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Abstract
For a given graph H, we say that a graph G has a perfect H-subdivision tiling if G contains a collection
of vertex-disjoint subdivisions of H covering all vertices of G. Let δsub(n,H) be the smallest integer k such
that any n-vertex graph G with minimum degree at least k has a perfect H-subdivision tiling. For every
graph H, we asymptotically determined the value of δsub(n,H). More precisely, for every graph H with at
least one edge, there is an integer hcfξ (H) and a constant 1< ξ ∗(H)≤ 2 that can be explicitly determined by
structural properties ofH such that δsub(n,H)=

(
1− 1

ξ∗(H) + o(1)
)
n holds for all n andH unless hcfξ (H)=

2 and n is odd. When hcfξ (H)= 2 and n is odd, then we show that δsub(n,H)= (
1
2 + o(1)

)
n.
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1. Introduction
Embedding a large sparse subgraph into a dense graph is one of the most central problems in
extremal graph theory. It is well known that any graphGwith a minimum degree of at least � v(G)

2 �
has a Hamiltonian cycle, and hence also a perfect matching if the number of vertices v(G) of G is
even. A perfect matching of a graph G is a vertex-disjoint collection of edges whose union covers
all vertices of G. A natural generalisation of a perfect matching is a perfect H-tiling for a general
graph H. We say G has a perfect H-tiling if G contains a collection of vertex-disjoint copies of H
whose union covers all vertices of G. We note that a perfect H-tiling exists only if v(G) is divisible
by v(H). For a positive integer n divisible by v(H), we denote by δ(n,H) the minimum integer k
such that any n-vertex graph G with a minimum degree of at least k has a perfect H-tiling. The
celebrated Hajnal–Szemerédi [11] theorem states that for any integer r ≥ 2, the number δ(n,Kr)
is equal to

(
1− 1

r
)
n.

An asymptotic version of the Hajnal–Szemerédi theorem for a general graph H was first
proven by Alon and Yuster [2]. They showed that if n is divisible by v(H), then δ(n,H)≤(
1− 1

χ(H)

)
n+ o(n), where χ(H) is the chromatic number ofH. Komlós, Sárkőzy, and Szemerédi

[18] improved the o(n) term in the Alon–Yuster theorem to some constant C = C(H), which set-
tled the conjecture of Alon and Yuster [2]. Another direction for an asymptotic extension of the
Hajnal–Szemerédi theorem was proven by Komlós [17]. Komlós showed that for any γ > 0, there
exists n0 = n0(γ ,H) such that if n≥ n0, then any n-vertex graph G whose minimum degree is at
least

(
1− 1

χcr(H)

)
n contains an H-tiling that covers at least (1− γ )n vertices of G. Here, χcr(H)

denotes the critical chromatic number ofH, which is defined as χcr(H)= (χ(H)−1)v(H)
v(H)−σ (H) , where σ (H)
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is the minimum possible size of a colour class among all colourings of H with χ(H) colours.
Komlós [17] conjectured that the number of uncovered vertices can be reduced to a constant,
and this conjecture was confirmed by Shokoufandeh and Zhao [29]. More precisely, the following
holds.

Theorem 1.1 (Shokoufandeh and Zhao [29]). Let H be a graph. Then there exists a constant C =
C(H), which only depends on H, such that any graph G on n vertices with a minimum degree of at
least

(
1− 1

χcr(H)

)
n contains an H-tiling that covers all but at most C vertices of G.

The almost exact value of δ(n,H) for every graph H was determined by Kühn and Osthus [23]
up to an additive constant depending only on H. To formulate this theorem, we need to define
some notations. We say a proper colouring of H is optimal if it uses exactly χ(H) colours. We
denote by �(H) the set of all optimal colourings of H. Let φ ∈ �(H) be an optimal colouring of
H with the size of colour classes being x1 ≤ . . . ≤ xχ(H). Let D(φ) := {xi+1 − xi : i ∈ [χ(H)− 1]}
and D(H) := ⋃

φ∈�(H) D(φ). We write hcfχ (H) for the highest common factor of all integers in
D(H). (IfD(H)= {0}, we define hcfχ (H)= ∞.) We denote by hcfc(H) the highest common factor
of all the orders of components in H. For a graph H, we define

hcf(H) :=

⎧⎪⎪⎨
⎪⎪⎩
1 if χ(H)≥ 3 and hcfχ (H)= 1,
1 if χ(H)= 2, hcfχ (H)≤ 2, and hcfc(H)= 1,
0 otherwise.

We define χ∗(H)= χcr(H) if hcf(H)= 1; otherwise, χ∗(H)= χ(H). We are now ready to state the
Kühn–Osthus theorem.

Theorem 1.2 (Kühn and Osthus [23]). Let H be a graph and n be a positive integer divisible by
v(H). Then there exists a constant C = C(H) depending only on H such that(

1− 1
χ∗(H)

)
n− 1≤ δ(n,H)≤

(
1− 1

χ∗(H)

)
n+ C.

1.1. Main results
Motivated by the Kühn–Osthus theorem on perfect H-tilings, several variations of Theorem 1.2
have been considered. (For instance, see [5, 10, 12–14, 22, 25]).

In this article, we consider a problem related to the concept of perfectH-tilings and subdivision
embeddings. A graph H′ is a subdivision of H if H′ is obtained from H by replacing edges of
H with vertex-disjoint paths while maintaining their endpoints. Since subdivisions maintain the
topological structure of the original graph, various problems related to subdivisions have been
posed and extensively studied. In particular, finding a sufficient condition on the host graph to
contain a subdivision of H is an important problem in extremal graph theory.

Let H and G be graphs. An H-subdivision tiling is a collection of vertex-disjoint unions of
subdivisions of H. We say that G has a perfect H-subdivision tiling if G has an H-subdivision
tiling that covers all vertices of G. A natural question would be to determine the minimum degree
threshold for a positive integer n that ensures the existence of a perfectH-subdivision tiling in any
n-vertex graph G. We define this minimum degree threshold as follows.

Definition 1.3. Let H be a graph. We denote the minimum degree threshold for perfect H-
subdivision tilings by δsub(n,H), which is the smallest integer k such that any n-vertex graph G
with a minimum degree of at least k has a perfect H-subdivision tiling.

If H has no edges, then a perfect H-subdivision tiling exists if and only if v(G) is divisible by
v(H), regardless of the minimum degree δ(G) of G. Thus, from now on, we only consider graphs
with at least one edge.
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For most results on embedding large graphs, including perfectH-tilings and large subdivisions,
embedding a graph with more complex structures requires a larger minimum degree threshold.
Surprisingly, we observe the opposite phenomenon for perfect subdivision tiling problems. For
example, Theorem 1.8 states that δsub(n,Kr) decreases as r increases when 3≤ r ≤ 5. This is due to
the fact that a larger value of r ensures that Kr has a bipartite subdivision with a more asymmetric
bipartition.

Since embedding bipartite graphs generally requires a lower minimum degree than non-
bipartite graphs, we want to cover most of the vertices of the host graph with subdivisions of
H that are bipartite. Suppose every bipartite subdivision of H is, in some sense, balanced. In that
case, it cannot be tiled in a highly unbalanced complete bipartite graph that has a lower mini-
mum degree than a balanced complete bipartite graph. For this reason, we need to measure how
unbalanced bipartite subdivisions of H can be, as it poses some space barriers to the problem.

For this purpose, we introduce the following two definitions.

Definition 1.4. Let H be a graph and X ⊆V(H).We define a function fH : 2V(H) →R as fH(X)=
v(H)+e(H[X])+e(H[Y])

|X|+e(H[Y]) where Y =V(H) \ X.
Definition 1.5. Let H be a graph. We define ξ (H) := min{fH(X) : X ⊆V(H)}.

Note that subdividing all edges in H[X] and H[Y] yields a bipartite subdivision H′ of H, and
fH(X) measures the ratio between V(H′) and one part of its bipartition. The smaller the value of
fH , the more unbalanced H′ is. Later in Observation 3.2, we will prove that ξ (H) can be used to
measure the ratio between the two parts in the most asymmetric bipartite subdivision of H. Note
that we always have 1< ξ (H)≤ 2. Indeed,

fH(V(H))≥ v(H)+ e(H)
v(H)

> 1,

and for any partition X, Y of V(G), we have
v(H)+ e(H[X])+ e(H[Y])= |X| + e(H[X])+ |Y| + e(H[Y])≤ 2max{|Z| + e(H[Z]) : Z ∈ {X, Y}},
so, min{fH(X), fH(Y)} ≤ 2.

Another crucial factor is the divisibility issue. Assume that all bipartite subdivisions of H have
bipartitions with both parts having the same parity. If G is a complete bipartite graph Ka,b with
a and b having different parity, then we cannot find perfect H-subdivision tilings in G, as it poses
some divisibility barriers to the problem. Hence, we need to introduce the following definitions
concerning the difference between the two parts in bipartitions of subdivisions of H and their
highest common factor.

Definition 1.6. Let H be a graph. We define C(H) := {(|X| + e(H[Y]))− (|Y| + e(H[X])) : X ⊆
V(H), Y =V(H) \ X}.We denote by hcfξ (H) the highest common factor of all integers in C(H). (If
C(H)= {0}, we define hcfξ (H)= ∞.)

By considering the space barrier and the divisibility barrier, we introduce the following param-
eter measuring both obstacles for the problem. We will show that this is the determining factor
for δsub(n,H).

Definition 1.7. Let H be a graph. We define

ξ∗(H) :=

⎧⎪⎪⎨
⎪⎪⎩

ξ (H) if hcfξ (H)= 1,
max

{ 3
2 , ξ (H)

}
if hcfξ (H)= 2,

2 otherwise.

We are now ready to state our main theorems. The following theorem gives the asymptotically
exact value for δsub(n,H) except in one case, when hcfξ (H)= 2.
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Theorem 1.8. Let H be a graph with hcfξ (H) = 2. For every γ > 0, there exists an integer n0 =
n0(γ ,H) such that for any n≥ n0, the following holds.

(
1− 1

ξ∗(H)

)
n− 1≤ δsub(n,H)≤

(
1− 1

ξ∗(H)
+ γ

)
n

This theorem asymptotically determines δsub(n,H) as long as hcfξ (H) = 2. If hcfξ (H)= 2, then
the parity of n is also important. The following theorem asymptotically determines δsub(n,H) for
this case.

Theorem 1.9. Let H be a graph with hcfξ (H)= 2. For every γ > 0, there exists an integer n0 =
n0(γ ,H) such that the following holds. For every integer n≥ n0,

1
2
n− 1≤ δsub(n,H)≤

(
1
2

+ γ

)
n if n is odd,

(
1− 1

ξ∗(H)

)
n− 1≤ δsub(n,H)≤

(
1− 1

ξ∗(H)
+ γ

)
n if n is even.

As a direct consequence of Theorems 1.8 and 1.9, we determine the value of δsub(n,Kr) for
each r ≥ 2. By applying our main theorems directly, we have δsub(n,K2)=

( 1
3 + o(1)

)
n, and for

each r ∈ {3, 4, 5}, we have δsub(n,Kr)=
(

2
r+1 + o(1)

)
n. For the case r = 7, if n is even, we have

δsub(n,K7)=
( 1
3 + o(1)

)
n; otherwise, we have δsub(n,K7)=

( 1
2 + o(1)

)
n. Finally, for every r ≥ 8

and r = 6, we have δsub(n,Kr)=
( 1
2 + o(1)

)
n. This is in contrast to the normal H-tiling problem.

