−α 3θ

2
cos

3θ

2
dθ

=
22−α

3

∫ π/2

0

{
sin

(απ

2
+ αθ − 5θ

3

)
+ i cos

(απ

2
+ αθ − 5θ

3

)}
sin−α θ cos θ dθ.

Note that when θ increases from 0 to π/2, cos θ sin−α θ decreases from +∞ to 0, and
1
2
απ + αθ − 5

3
θ decreases from απ/2 > 0 to απ − 5π/6 > −π. From this, we conclude that

Im(Z) =
22−α

3

∫ π/2

0

cos
(απ

2
+ αθ − 5θ

3

)
sin−α θ cos θ dθ > 0.

Clearly, the orthogonal projection from g(eπi/3) = b0e
(1/3−α)πi onto l3 gives us a trajectory

γ1, whose energy is

E(γ1) = 2b0 sin(π/3) =
√

3

∫ 1

0

(1 − r3)(1 + r3)−α dr.
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Figure 9. A trajectory connecting two wells and making one loop around a pole, α = 7/10.

If the orthogonal projection from g(eπi/3) to l4 does not intersect l3, namely

Re(Z) =
22−α

3

∫ π/2

0

sin
(απ

2
+ αθ − 5θ

3

)
sin−α θ cos θ dθ > 0 ⇔ α > α∗ = 0.35699 . . .

then we have another trajectory, γ2, whose energy is

E(γ2) = 2 Im(Z).

The position of g(eπi/3) is of importance here. We can deduce the following facts:

(i) For 0 < α < α∗ = 0.35699. . . , the vertical projection of g(eπi/3) onto l4 intersects l3, so

there exists only one trajectory, γ1, being the preimage, under g, of the projection line

segment from g(eπi/3) onto l3.

(ii) For α∗ < α < 1, the vertical projection of g(eπi/3) does not intersects l3, so there are two

trajectories, γ1 obtained from the preimage, under g, of the projection of g(eπi/3) onto

l3 and γ2 from that onto l4. A numerical evaluation clearly shows that E(γ2) > 2E(γ1).

(iii) For α = α∗, γ2 becomes singular since it passes through the pole 1 of the potential.

(iv) For α close to 1, looped trajectories can be constructed; see Figure 8e and Figure 9.

The image of the unit circle in D is given by

g(eiϕ) = g(eπi/3) − 21−α

∫ π/3

ϕ

{
sin

απ + 3αθ − 5θ

2
+ i cos

απ + 3αθ − 5θ

2

}
sin−α 3θ

2
cos

3θ

2
dθ

for ϕ ∈ (0, π/3). (a) It is a curve beginning at b0e
(1/3−α)πi with tangent parallel to l1, and

finishing off at a0e
−απ with tangent lying in the middle of l3 and l4. (b) For α ∈ [5/6, 1),

it always goes to the left; when α ∈ (0, 5/6), it first swings to the right, and then goes to

the left, changing its direction at the zero of απ + 3αθ∗ − 5θ∗ = 0, i.e., at θ∗ = απ/(5 − 3α).

(c) When 1 > α � 1/3, it always goes downwards; when 0 < α < 1/3, it first goes up

and then goes down, changing its course at θ = 1+α
5−3α

π. Thus, when α ∈ [ 5
6
, 1), γ2 does not

intersect the unit circle, whereas when α < 5/6, γ2 intersects the unit circle twice, at eiθ̂
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and e−θ̂i, respectively, for some θ̂ ∈ (0, θ∗). The middle part lies outside of the unit circle,

and the head and tail parts (those joining e±2πi/3) lie inside the circle. Finally, γ1 lies inside

of γ2 and the unit circle.

Proposition 6.5 Let W (z) = |(z3 + 1)(z3 − 1)−α|2, 0 < α < 1. Let α∗ ≈ 0.35699 be the root

to Re(Z) = 0.

(i) For α ∈ (0, α∗], there is exactly one trajectory connecting eπi/3 and e−πi/3.

(ii) For α ∈ (α∗, 1), (1.1) admits two trajectories connecting eπi/3 and e−πi/3; one of them,

γ1, lies inside the unit circle, whereas the other, γ2, lies outside of γ1 and the pole. When

α ∈ (5/6, 1), γ2 lies completely outside of the unit circle, whereas when α ∈ (α∗, 5/6), γ2

intersects the unit circle exactly twice. Their energies are respectively

E(γ1) =
√

3b0, E(γ2) = 2Im(Z) = 2{(b0 sin((1/3 − α)π) + a0 sin απ} > 2E(γ1).

