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1. Introduction

This article consists of a number of observations about smooth, complex vector fields
on a smooth manifold M, with special emphasis on their local solvability. The case of
a vector field without critical points (i.e. nowhere zero) is well understood. We focus on
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786 F. Treves

a vector field L that vanishes on a subset of M, to which we refer as the critical set
of L (and denote by CritL). Little is known on this topic. Some results about linear
vector fields in Rn, i.e. vector fields whose coefficients are linear functions, can be found
in [7,8], and in the more recent articles [15,16]. It is remarkable that the solvability (or
lack thereof) of such a restricted class of vector fields is unknown (at least, to the author)
in dimension n � 3, beyond the real coefficients case.

Since the general case is a vast terra incognita the purpose of this article is to isolate
a class of complex vector fields on M that hold some promise of being manageable. Our
choice of such a class is based on a microlocal concept: that of microlocal principal type,
defined by the property that the differential in phase-space of the symbol of the vector
field (denoted by σ(L)) is linearly independent from the symplectic one-form ξ · dx. A
prototype of this class is the rotation vector field x1∂/∂x2 − x2∂/∂x1 in R2 (which, by
the way, is not locally solvable at the origin); a prototype of the complementary class,
the vector fields not of principal type, is the radial vector field

∑n
j=1 xj∂/∂xj (which,

by the way, is locally solvable at the origin). In the two-dimensional case, when M is
a surface, the principal type property ensures that the critical points of L are isolated
(Corollary 3.20). The same is true when the coefficients are real; moreover, in the latter
case, the principal type property requires that the dimension n of the base manifold M
be even (Proposition 3.4).

Off its critical set every vector field is of principal type. At a critical point ℘ the differ-
ential of the symbol σ(L) is equal to the differential of its linear part L℘ (in which every
coefficient of L is reduced to the homogeneous part of degree 1 of its Taylor expansion
at ℘). This linear part (mainly viewed as a vector field in the tangent space T℘M ∼= Rn

and obviously an invariant of the vector field L at ℘) plays a central role in the present
work; and justifies devoting some effort (in the future) to the study of complex linear
vector fields in dimensions higher than 2. So far the case of planar complex linear vector
fields is completely settled (Theorem 3.21). It reveals the role of the Meziani invariant
(see (3.25)). Extending the result to higher dimension may require the identification of
invariant(s) of the same type.

The last subsection of the paper focuses on the case where L℘ is elliptic in the comple-
ment of the origin T℘M\{0}: in this case (which requires dimM = 2 and is automatically
of principal type) L is locally solvable at ℘, in the L2-sense, actually (Theorem 3.27).
This fact points to a class of complex vector fields on surfaces that is very stable and
ready for some global analysis: the vector fields L that are elliptic in M\ CritL and whose
linear part L℘ is elliptic in the complement of the origin T℘M\{0}, whatever ℘ ∈ CritL.
They all are locally solvable everywhere in M; we tentatively give them the name of
quasi-elliptic.

If ℘ is a critical point of a vector field L of principal type the bicharacteristics that
intersect the cotangent space T ∗

℘M are completely contained in T ∗
℘M; their base pro-

jection is the single point {℘}. This reveals a noteworthy feature of vector fields with
critical points and the contrast they present with the established theory of differential
operators P (x, D) of principal type. We refer particularly to Theorem 26.11.3 in [3],
stating, as a sufficient condition for semiglobal solvability, that P (x, D) satisfy the local
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solvability condition (P) and that the base projections of every one of its ‘bicharacter-
istics’ (per force of dimension 1 or 2) escape from every compact subset of the base,
i.e. not be ‘trapped’. What transpires, so far, in the cases of vector fields with critical
points where necessary and sufficient conditions for local solvability have been found (see
Theorems 3.8, 3.21 and, as just mentioned, 3.27), is that non-solvability can be equated
with the property that all bicharacteristics are trapped. It is tempting to conjecture, at
least in the case of a real vector field L, that local solvability holds at a critical point ℘

if and only if, given an arbitrary neighbourhood N (℘), at least one integral curve of L

escapes from N (℘).

2. Basic concepts and known results

2.1. Vector fields with critical points: principal type

Throughout this article M denotes a smooth (i.e. C∞), connected manifold; dimM =
n � 2. We use standard notation: C∞(A) stands for the space of smooth functions in
the open set A ⊂ M; C∞

c (A) for the space of test functions (i.e. smooth and compactly
supported) in A; D′(A) for its dual, the space of distributions in A. All functions and
distributions are assumed to be complex-valued, unless specified otherwise.

We shall be concerned with a complex vector field L of class C∞ in the manifold M,
mainly with its local solvability. We shall look at a special class of vector fields with
critical points. We denote by CritL the set of critical points of L. Most of the time we
reason in a local coordinate chart (U , x1, . . . , xn), in which

L =
n∑

j=1

aj(x)∂xj
, (2.1)

where ∂xj = ∂/∂xj and aj ∈ C∞(U). We denote by ξ1, . . . , ξn the coordinates in the
cotangent spaces at points of U with respect to the basis dx1, . . . ,dxn. In these local
coordinates the symbol of L will be the linear functional with respect to ξ,

σ(L)(x, ξ) =
n∑

j=1

aj(x)ξj . (2.2)

(We omit the customary factors
√

−1 as we shall not make use of the Fourier transform.)
The symbol of L is equivariant under changes of local coordinates and thus defines a
C∞ function in the cotangent bundle T ∗M. By the characteristic set of L we shall mean
the null set of σ(L) in the complement of the zero section, T ∗M\0; it will be denoted
by CharL.

We shall denote by π the base projection T ∗M\0 → M. Obviously,
−1
π (CritL) ⊂

CharL.
We will now make use of the symplectic one-form τ = ξ · dx. In local coordinates

x1, . . . , xn we have τ = ξ1 dx1 + · · · + ξn dxn. The chain rule shows that this definition
is invariant under coordinate changes. The differential dτ is the fundamental symplectic
two-form on T ∗M.
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Definition 2.1. The vector field L is said to be of principal type at a point ℘ ∈ M if
the differential dσ(L) and the symplectic one-form τ are linearly independent at every
point of CharL ∩ T ∗

℘M.

Definition 2.1 is relevant when ℘ ∈ CritL. Indeed, L is of principal type at every point
℘ �∈ CritL, actually in a stronger sense than that in Definition 2.1: the differential of
σ(L) with respect to the ‘fibre’ variables, dξσ(L) =

∑n
j=1 aj(x) dξj in the local chart

(U , x1, . . . , xn), is nowhere zero in
−1
π (℘).

At a critical point ℘ of L in U we have dσ(L) = dxσ(L) and, according to (2.2),

dσ(L) ∧ τ =
∑

1�j<k�n

σj,k(x, ξ) dxj ∧ dxk, (2.3)

where we have used the notation

σj,k(x, ξ) =
n∑

i=1

(
∂ai

∂xj
(x)ξk − ∂ai

∂xk
(x)ξj

)
ξi. (2.4)

For L to be of principal type at x ∈ U ∩ CritL means that, to each ξ ∈ Rn\{0}, there is
a pair of indices (j, k), 1 � j < k � n, such that σj,k(x, ξ) �= 0.

Remark 2.2. Obviously, if L is of principal type at x ∈ U ∩CritL necessarily dxσ(L) =∑n
j=1 ξj daj �= 0 whatever ξ ∈ Rn\{0}. In other words, the differentials daj at x must

be linearly independent over the field R. In particular, if the vector field L is real this
means that x is an isolated critical point. If the vector field L is real and of principal
type in M then CritL is a discrete set.