Thismeans the determining factors for theminimumdegree thresholds of perfectH-tilings and
perfect H-subdivision tilings are essentially different. Probably, the most interesting difference
between the perfect H-tiling and the perfect H-subdivision tiling is that monotonicity does not
hold for subdivision tiling. For a perfect tiling, if H2 is a spanning subgraph of H1, then obviously
δ(n,H2)≤ δ(n,H1). However, for perfect subdivision tiling, this does not hold in many cases. For
example, our results imply δsub(n,K4)= 2

5n+ o(n)< δsub(n, C4)= 1
2n+ o(n).

As ξ∗(H) is the determining factor for the minimum degree threshold, it is convenient for us to
specify the bipartite subdivision achieving the value ξ∗(H). We introduce the following definition.

Definition 1.10. Let H be a graph. We denote by XH the subset of V(H), where fH(XH)= ξ (H).
We define a graph H∗ obtained from H by replacing all edges in H[XH] and H[V(H) \ XH] with
paths of length two.

There can be multiple choices for XH . Then we fix one choice for XH so that XH and H∗ are
uniquely determined for all H. Note that H∗ is a subdivision of H, which is a bipartite graph,
and v(H∗)= v(H)+ e(H[XH])+ e(H[V(H) \ XH]). Intuitively, ξ (H) seems greater than χcr(H∗).
Indeed, this intuition is correct. However, Theorem 1.8 cannot be directly deduced by apply-
ing Theorem 1.2 for H∗. For example, for a connected graph H, it may satisfy χ∗(H∗)= 2, but
ξ∗(H)< 2 is possible. Then the minimum degree threshold in Theorem 1.8 is smaller than the
one in Theorem 1.2 when hcfξ (H)= 1.

However, as we will see in Observation 3.6, for every graph H with at least one edge, the
inequality ξ (H)≥ χcr(H∗) holds. Hence, if hcfξ (H)≤ 2, we may instead use Theorem 1.1 to
find an H∗-tiling that covers all but at most a constant number of vertices of G in a graph G
with δ(G)≥

(
1− 1

ξ (H) + γ
)
n. To cover the leftover vertices, we use the absorption method. The

absorption method was introduced in [27], and since then, it has been used to solve various cru-
cial problems in extremal combinatorics. The main difficulty in applying the absorption method
in our setting is that, in many cases, the host graph is not sufficiently dense to guarantee that any
vertices can be absorbed in the final step. To overcome this difficulty, we use the regularity lemma
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and an extremal result on the domination number to obtain some control over the vertices that
can be absorbed.

2. Preliminaries
Wewrite [n]= {1, . . . , n} for a positive integer n. If we claim a result holds if β � α1, . . . , αt , then
it means there exists a function f such that β ≤ f (α1, . . . , αt). We will not explicitly compute these
functions. In this paper, we consider o(1) to go to zero as n goes to infinity.

LetG be a graph.We denote the vertex set and edge set ofG byV(G) and E(G), respectively, and
we set v(G)= |V(G)| and e(G)= |E(G)|. We write dG(v) for the degree of v ∈V(G), and we omit
the subscript if the graph G is clear from the context. We denote by δ(G) and �(G) the minimum
degree ofG and themaximumdegree ofG, respectively. For a vertex v ∈V(G), we denote byNG(v)
the set of neighbours of v inGwhich are adjacent to v. We also omit the subscript ifG is clear from
the context.

For a graph G and a vertex subset X ⊆V(G), we denote by G[X] the subgraph of G induced
by X. For vertex subsets A and B of G, we denote by G[A, B] the graph where V(G[A, B])=A∪ B
and E(G[A, B])= {uv ∈ E(G) : u ∈A, v ∈ B}. Let v be a vertex of G and X be a vertex subset of G.
We denote by dG(v; X) the degree of v in the induced graph G[X ∪ {v}].

Let G be a graph and X ⊆V(G). We denote by G− X the induced graph G[V(G) \ X]. If
X is a single vertex v, we simply denote G− v. Similarly, if a graph H is a subgraph of G,
then we denote by G−H the induced subgraph G[V(G) \V(H)]. Let G′ be a subgraph of G
and v ∈V(G). We denote by G′ + v a graph such that V(G′ + v)=V(G′)∪ {v} and E(G′ + v)=
E(G′)∪ E(G[{v},V(G′)]).

We denote by Kr the complete graph of order r and Kn,m the complete bipartite graph with
bipartition of sizes n and m. We also denote by Ck and Pk the cycle of length k and the path of
length k, respectively. We say H′ is a 1-subdivision of H if H′ is obtained from H by replacing all
edges of H with vertex-disjoint paths of length two. We denote by H1 the 1-subdivision of H. We
write Sub(H) for the collection of all subdivisions of H. For a graph F ∈ Sub(H), we say a vertex
v ∈V(F)∩V(H) is a branch vertex of F.

In the proofs of the main theorems, we need to count the number of copies of specific bipartite
subgraphs where each bipartition is contained in certain vertex subsets. In order to facilitate this
counting, we introduce the notion of embedding. Let H and G be graphs. An embedding φ of H
into G is an injective function from V(H) to V(G) such that for any uv ∈ E(H), its image φ(u)φ(v)
is in E(G).

The next simple observation will be used in Section 4.

Observation 2.1. Let 0≤ γ , 1n � 1
t , d < 1. Let B be an n-vertex t-uniform hypergraph with

|E(B)| ≥ dnt. Let A⊆V(B) be a vertex subset of size at most γ n. Then we have |E(B −A)| ≥ d
2n

t.

As every vertex is contained in at most nt−1 edges, by choosing γ sufficiently small, we can easily
verify that Observation 2.1 holds. In the following two subsections, we introduce powerful tools
in extremal graph theory, so-called supersaturation, and the regularity lemma.

2.1. The supersaturation
One of the most fundamental problems in extremal graph theory is to determine the maximum
number of edges in an n-vertex graph that does not contain a copy of a specific graph as a sub-
graph. For a graph H and a positive integer n, we denote by ex(n,H) the extremal number of
H, defined as the maximum integer k such that there is an n-vertex graph G with k edges not
containing H as a subgraph.
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A classical theorem of Turán determined the exact value of ex(n,Kr). For a graph H, we define
the Turán density ofH as π(H) := limn→∞ ex(n,H)

(n2)
. The existence of Turán density for every graph

H was proved by Katona, Nemetz, and Simonovits [15]. For every graph H, the Erdős–Stone–
Simonovits [7, 9] theorem states that π(H)=

(
1− 1

χ(H)−1

)
. We note that if a graphH is bipartite,

the Turán density satisfies π(H)= 0.
Assume that an n-vertex graph G has many more edges than ex(n,H). Intuitively, we can

expect there to be a lot of copies of H in G. Indeed, this is true, and this phenomenon is called
supersaturation, proved by Erdős and Simonovits [8], as follows.

Theorem 2.2 (Supersaturation). Let 0< δ � ε, 1h ≤ 1. For every graph H on h vertices, the follow-
ing holds. If G is an n-vertex graph with e(G)≥ (π(H)+ ε)

(n
2
)
, then G contains at least δnh copies

of H.

Since the Turán density of a bipartite graph H is zero, Theorem 2.2 leads to the following
lemmas.

Lemma 2.3. Let 0< δ � 1
a ,

1
b , ε ≤ 1 and n be a positive integer. For every complete bipartite graph

H on bipartition A and B with |A| = a and |B| = b, the following holds. Let G be a bipartite graph
with bipartition X and Y such that |X|, |Y| ≤ n. If e(G)≥ εn2, then the number of embeddings
φ :V(H)→V(G) is at least δna+b, where φ(A)⊆ X and φ(B)⊆ Y.

Proof. Assume a≤ b and let v(G)= n′. Since e(G)≥ εn2, we observe that the inequality
√
2εn≤

n′ = |A| + |B| ≤ 2n holds. Thus, if we choose n sufficiently large, then also n′ is sufficiently large,
and we have e(G)≥ εn′2. By Theorem 2.2, the number of copies of Kb,b in G is at least δ′n′2b for
some δ′ > 0. We observe that for each copy of H in G, where A is embedded in X, there are at
most (n′)b−a copies of Kb,b in G. Thus, by double counting, the number of embeddings of H in G,
where A is embedded in X and B is embedded in Y , is at least δ′(n′)a+b ≥ δna+b. �
Lemma 2.4. Let 0< d � ε, 1h ≤ 1. For every h-vertex bipartite graph H on bipartition A and B, the
following holds. Let G be an n-vertex graph with minimum degree at least εn. Let X ⊆V(G) be a
set of at least εn vertices. Then there are at least δnh distinct embeddings φ :V(H)→V(G), where
φ(A)⊆ X.

Proof. Let X′ := V(G) \ X. If e(G[X])≥ ε2

4 n
2, by Theorem 2.2, the induced graph G[X] contains

at least δnh distinct copies ofH. Thus, in this case, the lemma is proved.We now assume e(G[X])≤
ε2

4 n
2. Then, by the minimum degree condition ofG, the number of edges in the bipartite subgraph

G[X, X′] is at least ε2

4 n
2. Then, by Lemma 2.3, for the bipartite graph G[X, X′], there are at least

δnh distinct desired embeddings. This proves the lemma. �

2.2. The regularity lemma
Szemerédi’s regularity lemma [30] is a powerful tool for dealing with large dense graphs. To for-
mulate the regularity lemma, we need to define an ε-regular pair. Let G be a graph and A, B⊆G.
We define the density between A and B as dG(A, B) := e(G[A,B])

|A||B| . The following is the definition of
an ε-regular pair.

Definition 2.5. Let ε > 0 and d ∈ [0, 1]. A pair (A, B) of disjoint subsets of vertices in a graph G
is an (ε, d)-regular pair if the following holds. For any subset A′ ⊆A, B′ ⊆ B with |A′| ≥ ε|A| and
|B′| ≥ ε|B|,

|dG(A′, B′)− d| ≤ ε.
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If a pair (A, B) is (ε, d)-regular for some d ∈ [0, 1], we say (A, B) is an ε-regular pair. We also say a
pair (A, B) is (ε, d+)-regular if (A, B) is (ε, d′)-regular for some d′ ≥ d.

The following is the degree form of the regularity lemma [21, Theorem 1.10].

Lemma 2.6 (Regularity Lemma-degree form). Let 0< 1
T0 � 1

t0 , ε ≤ 1. For every real number d ∈
[0, 1] and every graph G with order at least T0, there exists a partition of V(G) into t + 1 clusters
V0,V1, . . . ,Vt and a spanning subgraph G0 of G such that the following holds:

• t0 ≤ t ≤ T0,
• |V0| ≤ εv(G),
• |V1| = · · · = |Vt|,
• G0[Vi] has no edge for each i ∈ [t],
• dG0 (v)≥ dG(v)− (d + ε)v(G) for all v ∈V(G),
• for all 1≤ i< j≤ t, either the pair (Vi,Vj) is an (ε, d+)-regular pair or the graph G0[A, B]
has no edge.

The partition in Lemma 2.6 is called an (ε, d)-regular partition or simply an ε-regular partition.
We now define an (ε, d)-reduced graph R on the vertex set {V1, . . . ,Vt}, which is obtained from
Lemma 2.6, by joining the edges for each Vi,Vj if and only if (Vi,Vj) is an (ε, d+)-regular pair.
The following lemma shows that the reduced graph inherits the minimum degree condition [24].

Lemma 2.7 ( [24], Proposition 9). For every γ > 0, there exist ε0 = ε0(γ ) and d0 = d0(γ )> 0
such that for every ε ≤ ε0, d ≤ d0, and δ > 0, for every graph G with minimum degree (δ + γ )n,
the reduced graph R on G obtained by applying Lemma 2.6 with parameters ε and d, the minimum
degree of R is at least

(
δ + γ

2
) |R|.