(iii) For α close to 1, there are looped trajectories with the number of loops increasing to

∞ as α increases to 1.

We remark the following:

(1) The existence of a unique α∗ is established by showing numerically that the derivative

of the function α → Re(Z) is positive.

(2) Similarly, numerical evaluation gives infα∈(α∗ ,1)
Eγ2)
E(γ1)

> 2.1, and so we conclude that

E(γ2) > 2E(γ1). Finding an analytical proof appears too hard for the moment and

also not necessary.

(3) The third assertion (iii) is proved by finding the number of ways that a light ray,

emitted from g(eπi/3), travelling in g(D), bouncing back and forth at the boundary of

g(D), can end at g(eπi/3); see Figure 8e. We omit the details.

Finally, we consider the potential that was first used in our numerical simulation.

Example 9. W (z) = |z3 − 1|2|z3 + α3|−1, α ∈ (0,∞).

As before, we let D as in (6.4) and set

f(z) =
z3 − 1√
α3 + z3

, g(z) =

∫ z

0

f(ζ) dζ z ∈ D.

The image g(∂D) can be calculated as follows (see Figure 10).

(i) g([0,∞)) = [−a0,∞), a0 =
∫ 1

0
1−r3√
α3+r3

dr.

(ii) g([0, α]eπi/3) = e4πi/3[0, b0] =: l3, b0 :=
∫ α

0
1+r3√
α3−r3

dr.

(iii) g([α,∞)eπi/3) = g(αeπi/3) + e5πi/6[0,∞) =: l4.

(iv) g(∞e[0,π/3]i) = ∞e[0,5π/6]i.
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Figure 10. The image g(∂D) in Example 9. The thick dotted and solid curves are the image of

g(∂D). The preimage of the thin line segments provide homoclinic connections.

We claim that g(1) = −a0 lies above the l4 line segment. For establishing this it is

sufficient to show that 1
2
a0 < b0. We calculate

2b0 − a0 = 2

∫ 1

0

1 + α3ρ3

√
α
√

1 − ρ3
dρ −

∫ 1/α

0

1 − α3ρ3

√
α
√

1 + ρ3
dρ

>
1√
α

( ∫ 1

0

2√
1 − ρ3

dρ −
∫ ∞

0

1√
1 + ρ3

dρ
)

= 0.

Hence, g maps D in one-to-one manner onto its image g(D). Let γ1 be the pre-image of

the projection line segment from g(1) to l3 and let γ2 be that from g(1) to l4. Then both γ1

and γ2 are half trajectories connecting 1 and e2πi/3; γ2 lies outside the pole αeπi/3 whereas

γ1 lies inside the pole αeπi/3. Their corresponding energies are given by

E(γ1) =
√

3a0, E(γ2) = 2b0 − a0.

In terms of α ∈ (0,∞), numerical evaluation shows that there exists a unique α∗ =

0.55707 . . . such that

E(γ1) < E(γ2) when α > α∗, E(γ1) > E(γ2) when α ∈ (0, α∗). (6.5)

From Figure 10 and using Euclidean geometry, one can prove that there are also looped

trajectories. We omit the details. We summarize our conclusions as follows:

Proposition 6.6 Let W = |z3 − 1|2 |z3 + α3|−1, α > 0. There are exactly two trajectories, γ1

and γ2, that connect 1 and e2πi/3 and lie in the sector 0 < Arg(z) < 2π/3;. In addition,

(i) γ1 lies inside of the domain bounded by γ2 and line segments [0, 1] ∪ e2πi/3[0, 1] and the

pole αeπi/3 lies inside of the domain bounded by γ1 ∪ γ2;

(ii) if γ� γ1, γ2, is a trajectory connecting 1 and e2πi/3, then E(γ) > max{E(γ1), E(γ2)}.
(iii) there exists a number α∗ ≈ 0.55707 such that (6.5) holds.
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7 Numerical simulations for the interfacial dynamics

The goal here is to design an algorithm and use it to observe numerically the evolution

of interfaces of the vector Allen-Cahn dynamics modelling grain boundaries. We would

like to find and to understand how different classes of interfaces are formed and how do

they evolve and interact with each other.