Proposition 2.3. If L is of principal type at ℘ ∈ CritL, then there is an open neigh-
bourhood of ℘ in M, N (℘), such that L is of principal type at every point of N (℘).

Proof. Let the local chart (U , x1, . . . , xn) be centred at ℘ ∈ CritL (meaning that x1 =
· · · = xn = 0 at ℘). The hypothesis is that min|ξ|=1 |σj,k(0, ξ)| > 0 for some pair of indices
j, k. We will then have min|ξ|=1 |σj,k(x, ξ)| > 0 for every x sufficiently close to 0. �

There is an equivalent definition of principal type in terms of the Hamiltonian vector
field of σ(L). In an open subset Ω ⊂ −1

π (U) and a function g ∈ C∞(Ω) the Hamiltonian
vector field of g is given by

Hg =
n∑

j=1

∂g

∂ξj

∂

∂xj
− ∂g

∂xj

∂

∂ξj
. (2.5)

Assume that g is real-valued; a null bicharacteristic of g is an integral curve of Hg in Ω

on which g vanishes (g is constant along any integral curve of Hg). We have

Hσ(L) = L −
n∑

j,k=1

∂aj

∂xk
ξj

∂

∂ξk
. (2.6)
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It is readily checked that, at critical points of L in U ,

Hσ(L) ∧
n∑

i=1

ξi
∂

∂ξi
=

∑
1�j<k�n

σj,k(x, ξ)
∂

∂ξj
∧ ∂

∂ξk
. (2.7)

Comparing with (2.3) shows that, for L to be of principal type at ℘ ∈ CritL it is necessary
and sufficient that the Hamiltonian field Hσ(L) and the radial vector

∑n
i=1 ξi(∂/∂ξi) be

linearly independent at every point of T ∗
℘M.

Remark 2.4. If all the local coordinates x1, . . . , xn vanish at ℘ the radial vector field
in ξ-space T ∗

℘M,
∑n

i=1 ξi∂ξi
, is the Hamiltonian field of −r∂r = −

∑n
i=1 xi∂xi

.

Let the local chart (U , x1, . . . , xn) be centred at ℘ ∈ CritL. We introduce the vector
field

L℘ =
n∑

j,k=1

aj,kxk∂xj , (2.8)

where
aj,k =

∂aj

∂xk
(0).

We might want to view (2.8) as a vector field in U , in which case L − L℘ vanishes to
second order at ℘. From this standpoint changing the coordinates xj might result in an
expression of L℘ whose coefficients are not any more linear. Not so if we view L℘ as a
vector field in T℘M and if we associate to a change of coordinates in U the tangent linear
transformation in T℘M. In this sense the following definition is coordinate free.

Definition 2.5. We shall refer to the vector field L℘ in T℘M as the linear part of L at
the critical point ℘.

We deduce the following proposition immediately from (2.3) and (2.4).

Proposition 2.6. For L to be of principal type at a point ℘ ∈ CritL it is necessary and
sufficient that L℘ be of principal type at every point of T℘M.

Corollary 2.7. For L to be of principal type in M it is necessary and sufficient that L℘

be of principal type at every point of T℘M whatever ℘ ∈ CritL.

Let us continue to reason within the local frame (U , x1, . . . , xn) and introduce the
Jacobian matrix A(x) with entries

ai,j(x) =
∂ai

∂xj
(x);

AT(x) will stand for the transpose of A(x). With this notation we can rewrite (2.4) as
follows:

σj,k(x, ξ) = (AT(x)ξ)jξk − (AT(x)ξ)kξj . (2.9)

We see that the quantities σj,k are the components of the 2-vector ξ ∧ AT(x)ξ. We can
state the following.
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Proposition 2.8. For L to be of principal type at a critical point x ∈ U it is necessary
and sufficient that the complex matrix AT(x) not have any real eigenvector.

In particular, if L is of principal type at a critical point x ∈ U then Rn ∩ ker AT(x) =
{0}. This does not mean that detA(x) �= 0, as shown by the example L = z∂z̄ in the
plane.

Example 2.9. The rotation vector field ∂θ = x1∂x2 − x2∂x1 in R2 is of principal type
at the origin. Indeed,

dσ(∂θ)|x=0 = ξ2 dx1 − ξ1 dx2

and τ ∧ dσ(∂θ)|x=0 = (ξ2
1 + ξ2

2) dx1 ∧ dx2 does not vanish off the zero section of T ∗R2.

Example 2.10. The radial vector field r∂r =
∑n

j=1 xj∂xj in Rn is not of principal type
at the origin, since dσ(r∂r)|x=0 = τ .

A complex vector field L can be of principal type and still have a critical set that is a
submanifold of positive dimension, as shown in the following.

Example 2.11. The vector field in R3,

L = x1∂x2 − x2∂x1 + ix1∂x3 , (2.10)

is of principal type in R3. Indeed,

AT =

⎛
⎜⎝ 0 1 i

−1 0 0
0 0 0

⎞
⎟⎠

has the eigenvectors (0,−i, 1), (i, 1, 0), (−i, 1, 0).

A vector field L can be of principal type and still have a critical set that is highly
singular, as shown in the following.

Example 2.12. Let the function ϕ ∈ C∞(R) have only zeros of order greater than 1.
The vector field in R3,

L = x1∂x2 − x2∂x1 + (ix1 + ϕ(x3))∂x3 ,

is of principal type in R3. Indeed, the linear part of L at every point (0, 0, x◦
3) ∈ R3 such

that ϕ(x◦
3) = 0 is given by (2.10). It suffices then to apply Proposition 2.8.

The set Crit L may have singularities even if L is of class Cω and of principal type.

Example 2.13. Consider the vector field

L = x1∂x2 − x2∂x1 + (x2
3 − x3

4 + ix1)∂x3 + (x2
3 − x3

4 − ix2)∂x4

in R4. The transpose of the matrix associated to the linear part of L at the origin,

AT
0 =

⎛
⎜⎜⎜⎝

0 1 i 0
−1 0 0 −i
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ ,
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has the eigenvectors (0,−i, 1, 0), (−i, 0, 0, 1), (i, 1, 0, 0), (−i, 1, 0, 0), implying that L is of
principal type at 0 (again by Proposition 2.8). We have

CritL = {x ∈ R4; x1 = x2 = x2
3 − x3

4 = 0}.

2.2. Basics on local solvability

Below we will make use of the Sussman foliation of M defined by L. Let g(L) denote
the real Lie algebra generated by the vector fields Re L and Im L for the standard com-
mutation bracket. Let us say that two points of M are L-connectable if they can be joined
by a continuous path consisting of finitely many arcs of orbits of vector fields belong-
ing to g(L); to be L-connectable is an equivalence relation among points of M. The
main theorem of [11] states that every equivalence class for this relation is an immersed
submanifold of class C∞ without self-intersections (called an L-leaf below) having the
property that the tangent space at every one of its points contains the ‘freezing’ of g(L)
at that point. (In the analytic category the tangent spaces are equal to the freezing of
g(L) at the points. The L-leaves form what is often called the Nagano foliation defined
by L. See [9].) The one-dimensional L-leaves will also be referred to as the orbits of L; at
every point of every orbit of L, Re L and ImL are collinear and at least one of these two
vector fields does not vanish. The critical points of L are the zero-dimensional L-leaves.

