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Abstract. In the literature, there have been several methods and definitions for working out
whether two theories are “equivalent” (essentially the same) or not. In this article, we do something
subtler. We provide a means to measure distances (and explore connections) between formal theories.
We introduce two natural notions for such distances. The first one is that of axiomatic distance, but
we argue that it might be of limited interest. The more interesting and widely applicable notion is
that of conceptual distance which measures the minimum number of concepts that distinguish two
theories. For instance, we use conceptual distance to show that relativistic and classical kinematics
are distinguished by one concept only.

§1. Introduction. One very important topic in the philosophy of science is how dif-
ferent scientific theories can be compared to each other, especially in the case of competing
theories. The first criterion for theory comparison is empirical adequacy, but this is not, at
all times and in all circumstances, simple and straightforward (see, e.g., [12]). So, when
we have competing theories, each empirically adequate, we look elsewhere to make sense
of the present state of science. For this reason, investigating the relations between theories,
independent of their relation to reality, becomes also very important.

So far this investigation has been made mainly in one direction: whether two given
theories have the same essential content. There have been several attempts to capture the
concept of equivalence between theories (henceforth: “theory-equivalence”), e.g., logical
equivalence, definitional equivalence, and categorical equivalence. When we say that two
theories are not equivalent, we mean that there is at least one difference between them and
that this difference can be formulated from the point of view from which one decides to
explore the equivalence between the theories in question.
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634 MOHAMED KHALED ET AL.

In the present article, we propose a new direction in the analysis of the connections
between formal theories. Our proposal aims to provide a qualitative and quantitative study
of the differences between theories. In order to investigate how far two theories are from
each other, we introduce some notions for the measure of distances between theories, such
distances count the minimum number of differences distinguishing two given theories.
We do this by measuring the degree of nonequivalence of two nonequivalent theories
(according to any chosen definition of theory-equivalence).

We focus on formal theories that are formulated in any of the following logical systems:
sentential logic, ordinary first-order logic (FOL), finite variables fragments of FOL and/or
infinitary versions of FOL. We develop, discuss and compare some notions for distances
between theories.

The idea is very simple: based on a symmetric relation capturing a notion of minimal
change, we introduce a general way to define a distance on any class of objects (not just
theories) equipped with an equivalence relation. The idea is a generalization of the distance
between any two nodes in the same graph, in graph theory. Later, we give particular
examples when the given class is a class of theories and the equivalence relation is a fixed
notion of theory-equivalence.

The first particular example is that of logical equivalence. As a measure for the degree
of logical nonequivalence, we introduce the concept of axiomatic distance. The idea is to
count the minimum number of axioms that are needed to be added or “removed” to get from
one theory to the other.1 We prove that the axiomatic distance between theories formulated
in the same language must be ≤3. See Proposition 3.11 on Page 642. Although, counting
axioms separating theories seems to be a natural suggestion for defining the desired metric,
this result gives the sense that the measure of this axiomatic distance is of limited use.

Then we turn to definitional equivalence. Two theories are definitionally equivalent if
they cannot be distinguished by a concept (a formula defining some notion). As a measure
for the degree of definitional nonequivalence, we define conceptual distance. This distance
counts the minimum number of (nondefinable) concepts that separate two theories. We
find that this distance is of special interest in the study of logic. We give examples and
we count conceptual distance between some specific theories, see, e.g., Theorem 4.3. We
also explore a connection between conceptual distance and spectrum of theories which is
a central topic in model theory, cf., Theorem 4.9.

Such quantitative study might be useful, and it may provide new insights in comparing
formal theories. Given a metric on a class of formal theories formulated in a fixed logical
system, some classifications for the theories in this class can be achieved. For example,
a classification can be achieved by measuring the axiomatic distance from the empty
theory, see Theorem 3.13 herein. For a classification using conceptual distance, we refer
the reader to Theorem 4.9 on page 646. The task now is to find the relationship between the
properties of theories and the categories of these classifications, and also to set boundary
lines between these categories. So, when a new theory is constructed, its properties can be
estimated, given its category in a classification.