Reduced graphs are useful for analysing the approximate structures of the host graphs, as they
inherit many properties of the host graphs, such as the minimum degree.

Themain reason that we need the regularity lemma is to get an efficient absorber for the leftover
vertices at the final step of the proofs. To achieve this, we need an additional minimum degree
condition for the ε-regular pair. The following lemma guarantees that we can delete low-degree
vertices from A and B while preserving the ε-regularity.

Lemma 2.8 ( [6], Proposition 12). Let (A, B) be an (ε, d)-regular pair in a graph G. Let B′ ⊆ B with
|B′| ≥ ε|B|. Then the size of the set {a ∈A : dG(a; B′)< (d − ε)|B′|} is at most ε|A|.

To get more information on the regularity lemma, see the following papers [16, 19–21, 28].

3. Extremal examples and properties of ξ (H) and χcr(H∗)
We first show that for any γ > 0 and every graphH, there is n0 = n0(γ ,H) such that for all n≥ n0,
the inequality δsub(n,H)≤ ( 1

2 + γ
)
n holds. Note that for any graphH, we have

(
1− 1

χ∗(H∗)

)
≤ 1

2

since H∗ is bipartite. Then Theorem 1.2 implies δ(n,H∗)≤ ( 1
2 + γ

2
)
n if n is sufficiently large and

divisible by v(H∗).

Proposition 3.1. Let 0< 1
n � γ , 1h ≤ 1. Then for every h-vertex graph H, the following holds:

δsub(n,H)≤
(
1
2

+ γ

)
n.

Proof. Let G be an n-vertex graph and δ(G)≥ ( 1
2 + γ

)
n. By subdividing one edge of H∗ at

most v(H∗) more times, we obtain a graph F with a constant number of vertices, χ(F)≤ 3,
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and v(G)− v(F) is divisible by v(H∗). By the Erdős–Stone–Simonovits theorem, we can find a
copy of F in G. Since v(F) is bounded, the minimum degree of G[V(G) \V(F)] is greater than( 1
2 + γ

2
)
n for n≥ n0, where n0 depends only on H. Then by Theorem 1.2, there is a perfect

H∗-tiling in G[V(G) \V(F)] which yields a perfect H-subdivision tiling in G together with the
copy of F. This completes the proof. �

We now prove lower bounds on δsub(n,H) by constructing graphs without perfect
H-subdivision tilings. The following observation shows that H∗ is a bipartite subdivision with
the most unbalanced bipartition. We recall that ξ (H) is the minimum value among all pos-
sible values of fH where fH : 2V(H) →R is a function such that for every X ⊆V(G), fH(X)=
v(H)+e(H[X])+e(H[Y])

|X|+e(H[Y]) , where Y =V(G) \ X.
Observation 3.2. Let H be a graph and let F ∈ Sub(H) be a bipartite graph with bipartition A and
B. Then |B|

|A| ≤ 1
ξ (H)−1 .

Proof. We may assume |A| ≤ |B|. It suffices to show that ξ (H)≤ |A|+|B|
|B| . Let U be the branch

vertices of F and let X =A∩U and Y = B∩U. Let p= |X| + e(H[Y]) and q= |Y| + e(H[X]).
Then fH(Y)= p+q

q . Since F is a bipartite subdivision of H with branch set X ∪ Y , every edge in
H[X, Y] is subdivided an even number of times. Thus, there is a non-negative integer c such
that |A|+|B|

|B| = p+q+2c
q+c . If p+q

q ≥ 2, then |A|+|B|
|B| ≥ 2. Since ξ (H)≤ 2, in this case, the observation

is proved. Otherwise, we may observe that p< q. Then |A|+|B|
|B| = p+q+2c

q+c ≥ p+q
q holds. By the

definition of ξ (H), we have ξ (H)≤H(Y)= p+q
q . This completes the proof. �

By using Observation 3.2, we can show the following proposition.

Proposition 3.3. For every integer n> 0 and every graph H, there is an n-vertex graph G with
minimum degree at least

⌊(
1− 1

ξ (H)

)
n
⌋

− 1 such that G does not have a perfect H-subdivision
tiling.

Proof. LetG be an n-vertex complete bipartite graph with bipartition X and Y such that |X| ≤ |Y|.
Note that as G is a bipartite graph, every subdivision of H in G is bipartite. By Observation 3.2, if
|Y|
|X| > 1

ξ (H)−1 , then G does not have a perfect H-subdivision tiling. Let |X| =
⌊(

1− 1
ξ (H)

)
n
⌋

− 1.

Then δ(G)=
⌊(

1− 1
ξ (H)

)
n
⌋

− 1 and |Y|
|X| > 1

ξ (H)−1 . Thus,G does not have a perfectH-subdivision
tiling. �

The next proposition provides a reason for why hcfξ (H) is the determining factor of the value
ξ∗(H).

Proposition 3.4. Let H be a graph with hcfξ (H) = 1. Then for every integer n> 0, there is an n-
vertex graph G with minimum degree at least

⌊n
2
⌋ − 1 which does not have a perfect H-subdivision

tiling except for hcfξ (H)= 2 and n is even.

To prove Proposition 3.4, we need the following claim.

Claim 1. Let H be a graph with at least one edge and let H′ be a bipartite subdivision of H with
bipartition A and B. Then |B| − |A| is divisible by hcfξ (H).

Proof of Claim 1. Let A′ and B′ be the branch vertices of H contained in A and B, respectively.
Let uv ∈ E(H) be an edge and let uz1, . . . , zk, v be the subdivided path in H′ that corresponds to
uv. If u ∈A and v ∈ B, then k is an even number since H′ is a bipartite graph. Thus, we observe

https://doi.org/10.1017/S0963548324000452 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000452


Combinatorics, Probability and Computing 9

that |B∩ {z1, . . . , zk}| − |A∩ {z1, . . . , zk}| = 0. If both u and v are in A, the number k is odd
and the equality |B∩ {z1, . . . , zk}| − |A∩ {z1, . . . , zk}| = 1 holds since H′ is a bipartite graph.
Similarly, if both u and v are in B, then we have |B∩ {z1, . . . , zk}| − |A∩ {z1, . . . , zk}| = −1.
Hence, we have the following.

|B| − |A| = e(H[A′])− e(H[B′])+ |B′| − |A′| = (|B′| + e(H[A′]))− (|A′| + e(H[B′])).
Thus, by the definition of hcfξ (H), the number |B| − |A| is divisible by hcfξ (H). This completes
the proof. �
Proof of Proposition 3.4. Let F ∈ Sub(H) be a bipartite graph with bipartition A and B. Since F
is a bipartite subdivision of H, by Claim 1, the difference |B| − |A| is divisible by hcfξ (H). If G is
a bipartite graph, and the difference between the sizes of two bipartitions of G is not divisible by
hcfξ (H), the graph G does not have a perfect H-subdivision tiling since every subdivision of H in
G is bipartite.

First, let n be an even number and hcfξ (H)> 2. Let G=Kn
2−1, n2+1. Then, the difference

between the two bipartitions of G is two which cannot be divisible by hcfξ (H) since hcfξ (H)> 2.
Second, let n be an odd number and hcfξ (H) = 1. Let G=K� n

2�,� n
2�. Then, the differ-

ence between the sizes of the two bipartitions of G is 1, which is not divisible by hcfξ (H) as
hcfξ (H) = 1. �

In the following proposition, we consider the case when hcfξ (H)= 2 and the order of the host
graph is even.

Proposition 3.5. For every graph H with hcfξ (H)= 2 and for every even number n, there is an
n-vertex graph G with minimum degree at least

⌊ 1
3n

⌋ − 1 such that G does not contain a perfect
H-subdivision tiling.

Proof. Let (A, B, C) be a partition of [n] with sizes |A| = ⌊ 1
3n

⌋ − 1 and |B| = ⌊ 1
3n

⌋
. Let G be a

graph on vertex set [n] such that G is a disjoint union of a clique on C and a complete bipartite
graph with bipartition (A, B). Then, the minimum degree of G is

⌊ 1
3n

⌋ − 1. Let G1 =G[A∪ B]
and G2 =G[C]. Since G1 and G2 are disjoint, if G contains a perfect H-subdivision tiling, so does
G1. However, the difference between the sizes of the bipartitions of G1 is 1, which is not divisible
by hcfξ (H)= 2. Thus, by Claim 1, the graph G1 does not contain a perfect H-subdivision tiling
since G1 is a bipartite graph, so every subdivision ofH in G is also bipartite. Therefore, G does not
have a perfect H-subdivision tiling. �

The next observation shows the relationship between ξ (H) and χcr(H∗).

Observation 3.6. For every graph H, the inequality
(
1− 1

ξ (H)

)
≥

(
1− 1

χcr(H∗)

)
holds.

Proof. It suffices to show that χcr(H∗)≤ ξ (H). We recall that XH is a subset of V(H) such that
fH(XH)= ξ (H). Let YH := V(H) \ XH . Let A= XH and B= YH . SinceH∗ is obtained by replacing
all edges in H[XH] and H[YH] with vertex-disjoint paths of length two, we update the set B by
adding vertices that were used to replace the edges in H[XH]. Similarly, we update the set A by
adding vertices that were used to replace the edges in H[YH]. Then A and B are independent
sets and |B| = |YH| + e(H[XH]). Thus, by the definition of σ (H∗), the inequality σ (H∗)≤ |YH| +
e(H[XH]) holds. This implies χcr(H∗)≤ v(H∗)

v(H∗)−(|YH |+e(H[XH])) = v(H)+e(H[XH])+e(H[YH])|XH |+e(H[YH]) = ξ (H). �

4. Sub(H)-absorbers
We use the absorption method to prove Theorems 1.8 and 1.9. In order to execute the absorption
method, we need some specific structures that we call Sub(H)-absorbers.
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Definition 4.1. Let H and G be graphs and take two subsets A⊆V(G) and X ⊆V(G) \A.We say A
is a Sub(H)-absorber for X if both G[A] and G[A∪ X] have perfect H-subdivision tilings. If X = {v},
we say A is a Sub(H)-absorber for v.

Our strategy for constructing Sub(H)-absorbers is to collect many vertex-disjoint small sub-
graphs with good properties, which we call absorber units. We define three different types of
absorber units, which we call type-1, type-2, and type-3 Sub(H)-absorbers, respectively. We first
introduce the type-1 Sub(H)-absorber as follows.

Definition 4.2. Let H be a graph and H1 be the 1-subdivision of H. Since H1 is bipartite, H1 has
a bipartition (U,V) such that the set U consists of all branch vertices. Choose an edge xy ∈ E(H1),
with x ∈U, and y ∈V . Now we replace the edge xy with a path of length three, say xwzy and denote
by T1

H the obtained graph. Let u and v be two new vertices and add edges uy, uw, vx, and vz to T1
H

and we denote by T̂1
H the obtained graph.

Let G be a graph and let two distinct vertices a and b ∈V(G).We say a set A⊆V(G) \ {a, b} is a
type-1 Sub(H)-absorber for {a, b} if |A| = v(T1

H) and there is an embedding φ :V(T̂1
H)→A∪ {a, b}

such that φ(u)= a and φ(v)= b.