7.1 The model

For definiteness, we consider the Allen-Cahn system

{
ut(x, y, t) = ε2∆u − Wu(u, v),

vt(x, y, t) = ε2∆v − Wv(u, v),
(x, y) ∈ �2, t > 0 (7.1)

with periodic boundary conditions, for u = (u, v),

u(x + 1, y, t) = u(x, y + 1, t) = u(x, y, t), (x, y) ∈ �2, t � 0. (7.2)

We use the potential

W (u, v) =
|z3 − 1|2
|z3 + α3| , z = u + iv, α > 0,

with which (1.1) admits exactly two distinct non-looped connections between each pair of

wells of the set {1, e2πi/3, e−2πi/3}; see Example 9 in the previous section. Here the positive

parameter α regulates the balance for the two energies (defined in (1.2)) of the two

connections. The energy E(U) of a connection U is typically called the interfacial energy

density since in the direction perpendicular to an interface, u in (7.1) is approximately

equal to a scaled version of U, so that, since ε is small, there is the approximation of the

total energy ∫∫
Ω

{ ε

2
|∇u|2 +

1

ε
W (u)

}
dx dy ≈

√
2

∫
I

E(U) d �

where I is the interface in Ω, d� is the arc length parameter, and E(U) is the energy of

the connection used by u in the cross section of the interface.

7.2 Discretization

We discretize the equations by an explicit forward in time and centered in space finite

difference scheme, with a fixed uniform spatial mesh size h and dynamic time steps

k(0), k(1), . . . . Denote by unij = (unij , v
n
ij) the numerical approximation of u at xi = ih, yj = jh

and tn =
∑n−1

m=0 k(m) (t0 = 0). The discrete equations are

u∗
ij = unij +

kε2

2
∆iju

n − k

2
Wu(u

n
ij),

un+1
ij = unij + kε2∆iju

∗ − kWu(u
∗
ij),
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where the partial derivatives of W are calculated using simple centered differences and

the discrete operator ∆ij is a centered, second order approximation of the Laplacian ∆,

given by

∆ijφ =
φi+1,j+1 + φi−1,j+1 + φi+1,j−1 + φi−1,j−1 + 4

(
φi+1,j + φi−1,j + φi,j+1 + φi,j−1

)
− 20φi,j

6h2
.

To ensure stability, the time-step k and spatial size h must satisfy the CF condition

h2 > 4ε2k. For optimal accuracy, we require the change of the numerical solution u be

less than a small percentage of |u| in each time update. Thus, we choose our dynamic

time step by

k = k(n) = min
ij

(
h2

4ε2
,

|u|
100|ut|

)
.

Here we care more on the accuracy than on the efficiency and speed of the scheme.

7.3 Validation

In order to check that the scheme works correctly, we test the scheme by using one-

dimensional solutions to

ε2Uxx = Wu(U) on �, U(−∞) = (1, 0), U(∞) = (− 1
2
,

√
3

2
). (7.3)

We can obtain numerically desired solutions of this boundary value problem by shoot-

ing. First we linearize the equation in a neighborhood of the critical point (1, 0) to find four

eigenmodes vie
λix, i = 1, 2, 3, 4, where λi and vi are the eigenvalue and the unit eigenvector

of the corresponding characteristic system λ2v = v Wuu(1, 0). We take the convention

λ1 � λ2 > 0, λ3 = −λ1, v3 = v1, λ4 = −λ2 and v4 = v2 ⊥ v1. One can derive that

U(x) = (1, 0) + δ
{

v1e
λ1x cos θ + v2e

λ2x sin θ
}

+ O(δ2e2λ2x) ∀ x � 0.

Here the value θ ∈ [0, 2π) is not arbitrary. It is obtained by shooting. Note that the small-

ness of δ is equivalent to the translation of x. We use (1, 0)+10−10{v1 cos θ+v2 sin θ} as an

initial data for the numerical solution U at x = 0 and integrate the ODE system (7.3) with

a fourth order Runge-Kutta scheme. We adjust the parameter θ until the numerical solu-

tion U(x) arrives a tiny neighborhood of the critical point (−1/2,
√

3/2) for certain large x.

We obtain exactly two non-looped trajectories, plotted by the two solid curves in Figure 11.