Definition 2.14. The vector field L is said to be locally solvable at a point ℘ ∈ M if
there is an open neighbourhood N (℘) of ℘ such that to each f ∈ C∞

c (N (℘)) there is
u ∈ D′(N (℘)) verifying the equation Lu = f in N (℘); L is said to be locally solvable in
an open subset A of M if L is locally solvable at every point of A.

Local solvability theory (see [10], [13, Chapter VIII] and [3, Theorems 26.4.7 and
26.11.3]) tells us that the following holds.

Theorem 2.15. Assume that the vector field L does not have any critical point in an
open subset A of M. The following properties are equivalent:

(LocSolv) L is locally solvable in A;

(P) ∀ζ ∈ C, the function Im(ζσ(L)) does not change sign along any null bicharacteristic
of Re(ζσ(L));

(P′) the dimension of the L-leaves in A does not exceed 2 and (1/2i)L ∧ L̄ does not
change sign on any two-dimensional L-leaf in A.

Implicit in (P′) is the orientability the two-dimensional L-leaves, making sense of the
property that (1/2i)L ∧ L̄ not change sign on such an L-leaf.

Remark 2.16. In (LocSolv) we could have replaced L by L − χ; the zero-order term
χ ∈ C∞(A) has no effect on local solvability (provided L has no critical points in A).
Indeed, if L is locally solvable in A we can find a C∞ solution of the equation Lϕ = χ

in every suitably small open subset U of A [3, Theorem 26.11.3]. Whatever u ∈ D′(U),
L(ue−ϕ) = e−ϕ(L − χ)u.
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Remark 2.17. Given an open subset A of M the space L2
loc(A) of locally square-

integrable functions in A can be defined by using local coordinates. Let us denote by
L2

c(A) the subspace of L2
loc(A) consisting of the compactly supported functions. The

vector field L is then said to be locally L2-solvable at a point ℘ ∈ M if there is an
open set A 
 ℘ such that to each f ∈ L2

c(A) there is u ∈ L2
loc(A) verifying (in the

distribution sense) the equation Lu = f in A. It follows from the general result in [1]
that (LocSolv) in Theorem 2.15 can be replaced by the property that the vector field L

is locally L2-solvable in A (for a direct proof see [13, § VIII.8]).

Remark 2.18. The vector field L can be locally solvable without being of principal
type, as is the case for r∂r =

∑n
j=1 xj∂xj in Rn (Example 2.10). A different example is

L = a(x)∂x1 when a ∈ Cω(Rn) vanishes to high order on a proper analytic subvariety
V �= ∅. Indeed, the equation Lu = f ∈ D′(Rn) has a solution verifying ∂x1u = g where
g ∈ D′(Rn) is such that ag = f . The existence of such a g is proved in [4].

Remark 2.19. The hypothesis, in Theorem 2.15, that L has no critical points cannot
be replaced by the hypothesis that L is of principal type. The vector field ∂θ in R2 is of
principal type (Example 2.9) but the existence of a distribution solution u of the equation
∂θu = f ∈ C∞

c (R2) requires
∫ 2π

0 f(r cos θ, r sin θ) dθ = 0 for every r > 0.

As before Crit L stands for the set of critical points of L in the manifold M.

Proposition 2.20. Suppose L is of principal type in M. If L satisfies condition (P) in
M\ CritL, then L satisfies condition (P) in M.

Proof. Let ℘ ∈ CritL be arbitrary; then T ∗
℘M ⊂ CharL and the Hamiltonian field of

σ(L) is tangent to T ∗
℘M. This implies that any bicharacteristic of Re(ζσ(L)) (0 �= ζ ∈ C)

that intersects T ∗
℘M is entirely contained in

−1
π (℘) ⊂ T ∗

℘M and σ(L) ≡ 0 on it. The
claim ensues. �

Proposition 2.21. Let ℘ ∈ CritL be arbitrary and assume that the linear part L℘ is of
principal type in the tangent space T℘M. If L℘ does not satisfy condition (P) in T℘M
then, given an arbitrary open neighbourhood U of ℘, L does not satisfy condition (P) in
U\{℘}.

Proof. The hypothesis that L℘ is of principal type in the tangent space T℘M allows us
to apply Proposition 2.20 to L℘ (in the place of L): if L℘ does not satisfy condition (P)
in T℘M then it must not satisfy condition (P) in T℘M\ CritL℘. Let (U , x1, . . . , xn) be
a local chart centred at ℘ such that (2.12) is valid. Possibly after a linear change of the
coordinates x1, . . . , xn we may assume that

CritL℘ = {x ∈ T℘M; x1 = · · · = xm = 0}. (2.11)

(When dealing with L℘ we let x vary in T℘M ∼= Rn.) The symbol of L℘ as a function in
T ∗(T℘M) has the expression (see (2.8))

σ(L℘) =
m∑

j=1

n∑
k=1

aj,kxjξk, (2.12)
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where
aj,k =

∂ak

∂xj
(0).

We assume that condition (P) is violated at a point x◦ ∈ T℘M\ CritL℘, i.e. such that

n∑
k=1

∣∣∣∣
m∑

j=1

aj,kx◦
j

∣∣∣∣ �= 0.

We can then find ζ ∈ C and an open set U such that x◦ ∈ U ⊂ T℘M\ CritL℘ and that

∀x ∈ U,

n∑
k=1

∣∣∣∣
m∑

j=1

Re(ζaj,k)xj

∣∣∣∣ �= 0. (2.13)

The homogeneity (of degree 1) with respect to x in (2.13) allows us to assume that U

is an open cone. (Cones in a vector space are subsets invariant under dilations x → λx,
λ > 0.) Possibly after replacing x◦ by another point in U we may assume that Im σ(ζL℘)
changes sign at a point (x◦, ξ◦) ∈ CharL℘ along the null bicharacteristic γ of Re(ζL℘)
that passes through that point. The bicharacteristic γ is defined by the Hamilton–Jacobi
equations

dxk

dt
=

m∑
j=1

Re(ζaj,k)xj , k = 1, . . . , n,

dξj

dt
= −

n∑
k=1

Re(ζaj,k)ξk, j = 1, . . . , m,

dξk

dt
= 0, k = m + 1, . . . , n,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.14)

complemented by the initial value conditions

x(0) = x◦, ξ(0) = ξ◦. (2.15)

Thanks to (2.13) we see that the base projection of γ is a curve that stays within
T℘M\ CritL℘. Below we denote by (x(t), ξ(t)) the solution of (2.14) that satisfies (2.15).
It is convenient to introduce the n × n matrix A with entries Re(ζaj,k) if 1 � j � m and
0 if m < j � n, and k = 1, . . . , n. We have

x(t) = etAT
x◦, ξ(t) = e−tAξ◦, (2.16)

where AT denotes the transpose of A.
The symbol σ(ζL℘) and therefore also the equations (2.14) are invariant under

the transformation (x, ξ) → (λ−1x, λξ). The solution of (2.14) with the initial value
(λ−1x◦, λξ◦) is (λ−1x(t), λξ(t)). The bilinearity of σ(L℘) entails

Im σ(ζL℘)(λ−1x(t), λξ(t)) = Im σ(ζL℘)(x(t), ξ(t)). (2.17)

Let us assume for simplicity that Im σ(ζL℘) > 0 in the semicurve γ+ described by
(x(t), ξ(t)), 0 < t < T , and Imσ(ζL℘) < 0 in the semicurve γ− described by (x(t), ξ(t)),
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−T < t < 0. (We are reasoning, here, in an analytic context, L℘ being a vector field with
linear coefficients.) We conclude that, if the number c > 0 is suitably small, there are
numbers t1 and t2, −T < t1 < 0 < t2 < T , such that

− Im σ(ζL℘)(λ−1x(t1), λξ(t1)) = Im σ(ζL℘)(λ−1x(t2), λξ(t2)) = c (2.18)

whatever λ > 0.
Now consider

Re σ(ζL)(x, ξ) =
m∑

j=1

n∑
k=1

Re(ζaj,k)xjξk +
n∑

k=1

ϕk(x)ξk, (2.19)

where ϕk ∈ C∞(U) vanishes to second order at ℘, i.e.

