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Circuit models of lossy coaxial shielded
cables connected to non-linear loads to
analyze radiated and conducted
susceptibilities
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This paper studies the variation effects of incident plane wave on shielded coaxial cables, using Branin’s method, which is
called the method of characteristics. That model can be directly used for the time- and frequency-domain analyses.
Moreover, it had the advantage of being used without the need of setting the preconditions of the charges applied to its
ends. This makes it easy to insert in circuit simulators, such as SPICE, SABER, and ESACAP. The results obtained under
ESACAP were remarkably similar to other results, which reinforce the validity of the model. Finally, we will discuss the
effects of the variation of the incident plane wave.
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I . I N T R O D U C T I O N

Shielding the cable is used to disallow the inevitable coupling
of unwanted radiated electromagnetic energy in electrical
devices. The interference of electromagnetic decrease
depends on two main factors, namely the design and the
grounding. Each application needs to consider noise fre-
quency parameters, the frequency of the signal, the length of
the cable and the termination methodology of the cable, in
some cases, does influence the final result. Improper use of
the cable shielding may aggravate the problem via increasing
the coupling of the noise. The coupling that exists in-and-out
of the shield is due the inadequate quality of the cables. Thus, a
prediction of the susceptibility of coaxial shielded cables is
required for the optimization of system design.

The prediction of these disturbances, which are usually
induced by external fields or lumped sources, is a classical
issue which can be dealt with in a variety of ways. Hence, it
can be treated in the frequency domain, and therefore the
induced responses of shielded cables are solved by using mul-
ticonductor transmission line (MTL) theory [1–3].

SPICE equivalent circuit models for the susceptibility ana-
lysis of shielded cables have drawn considerable attention due
to their ability to directly use the existing SPICE codes of
many components such as inductors, transistors, etc.
Orlandi and Antonini [4–6] developed some SPICE models
for the time- and frequency-domain analysis of bulk current
injection test on lossless shielded cables, where the injection
clamp was considered as a longitudinal lumped current
source. These models were utilized to concentrate on the
impacts of the shield’s grounding, geometrical, and electrical
asymmetries and the link’s length on the terminal voltages
presented in [7]. Some SPICE models were introduced in
[8] to investigate the conducted and radiated invulnerability
of shielded cables, the inverse Fourier transform, however, is
needed to get the transient results. Xie et al. used some
SPICE models to analyze the conducted and radiated suscep-
tibilities of lossless coaxial cables [9], However, the proposed
models rely on one assumption that the coaxial cables are loss-
less. After then, some lossless models have been proposed to
study the variation effects of the incident plane wave on a
MTL without shields [10]. These models can be employed dir-
ectly in the time and frequency domains.

In this paper, an equivalent circuit model for the analyses
of the radiated and conducted susceptibilities of lossy
coaxial cables. The model is valid in both time and frequency
domains with linear and non-linear loads and effectively
brought into the circuit test systems, such as SPICE and
ESACAP [11, 12]. The variation effect of incident plane
wave on coaxial cable is studied with the proposed model.
The method is validated by comparing results with other
methods.

Corresponding author:
Mohamed Saih
Email: saih.mohamed2@gmail.com

1Department of Physics, Laboratory of Electrical Systems and Telecommunications,
Faculty of Sciences and Technology, Cadi Ayyad University, Marrakesh, Morocco.
Phone: +212 675 92 77 25
2Department of Applied Physics, Laboratory for Systems Analysis and Information
Processing, Faculty of Sciences and Technology, Hassan 1er University, Settat,
Morocco

1489

International Journal of Microwave and Wireless Technologies, 2017, 9(7), 1489–1497. # Cambridge University Press and the European Microwave Association, 2017
doi:10.1017/S1759078716001446

https://doi.org/10.1017/S1759078716001446 Published online by Cambridge University Press

mailto:saih.mohamed2@gmail.com
https://doi.org/10.1017/S1759078716001446


I I . D E S C R I P T I O N O F S H I E L D E D
C O A X I A L C A B L E

A) Model of shielded coaxial cable
The Telegrapher’s equations for a shielded coaxial cable above
the ground, excited by an incident plane-wave electromag-
netic field, as shown in Fig. 2, can be described by:

Outer system (Shield)

∂Vs(z,v)
∂z

+ jvLs Is(z,v) + Rs Is(z,v) = Vf (z,v),
∂Is(z,v)

∂z
+ jvCs Vs(z,v) + Gs Vs(z,v) = If (z,v).