We assume that the choice of xy is always the same for allH, so that T1
H is uniquely determined

for all H. A graph T1
H is a subdivision of H since it is obtained from the 1-subdivision of H by

replacing one edge with a vertex-disjoint path of length 3. By the construction of T̂1
H , we can

replace a path xwzy with a path xvzwuy, so T̂1
H also contains a spanning subdivision of H. Thus,

for a graph G and a and b ∈V(G), a set X ⊆V(G) is a type-1 Sub(H)-absorber for {a, b}, implying
both G[X] and G[X ∪ {a, b}] have perfect H-subdivision tilings.

Type-1 Sub(H)-absorbers are the most efficient bipartite absorber units. If the host graph is
bipartite, then we only obtain bipartite absorber units. Note that a bipartite graph cannot absorb
a single vertex, so absorbing two vertices is as good as it gets in a bipartite host graph. Moreover,
since T1

H is bipartite, supersaturation implies that there are many type-1 Sub(H)-absorbers,
allowing us to obtain many efficient Sub(H)-absorbers.

If there are many type-1 Sub(H)-absorbers for every pair of vertices in G, it would be ideal
to obtain the desired absorbers. However, this is not true in general, so it is useful to define the
following auxiliary graph that captures information on vertex pairs that havemany type-1 Sub(H)-
absorbers.

Definition 4.3. Let H be a graph and d > 0. For a given n-vertex graph G,we define the d-absorbing
graph F as the graph on the vertex set V(G) such that uv ∈ E(F) if and only if the number of type-1
Sub(H)-absorbers for {u, v} is at least dnv(T1

H).

In order to deal with non-bipartite host graphs, we define the following two types of absorber
units. Note that these absorbers are able to absorb one vertex.

Definition 4.4. Let H be a graph and (U,V) be a bipartition of H1 such that U is the set of all
branch vertices. Let x, y be the vertices as in Definition 4.2. For consistency, we denote by T2

H the
copy of H1. Let u be a new vertex and add edges ux, uy to T2

H and we denote by T̂2
H the obtained

graph.
Let G be a graph and let a ∈V(G).We say a set A⊆V(G) \ {a} is a type-2 Sub(H)-absorber for

{a} if |A| = v(T2
H) and there is an embedding φ :V(T̂2

H)→A∪ {a} such that φ(u)= a.

Since T2
H is isomorphic to H1, it has a perfect H-subdivision tiling. The graph T̂2

H contains
a spanning subgraph F which is obtained from T2

H by replacing the edge xy ∈ T2
H with the path

xuy. Thus, T̂2
H also has a perfect H-subdivision packing. The next definition is for type-3 Sub(H)-

absorbers.
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Definition 4.5. Let H be a graph. Let two vertex-disjoint graphs H1 and T1
H be given. Let x, y, z,w

be the vertices of T1
H as in Definition 4.2. Choose an edge x′y′ ∈ E(H1). We denote by T3

H a graph
that is obtained from H1 and T1

H by adding two edges x′z and y′w. Let u be a new vertex and add
edges ux, uy to T3

H . We denote by T̂3
H the obtained graph. We write T̃3

H to denote a bipartite graph
that is T3

H − {x, y}.
Let G be a graph and let a ∈V(G).We say a set A⊆V(G) \ {a} is a type-3 Sub(H)-absorber for

{a} if |A| = v(T3
H) and there is an embedding φ :V(T̂3

H)→A∪ {a} such that φ(u)= a.

Note that T3
H contains vertex-disjoint copies of H1 and T1

H whose union covers all vertices
of T3

H . We observe that T̂3
H contains vertex-disjoint copies of graphs F1 and F2 such that F1 is

obtained from H1 by replacing the edge x′y′ of H1 with x′wzy′ and F2 is obtained from T1
H by

replacing xwzy with xuy. Both F1 and F2 are subdivisions of H. Thus, both graphs T3
H and T̂3

H
have perfect H-subdivision tilings.

We note that T̂2
H − u and T̂3

H − u are both bipartite graphs.Moreover, T̂2
H contains one triangle,

and T̂3
H contains one C5, and deleting them leaves a bipartite graph. Hence, in graphs containing

many C3 or C5, we can find many copies of T̂2
H and T̂3

H , respectively. We will use these properties
of T̂2

H and T̂3
H to prove a special case for Theorem 1.9.

Since all four graphs T2
H , T̂2

H , T3
H , and T̂3

H have perfect H-subdivision tilings, type-2 and
type-3 Sub(H)-absorbers can be used to absorb a single vertex. Although this is an advantage over
the type-1 Sub(H)-absorbers, it is not guaranteed that we can always find many type-2 and type-3
absorbers in a graphG ifG is close to being bipartite. Indeed, we only use type-1 Sub(H)-absorbers
to prove Theorem 1.8. On the other hand, if hcfξ (H) is two, type-1 absorbers are not sufficient to
build the desired absorbers. So, the proof of Theorem 1.9 uses all three types of absorber units.

As we mentioned before, not all vertices may have many absorber units for them. So, it would
be useful if we could somehow control what vertices remain uncovered. The following structure
allows us to ‘exchange’ the remaining vertices so that we can absorb those vertices better.

Definition 4.6. Let H be a graph and (U,V) be a bipartition of H1 such that U consists of the
branch vertices. Let x0y0 ∈ E(H) be an arbitrary edge. Then there is a unique vertex z ∈V such
that x0z, y0z ∈ E(H1). Let SH =H1 − z.We now introduce two new vertices u and v and add edges
ux0, uy0, vx0, vy0 to SH and we denote by ŜH the obtained graph.

Let G be a graph and two distinct vertices a, b ∈V(G). We say a set B⊆V(G) \ {a, b} is a
Sub(H)-exchanger for {a, b} if |B| = v(SH) and there is an embedding φ:V(ŜH)→ B∪ {a, b} such
that φ(u)= a and φ(v)= b.

We assume that the choice of x0y0 is always the same for allH, thus SH is uniquely determined
for all H. We note that both SH + a and SH + b are subdivisions of H. The following definition is
a graph containing information on pairs that have many Sub(H)-exchangers.

Definition 4.7. Let H be a graph and d > 0. For a given n-vertex graph G and B⊆V(G), let F be
an auxiliary graph on the vertex set V(G) such that uv ∈ E(F) if and only if u /∈ B, v ∈ B and the
number of Sub(H)-exchangers for {u, v} is at least dnv(SH). We say such an auxiliary graph F is a
(d, B)-exchanging graph.

In order to prove the existence of Sub(H)-absorbers, we need to collect several lemmas
regarding the following definition.

Definition 4.8. Let n, t be positive integers, and let d ∈ (0, 1). Let X, Y be sets such that |X| ≤ n2 and
|Y| = n.We say a collection of pairsP ⊆ X × (Y

t
)
is an (n, t, d)-family on (X, Y) if |{Z ⊆ Y : (x, Z) ∈

P}| ≥ dnt for all x ∈ X.

The following is the key lemma to obtain Sub(H)-absorbers.
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Lemma 4.9. Let 0< 1
n � β � d, α, 1t ≤ 1. LetP be an (n, t, d)-family on a pair of sets (X, Y). Then

there is Y ⊆ (Y
t
)
which satisfies the following:

• Y is a collection of pairwise disjoint sets,
• |Y| ≤ α

t n and |Y| is even,
• for every x ∈ X, the size of the set {Z ∈Y :(x, Z) ∈P} is at least βn.

Proof. Let c=min{α
2 ,

d
10 }. Consider a random family T of size t subsets of Y , such that each set

in
(Y
t
)
is selected independently at random with the probability p= c

nt−1 . Then |T | has a bino-
mial distribution with an expectation less than or equal to α

2t n. By Chebyshev’s inequality, with
probability 1− o(1), the following holds.

|T | ≤ α

t
n. (1)

For each x ∈ X, let Zx := {Z ⊆ Y : (x, Z) ∈P}. Then the size |T ∩Zx| has a binomial distri-
bution with an expectation |Zx|p≥ cdn for every x ∈ X. By Chernoff bound, for each x ∈ X, the
inequality |T ∩Zx| ≥ cd

2 n holds with probability 1− o(n−3). Since |X| ≤ n2, we have the following
with probability 1− o(1).

|T ∩Zx| ≥ cd
2
n for all x ∈ Z. (2)

We now count the number of intersecting pairs in T . Let I be a random variable which is the
number of intersecting pairs of T . Since we have |{(P,Q) : P,Q⊆ [n], P ∩Q = ptyset, and |P| =
|Q| = t}| ≤ n2t−1, and each P, Q are chosen to be in T with probability p= c

nt−1 , we have E(I)≤
c2n. By Markov’s inequality, with probability at least 1

2 ,

|I| ≤ 2c2n. (3)

Thus, for all sufficiently large n, there is a family T that satisfies all Equations (1) to (3). Let Y
be a collection obtained from T by removing intersecting pairs from T and removing at most one
arbitrary element to ensure that |Y| is even.

Then Y is a collection of pairwise disjoint sets and by (1), we have |Y| ≤ |T | ≤ α
t n and |Y| is

even. By (2) and (3), the size of the intersection |Y ∩Zx| ≥ cd
2 n− 2c2n− 1≥ αd2

100 n for all x ∈ X.
We now set β = αd2

100 . Then Y is the desired collection. This completes the proof. �
We remark that Lemma 4.9 is a systematisation of Lemma 2.3 from [27]. One direct application

of Lemma 4.9 is the existence of one-side perfect matchings for small sets, which is the following:

Lemma 4.10. Let 0< 1
n � β � α, η < 1. Let G be an n-vertex graph. Suppose that a vertex subset

B⊆V(G) has size at least ηn and all vertices v ∈V(G) \ B satisfy d(v, B)≥ ηn. Then there is a set
B′ ⊆ B such that |B′| ≤ αn and for any U ⊆V(G) \ B with size at most βn, there is a matching on
G[U, B′] which covers all vertices in U.

Proof. Let X =V(G) \ B. Let P = {(x, {y}) ∈ X × (V(G)
1

)
: xy ∈ E(G[X, B])}. Then P is an (n, 1, η)-

family on (X,V(G)). As 1
n � β � α, η, by applying Lemma 4.9 with the parameters α, η, β , and

n playing the roles of α, d, β , and n, respectively, we obtain Y ⊆ (B
1
)
satisfying the following.

|Y| ≤ αn and |{(v, {b}) ∈P : {b} ∈Y}| ≥ βn for all x ∈ X. Let B′ = ⋃
{b}∈Y {b}. Then |B′| ≤ αn and

for any vertex v ∈V(G) \ B, the degree d(v, B′)≥ βn. Thus, for any subset U ⊆V(G) \ B with size
at most βn, we can find a matchingM greedily in G[U, B′] which covers all vertices of U. �

Using Lemma 4.9, we can obtain the following lemma.
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Lemma 4.11. Let H be an h-vertex graph and 0< 1
n , β � d, α, η, 1h < 1. Let G be an n-vertex graph

and a vertex subset B⊆V(G) has size at least ηn. Let F be the (d, B)-exchanging graph of G. Let
U = {v ∈V(G) \ B : dF(v)≥ η

3n}. Then there exists a set A⊆V(G) satisfying the following:

• G[A] has a perfect H-subdivision tiling,
• |A| ≤ αn,
• for any U ′ ⊆U \A with |U ′| ≤ βn, there exists a subset W ⊆A∩ B such that |W| = |U ′|
and G[(A∪U ′) \W] has a perfect H-subdivision tiling.

Proof. We recall that ŜH is a graph defined in Definition 4.6 which has two vertices u and v such
that both SH − u and SH − v contain spanning subdivisions of H.

Let

P = {(u, Z) ∈U ×
(

V(G)
v(SH)+ 1

)
: ∃v ∈ Z ∩ B s.t. Z − v is a Sub(H)-exchanger for {u, v}}.