∀x ∈ U, |ϕk(x)| � const.|x|2. (2.20)

From (2.13) we derive that

λ dξ Re σ(ζL)(λ−1x◦, λξ) =
m∑

j=1

n∑
k=1

Re(ζaj,k)x◦
j + λ

n∑
k=1

ϕk(λ−1x◦) �= 0. (2.21)

From (2.19) we derive that there are positive numbers λ◦ and C, and a smooth
function [λ◦, +∞) 
 λ → ξ∗(λ) ∈ Rn\{0} such that |ξ∗(λ) − ξ◦| < Cλ−1 and
Re σ(ζL)(λ−1x◦, ξ∗(λ)) = 0. Since σ(ζL)(x, ξ) is linear with respect to ξ we have

Re σ(ζL)(λ−1x◦, λξ∗(λ)) = 0. (2.22)

Consider now the null bicharacteristic γ̃λ of Re σ(ζL) through (λ−1x◦, λξ∗(λ)); it is
described by the solution (x(t, λ), ξ(t, λ)) of the Hamilton–Jacobi equations associated
with Re σ(ζL) such that (x(0, λ), ξ(0, λ)) = (λ−1x◦, λξ∗(λ)). Actually, it is convenient
to consider the functions x̃(t, λ) = λx(t, λ), ξ̃(t, λ) = λ−1ξ(t, λ). In vector notation they
satisfy the equations

dx̃

dt
= ATx̃ + λΦ(λ−1x̃),

dξ̃j

dt
= −Aξ̃ + Ψ(λ−1x̃)ξ̃,

⎫⎪⎪⎬
⎪⎪⎭ (2.23)

where Φ = (ϕ1, . . . , ϕn) and Ψ(x) is an n × n real matrix whose entries are C∞ functions
in U that vanish on U ∩ Σ. Moreover,

(x̃(0, λ), ξ̃(0, λ)) = (x◦, ξ∗(λ)). (2.24)

Note at this point that, if |t| � T and λ � λ◦, the vectors x̃(t, λ) and ξ̃(t, λ) stay in
compact subsets, of U and Rn respectively.

https://doi.org/10.1017/S1474748011000053 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748011000053


On the local solvability of vector fields with critical points 795

By subtracting (2.14) from (2.23) and using (2.16) and (2.24) we obtain, still in vector
notation,

d
dt

(x̃(t, λ) − x(t)) = AT(x̃(t, λ) − x(t)) + λΦ(λ−1x̃(t, λ)),

d
dt

(ξ̃(t, λ) − ξ(t)) = −A(x̃(t, λ) − x(t)) + Ψ(λ−1x̃(t, λ))ξ,

x̃(0, λ) − x(0) = 0, ξ̃(0, λ) − ξ(0) = ξ∗(λ) − ξ◦,

whence

x̃(t, λ) − x(t) = λ

∫ t

0
e(t−s)AT

Φ(λ−1x̃(s, λ)) ds,

ξ̃(t, λ) − ξ(t) = e−tA(ξ∗(λ) − ξ◦) +
∫ t

0
e−(t−s)AΨ(λ−1x̃(s, λ))ξ̃(s, λ) ds.

We get, for some constant C > 0 and all |t| < T ,

|x̃(t, λ) − x(t)| � Cλ−1 sup
|s|<T

(|x̃(s, λ)|2),

|ξ̃(t, λ) − ξ(t)| � Cλ−1
(
1 + sup

|s|<T

|ξ̃(s, λ)|
)
.

We derive that if λ◦ is sufficiently large and if λ � λ◦, then

sup
|t|<T

|Im σ(ζL)(x̃(t, λ), ξ̃(t, λ)) − Im σ(ζL℘)(x(t), ξ(t))| < 1
2c.

Combining this with (2.18) we conclude that

Im σ(L)(x̃(t1, λ), ξ̃(t1, λ)) < − 1
2c,

Im σ(L)(x̃(t2, λ), ξ̃(t2, λ)) > 1
2c,

thus proving that Imσ(L) changes sign along γ̃λ. �

Corollary 2.22. Assume that the linear part L℘ is of principal type in the tangent
space T℘M. If L℘ does not satisfy condition (P) in T℘M, then L is not locally solvable
in M\ CritL.

3. Some special classes of vector fields

3.1. Essentially real vector fields

Definition 3.1. We say that a C∞ vector field in M is essentially real if L and L̄ are
collinear at every point of M (i.e. L ∧ L̄ vanishes identically in M).

To say that L is essentially real is equivalent to saying that every L-leaf is either an
orbit (a one-dimensional, smooth, immersed submanifold) or a critical point of L.

https://doi.org/10.1017/S1474748011000053 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748011000053


796 F. Treves

Lemma 3.2. If an essentially real C∞ vector field L in M is of principal type at a critical
point ℘, then there is c℘ ∈ C\{0} such that c℘L℘ is real.

Proof. Suppose L has the expression (2.1) in a local chart (U , x1, . . . , xn) centred at ℘

and let A be the n × n matrix with entries

aj,k =
∂aj

∂xk
(0).

We have

1
2i

L ∧ L̄ =
∑

1�j<k�n

Im
( n∑

p,q=1

aj,pāk,qxpxq

)
∂xj

∧ ∂xk
+ O(|x|2).

If L ∧ L̄ ≡ 0 then, for every pair of indices j, k,

∀x ∈ Rn,

n∑
p,q=1

Im(aj,pāk,q + aj,qāk,p)xpxq = 0. (3.1)

Putting p = q in (3.1) yields aj,pāk,p ∈ R for all pairs j, k, implying that for each
p = 1, . . . , n, there is a complex number λp such that aj,p = bj,pλp with bj,p ∈ R,
j = 1, . . . , n, and therefore detA = λ1 · · ·λn det B, where B = (bj,p)1�j,p�n. If p �= q we
derive from (3.1)

(bj,pbk,q − bj,qbk,p) Im(λpλ̄q) = 0

for all j, k = 1, . . . , n. But detB �= 0 implies that bj,pbk,q �= bj,qbk,p for some j, k. It
ensues that λq = sqλ1 with sq ∈ R for each q = 2, . . . , n, proving the claim. �

Remark 3.3. The conclusion in Lemma 3.2 is generally not valid if we remove the
principal type hypothesis. Example: L = (x1 + ix2)∂x1 in R2.

Proposition 3.4. If an essentially real C∞ vector field L in M is of principal type at
some critical point ℘ then the following properties hold:

(1) dimM is even;

(2) ℘ is an isolated critical point of L;

(3) the origin in T℘M is an isolated critical point of L℘.

Recall that L is of principal type at a critical point ℘ ∈ M if and only if the linear
part L℘ is of principal type in T℘M (Proposition 2.6).