With definitions and metrics on distance developed here, we have maps of the network
of logical theories. When we draw such maps of networks, the topology may suggest very
interesting and fruitful questions. For instance, if there is a distance other than zero or

1 By “removing an axiom” here we only mean the trivial converse of adding an axiom in the
following sense: T is a theory resulting from “removing” one axiom from T ′ if T ′ can be reached
from T by adding one axiom.
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one, then is there already a known theory in between? Or if not, we can ask what are the
limitative properties of that theory and what is its philosophical significance? By engaging
such questions, we see the “edge” of the limitative results, and by examining this edge,
we understand with precision the relationship between meta-logical limitative results and
physical phenomena.

Furthermore, we investigate the possible application of conceptual distance in the logical
foundation of physical theories in ordinary first-order logic. We prove that conceptual
distance between classical and relativistic kinematics is equal to one. In other words,
only one concept distinguishes classical and relativistic kinematics: the existence of a
class of observers who are at absolute rest. This is indeed an interesting result in its own
right, not only for logicians but also for physicists. Such a result opens several similar
questions about how many concepts differ two theories in physics whose phenomena can
be described in FOL and also questions about the precise nature of the differentiating
concepts.

In the philosophy of physics, this might be important because, on the one hand, it is
clear that we are not presently converging towards one unified theory of physics in the
sense of converging to one set of laws from which all the phenomena of physics can be
derived. On the other hand, we can give a logical foundation for several physical theories:
Newtonian mechanics, relativity theories and some parts of quantum theory. Given these
logical representations, we would like to know the exact logical and conceptual relationship
between physical theories. If we have a complete overview of this, then we can form an
impression of how far we are from such a philosophical dream—the dream of the unity
of physics. Or, we can adjust our hopes and expectations, and rest content with a unity
of science at a more general level: as a network of logical theories with precise relations
between them. For some philosophers, this is a radical reconception as to what “the unity of
physics” consists in. It is worth exploring this conception, since it more accurately mirrors
the actual state of our various physical theories and their relations to each other.

1.1. The algebraic idea behind conceptual distance. By a concept, we understand a
definable notion, no matter how many different ways one can define it. In other words, a
concept is a maximal set of logically equivalent formulas. Our understanding here comes
from the theory of cylindric algebras. These algebras were defined by A. Tarski around
1947 to capture the intrinsic algebraic side of FOL. Cylindric algebras are often introduced
as algebras of different concepts of the corresponding theories, see, e.g., [19, sec. 4.3]
and [6].

Now, we want to define a distance counting the minimum number of concepts that
distinguish two theories T and T ′. It is very natural to explain the idea within the framework
of cylindric algebras, since these are concept algebras and we want to count concepts.
Assume that A and A′ are the cylindric algebras corresponding to theories T and T ′,
respectively.

If A is isomorphic to A′, then the two theories are definitionally equivalent [19, Theorem
4.3.43], and so the conceptual distance between them is zero. Now, assume that A and A′
are not isomorphic. For simplicity, let us assume that A is embeddable into A′. Thus, the
minimum number of concepts distinguishing the two theories is equal to the minimum
number of elements of A′ that we can add to A (more precisely, to one of its copies inside
A′) to generate the algebra A′, see Figure 1.

In the case of Figure 1, we can say that we need one step to move from T to T ′. Now,
the minimal distance between two theories can be defined as the minimum number of
steps needed to move from one theory to the other. Our definition of conceptual distance
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Fig. 1. The distance between A and A′ is one if 〈B, a〉 ∼= A′ and A ∼= B �∼= A′.

(Definitions 4.1 and 4.2) illustrates this idea, but in terms of logic instead of algebras. In
a future algebra-oriented article, we plan to discuss in detail the correspondence between
our logical definition herein and the above algebraic idea. We note that it happens quite
often that one obtains interesting results in mathematical logic by using algebraic tools,
e.g., [17], [7], [1], [9], and [22].

We start with a quick review for the notions of logic that we are going to use. We assume
familiarity with the basic notions of set theory. For instance, what is a set, a class, a relation,
etc. The only difference is that in several places in this article, we decided not to distinguish
different kinds of infinities. Therefore, together with the standard notion of cardinality, we
are going to speak about the size of set X, defined as follows:

||X|| def=
{

k X is finite and has exactly k-many elements,

∞ if X is an infinite set.