⎧⎪⎨
⎪⎩ (1)

Inner System (Wire)

∂Vw(z,v)
∂z

+ jvLw Iw(z,v) + Rw Iw(z,v) = Zt Is(z,v),
∂Iw(z,v)

∂z
+ jvC wVw(z,v) + GwVw(z,v) = 0,

⎧⎪⎨
⎪⎩

(2)

where Vs is the shield-to-ground voltage, Is is the current
flowing between the external shield and the ground, Vw is
the wire-to-shield voltage and Iw is the current of the wire.

Ls, Cs, Rs, and Gs are the per-unit-length (p.u.l) inductance,
capacitance, resistance, and conductance of the outer system,

respectively, while Lw, Cw, Rw, and Gw are the p.u.l inductance,
capacitance, resistance, and conductance matrices of the inner
system.

Zt is the transfer impedance, In case of braided shield, the
transfer impedance is given by the complex expression
[13, 14]

Zt = Zd + jvLt, (3)

where Zd is the diffusion term, and Lt is the inductance, which
accounts for the field penetrating through the braid apertures.
The expression of both Zd and Lt in terms of the braid weave
parameters can be found in [13, 14]. In our application, we
used a simplified expression [8] Zt ¼ Rt + jvLt, where Rt is
the constant p.u.l. transfer resistance of the shield. Figure 1
shows the comparison between the theoretical and asymptotic
results of the transfer impedance magnitude [3]

Vf(z,t) and If(z,t) are distributed sources that represent
external excitation of the transmission line. These source
terms can be written solely in terms of the incident electric
field using Faraday’s law. For coaxial shielded cable, shown
in Fig. 2, we have [15]:

Vf (z) = Einc
totalz (h, z) − Einc

totalz (0, z)
[ ]

− ∂

∂z

∫h
0

Einc
totalx (x, z)dx, (4)

If (z) = −jvCs

∫h
0

Einc
totalx (x, z)dx, (5)

where h is the height of the line, and Einc
totoalz

(h, z, t) and
Einc

totoalx
(h, z, t) are the horizontal and vertical components of

the total field (incident and reflected), respectively, as
appeared in Fig. 3.

When the line is situated over a ground plane, as shown in
Fig. 4, the total incident field is the sum of the incident field
and the ground-reflected field,

�Einc
total = �Einc + �Eref . (6)

Fig. 1. The comparison between the theoretical and asymptotic.

Fig. 2. A shielded cable over an infinite and perfectly conducting ground.
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These field components are as follows:

�Einc(x, y, z,v) = E0(ex ax
�+ ey ay

�

+ ez az
�)e−jbxxe−jbyye−jbz z, (7)

�Eref (x, y, z,v) = E0(ex ax
�− ey ay

�

− ez az
�)ejbxxe−jbyye−jbz z. (8)

The total field is defined by:

�Einc
total = �Einc + �Eref = Einc

totalx
�ax + Einc

totaly
�ay + Einc

totalz
�az, (9)

Einc
totalx = 2E0ex cos(bxx)e−jbyye−jbz z, (10)

Einc
totaly = −2jE0ey sin(bxx)e−jbyye−jbz z, (11)

Einc
totalz = −2jE0ez sin(bxx)e−jby ye−jbz z, (12)

where ex, ey, and ez are the components of the incident electric
field vector along the x, y, and z axes, and are given by:

ex = sin uE sin uP,

ey = −sin uE cos uP cosfP − cos uE sinfp,

ez = −sin uE cos uP sinfP + cos uE cosfP,

e2
x + e2

y + e2
z = 1.

⎧⎪⎪⎨
⎪⎪⎩ (13)

The angle uE characterizes the polarization sort. The polar-
ization is horizontal if uE is equivalent to zero and vertical if it
is equivalent to 908. The angle up decides the rise with respect
to the ground. This one is generally called the incident angle.
The angle fp gives the propagation direction relative to the
axis O as shown in Fig. 2.

The components of the phase constant along those coord-
inate axes are:

bx = −b cos uP,

by = −b sin uP cosfP,

bz = −b sin uP sinfP.

⎧⎨
⎩ (14)

The phase constant is related to the frequency and proper-
ties of the medium as:

b = v
				
m1

√ = v

v0

					
mr1r

√
, (15)

v0 =
1						
m010

√ , (16)

where v0 is the phase velocity in the space and the medium is
characterized by the permeability m ¼ m0mr and permittivity
1 ¼ 101r.

B) Equivalent circuit model for conducted
immunity: outer system
In the case of conducted immunity the terms If, Vf of equation
(1) are nulls. In order to solve equations (1) and (2) we use the
‘discrete line’ model. For this reason, the cable is discretized in
the form of cell; the length of each cell is Dz ¼ l/10.