Proof. Same notation as in the proof of Lemma 3.2; after division of L by c℘ we may
assume that the matrix A is real. If L is of principal type then (by Proposition 2.8) the
transpose AT, and therefore also its transpose, A, must be injective when acting in Rn,
whence properties (2) and (3). Furthermore, AT cannot have any real eigenvector, which
is impossible when dim M is odd. �
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Proposition 3.5. If an essentially real C∞ vector field L in M is of principal type in
M, then there is a unique Lipschitz continuous map θ : M → [0, π) such that eiθL is a
real vector field. The restriction of θ to M\ CritL is C∞.

Proof. Let ℘ ∈ M\CritL be arbitrary. If L̄|℘ = ζL|℘, then necessarily ζ = e2iθ(℘)

for some θ(℘) ∈ R and eiθ(℘)L|℘ ∈ T℘M; if we require 0 � θ < π then θ is uniquely
determined, and thereby smooth in M\ CritL. Consider now an arbitrary point ℘ ∈
CritL. Suppose L has the expression (2.1) in the local chart (U , x1, . . . , xn) centred at ℘;
we then use the same notation as in the proof of Lemma 3.2. After division either by
|c℘| or by −|c℘| we can assume that the coefficients of the vector field L◦ = eiθ℘L℘ are
real and that the constant θ℘ satisfies 0 � θ℘ < π. We view provisionally L℘ as a vector
field in U (in the coordinates xj) and use the fact that L−L℘ vanishes at least to second
order at x = 0. We obtain, for x �= 0,

eiθ(x)L = ei(θ(x)−θ℘)eiθ℘L℘ + O(|x|2).

Since both eiθ(x)L and eiθ℘L℘ are real vector fields we deduce that

sin(θ(x) − θ℘)
∣∣∣∣

n∑
k=1

aj,kxk

∣∣∣∣ � const.|x|2, j = 1, . . . , n.

Since det A �= 0 we get |θ(x) − θ℘| � const.|x|, which proves that θ(x) converges to θ℘

as x → 0 and that we can extend θ as a Lipschitz continuous function in M, smooth in
M\ CritL. �

Proposition 3.5 yields a simple sufficient condition for the local solvability of L.

Theorem 3.6. Let L be an essentially real C∞ vector field of principal type in M and
let ℘ ∈ CritL. If div L|℘ �= 0, then L is locally L2-solvable at ℘ (see Remark 2.17).

The value of div L at a critical point ℘ is independent of the choice of local coordinates;
we have div L|℘ = div L℘|0 = trA, the trace of the matrix A.

Proof. According to Proposition 3.5 we can find a Lipschitz continuous function
θ : M → [0, π) such that the coefficients of eiθL are real. Assuming that L is given
by (2.1) in the local chart (U , x1, . . . , xn) centred at ℘, we obtain

div(eiθL) =
n∑

j=1

∂xj
(eiθaj) = eiθ

(
div L + i

n∑
j=1

aj∂xj
θ

)
.

Since ∂xj θ ∈ L∞ and |aj(x)| � const.|x| we obtain

|div(eiθL) − eiθ(0) div L|0| � const.|x|. (3.2)

Integration by parts yields, for every ϕ ∈ C∞
c (U),

2 Re
∫

eiθ(Lϕ)ϕ̄ dx = −
∫

|ϕ|2 div(eiθL) dx. (3.3)
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Combining (3.2) and (3.3) yields, for some constant C > 0 independent of ϕ,

|div L|0|
∫

|ϕ|2 dx � 2
∣∣∣∣Re

∫
ϕL∗(e−iθϕ) dx

∣∣∣∣ + C

∫
|ϕ|2|x| dx,

where L∗ is the adjoint of L. After contracting U about ℘ we may assume that
C supU |x| < 1

2 |div L|0|; we conclude, by the Cauchy–Schwarz inequality and after sub-
stituting eiθϕ for ϕ, ∫

|ϕ|2 dx � C ′
∣∣∣∣
∫

|L∗ϕ|2 dx

∣∣∣∣, (3.4)

where C ′ = 16/(|div L|0|2); (3.4) entails the existence of a linear map L∗C∞
c (U) 
 L∗ϕ →

ϕ ∈ C∞
c (U) bounded for the L2-norm. It can be extended as a bounded linear map G∗

of L2(U) into itself. The adjoint G of G∗ satisfies LGf = f for every f ∈ L2(U). �

Remark 3.7. A natural question is whether results such as Theorem 3.6 can be extended
to first-order differential operators of the type L+χ, χ ∈ C∞(U). In this context the role
of div L must be played by the subprincipal symbol of L. The same observation should
also apply to those results in the sequel that depend in some way or other on div L.

3.2. Vector fields with linear coefficients

The role of the linear part L℘ in the study of vector fields of principal type justifies
that of vector fields in Rn with linear coefficients; for the sake of brevity we shall refer to
these as linear vector fields. The next statement (a direct consequence of [8, Theorem 1];
see also [15, Theorem 2]) characterizes the local solvability of real linear vector fields.

Theorem 3.8. Consider a real vector field in Rn of the form

L =
n∑

j,k=1

aj,kxj∂xk
(3.5)

(aj,k ∈ R). The following properties are equivalent:

(a) L is not locally solvable at the origin of Rn;

(b) the closure of every orbit of L in Rn\ CritL is compact;

(c) each point x◦ ∈ Rn\ CritL lies in a torus Tx◦ ⊂ Rn\ CritL such that every orbit
of L that intersects Tx◦ is a geodesic of Tx◦ ;

(d) the real matrix A = (aj,k)1�j,k�n is semisimple and its non-zero eigenvalues are
purely imaginary.

When we apply Proposition 3.4 to L℘ (assumed to be of principal type) we have
CritL = {0}, n = 2m (Proposition 3.4). Thus, if L℘ is not locally solvable in T℘M
there is a linear change of the coordinates xi such that, for each x◦ �= 0,

Tx◦ = {x ∈ T℘M; x2
j + x2

m+j = (x◦
j )

2 + (x◦
m+j)

2, j = 1, . . . , m};
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equivalently, every eigenvalue of the semisimple matrix A = (aj,k)1�j,k�n is purely imag-
inary and different from zero.

Consider a general (a priori, not of principal type or locally solvable) ‘linear’ vector
field (3.5).

Lemma 3.9. If the real vector field (3.5) is of principal type the same is true of

L′ =
n∑

j,k=1

aj,kxk∂xj
. (3.6)

Proof. The hypothesis is equivalent to the property that the real matrix AT does not
have any real eigenvector, in turn equivalent to the property that A does not have any
real eigenvalue. �

In dealing with vector fields of the form (3.5) (whether their coefficients ai,j are real
or complex) it makes sense to use spherical coordinates in Rn: r = (x2

1 + · · · + x2
n)1/2,

ωj = r−1xj ; of course, ω2
1 + · · · + ω2

n = 1. It is convenient to introduce the vector fields

Xj,k = ωj∂ωk
− ωk∂ωj

= xj∂xk
− xk∂xj

, Xk,j = −Xj,k (1 � j < k � n); (3.7)

they span TSn−1 at every point ω ∈ Sn−1. It is immediately seen that

L = Q(ω)r∂r − Z, (3.8)

where we use the notation

Q(ω) =
n∑

p,q=1

ap,qωpωq, (3.9)

Z =
∑

1�j<k�n

σ	
j,k(ω)Xj,k, (3.10)

σ	
j,k(ω) =

n∑

=1

(aj,
ωk − ak,
ωj)ω
. (3.11)

(Concerning σ	
j,k, see (2.4).) The coefficients of Z are complex-valued, cubic polynomials

in the variables ωj since the σ	
j,k are quadratics. The sum in (3.10) is symmetric with

respect to the indices j, k.
Let us denote by ‖ · ‖ and (·, ·) the Hermitian norm and scalar product in the com-

plexified tangent spaces to Sn−1 (or to Rn).