For each u ∈U, the number of pairs (v, S) ∈ B× (V(G)
v(SH)

)
such that S is a Sub(H)-exchanger for {u, v}

is at least ηd
3 n

v(SH)+1. Thus, P is an (n, v(SH)+ 1, ηd
3(v(SH)+1) )-family on (U,V(G)).

As v(SH)+ 1≤ h2 and 1
n , β � d, α, η, 1h , by applying Lemma 4.9 with v(SH)+ 1, α, ηd

3(v(SH)+1)
and β(v(SH)+ 1) playing the roles of t, α, d, and β , respectively, we obtain a collection of vertex-
disjoint subsets Y ⊆ ( V(G)

v(SH)+1
)
satisfying the following.

1. |Y| ≤ α
v(SH)+1n,

2. |{Z ∈Y : (u, Z) ∈P}| ≥ β(v(SH)+ 1)n for all u ∈U.

Let A := ⋃
Z∈Y Z. Then |A| ≤ αn. Let U ′ ⊆U \A with size at most βn. By our choice of U

and Y , for each vertex x ∈U ′, there are at least β(v(SH)+1)
v(SH)+1 n= βn distinct pairs (u, v) which use

distinct Sub(H)-exchangers in Y such that v ∈A∩ B and there is Z ∈Y , where v ∈ Z and Z − v
is a Sub(H)-exchanger for {u, v}. Thus, we can greedily exchange all vertices in U ′ with a set of
distinct verticesW, by using Sub(H)-exchangers, whereW ⊆A∩ B and |W| = |U ′|. �

4.1. Type-1 Sub(H)-absorbers
The following lemma is useful to get Sub(H)-absorbers which use type-1 Sub(H)-absorbers.

Lemma 4.12. Let H be an h-vertex graph and 0< 1
n , β � d, α, 1h ≤ 1. Let G be an n-vertex graph

and F be the d-absorbing graph of G. Then there exists a set A⊆V(G) satisfying the following.

• |A| ≤ αn,
• |A| is even,
• The set A is a Sub(H)-absorber for any vertex set U such that U ⊆V(G) \A, |U| ≤ βn, and
F[U] has a perfect matching.

Proof. Let

P = {(e, Z) ∈ E(F)×
(
V(G)
v(T1

H)

)
: Z is a type-1 Sub(H)-absorber for e}.

Then P is an (n, v(T1
H), d)-family on (E(F),V(G)). By applying Lemma 4.9 with v(T1

H), α, d, and
β playing the roles of t, α, d, and β , respectively, we obtain a collection of vertex-disjoint subsets
Y ⊆ (V(G)

v(T1
H)

)
satisfying the following.
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1. |Y| ≤ α

v(T1
H)
n,

2. |Y| is even,
3. |{Z ∈Y : (e, Z) ∈P}| ≥ βn for all e ∈ E(F).

Let A= ⋃
Z∈Y Z. Then |A| is even and less than or equal to αn. Let U be a subset of V(G) \A

with size at most βn. Assume F[U] has a perfect matching M. Then e(M)≤ β
2 n. By our choice

of Y , for each edge e ∈ E(M), there are at least βn distinct type-1 Sub(H)-absorbers. Thus, A can
absorb every pair e ∈ E(M) greedily. This means A is a Sub(H)-absorber for U. This proves the
lemma. �

4.2. Type-2 and type-3 Sub(H)-absorbers
In this subsection, we will show how we can obtain Sub(H)-absorbers via type-2 and type-3
Sub(H)-absorbers, respectively.

Lemma 4.13. Let H be an h-vertex graph and 0< 1
n , β � d, α, η, 1h ≤ 1. Let j ∈ {2, 3}. Let G be

an n-vertex graph and let B⊆V(G) with size at least ηn such that for all v ∈ B, there are at
least dnv(T

j
H) type-j Sub(H)-absorbers for v. Let F1 and F2 be the d-absorbing graph and the

(d, B)-exchanging graph of G, respectively. Assume that for every v ∈V(G) \ B, at least one of the
inequalities dF1 (v; B)≥ η

3n or dF2 (v; B)≥ η
3n holds. Then, there is a set A⊆V(G) with size at most

αn such that for all U ⊆V(G) \A with size at most βn, the set A is a Sub(H)-absorber for U.

Proof. Choose additional constants β0, α0, α1 so that the following holds:

0<
1
n
, β � β0 � α0 � α1 � d, α, η,

1
h

≤ 1.

We write R=V(G) \ B, andX = {v ∈ R : dF1 (v; B)≥ η
3n}. Let Y = R \ X. We note that for all v ∈ Y ,

we have dF2 (v; B)≥ η
3n. We now collect the following two claims.

Claim 1. There exists a set A0 ⊆V(G) satisfying the following. The size of the set A0 is less than or
equal to α0n, and for any U ⊆ B \A0 with size at most β0n, the set A0 is a Sub(H)-absorber for U.

Proof of Claim 1. Let

P = {(x, Z) ∈ B×
(V(G)
v(Tj

H)

)
: Z is a type-j Sub(H)-absorber for x}.

Then P is an (n, v(Tj
H), d)-family on (B,V(G)). By applying Lemma 4.9 with v(Tj

H), α0, d, and
β0 playing the roles of t, α, d, and β , respectively, we obtain a collection of pairwise disjoint sets
Y ⊆ (V(G)

v(Tj
H)

)
satisfying the following.

1. |Y| ≤ α0
v(Tj

H)
n,

2. |{Z ∈Y : (x, Z) ∈P}| ≥ β0n for all x ∈ B.

Let A0 := ⋃
Z∈Y Z. Then |A0| ≤ α0n. Let U ⊆ B \A0 with size at most β0n. By our choice of Y ,

for each vertex x ∈U, there are at least β0n distinct type-j Sub(H)-absorbers in A0. Thus, A0 can
absorb all vertices inU greedily. This means A0 is a Sub(H)-absorber forU. This proves the claim.�
Claim 2. There exists a set A1 ⊆V(G) with size at most α1n satisfying the following: for any U ⊆
(B∪ X) \A1 with size at most βn, the set A1 is a Sub(H)-absorber for U.
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Proof of Claim 2. We fix additional parameters β ′′
0 , α

′′
0 , β

′
0, α

′
0 so that the following holds: β �

β ′′
0 � α′′

0 � β0, β ′
0 � α0, α′

0 � α1. By Claim 1, there exists a set A0 ⊆ B such that |A0| ≤ α0n
and for any U ⊆ B \A0 with size at most β0n, the set A0 is a Sub(H)-absorber for U. Let
G1 =G−A0, B1 = B \A0, and X1 = X \A0. Then v(G1)≥ (1− α0)n and |B1| ≥ η

2n. By
Observation 2.1, we know that for every vertex v ∈ B1, the number of type-j Sub(H)-absorbers

in G1 is at least d
2n

v(Tj
H)

1 , and for each pair of vertices (u, v) ∈ X1 × B1, where uv ∈ E(F1), the num-

ber of type-1 Sub(H)-absorbers for {u, v} is at least d
2n

v(T1
H)

1 . Let F′
1 be the

d
2 -absorbing graph of

G1. Then for every vertex v ∈ X1, the degree dF′
1
(v, B1)≥ η

3n− α0n≥ η
4n.

By Lemma 4.12, there is A′
0 ⊆V(G1) with size at most α′

0n such that for any U ⊆V(G1) \A′
0

with size less than β ′
0n which has a perfect matching in F′

1, the set A
′
0 is a Sub(H)-absorber for U.

Let G2 =G1 −A′
0, B2 = B1 \A′

0, and X2 = X1 \A′
0. Then v(G2)≥ (1− α0 − α′

0)n and |B2| ≥
η
4n. For every v ∈ X2, the degree dF′

1
(v; B2)≥ η

4n− α′
0n≥ η

10n. Then by Lemma 4.10, there is a set
A′′
0 ⊆ B2 with size at most α′′

0n such that for any U ⊆ X2 \A′′
0 with size less than β ′′

0 n, the graph
F′
1[U,A′′

0] has a matchingM which covers all vertices of U.
Now, let A1 =A0 ∪A′

0 ∪A′′
0 . Then the size |A1| ≤ (α0 + α′

0 + α′′
0 )n≤ α1n. Note that since

A′′
0 ⊆ B1 and |A′′

0 | ≤ α′′
0n≤ β ′

0
2 n, the induced graph G[A0 ∪A′′

0] has a perfect H-subdivision tiling.
Since G[A′

0] also has a perfect H-subdivision tiling and A0, A′
0, A

′′
0 are vertex-disjoint subsets,

G[A1] has a perfect H-subdivision tiling.
We now claim that A1 is the desired Sub(H)-absorber. Let U ⊆ (B∪ X) \A1 with size at most

βn. Let UB =U ∩ B and UX =U ∩ X. Since |UX| ≤ βn≤ β ′′
0 n, by our choice of A

′′
0 , there is a set

W ⊆A′′
0 with the same size as UX such that F′

1[UX ,W] has a perfect matching. Since |UX ∪W| ≤
2βn≤ β ′

0n, the induced graph G[(A′
0 ∪UX ∪W)] has a perfect H-subdivision tiling. Let W′ =

A′′
0 \W. We note that |W′ ∪UB| ≤ βn≤ β0n and (W′ ∪UB)⊆ B1, so by our choice of A1, the

induced graph G[(A0 ∪W′ ∪UB)] has a perfect H-subdivision tiling. Thus, G[A1 ∪U] also has a
perfect H-subdivision tiling. Therefore, the set A1 is a Sub(H)-absorber for U. �

By Claim 2, there exists a set A1 ⊆V(G) with size at most α1n such that for any subset U of
(B∪ X) \A1 with size at most βn, the set A1 is a Sub(H)-absorber for U. Let G1 =G−A1, B1 =
B \A1, X1 = X \A1, and Y1 = Y \A1. Then v(G1)≥ (1− α1)n and |B1| ≥ η

2n. By Observation 2.1,
we know that for each pair of vertices (u, v) ∈ Y1 × B1, where uv ∈ E(F2), the number of Sub(H)-
exchangers for {u, v} is at least d

2n
v(SH)
1 . Let F′

2 be the (
d
2 , B1)-exchanging graph of G1. Then for

every vertex v ∈ Y1, the degree dF′
2
(v, B1)≥ η

3n− α1n≥ η
4n.

By Lemma 4.11, there is a subset A2 of V(G1) with size at most α1n such that G1[A2] has a
perfect H-subdivision tiling and satisfies the following: for any U ⊆ Y1 \A2 with size at most βn,
there is a setW ⊆ (A2 ∩ X1) with the same size asU such that G1[(A2 ∪U) \W] also has a perfect
H-subdivision tiling.

Now, let A=A1 ∪A2. Then the inequality |A| ≤ 2α1n≤ αn holds. Note that both G[A1] and
G[A2] have perfect H-subdivision tilings and A1 and A2 are disjoint subsets of V(G). Thus, G[A]
also has a perfect H-subdivision tiling.

We now claim that A is the desired Sub(H)-absorber. Let U ⊆V(G) \A with size at most
βn. Let UB =U ∩ B, UX =U ∩ X, and UY =U ∩ Y . Since |UY | ≤ βn, by our choice of A2, there
is a set W ⊆ (A2 ∩ X1) with the same size as UY such that G[(A2 ∪UY ) \W] has a perfect
H-subdivision tiling. Note that |UB ∪UX ∪W| = |U| ≤ βn and (UB ∪UX ∪W)⊆ (B∪ X) \A1.
Thus, UB ∪UX ∪W can be absorbed by A1. Thus, G[A∪U] has a perfect H-subdivision tiling.
Therefore, A is a Sub(H)-absorber for U. This completes the proof. �
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5. Proofs
5.1. Proof sketch
In this section, we will prove our main results, Theorems 1.8 and 1.9. By Proposition 3.1,
Proposition 3.3, Proposition 3.4, and Proposition 3.5, it suffices to prove the following two
lemmas.