The solution to equations (1) for each cell is as follow
[4–16]:

Vs(z0 + Dz) = wS11(Dz)Vs(z0) + wS12(Dz)Is(z0),
Is(z0 + Dz) = wS21(Dz)Vs(z0) + wS22(Dz)Is(z0),

{
(17)

where ws11(Dz), ws12(Dz), ws12(Dz) and ws22(Dz) are the ele-
ments of chain parameters given by,

wS11(Dz) = wS22(Dz) = cosh(gDz) = egDz + e−gDz

2
, (18.a)

wS12(Dz) = −sinh(gDz)Zcs = −Zcs
egDz − e−gDz

2
, (18.b)

wS21(Dz) = − sinh(gDz)Z−1
cs = −Z−1

cs
egDz − e−gDz

2
, (18.c)

Fig. 3. Definitions of the parameters characterizing the incident field as a uniform plane wave.

Fig. 4. Configuration with the presence of a perfectly conducting ground
plane.
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Zcs is the characteristic impedance of the outer system, using
the first term of the Taylor series expansion, we obtain

Zcs =
											
Rs + jLsv

jCsv

√
≈ Rc +

1
jCf v

,Rs ≪ Lsv, (19)

where

Rc =
			
Ls

Cs

√
, (20.a)

and

Cf =
2Ls

RsRc
. (20.b)

The characteristic impedance in this case, is presented as a
characteristic resistance Rc and capacity Cf, as shown in Fig. 5

With the same estimation, the constant of propagation gets
to be:

g = a+ jb = Rs

2Rc
+ jv

					
LsCs

√
. (21)

Substituting (18) into (17) gives

Vs(z0) − ZcsIs(z0) = e−gDz[Vs(z0 + Dz) − ZcsIs(z0 + Dz)]︸���������������������︷︷���������������������︸
Vr

,

Vs(z0 + Dz) + ZcsIs(z0 + Dz) = e−gDz[Vs(z0) + ZcsIs(z0) ] .︸���������������︷︷���������������︸
Vi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(22)

From equations (22) we can deduce the equivalent circuit
of Fig. 5

C) Equivalent circuit model for conducted
immunity: inner system
The solution to equation (2) for each cell is as follow:

Vw(z0 + Dz) = w11(Dz)Vw(z0) + w12(Dz)Iw(z0)
+ Zt Is(z0 + Dz),

Iw(z0 + Dz) = w21(Dz)Vw(z0) + w22(Dz)Iw(z0),

⎧⎨
⎩ (23)

where the frequency-domain chain parameters are

w11(Dz) = w22(Dz) = cosh(gwDz) = egwDz + e−gwDz

2
, (24.a)

w12(Dz) = −sinh(gwDz)Zcw = −Zcw
egwDz − e−gwDz

2
, (24.b)

w21(Dz) = − sinh(gwDz)Z−1
cw = −Z−1

cw
egwDz − e−gwDz

2
.

(24.c)

Here Zcw and gw are characteristic impedance of the inner
system and the constant of propagation, respectively. They are
given by

Zcw =
												
Rw + jLwv

jCwv

√
≈ Rcw + 1

jCfwv
,Rw ≪ Lwv, (25)

gw = aw + jbw = Rw

2Rcw
+ jv

						
LwCw

√
, (26)

where

Rcw =
				
Lw

Cw

√
, (27)

and

Cfw = 2Lw

RwRcw
. (28)

Substituting (24) into (23) give

Vw(z0) − ZcwIw(z0) =
e−gwDz[Vw(z0 + Dz) − ZcwIw(z0 + Dz) − ZtIs(z0 + Dz)]︸����������������������������������︷︷����������������������������������︸

Vrw

,

Vw(z0 + Dz) + ZcwIw(z0 + Dz) =
e−gwDz[Vw(z0) + ZcwIw(z0) ] + ZtIs(z0 + Dz)︸���������������������������︷︷���������������������������︸

Viw

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(29)

From equations (29) we can deduce the equivalent circuit
of Fig. 6

D) Equivalent circuit model for radiated
immunity of coaxial shielded cable
This is the same representation as the conducted immunity by
adding generators ‘forced’ of voltage and current VFT and IFT

representing the coupling between the shield and the incident
wave, as shown in Fig. 7. Equations (23) remain unchanged,
equation (17) becomes:

Vs(z0 + Dz) = ws11(Dz)Vs(z0) + ws12(Dz)Is(z0)
+VFT (z0 + Dz),

Is(z0 + Dz) = ws21(Dz)Vs(z0) + ws22(Dz)Is(z0)
+IFT (z0 + Dz),

⎧⎪⎪⎨
⎪⎪⎩ (30)

Fig. 5. Circuit model of each cell of the outer system: shield. Fig. 6. Circuit model of each cell of the inner system: wire.
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with

VFT (z0 + Dz) =
∫z0+Dz

z0

[
ws11(Dz + z0 − t)Vf (t)

+ ws12(Dz + z0 − t)If (t)
]

dt,

(31.a)

IFT (z0 + Dz) =
∫z0+Dz

z0

[
ws21(Dz + z0 − t)Vf (t)

+ ws22(Dz + z0 − t)If (t)
]

dt.

(31.b)

I I I . A P P L I C A T I O N R E S U L T S

A) Conducted susceptibility analysis
The analysis of the conducted immunity is carried out on the
coaxial cable over a ground plane as shown in Fig. 8. The
length L and the height h of the cable are 1 m and 1 cm,
respectively. The shield radius is rs ¼ 2.5 mm, the inner wire
radius is rw ¼ 0.25 mm, the internal dielectric constant is
1r ¼ 2.375. The values of the transfer resistance and induct-
ance are: RT ¼ 100 mV/m and LT ¼ 0.5 nH/m. The terminal
loads between the shield and the ground are RS1 ¼ 1G V

and RS2 ¼ 154.363 V, while the inner terminations are
matched Rw2 ¼ Rw1 ¼ 44.012 V.

The lumped current source adopted for the transient ana-
lysis is a clock wave of unit amplitude characterized by period
Tclk ¼ 20 ns, rise and fall time, and duty cycle t/Tclk ¼ 0.5.
Figure 9 shows the wire-to-shield voltage at the cable ends,
which agree well with the results from different methods.

The wire-to-shield voltage at the cable ends acquired by the
proposed model is appeared in Fig. 9 together with the out-
comes determined by the FDTD [17], where the “FDTD”
implies the finite-difference time-domain solution to the
transmission-line equations of the cable, and by the
compact circuit model proposed in [8]. They are in very
good agreement with each other.

B) Conducted susceptibility analysis with
non-linear loads
To protect an electrical signal transport device against external
electromagnetic disturbances, non-linear protection devices
(voltage li miters here) are always connected to the devices
in parallel. As mentioned above, the proposed model can
also be used when the loads are non-linear. The second con-
figuration considered is similar to the first one; a voltage
limiter is added to the right termination, which is composed
of two anti-parallel diodes, is considered and its effect is
studied, as shown in Fig. 10. Two cases have been simulated
by using the proposed model, no voltage limiters, and a
voltage limiter connected in parallel to the loads Rw2.
Figure 11 shows the induced voltage at the loads Rw2 for the
two cases.

From the results of Fig. 11, it is noticed that the voltage
limiter can effectively limit the magnitudes of the induced vol-
tages at the loads.

C) Conducted radiated susceptibility analysis
of coaxial cable
The analysis of the radiated immunity is carried out on the
coaxial cable as shown in Fig. 12. The shield radius Rsh and
the inner wire radius are 0.25 and 0.108 mm, respectively.
The cable’s characteristic impedance is Zc ¼ 50 V, and the
relative permittivity 1r of the internal dielectric filling is
1.77. The value of the transfer impedance is set to RT ¼

1 V/m and LT ¼ 0 H/m. The height h and the length L are
5.25 mm and 1 m, respectively. The internal conductor is
adapted with Za ¼ Zb ¼ 50 V. The external field oriented
along x- and propagating along z-axis (Ex–Kz) has amplitude
E ¼ 1 V/m.

The shield is short circuited on the right (Z2 ¼ 0.5 V). At
the output of the coaxial we recover the current into dBA,
which is matched with the canonic results published by
Smith [18], as shown in Fig. 13.

Fig. 7. Equivalent circuit model for radiated immunity of coaxial shielded
cable.

Fig. 8. (a) Geometrical cross-section of the coaxial cable. (b) Configuration of the simulation for conducted analysis.
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When the shield is open on the left (Z1 ¼ 1 GV) the lines
resonates at f ¼ n × (3 × 108 4/l), n ¼ 1,3,5,. . . ( f1 ¼

75 MHz, f2 ¼ 225 MHz, f3 ¼ 375 MHz, etc.), as shown in
Fig. 13. To drastically diminish the coupling to internal
wire, a two-side grounded configuration for the shield must
be utilized.