Proposition 3.10. For every ω ∈ Sn−1,

‖Z|ω‖2 =
n∑

j=1

∣∣∣∣
n∑

k=1

σ	
j,k(ω)ωk

∣∣∣∣
2

. (3.12)
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Proof. We avail ourselves of the following equalities:

‖Xj,k‖2 = ω2
j + ω2

k,

(Xj,k, Xj,q) = ωkωq if 1 � j < min(k, q) � n, k �= q,

(Xj,k, Xp,k) = ωjωp if 1 � max(j, p) < k � n, j �= p,

(Xj,k, Xp,j) = −ωkωp if 1 � p < j < k � n,

(Xj,k, Xk,q) = −ωjωq if 1 � j < k < q � n,

and (Xj,k, Xp,q) = 0 in all other cases. We deduce from this:

‖Z|ω‖2 =
∑

1�j<k�n

∑
1�p<q�n

σ	
j,kσ	

p,q(Xj,k, Xp,q)

=
∑

1�j<k�n

|σ	
j,k|2ω2

j +
∑

1�j<k�n

∑
j<
�n


 �=k

σ	
j,kσ	

j,
ωkω


+
∑

1�j<k�n

|σ	
j,k|2ω2

k +
∑

1�j<k�n

∑
1�
<k


 �=j

σ	
j,kσ	


,kωjω


−
∑

2�j<k�n

∑
1�
<j

σ	
j,kσ	


,jωkω
 −
∑

1�j<k<n

∑
k<
�n

σ	
j,kσ	

k,
ωjω
.

Taking σ	
j,k = −σ	

k,j into account we get

‖Z|ω‖2 =
n∑

j=1

n∑
k=1

|σ	
j,k|2ω2

k +
n∑

j=1

n∑
k=1

∑
1�
�n


 �=k

σ	
j,kσ	

j,
ωkω


=
n∑

j=1

n∑
k=1

n∑

=1

σ	
j,kσ	

j,
ωkω
,

whence (3.12). �

Corollary 3.11. The following properties of a point ω ∈ Sn−1 are equivalent:

(i) ω is a critical point of Z;

(ii) σ	
j,k(ω) = 0 for every pair (j, k), 1 � j < k � n.

Proof. That (ii) =⇒ (i) is a direct consequence of (3.12). Actually, (3.12) shows that
(i) is equivalent to the system of equations

n∑
j=1

σ	
j,k(ω)ωk = 0, j = 1, . . . , n. (3.13)

We derive from (3.11):

ωkσ	
j,p(ω) − ωjσ

	
k,p(ω) = ωpσ

	
j,k(ω). (3.14)
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Since
∑n

p=1 ω2
p = 1 combining (3.13) and (3.14) yields

σ	
j,k(ω) = ωj

n∑
p=1

σ	
k,p(ω)ωp − ωk

n∑
p=1

σ	
j,p(ω)ωp, (3.15)

proving that (i) =⇒ (ii). �

Proposition 3.12. Suppose the vector field (3.8) is real. For L to be of principal type it
is necessary and sufficient that the vector field Z (defined in (3.10)) not have any critical
point in the sphere Sn−1.

Proof. Lemma 3.9 states that L is of principal type if and only if the vector field (3.6)
is of principal type. Applying (2.3) with L′ in the place of L equates this property to

dσ(L′) ∧ τ |0 =
∑

1�j<k�n

σ	
j,k(ξ) dxj ∧ dxk �= 0,

which means (by Corollary 3.11) that Z nowhere vanishes in Sn−1. �

Remark 3.13. Proposition 3.12 provides another proof of property (1) in Proposi-
tion 3.4. Indeed, on an even-dimensional sphere every smooth real vector field has critical
points.

Remark 3.14. The hypothesis that (3.8) is of principal type does not impose any
requirement on the zeros of the quadratic form Q(ω). It does not preclude that Q vanishes
identically, as in the following example (in R2p):

L =
p∑

j=1

λj(xj∂xp+j
− xp+j∂xj

), 0 �= λj ∈ C. (3.16)

Proposition 3.15. Suppose that the vector field (3.8) is real and of principal type. For
L to be locally solvable at the origin it is necessary and sufficient that the quadratic form
Q not vanish identically.

Proof. To say that Q(ω) = 0 for all ω ∈ Sn−1 is the same as saying that aj,k = −ak,j

for all j, k = 1, . . . , n, i.e. the matrix A is skew-symmetric (and thus semisimple). Since
L is of principal type n must be even (Proposition 3.4) and detA �= 0. It follows that the
eigenvalues of A are purely imaginary and that none is equal to zero. It suffices then to
apply Theorem 3.8. �

3.3. Hypoellipticity off the critical points: vector fields of principal type on
surfaces

Let L be a complex, smooth vector field in M and let A be an open subset of M.
We recall that L is said to be hypoelliptic in A if, given any open set V ⊂ A and any
distribution u in A, Lu ∈ C∞(V) =⇒ u ∈ C∞(V). The following terminology is also used:
L is hypoelliptic at a point ℘ ∈ M if there is an open neighbourhood U of ℘ in which L

is hypoelliptic.
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The following facts are known.

• If L is hypoelliptic in A then its transpose LT is locally solvable in A [14, Theo-
rem 52.2].

• If L does not have critical points in A the hypoellipticity (as well as the local
solvability) of L and that of its transpose LT = −L−div L are equivalent properties.

• If L is elliptic in A (see next subsection) then L is hypoelliptic in A.

Remark 3.16. It is proved in [6] that if L has analytic coefficients and ℘ is a critical
point of L then L is not hypoelliptic at ℘. It is natural to conjecture that the same is
true when the coefficients are just C∞.

There is an analogue of Theorem 2.15 for hypoellipticity (on all this see [12]).

Theorem 3.17. Assume that the vector field L does not have any critical point in an
open subset A of M. The following properties are equivalent:

(He) L is hypoelliptic in A;

(Q) ∀ζ ∈ C, the function Im(ζσ(L)) does not change sign along any null bicharacteristic
of Re(ζσ(L)) and does not vanish identically on any arc of such a bicharacteristic.

Proposition 3.18. Assume that the C∞ manifold M is connected. If L is hypoelliptic
in some open subset A of M then dim M � 2.

Proof. If L is hypoelliptic in A then A\A ∩ CritL is open and non-empty; thus we
may as well assume that A ∩ CritL = ∅. As pointed out above this demands that L

be locally solvable in A, therefore the dimension of the leaves in the foliation defined
by the real vector fields ReL and ImL cannot exceed 2 (Theorem 2.15). This being the
case, there is an open and dense subset A′ of A in which the dimension of the leaves
is locally constant (either 1 or 2); A′ can be covered with analytic coordinates charts
(U , x1, . . . , xn) in which

L = a1(x)∂x1 + a2(x)∂x2 (3.17)

with a1, a2 ∈ Cω(U). If n = dimM > 2 any distribution u in U such that ∂xj u = 0,
j = 1, 2, is a solution of Lu = 0, which proves that L could not be hypoelliptic. �

In the remainder of the article we assume that dim M = 2: M is a smooth, connected,
orientable surface.