Lemma 5.1. Let H be an h-vertex graph with hcfξ (H)= 1. Let 0< 1
n � γ , 1h ≤ 1. Let G be

an n-vertex graph. Then the following holds: If δ(G)≥
(
1− 1

ξ (H) + γ
)
n, then G has a perfect

H-subdivision tiling.

Lemma 5.2. Let H be an h-vertex graph with hcfξ (H)= 2. Let 0< 1
n � γ , 1h ≤ 1. Let G be an n-

vertex graph, where n is even. Then the following holds: If δ(G)≥
(
max{ 13 , 1− 1

ξ (H) } + γ
)
n, then

G has a perfect H-subdivision tiling.

The proofs of Lemmas 5.1 and 5.2 will be provided in Subsections 5.2 and 5.3, respectively.
The proofs crucially use the absorption method. Our proof strategy is as follows: Let H be a
graph and G be a host graph equipped with a minimum degree condition as in the statements
of the above lemmas, in which we want to find a perfectH-subdivision tiling. Then, together with
Observation 3.6 and Theorem 1.1, we can find an almost perfect H-subdivision tiling in G. Thus,
we mainly focus on absorbing the remaining vertices by constructing suitable absorbers for all
cases. A detailed proof sketch is provided below.

Step 1: Preprocessing. Apply the regularity lemma with properly chosen parameters on G.
After that, collect bad vertices and construct absorbing graphs on good vertices.

Step 2: Place the absorber. Place an efficient Sub(H)-absorber by using the abundant
properties of ε-regular pairs.

Step 3: Cover almost all vertices. Find a set W ⊆V(G) outside of the Sub(H)-absorber
obtained from Step 2 such that G[W] has a perfect H-subdivision tiling, W contains
all bad vertices, and W covers all but at most a constant number of vertices of G that
are not in the Sub(H)-absorber.

Step 4: Absorb the uncovered vertices. Absorb all the vertices that are not covered in Step 3
by using the Sub(H)-absorber obtained from Step 2.

In the above description, we omitted many details. To achieve Step 3, the following lemma
would be useful.

Lemma 5.3. Let H be an h-vertex graph. Let 0< 1
n � α, 1h ≤ 1, and 0< 1

C � 1
h ≤ 1. Let G be an

n-vertex graph with minimum degree at least
(
1− 1

ξ (H) + α
)
n. Let X be a subset of V(G) with size

at most α
2v(H∗)n. Then there is a set W ⊆V(G) with size at least n− C such that X ⊆W and G[W]

have a perfect H-subdivision tiling. Moreover, if hcfξ (H)= 2, we can get such a set W whose size is
even.

Proof. We will first find vertex-disjoint copies of H∗ covering all vertices of X. Let X =
{v1, . . . , vt}where t ≤ α

2v(H∗)n. Assume for i< t, we haveFi = {F1, . . . , Fi}, whereFi is a collection
of vertex-disjoint copies of H∗ and vj ∈V(Fj) for each j ∈ [i], and Gi =G− ⋃

j∈[i] V(Fi)− X.

We note that
∣∣∣⋃j∈[i] V(Fi)∪ X

∣∣∣ ≤ α
2 n holds as i< t. Thus, δ(Gi + vi+1)≥

(
1− 1

ξ (H∗) + α
2

)
n.

Let Y be the subset of the neighbourhoods of vi+1 in Gi + vi+1 of size
(
1− 1

ξ (H∗) + α
2

)
n. Let A

and B be the bipartition ofH∗ and u be a vertex inA. We will embed u to vi+1 first and then embed
other vertices of H∗ − u while all the vertices of B are embedded in Y . By the minimum degree
condition on Gi+1, Lemma 2.4 enables us to find such embedding, we obtain a new copy of H∗,
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say Fi+1 containing vi+1. As it is disjoint with
⋃

j≤i V(Fj)∪ X, we may add it to enlargeFi toFi+1.
We iterate this process until we get Ft . Let F = ⋃

i∈Ft V(Fi). Then X ⊆ F and |F| = v(H∗)t ≤ α
2 n

holds.
Now, let G′ =G− F. Since |F| ≤ α

2 n, the minimum degree of G′ is at least
(
1− 1

ξ (H) + α
2

)
n.

Thus, by Theorem 1.1 and Observation 3.6, there is a set F′ ⊆V(G′) such that G′[F′] has a perfect
H∗-tiling and v(G′)− |F′| ≤ C. LetW = F ∪ F′. ThenW is the desired set.

When hcfξ (H)= 2, since the order of v(H∗) is even, the size ofW is also even. This completes
the proof. �

In the proof of Lemma 5.1, we will use the concept of dominating sets to obtain an efficient
Sub(H)-absorber. Let G be a graph. We say D is a dominating set of G if every vertex v ∈V(G)
is either contained in D or has a neighbour in D. The domination number of G is defined as the
minimum size of a dominating set of G.

The next lemma on domination number, proven by Arnautov [4], and independently by
Payan [26], will be used in the proof of Lemma 5.1.

Lemma 5.4 (Arnautov [4], Payan [26]). Let G be an n-vertex graph with minimum degree δ. Then
the domination number of G is bounded above by 1+ln (δ+1)

δ+1 n.

Later, Alon [1] proved that Lemma 5.4 is asymptotically best possible.
In order to use type-1 Sub(H)-absorbers, we need to find a perfect matching in a d-absorbing

graph for a suitable constant d. To achieve this, it would be useful to define a graph as follows.

Definition 5.5. For a given graph H, consider a family of disjoint unions of bipartite subdivisions of
H. Among those, choose a graph Ĥ with bipartition (Â, B̂) with the smallest possible v(Ĥ) such that
||Â| − |B̂|| = hcfξ (H). If there are multiple choices of Ĥ, Â, and B̂, we fix one choice.

We note that for every H, we can prove that the bipartite graph Ĥ exists in the follow-
ing way. By the definition of hcfξ (H), there exist bipartite graphs H1, . . . ,Hm with bipartitions
(A1, B1), . . . , (Am, Bm), respectively, that are bipartite subdivisions of H such that they satisfy the
following: there are positive integers c1, . . . , cm that satisfy the inequality

∑
i∈[m] ci(|Ai| − |Bi|)=

hcfξ (H). By taking a disjoint union of ci copies of Hi for each i ∈ [m], we obtain a bipartite graph
that is a disjoint union of bipartite subdivisions of H and the difference between the bipartitions
is hcfξ (H). Among such bipartite graphs, we can take our desired graph Ĥ.

We use Ĥ and the bipartition (Â, B̂) to find perfect matchings in a d-absorbing graph for using
type-1 Sub(H)-absorbers. The following observation shows that complete bipartite graphs with
appropriate sizes act like reservoirs for Ĥ.

Observation 5.6. Let H be a graph with hcfξ (H)= t and assume Ĥ has a bipartition with sizes h′
and h′ + t. Let b be a positive integer. Then for any non-negative integer a≤ b, the complete bipartite
graph with bipartition sizes (2h′ + t)b− h′a and (2h′ + t)b− (h′ + t)a has a perfect Ĥ-tiling.

Proof. Let x= (2h′ + t)b− h′a and y= (2h′ + t)b− (h′ + t)a. Since x= h′(b− a)+ (h′ + t)b and
y= (h′ + t)(b− a)+ h′b, the complete bipartite graph with bipartition sizes x and y has 2b− a
vertex-disjoint copies of Kh′,h′+t . Thus, Kx,y has a perfect Ĥ-tiling. �

5.2. Proof of Theorem 1.8
In this subsection, we will prove Lemma 5.1, which will complete the proof of Theorem 1.8.

Proof of Lemma 5.1. LetH be an h-vertex graph with hcfξ (H)= 1. Let Ĥ be the bipartite graph as
in Definition 5.5 with a bipartition (Â, B̂) with sizes h′ and h′ + 1. Note that h′ is bounded above
by a constant that depends only on h. We fix positive constants as follows:
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0<
1
n

� β � α � d2 � 1
T

� 1
t0

� ε � d1 � d � 1
h′ ,

1
C

� γ ,
1
h

≤ 1.

Let n≥ n0 and G be an n-vertex graph with minimum degree at least
(
1− 1

ξ (H) + γ
)
n. We apply

the regularity lemma toGwith parameters ε, d, and t0 playing the roles of ε, d, and t0, respectively.
Let V0,V1, . . . ,Vt be an ε-regular partition of G and G0 be a spanning subgraph of G that satisfies
the following conditions:

(R1) t0 ≤ t ≤ T0,
(R2) |V0| ≤ εv(G),
(R3) |V1| = · · · = |Vt|,
(R4) G0[Vi] has no edges for each i ∈ [t],
(R5) dG0 (v)≥ dG(v)− (d + ε)v(G) for all v ∈V(G),
(R6) for all 1≤ i< j≤ t, either the pair (Vi,Vj) is an (ε, d+)-regular pair or G0[Vi,Vj] has no

edges.

By (R5), the minimum degree of G0 is at least
(
1− 1

ξ (H) + γ
2

)
n. Let R be the (ε, d)-reduced

graph on {V1, . . . ,Vt}. Then, by Lemma 2.7, δ(R)≥
(
1− 1

ξ (H) + γ
2

)
t. By Lemma 5.4, there is a

dominating set D⊆V(R) such that

|D| ≤
1+ ln

((
1− 1

ξ (H) + γ
2

)
t + 1

)
(
1− 1

ξ (H) + γ
2

)
t + 1

t ≤ ε

2
t.

We can pick a set D′ ⊆V(R) \D greedily such that R[D,D′] has a perfect matchingM. Let

D= {X1, . . . , X�}, D′ = {Y1, . . . , Y�}, and E(M)= {X1Y1, . . . , X�Y�}.
We note that v(M)= 2� ≤ εt. SinceD is a dominating set of R, there is a partition {V1, . . . , V�} for
V(R) \ (D∪D′) such that for every Vi,j ∈ Vi, the edge XiVi,j ∈ E(R). Let Pi := ⋃

Vi,j∈Vi Vi,j ∪ Yi for
each i ∈ [�].

For each Vi,j ∈ Vi, where i ∈ [�], let Ui,j = {u ∈Vi,j : dG0 (u; Xi)< (d − ε)|Xi|}. By Lemma 2.8,
the size ofUi,j is at most ε|Vi,j| ≤ εn

t . Let V
′
i,j =Vi,j \Ui,j. Similarly, for each i ∈ [�], letUi,D′ = {u ∈

Yi : dG0 (u; Xi)< (d − ε)|Xi|} and let Y ′
i = Yi \Ui,D′ . Then |Ui,D′ | ≤ ε|Yi| ≤ εn

t . Finally, for each i ∈
[�], let Ui,D = {u ∈ Xi : dG0 (u; Yi)< (d − ε)|Yi|} and let X′

i = Xi \Ui,D. Then |Ui,D| ≤ ε|Xi| ≤ εn
t .