In Figure 11, we also plot by dots two steady states u∗(x) = limt→∞ u(x, y, t) of two

numerical solutions of the PDE problem (7.1)–(7.2) with y independent initial values and

with the aforementioned numerical scheme. The differences between U and u∗ near the

critical points are due to the fact that our initial value problems are solved in a bounded

domain with periodic boundary conditions.

7.4 A numerical simulation

We start with a random initial data u(x, y, 0) obtained from a pseudorandom number

generator, and we wait until the interfaces develop. Taking α = 0.55, in Figure 1 we
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Figure 11. Comparison of the numerical steady states with planer interfaces of the PDE problem

in a bounded domain with trajectories of the ODE problem.

provide three pairs of snapshots, taken at three different time moments, recording the

interfaces (left column) and phase domains (right column). The observed phenomena of

generation and evolution of interfaces are generic (e.g obey certain laws).

In each image on the left, the interfaces are painted in a way that distinguishes between

the two different types. The grayscale depends on the value of |u|; that is, a light gray

interface corresponds to the connection U that is closer to the origin in Figure 11 whereas

a black interface denotes the connection in Figure 11 that is farther from the origin.

It is evident that the two classes of interfaces coexist at a given time. When α = 0.55,

the transition energy of the light grey interface is higher than that of the black one, so

that during the evolution process, the proportion of the light gray interface gradually

decreases. We can adjust α to make the two transition energies almost equal, in which

case, the evolution of the proportion (not shown here) is observed to be very slow. We

remark that the color at the junctions has no significance.

In each picture on the right column, we use three different grayscales to denote the three

different phase regions: white for the region {(x, y) | u(x, y, t) ∼ 1}, grey for {u ∼ e2πi/3}
and black for {u ∼ e−2πi/3}.

8 Conclusions and open problems

We studied the solutions of 2uxx = Wu(u) where W is a potential with multiple global

minima. This equation describes the equilibrium of interfaces of the solutions of the vector

Allen-Cahn equations. In particular we developed a method that allows the construction

of closed-form solutions for potentials of the form W = |f(z)|2 , which includes the usual

symmetric three well potential. We show that for potentials of type I (f(z) holomorphic)

there exists at most one connection between any pair of wells, while for type II potentials

(f(z) meromorphic with poles), multiple connections between a pair of wells may exist.

We also give examples of potentials for which a pair of wells does not have a connection.

The most striking implication is that the Plateau conditions are not necessarily satisfied

for equilaterally symmetric potentials. We verified numerically that these two kinds of

interfaces can be developed spontaneously on the evolution of the Allen–Cahn equation

starting with initial random data.
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For a follow-up to this paper addressing the existence issue for potentials with several

global minima, and also clarifying further the case of non-existence and its robustness

under small perturbations, we refer to the recent work of Alikakos & Fusco [4]. There

are a number of open problems that we did not discuss in this paper

• Equilibrium and stability of the triple junctions: the detailed analysis would consider

the full two dimensional solutions to the elliptic system ∆u = Wu(u) (now we cannot

reduce the problem to ODES). Is it possible to prove existence and stability of junctions

with two different kinds of interfaces which have different connections far away from

the triple point? For the elliptic system capturing the solution in the core of the junction

we refer elsewhere [3, 13, 33]

• Dynamical issues: Our simulations for networks made up of interfaces of two kinds

show a gradual conversion into one into one kind of interface, via a travelling wave

motion on the interface itself. A rigorous result would be of interest, even for a simple

arrangement of interfaces.

• Equilibrium of networks of multiple triple junctions: what are the possible steady

states, for example, inside a convex domain with Neumann boundary conditions? Are

hexagonal networks stable? Is the stability of the network affected by the existence of

multiple connections? For the associated sharp interface problem we refer elsewhere

[28, 35].

• Extension to the three dimensional case: we think that it is possible that many of our

results hold in the three dimensional case, where now four interfaces can meet at a

point. Are the Plateau conditions violated with a symmetric potential with singularities?

• Cahn–Hilliard dynamics: under certain conditions, it has the same steady states than

the Allen–Cahn system [8]. However it would be interesting to study the dynamics to

determine if two kinds of interfaces develop spontaneously as did in our numerical

simulation of the time-dependent Allen–Cahn system.
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