Let (U , x1, x2) be a local chart in M centred at a critical point ℘ of L (given by (3.17)).
It is convenient to use the natural polar coordinates in U , r =

√
x2

1 + x2
2, θ = arg(x1+ix2).

We have (see (3.8)–(3.11))

L℘ = Q(cos θ, sin θ)r∂r − σ	
1,2(cos θ, sin θ)∂θ, (3.18)

where we have used the notation

Q(cos θ, sin θ) = a1,1 cos2 θ + a2,2 sin2 θ + (a1,2 + a2,1) cos θ sin θ, (3.19)

σ	
1,2(cos θ, sin θ) = −a1,2 sin2 θ + a2,1 cos2 θ − (a1,1 − a2,2) cos θ sin θ. (3.20)
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Note that both (3.19) and (3.20) are periodic functions of period π. The coefficients in
(3.18) are related to each other:

2Q(cos θ, sin θ) = div L℘ + ∂θ[σ	
1,2(cos θ, sin θ)]. (3.21)

A special feature of the case n = 2 is that

σ	
1,2(cos θ, sin θ) = σ1,2(− sin θ, cos θ), (3.22)

with σ1,2 defined in (2.4); (2.3) and (3.22) directly imply the following.

Proposition 3.19. Let L be a C∞ vector field in the surface M. Its linear part L℘,
given by (3.18), is of principal type if and only if σ	

1,2(cos θ, sin θ) �= 0 for all θ ∈ R.

Corollary 3.20. If L is of principal type in the surface M then every critical point ℘

of L is isolated and the origin in T℘M is an isolated critical point of L℘.

Proof. The claim follows then directly from Proposition 3.19 and from the fact that, in
a neighbourhood of ℘, we have

L = L℘ + O(r2)

= (Q(cos θ, sin θ) + rF (r, θ))r∂r − (σ	
1,2(cos θ, sin θ) + rG(r, θ))∂θ (3.23)

with F and G smooth functions in some cylindrical set [0, ε) × S1. �

The principal type property (of L at ℘) is equivalent to the fact that the range of the
map [0, π) 
 θ → σ	

1,2(cos θ, sin θ) ∈ C is an ellipse E that does not pass through the
origin (but might be reduced to a compact straight-line segment). This property allows
us to introduce the following function of θ:

K(θ) =
1

2iπ

∫ θ

0

dt

σ	
1,2(cos t, sin t)

. (3.24)

It is proved in [16] that the value of K(π) is independent of the choice of coordinates in
U centred at ℘. The same is true of the quantity

µ℘ = (div L℘)K(π) +
1
2π

lim
ε→+0

arg σ	
1,2(cos(π − ε), sin(π − ε)) − 1

2π
arg σ	

1,2(1, 0), (3.25)

first introduced in [5] to analyse normal forms of planar vector fields elliptic in the
complement of a circle. In [16] µ℘ is called the Meziani invariant of L℘; here we refer to
it as the Meziani invariant of L at ℘.

The main result in [16] (Theorem 3.21 below) concerns (complex) linear vector fields
in M = R2. The critical set of a linear vector field L (assumed not to vanish everywhere)
is either {0}, when L is of principal type, or a straight line through the origin, when L

is not of principal type. The class of linear vector fields of principal type can be further
subdivided into two distinct subtypes, called (IN-E) and (OUT-E) respectively in [16],
depending on whether the origin in the plane lies ‘inside’ or ‘outside’ the convex hull of
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the ellipse E. It is then proved that the linear vector field L is of type (IN-E) if and only
if K(π) = 0. It ensues from this and from (3.24) that the Meziani invariant of L is equal
to ±1 if L is of type (IN-E) and to (div L)K(π) if L is of type (OUT-E). In [16] the value
∞ was assigned to the Meziani invariant of a linear vector field in the plane that is not
of principal type.

Theorem 3.21. Let L be a linear vector field in the plane which is locally solvable in
R2\ CritL. The following properties are equivalent:

(1) L is not locally solvable at the origin;

(2) L is essentially real (Definition 3.1) and not locally solvable at the origin (see
Theorem 3.8);

(3) the origin is an isolated critical point of L and the Meziani invariant of L at the
origin vanishes;

(4) L is of principal type (OUT-E) and div L = 0.

3.4. Quasi-elliptic vector fields

Back to a general (connected, orientable) surface M. More can be said when the
complex vector field L is elliptic in M\ CritL and of principal type at every ℘ ∈ CritL

(hence in M). The reason is that we have at our disposal the normal forms in [5] and
in [2]. We recall the classical definition: L is said to be elliptic in A if its symbol σ(L)
does not vanish at any point (x, ξ) ∈ T ∗M such that x ∈ A, ξ �= 0. This is equivalent
to the property that L and L̄ are linearly independent, i.e. L ∧ L̄ �= 0, at every point
of A: in a sense, ellipticity and essential ‘reality’ of a vector field (Definition 3.1) are
diametrically opposed properties.

We shall continue to reason in a local chart (U , x1, x2) centred at ℘, with associated
polar coordinates r, θ, where L has the expression (3.23). If we assume that L is of
principal type at ℘ there are positive constants ε and c◦ such that

r < ε =⇒ |σ	
1,2(cos θ, sin θ) + rG(r, θ)| � c◦. (3.26)

Using the notation

Φ(r, θ) =
Q(cos θ, sin θ) + rS(r, θ)

σ	
1,2(cos θ, sin θ) + rF (r, θ)

(3.27)

we see that the vector field

L	 = −(σ	
1,2(cos θ, sin θ) + rG(r, θ))−1L = ∂θ − rΦ(r, θ)∂r (3.28)

is well defined and smooth in the (cylindrical) open set Γε = {(r, θ) ∈ R × S1; r < ε}.
Below µ℘ stands for the Meziani invariant of L at ℘; its definition (3.25) can be restated
by the formula

µ℘ =
1
iπ

lim
ε→+0

∫ π−ε

0
Φ(0, θ) dθ. (3.29)

Using (3.28) we can say that L is elliptic in an open set A ⊂ U\{℘} if and only if
Im Φ �= 0 at every point of A.
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Proposition 3.22. The following properties are equivalent:

(1) L℘ is elliptic in T℘M\{0};

(2) ∀θ ∈ [0, 2π], Im(σ	
1,2Q̄)(cos θ, sin θ) �= 0.

In the notation of (3.28), property (2) can be restated by saying that ImΦ(0, θ) �= 0
for all θ ∈ [0, 2π].

Corollary 3.23. If the vector field L℘ is elliptic in T℘M\{0} then L℘ is of principal
type.

Proof. Recall that L℘ is of principal type if and only if σ	
1,2(cos θ, sin θ) �= 0 for every

θ ∈ [0, 2π]. �

Corollary 3.24. If the vector field L℘ is elliptic in T℘M\{0} then there is an open
neighbourhood V of ℘ such that L is elliptic in V\{℘}.

Proof. The hypothesis entails Im Φ(r, θ) �= 0 for small r > 0 and for all θ ∈ [0, 2π]. �

Proposition 3.25. If L℘ is elliptic in T℘M\{0} then Re µ℘ �= 0.