We collect all the bad vertices, say Z =V0 ∪ ⋃
i,j Ui,j ∪ ⋃

i (Ui,D ∪Ui,D′). Then |Z| ≤ εn+
t εn
t ≤ 2εn. We obtain a graph G1 =G0 − Z. Then v(G1)≥ (1− 2ε)n. We get a set P′

i = Pi \ Z for
each i ∈ [�]. Then for each i ∈ [�], for every v ∈ P′

i, the degree dG0 (v; X′
i)≥ (d − ε)|Xi| − ε|Xi| ≥

(d − 2ε)|Xi| ≥ d1|Xi|. For the same reason, for each i ∈ [�], for every u ∈ X′
i , the degree dG0 (u;Y ′

i )≥
d1|Yi|.

Let u ∈ X′
i and v ∈ P′

i, where i ∈ [�]. We write Au =NG1 (u)∩ Y ′
i and Bv =NG1 (v)∩ X′

i . We
observe that the pair (Xi, Yi) is an ε-regular pair, and the sizes |Au| ≥ d1|Yi| > ε|Yi| and |Bv| ≥
d1|Xi| > ε|Xi|. By the definition of ε-regular pair, the number of edges eG0 (Au, Bv)≥ (d −
ε)|Au||Bv| ≥ d31|Xi||Yi| ≥ d41

T2 n2. By Lemma 2.3, there are at least d2(v(T1
H)!)nv(T

1
H) copies of T1

H
in G1[Au, Bv]. This means there are at least d2nv(T

1
H) distinct type-1 Sub(H)-absorbers for {u, v}.

Let F be a d2-absorbing graph of G1. Then the following holds:

For each i ∈ [�], every pair (u, v) ∈ X′
i × P′

i, uv is an edge of F. (4)
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By Lemma 4.12, there is a set A⊆V(G1) with size at most αn such that for all subsets U of
V(G1) \A with size at most βn and F[U] has a perfect matching, then A is a Sub(H)-absorber for
U. Let us fix such a Sub(H)-absorber A. For each i ∈ [�], let X′′

i = X′
i \A and Y ′′

i = Y ′
i \A. Then

we have |X′′
i | ≥ |X′

i| − αn≥ (1− 2ε)|Xi| and, for the same reason, |Y ′′
i | ≥ (1− 2ε)|Yi| for every

i ∈ [�].
We now claim that for each i ∈ [�], there is a copy Qi of a complete balanced bipartite graph

K(2h′+1)C,(2h′+1)C. We note that the sizes |X′′
i | ≥ ε|Xi| and |Y ′′

i | ≥ ε|Yi|. Since the pair (Xi, Yi) is
an ε-regular pair, the number of edges in G1[X′′

i , Y ′′
i ] is at least (d − ε)|X′′

i ||Y ′′
i |. Thus, by the

Erdős–Stone–Simonovits theorem, there is at least one copy of K(2h′+1)C,(2h′+1)C in G1[X′′
i , Y ′′

i ].
Thus, for each i ∈ [�], there exists such a bipartite graph Qi. Let Q := ⋃

i∈[�] V(Qi). We note that
by Observation 5.6, for each i ∈ [�], the graph Qi has a perfect Ĥ-tiling. This implies G[Q] has a
perfect H-subdivision tiling.

Note that |Q| = 2(2h′ + 1)C� ≤ εn. Let G2 =G0 − (A∪Q). Then we have v(G2)≥ (1− α −
ε)n and δ(G2)≥

(
1− 1

ξ (H) + γ
2 − (α + ε)

)
n≥

(
1− 1

ξ (H) + γ
4

)
n. By Lemma 5.3, there is a set

W ⊆V(G2) such that G[W] has a perfect H-subdivision tiling, the set Z is contained in W, and
|V(G2) \W| ≤ C. Let J =V(G2) \W with size at most C.

We observe that V(G)=A∪Q∪W ∪ J, and J ⊆ (⋃
i∈[�] P′

i ∪
⋃

i∈[�] X′
i
) \ (A∪Q). We recall

that A is the Sub(H)-absorber for a small vertex subset which has a perfect matching in F. For
each i ∈ [�], let J1i = J ∩ X′

i and J2i = J ∩ P′
i. We denote by Ji the union of J1i and J2i . Let ci be an

integer for each i ∈ [�] such that ci = |J1i | − |J2i |. We define σ (ci)= 1 if ci > 0; otherwise, σ (ci)= 0.
For each i ∈ [�], if ci = 0, then let S1i and S2i be empty sets. Otherwise, let them be sets

S1i ⊆ (V(Qi)∩ X′
i) with size (h′ + 1− σ (ci))ci and S2i ⊆ (V(Qi)∩ Y ′

i ) with size (h′ + σ (ci))ci. By
Observation 5.6, the induced graph G[Qi \ (S1i ∪ S2i )] has a perfect H-subdivision tiling for each
i ∈ [�]. For each i ∈ [�], since |S1i | − |S2i | = −ci, the equality |J1i ∪ S1i | = |J2i ∪ S2i | holds. We observe
that (J1i ∪ S1i )⊆ X′

i and (J2i ∪ S2i )⊆ P′
i. Thus, by (4), the induced graph F[Ji ∪ S1i ∪ S2i ] has a perfect

matching and we have |Ji ∪ S1i ∪ S2i | = |Ji| + |ci|(2h′ + 1). Let S= ⋃
i∈[�] S1i ∪ S2i . Then, Q \ S=⋃

i∈[�] (V(Qi) \ (S1i ∪ S2i )), so G[Q \ S] has a perfect H-subdivision tiling.
Since J ∪ S= ⋃

i∈[�] (Ji ∪ S1i ∪ S2i ), the induced graph F[J ∪ S] has a perfect matching.
Moreover, |J ∪ S| = ∑

i∈[�] (Ji ∪ S1i ∪ S2i )≤ |J| + (2h′ + 1)
∑

i∈[�] |ci| ≤ (2h′ + 2)C ≤ βn holds.
Thus, the set A is a Sub(H)-absorber for J ∪ S. This means the induced graph G[A∪ J ∪ S] has a
perfect H-subdivision tiling. Together with G[W], G[Q \ S], and G[A∪ J ∪ S], the graph G has a
perfect H-subdivision tiling. This completes the proof. �

5.3. Proof of Theorem 1.9
We now prove Lemma 5.2 to complete the proof of Theorem 1.9. Our purpose is to find a perfect
H-subdivision tiling in a certain graph, where hcfξ (H)= 2.

In this case, we cannot apply the same idea as the proof of Theorem 1.8. To prove Theorem 1.9
with type-1 Sub(H)-absorbers, we need to find a perfect matching in an absorbing graph, but since
hcfξ (H)= 2, parity issues make it difficult to obtain a perfect matching. If the host graphG is close
to bipartite, we can handle these parity difficulties, but if G is far from bipartite, then we need to
use different types of Sub(H)-absorbers. Thus, we divide the cases depending on whether G has
many triangles or many C5s. If it has many triangles, we will use type-2 Sub(H)-absorbers, and if
it has many C5s, then we will use type-3 Sub(H)-absorbers.

Below is the proof of Lemma 5.2, which yields Theorem 1.9.

Proof of Lemma 5.2. Let H be a graph on h vertices with hcfξ (H)= 2. Let Ĥ be the bipartite
graph as in Definition 5.5 with a bipartition (Â, B̂) with sizes h′ and h′ + 2 for a positive integer h′.
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We note that h′ is bounded above by a constant that only depends on h. We fix positive constants
as follows:

0<
1
n

� β � α � d1 � ρ � 1
T

� 1
t0

� ε � d � 1
h′ ,

1
C

� γ ,
1
h

≤ 1.

Let n be an even number and let G be an n-vertex graph with a minimum degree of at least(
1− 1

ξ∗(H) + γ
)
n. We apply the regularity lemma on G with parameters ε, d, and t0. Let

V0,V1, . . . ,Vt be an ε-regular partition ofG and letG0 be a spanning subgraph ofGwhich satisfies
the following:

(R1) t0 ≤ t ≤ T0,
(R2) |V0| ≤ εv(G),
(R3) |V1| = · · · = |Vt|,
(R4) G0[Vi] has no edges for each i ∈ [t],
(R5) dG0 (v)≥ dG(v)− (d + ε)v(G) for all v ∈V(G),
(R6) for all 1≤ i< j≤ t, either the pair (Vi,Vj) is an (ε, d+)-regular pair or G0[A, B] has no

edges.

By (R5), the minimum degree of G0 is at least
(
1− 1

ξ∗(H) + γ
2

)
n. Let G1 =G0 −V0, then the

size v(G1)≥ (1− ε)n and δ(G1)≥ δ(G0)− εn≥ ( 1
3 + γ

4
)
n. Let R be the (ε, d)-reduced graph on

{V1, . . . ,Vt}. Then by Lemma 2.7, the minimum degree of R is at least
(
1− 1

ξ∗(H) + γ
2

)
t. We

now divide into two cases depending on the structure of R.

Case 1: R contains C3 or C5.
Let j ∈ {2, 3}. We choose j as 2 if R contains C3. Otherwise, we choose j as 3. We may assume

V1, . . . ,V2j−1 forms a C2j−1 in R, where ViVi+1 ∈ E(R) for each i ∈ [2j− 1]. Below, we write V2j
to denote V1. By Lemma 2.8, there exist sets V ′

1, . . . ,V
′
2j−1 satisfying the following for each i ∈

[2j− 1]:

• V ′
i ⊆Vi,

• |Vi \V ′
i | ≤ 2ε|Vi|,

• for every v ∈V ′
i , the degrees dG0 (v;V ′

i−1)≥ (d − 3ε)|Vi−1| and dG0 (v;V ′
i+1)≥ (d −

3ε)|Vi+1|.
Let

B= {v ∈V(G1) : there are at least d1nv(T
j
H) distinct type-j Sub(H)-absorbers for v}

We now claim that |B| ≥ d1n.

Claim 2. |B| ≥ d1n.

Proof of Claim 1. If j= 2, by the definition of an ε-regular pair, the following holds. For each
i ∈ [3], for every v ∈V ′

i , the number of edges between the sets NG1 (v)∩V ′
i−1 and NG1 (v)∩V ′

i+1
is at least (d − ε)(d − 3ε)2|Vi−1||Vi+1| ≥ (d−ε)(d−3ε)2(1−ε)2

T2 n2 ≥ ρn2. Then by Theorem 2.2, there
are at least d1(v(T2

H)!)nv(T
2
H) copies of T2

H in G1[NG1 (v)]. This means there are at least d1nv(T
2
H)

distinct type-2 Sub(H)-absorbers for v. This implies
⋃

i∈[3] V ′
i ⊆ B. Since |V ′

1| + |V ′
2| + |V ′

3| ≥
3(1−ε)(1−2ε)

T n≥ d1n, in this case, the inequality |B| ≥ d1n holds.
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Now we consider the case j= 3. We now show that for every u ∈V ′
3, there are many copies

of T3
H such that each copy forms a T̂3

H together with u. For each vertex x ∈V ′
2 and y ∈V ′

4, let
Nx =NG1 (x)∩V ′

1 and Ny =NG1 (y)∩V ′
5. By the definition of an ε-regular pair, there are at least

(d − ε)|Nx||Ny| ≥ (d − ε)(d − 3ε)2|V1||V5| ≥ (d−ε)(d−3ε)2(1−ε)2
T2 n2 ≥ ρn2 edges in G1[Nx,Ny]. By

Lemma 2.3, there are at least d1T2

(d−3ε)2(1−ε)2 (v(T
3
H)!)nv(T̃

3
H) distinct copies of T̃3

H such that together
with x and y, each copy forms a T3

H . For each u ∈V ′
3, there are at least (d − 3ε)2|V2||V4| ≥

(d−3ε)2(1−ε)2
T2 n2 distinct pairs (x, y) ∈V ′

2 ×V ′
4 such that ux, uy ∈ E(G1). Thus, there are at least

d1(v(T3
H)!)nv(T

3
H) distinct copies of T3

H such that together with u, each copy forms a T̂3
H . This

means, for every u ∈V ′
3, there are at least d1nv(T

3
H) distinct type-3 Sub(H)-absorbers for u. This

means V ′
3 ⊆ B. Since |V ′

3| ≥ (1−ε)(1−2ε)
T n≥ d1n, we have |B| ≥ d1n. �

Let the two graphs F1 and F2 be the d1-absorbing graph and the (d1, B)-exchanging graph of
G1, respectively. We denote by X the set of vertices of G1 that are not elements of B. Assume for a
vertex u ∈ X, the inequality e(G1[NG1 (u)])> ρn2 holds. If j= 2, then by Theorem 2.2, u should be
contained in B, a contradiction. If j= 3, thenG1 does not have a triangle, so a contradiction. Thus,
for every vertex u ∈ X, the inequality e(G1[NG1 (u)])≤ ρn2 holds. We now claim the following.