D) Radiated susceptibility analysis of coaxial
cable: variation effect of the outer loads and
incident plane wave
The setup utilized for the radiated susceptibility analysis is
appeared in Fig. 12. The height h and the length L are
5.25 mm and 1 m, separately. The shield radius Rsh and the
inner wire radius are 0.25 and 0.0716 mm, separately, and
the relative permittivity 1r of the inner filling dielectric is
2.25. The loads Za and Zb between the inner wire and the
shield at the two terminations are 50 V. The value of the
transfer impedance is set to RT ¼ 0.01 V/m and Lt ¼ 1 nH/
m. The incident field is modeled by the double exponential
pulse E(t) ¼ kE0 [exp (2At) 2 exp (2Bt)], where E0 ¼

50 kV/m, k ¼ 1.3, A ¼ 6 × 108s21, and B ¼ 4 × 107s21.
Figure 14 shows the induced voltages at the internal loads

R1 and R2 with the incident wave when the outer terminal
loads (Zout ¼ Z1 ¼ Z2) have different values. Four different
values of the outer loads have been considered. At the point
when the line is ended with short circuit at the far-end and
the near-end (Zout ¼ Z1 ¼ Z2 ¼ 0 V), the induced voltages
are largest. However, this is the most common case in reality.

The shield configuration with both sides is matched (Zc ¼

Z1 ¼ Z2 ¼ 244.5 V), the induced voltages are not the smallest

Fig. 9. Voltage responses of the inner loads in the transient analysis obtained by: (a) the proposed model and (b) from different methods [8].

Fig. 10. Configuration of coaxial shielded cables with four diodes loaded at its
far-end.

Fig. 11. The voltage responses at the cable end in the transient analysis in
presence and in absence of the diode.

Fig. 12. (a) Geometrical cross-section of the coaxial cable. (b) Configuration of the simulation for radiated analysis.
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but decay most quickly. The other values of the outer termina-
tors result in reflections caused by an impedance mismatch at
the ends of the outer system. Even though the inner
transmission-line system is matched at both ends, the

reflected voltage and current of the outer system can couple
into the inner system and generate interferences.

Figure 15 shows the transient voltage responses at the
internal loads R1 and R2 obtained by the proposed model

Fig. 13. Currents induced on shielded cable in dBA excited by uniform Ex- Kz, obtained by (a) the proposed model and (b) analytical method (normalized to
Zt ETot

z ) [17].

Fig. 14. The induced voltages at the inner terminal loads as the functions of the outer terminal loads Zout (a) The induced voltage of Za. (b) The induced voltage
of Zb.

Fig. 15. The induced voltages at the inner terminal loads as the functions of the angle fp (up ¼ uE ¼ 908).

circuit models of lossy coaxial shielded cables to analyze radiated and conducted susceptibilities 1495

https://doi.org/10.1017/S1759078716001446 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078716001446


due to the external electromagnetic fields when the outer ter-
mination is matched and the incident wave, corresponding to
fp ¼ 08, &hbox;fp ¼ 2308, fp ¼ 2608 and fp ¼ 2908, with
uE ¼ 2908and the polarization angle up ¼ 2908, It is obvious
that the induced voltage changes with decreasing the value of
fp. The induced voltage reaches its lowest among two cases of
fp ¼ 08 and fp ¼ 2308. This is reasonable because fp ¼ 08
means that the incident electric field is vertical to the coaxial
cable, which results in the minimum of distributed voltage
source along the shield, and then induce the minimal voltage.

I V . C O N C L U S I O N

In this paper, we introduced an efficient coaxial shielded
cables model, for conducted and radiated coupling, developed
for circuit applications. Its advantage then makes it possible to
study the frequency- and time domains with linear and non-
linear loads, respectively. A detailed study of coaxial shielded
cables has been carried out. The suggested technique is veri-
fied by comparing the circuit simulator results with the solu-
tions derived by the other methods have revealed a satisfactory
accuracy. The responses of the configuration to the external
electromagnetic fields changing with the outer termination
have been studied with the proposed model. The results
show that the induced voltages are the largest when the shield-
ing enclosure is connected to the ground directly, which is the
most common case actually, and adding a resistance between
the enclosure and the ground can reduce the induced voltages
effectively. The analysis also shows that the induced voltage
changes with decreasing the value of fp. The induced
voltage reaches its lowest when fp ¼ 08. It is easy to extend
the models to coaxial shield cables excited by a non-uniform
incident wave, which require totally a discretization. This
inquiry will be examined in a further study.
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