Proof. We know that L℘ is of principal type (Corollary 3.23). By (3.29) we have

Re µ℘ = −π−1 lim
ε→+0

∫ π−ε

0
Im Φ(0, θ) dθ. (3.30)

The claim, then, follows directly from the hypothesis that ImΦ(0, θ) �= 0 for all θ ∈
[0, 2π]. �

We now apply Theorem 1.3 and Lemma 4.2 from [2]. We select a ‘cylindrical’ set
Γε = {(r, θ) ∈ R+ × [0, 2π]; r < ε} such that (r, θ) ∈ Γε =⇒ (r cos θ, r sin θ) ∈ U .

Lemma 3.26. Let L be a C∞ vector field in M and let ℘ ∈ CritL; assume that L℘

is elliptic in T℘M\{0}. Then, for each integer N � 1 there is a CN diffeomorphism
V → V ′, with V and V ′ open neighbourhoods of {0} × S1 in Γε, that preserves {0} × S1

and transforms the vector field (3.23) into κ(r, θ)L◦, with both κ(r, θ) and κ(r, θ)−1

belonging to L∞ and
L◦ = ∂θ − iµ℘r∂r (3.31)

if µ℘ ∈ C\Q; and
L◦ = ∂θ − i(µ℘ + rmax(q,2)b(r, θ))r∂r (3.32)

if µ℘ = p/q (0 �= p ∈ Z and 1 � q ∈ Z+ coprime). In (3.32) rmax(q,2)b(r, θ) ∈ CN−1(V ′).

We are now in a position to prove the following.

Theorem 3.27. Let L be a smooth vector field in a surface M and let ℘ be a critical
point of L. If L℘ is elliptic in T℘M\{0} then there is an open neighbourhood N (℘) of ℘

such that to every f ∈ L2
loc(N (℘)) there is u ∈ L2

loc(N (℘)) verifying Lu = f in N (℘).
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Proof. It suffices to prove the following statement.

Let L◦ be the planar vector field given by (3.31) or by (3.32). Let ∆ε = {(r cos θ, r sin θ) ∈
R2; r < ε}. If ε > 0 is sufficiently small, to every f ∈ L2(∆ε) there is u ∈ L2(∆ε) such
that L◦u = f in ∆ε.

Indeed, in local polar coordinates centred at ℘ we have L = −κ(r, θ)L◦.
We denote by (·, ·) the Hermitian product and by ‖ · ‖ the norm in L2(R2).

Case I: µ℘ ∈ R\{0}.
We can assume that the expression of L◦ is (3.32) with the understanding that b ≡ 0

if µ℘ /∈ Q, or that µ℘ = p/q, with 0 �= p ∈ Z and 0 �= q ∈ Z+ coprime. With the notation
q′ = max(q, 2) we have

LT
◦ = −L◦ − div L◦

= −∂θ + i(µ℘ + rq′
b(r, θ))r∂r + 2i(µ℘ + rq′

ψ(r, θ)),

where ψ = 1
2 (q′ + 1)b + 1

2rbr. We have, for an arbitrary ϕ ∈ C∞
c (∆ε),

‖LT
◦ ϕ‖2 � ‖∂θϕ‖2 +

(
|µ℘| − εq′

sup
∆ε

|b|
)2

‖r∂rϕ‖2 + 4
(
|µ℘| − εq′

sup
∆ε

|ψ|
)2

‖ϕ‖2

+ 2 Re(i∂θϕ, (µ℘ + rq′
b(r, θ))r∂rϕ + 2(µ℘ + rq′

ψ(r, θ))ϕ)

+ 4 Re((µ℘ + rq′
b(r, θ))r∂rϕ, (µ℘ + rq′

ψ(r, θ))ϕ). (3.33)

Since q′ � 2 we can select ε > 0 sufficiently small to derive from (3.33) the estimate

‖LT
◦ ϕ‖2 � 3

4‖∂θϕ‖2 + 3
4µ2

℘‖r∂rϕ‖2 + 31
8 µ2

℘‖ϕ‖2

+ 2µ℘ Im(r∂rϕ + 2ϕ, ∂θϕ) + 4µ2
℘ Re(r∂rϕ, ϕ). (3.34)

We observe that

Re(r∂rϕ, ϕ) = −‖ϕ‖2,

2i Im(r∂rϕ, ∂θϕ) = (r∂rϕ, ∂θϕ) − (∂θϕ, r∂rϕ) = −(ϕ, ∂θϕ) = −i Im(ϕ, ∂θϕ),

}
(3.35)

whence, by (3.34),

‖LT
◦ ϕ‖2 � 3

4‖∂θϕ‖2 + 3
4µ2

℘‖r∂rϕ‖2 − |µ℘| |(ϕ, i∂θϕ)| − 1
8µ2

℘‖ϕ‖2. (3.36)

On the one hand, we get, by applying the Cauchy–Schwarz inequality,

|µ℘| |(ϕ, i∂θϕ)| � |µ℘| ‖ϕ‖ ‖∂θϕ‖ � 1
2 (‖∂θϕ‖2 + µ2

℘‖ϕ‖2).

On the other hand, by (3.35) we have ‖ϕ‖ � ‖r∂rϕ‖. Combining these estimates with
(3.35) yields

|µ℘|‖ϕ‖ � C‖LT
◦ ϕ‖2, (3.37)

where C =
√

8|µ℘|−1. A standard argument enables us to deduce from (3.37) the L2-
solvability of L◦ in ∆ε.
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Case II: Im µ℘ �= 0.
Here we have

LT
◦ = −∂θ + iµ℘r∂r + 2iµ℘,

whence

‖LT
◦ ϕ‖2 = ‖∂θϕ‖2 + |µ℘|2‖r∂rϕ + 2ϕ‖2 + 2 Re(iµ℘∂θϕ, r∂rϕ + 2ϕ).

We derive from this and from (3.35)

‖LT
◦ ϕ‖2 = ‖∂θϕ‖2+|µ℘|2‖r∂rϕ+2ϕ‖2+2(Re µ℘)(i∂θϕ, ϕ)−2(Im µ℘) Re(∂θϕ, r∂rϕ+2ϕ).

The fact that Re(∂θϕ, r∂rϕ + 2ϕ) = 0 implies

‖LT
◦ ϕ‖2 = ‖∂θϕ‖2 + |µ℘|2‖r∂rϕ + 2ϕ‖2 + 2(Re µ℘)(i∂θϕ, ϕ).

We also derive from (3.35):

‖r∂rϕ + 2ϕ‖2 = ‖r∂rϕ‖2 + 4‖ϕ‖2 + 4 Re(r∂rϕ, ϕ) = ‖r∂rϕ‖2 � ‖ϕ‖2,

whence

‖LT
◦ ϕ‖2 � ‖i∂θϕ + 2(Re µ℘)ϕ‖2 + (Im µ℘)2‖r∂rϕ + 2ϕ‖2 � (Im µ℘)2‖ϕ‖2.

The sought conclusion ensues. �

Remark 3.28. Contrary to what happens in M\ CritL there is no gain of regularity at
critical points. Example: a non-smooth solution of the equation z∂z̄h = 0 is z−1, while a
non-smooth solution of the equation z∂z̄h = 1 is e−2i arg z.

Theorem 3.27 shows that, on a surface, a class of complex vector fields with critical
points and good local solvability properties is the one now defined.

Definition 3.29. We say that the vector field L on the surface M (both L and M of
class C∞) is quasi-elliptic if L is elliptic in M\ CritL and L℘ is elliptic in T℘M\{0}
whatever ℘ ∈ CritL.

A corollary of Theorem 3.27 is that a quasi-elliptic vector field L is locally L2-solvable
everywhere in M.
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