Claim 2. For every u ∈ X and v ∈ B, the edge uv is contained in F1 or F2.

Proof of Claim 2. Fix a vertex v ∈ B and let U =NG1 (v). We partition the set X into X1 and X2 as
follows. Let X1 = {u ∈ X : |NG1 (u)∩U| ≤ γ

10n} and X2 = X \ X1.
Let u ∈ X. Assume u ∈ X1. Let Z1 =NG1 (u) and let Y =V(G1) \ (Z1 ∪U). We denote by

U1 =U \ Z1. Since δ(G1)≥
( 1
3 + γ

4
)
n and |Z1 ∩U| ≤ γ

10n, the inequality |Y| ≤
(
1
3 − 2γ

5

)
n holds.

Thus, for every u′ ∈ Z1, the degree G1[u′; Z1 ∪U] is at least γ
2 n. Since u ∈ X, we know that

e(G1[Z1])≤ ρn2. These imply that e(G1[Z1,U1])≥ γ
2 n

( 1
3 + γ

4
)
n− 2ρn2 ≥ γ

10n
2 holds. Then by

Lemma 2.3, there are at least d1(v(T1
H)!)nv(T

1
H) copies of T1

H in G1[Z1,U1] such that together
with u and v, each copy of T1

H forms a T̂1
H . Thus, there are at least d1nv(T

1
H) distinct type-1

Sub(H)-absorbers for {u, v}. This means uv ∈ E(F1).
We now assume u ∈ X2. Let Z2 =NG1 (u). The size |Z2 ∩U| ≥ γ

10n causes u ∈ X2. Since δ(G1)≥( 1
3 + γ

4
)
n, by Lemma 2.4, there are at least d1(v(SH)!)nv(SH) copies of SH in G1 − {u, v} such that

together with u and v, each copy of SH forms a ŜH . This means there are at least d1nv(SH) distinct
Sub(H)-exchangers for {u, v}, so uv ∈ E(F2).

Thus, we conclude that for every u ∈ X and v ∈ B, the edge uv is contained in F1 or F2. �
Claim 2 implies for all u ∈ X, we have dF1 (u; B)≥ |B|

2 ≥ d1
2 n or dF2 (u; B)≥ |B|

2 ≥ d1
2 n. We are

now ready to apply Lemma 4.13. By Lemma 4.13, there is a set A⊆V(G1) with size at most αn
such that for any setU ⊆V(G1) \Awith size at most βn, the set A is a Sub(H)-absorber forU. Let
us fix such a Sub(H)-absorber A.

Let G2 =G0 −A. Then v(G2)≥ (1− α)n and δ(G2)≥ δ(G0)− αn≥
(
1− 1

ξ (H) + γ
4

)
n. Then

by Lemma 5.3, there is a setW ⊆V(G2) such thatV0 ⊆W, the induced graphG2[W] has a perfect
H-subdivision tiling, and |V(G2) \W| ≤ C. Let J =V(G2) \W. We observe thatV(G)=A∪W ∪
J and J ⊆V(G1) \A. Since |J| ≤ C ≤ βn, by our choice of A, the induced graph G1[A∪ J] has a
perfect H-subdivision tiling. Together with G[W], the graph G has a perfect H-subdivision tiling.
This completes the proof of Case 1.

Case 2: R is a {C3, C5}-free graph.
In this case, we only use the type-1 Sub(H)-absorbers. The proof is similar to the proof of

Theorem 1.8, but fortunately, it will be simpler.
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By (R4) and (R6), the graph G1 is also a {C3, C5}-free graph. A classical result of Andrásfai [3]
states that every graph on n-vertices with a minimum degree of at least 2

2k+1n+ 1 either contains
an odd cycle with a length of at most 2k− 1 or is bipartite. Since δ(G1)≥

( 1
3 + γ

4
)
n> 2

7n+ 1 and
G1 is a {C3, C5}-free graph, we can deduce that G1 is a bipartite graph.

Let (X, Y) be the bipartition of G1. Then we have δ(G1)≤ |X| ≤ n− δ(G1), implying 2δ(G1)−
|X| ≥ 3γ

4 n. Let x ∈ X and y ∈ Y . We write Nx =NG1 (x) and Ny =NG1 (y). Since G1 is bipartite, we
have Nx ⊆ Y and Ny ⊆ X. Then

e(G1[Nx,Ny])≥ (δ(G1)− |X \Ny|)|Nx| ≥ (2δ(G1)− |X|)δ(G1)≥ γ

4
n2.

By Lemma 2.3, there are at least d1(v(T1
H)!)nv(T

1
H) copies of T1

H in G1[Nx,Ny] such that together
with {x, y}, each copy of T1

H forms a T̂1
H . This means for every x ∈ X and y ∈ Y , there are at least

d1nv(T
1
H) distinct type-1 Sub(H)-absorbers for {x, y}.

Let F be the d1-absorbing graph for G1. Then by the previous argument, all pairs xy with x ∈ X
and y ∈ Y are edges of F. By Lemma 4.12, there is a set A⊆V(G1) such that |A| is even, |A| is at
most αn, and it satisfies the following:

The set A is a Sub(H)-absorber for any set U ⊆V(G1) \A satisfying |U| ≤ βn and F[U]
has a perfect matching.

We now consider a graph G2 =G1 −A. Then V(G2)≥ (1− ε − α)n and δ(G2)≥ δ(G1)− αn≥( 1
3 + γ

10
)
n. Let X′ = X \A and Y ′ = Y \A. Since e(G2[X′, Y ′])≥ 1

6n
2, by the Erdős–Stone–

Simonovits theorem, there is a subgraph Q in G1 which is isomorphic to K(2h′+2)C,(2h′+2)C. We
note that by Observation 5.6, the graph Q has a perfect Ĥ-tiling, so it has a perfect H-subdivision
tiling.

Let G3 =G0 − (A∪V(Q)). Then v(G3)≥ (1− α)n− (2h′ + 2)C and δ(G3)≥
(
1− 1

ξ (H)
+ γ

10
)
n. Then by Lemma 5.3, there is a setW ⊆V(G3) such that V0 ⊆W and G[W] has a perfect

H-subdivision tiling, |V(G3) \W| is at most C, and the size ofW is even. Let J =V(G3) \W. We
observe that V(G)=A∪V(Q)∪W ∪ J. Note that all n, |A|, and |W| are even, so is |J|. Moreover,
J ⊆V(G1) \ (A∪V(Q)) and |J| ≤ C.

Let JX = J ∩ X and JY = J ∩ Y . We may assume |JX| − |JY | = 2c for some non-negative inte-
ger c≤ C

2 . Let us pick two sets Q1 ⊆V(Q)∩ X and Q2 ⊆V(Q)∩ Y such that |Q1| = ch′ and
|Q2| = c(h′ + 2). Then (JX ∪Q1)⊆ X and (JY ∪Q2)⊆ Y . Since |Q1| − |Q2| = −2c, the equality
|JX ∪Q1| = |JY ∪Q2| holds. We showed that F contains a complete bipartite graph on the biparti-
tion (X, Y) as a subgraph, and the set J ∪Q1 ∪Q2 has a perfect matching in F. Moreover, we have
|J ∪Q1 ∪Q2| ≤ (2h′ + 2)C ≤ βn. Thus, by our choice of A, the induced graphG[A∪ J ∪Q1 ∪Q2]
has a perfectH-subdivision tiling. LetQ′ =Q− (Q1 ∪Q2). By Observation 5.6, the graphQ′ has a
perfect Ĥ-tiling, so it has a perfectH-subdivision tiling. Together withG[W],G[A∪ J ∪Q1 ∪Q2],
and G[V(Q′)], the graph G has a perfect H-subdivision tiling. This completes the proof of
Lemma 5.2. �

6. Concluding remarks and open problems
In this article, we determined an asymptotically tight minimum degree threshold that ensures the
existence of a perfect H-subdivision tiling for every graph H. In many cases, a minimum degree
threshold for perfectH-subdivision tilings is much smaller than for perfectH-tilings since perfect
H-subdivision tilings are allowed to use not only H but also subdivisions of H. To prove that
the weaker minimum degree suffices, we developed new approaches using the absorption method
combined with the regularity lemma and domination numbers.
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Both Theorems 1.8 and 1.9 are tight up to o(n) terms. We conjecture that our results hold with
the minimum degree condition sharp up to additive constants depending only on H.

Conjecture 6.1. Let H be a graph that is not a disjoint union of isolated vertices. Then there exists
a constant CH depending only on H such that the following holds for all n> 0.

If hcfξ (H) = 2,

δsub(n,H)≤
(
1− 1

ξ∗(H)

)
n+ CH .

Otherwise,

δsub(n,H)≤ 1
2
n+ CH if n is odd,

δsub(n,H)≤
(
1− 1

ξ∗(H)

)
n+ CH if n is even.

Our main results, Theorems 1.8 and 1.9, imply that perfect H-subdivision tilings and perfect
H-tilings behave differently in many cases. In particular, the numbers δsub(n,Kr) behave irregu-
larly for small values of r. In contrast to perfect Kr-tilings, the number limn→∞ δsub(n,Kr)

n does not
strictly increase as r increases. For another example, consider a tree T. According to Theorem 1.2,
we have δ(n, T)= 1

2n+O(1). However, for δsub(n, T), Theorem 1.8 implies that there is a positive
constant cT such that δsub(n, T)≤

( 1
2 − cT + o(1)

)
n since hcfξ (T)= 1.

Moreover, as we saw before, monotonicity does not hold for subdivision tilings. For H2 ⊆H1
with H2 being a spanning subgraph, δ(n,H2)≤ δ(n,H1) is trivial, but δsub(n,H2)≤ δsub(n,H1) is
not true as δsub(n,K4)= 2

5n+ o(n)< δsub(n, C4)= 1
2n+ o(n).

A perfect H-subdivision tiling is a special case of tiling a host graph by several kinds of graphs.
Let F be a collection of graphs and let hcf(F) be the highest common factor of the sizes of graphs
in F . For each positive integer n divisible by hcf(F), we define δ(n,F) to be the smallest integer k
such that any n-vertex graph G with a minimum degree of at least k has a perfect tiling that uses
only graphs in F . In this notation, we estimated an asymptotically tight value for δ(n, Sub(H)) for
every graph H. Thus, we suggest the following problem.

Problem 6.2. Let F be a collection of graphs and n be a positive integer that is divisible by hcf(F).
Determine the number δ(n,F).
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