We also make use of von Neumann ordinals. For example, ω is the smallest infinite ordinal,
sometimes we denote ω by N to indicate that it is the set of natural numbers (nonnegative
integers).

§2. Notions of logic. In the course of this article, let α and β ≤ α + 1 be two fixed
ordinals. We consider a natural generalisation of ordinary first-order logic, we denote it by
Lβα , which is inspired from the definitions and the discussions in [19, sec. 4.3]. Roughly,
the formulas of Lβα uses a fixed set of individual variables {vi : i ∈ α} and relation symbols
of rank strictly less than β. For simplicity, we assume that our languages do not contain
any function symbols and/or constant symbols.

In particular, L1
0 is sentential (propositional) logic, while Lωω is ordinary first-order logic.

The so-called finite variable fragments of first-order logic are the logics Ln+1
n , for finite

ordinals n. When α and β are infinite, Lβα is called infinitary logic. Throughout, since α
and β are fixed, languages, theories, etc., are understood to be languages for Lβα , theories
in Lβα , etc.

2.1. The syntax of Lβα . A language L for Lβα is a tuple (R, rank), where R is a set of
relation symbols and rank : R → β is a function assigns for each relation symbol R ∈ R
a rank rank(R). Relation symbols P with rank rank(P) = 0 are called sentential constants.

From now on, and for simplicity, we will use L for a language and its set of relation
symbols, and the rank of any relation symbol R ∈L will be denoted by rank(R). A language

for Lβα can be also considered to be a language for Lβ
′
α , for any ordinal β ′ with β ≤ β ′ ≤

α + 1.
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To construct the formulas of a language L, we also need some other symbols: equality
“=”2, brackets “(” and “),” conjunction “∧,” negation “¬,” and the existential quantifier
“∃”. We also use the necessary symbols to write sequences of variables (vim : m ∈ I), for
any indexing set I ⊆ α. We assume that all of these symbols are part of the logic Lβα itself.

The set of formulas Fm of L is the smallest set that satisfies:

(a) Fm contains each basic formula of L, where the basic formulas are the following
two types of formulas:

(i) The equalities vi = vj, for any i, j ∈ α.

(ii) R(vim : m < rank(R)), for any relation symbol R.

(b) Fm contains (ϕ ∧ ψ), (¬ϕ) and (∃viϕ), for each ϕ,ψ ∈ Fm.

We use the usual conventions for dropping brackets in FOL, e.g., we may drop the outside
brackets of a formula. We also use the following abbreviations:

• If P is a sentential constant, then we just write P instead of P().
• If R is a relation symbol of finite positive rank, say k, then we write R(vi0 , . . . , vik−1)

instead of R(vim : m < k).
• We use disjunction, implication, equivalence and universal quantifier as:

ϕ ∨ ψ def= ¬(¬ϕ ∧ ¬ψ) ϕ → ψ
def= ¬(ϕ ∧ ¬ψ)

ϕ ↔ ψ
def= (ϕ → ψ) ∧ (ψ → ϕ) ∀vi ϕ

def= ¬(∃vi ¬ϕ).
• We also use grouped conjunction and disjunction: Empty disjunction is defined to

be ϕ ∧ ¬ϕ and empty conjunction is defined to be ϕ ∨ ¬ϕ (for any arbitrary but
fixed formula ϕ ∈ Fm).3 Let ϕ0, . . . , ϕm ∈ Fm, then∨

0≤i≤m

ϕi
def= (

. . . (ϕ0 ∨ ϕ1) ∨ · · · ϕm
)

and
∧

0≤i≤m

ϕi
def= (

. . . (ϕ0 ∧ ϕ1) · · · ∧ ϕm
)
.

Let us note that our choice of restricted vocabulary excludes some logics, such as intuition-
istic logic, where ∨ is not definable from ∧ and ¬. Moreover, our design herein does not
allow us to recover the logic Lβα from a given language L, but this is not important for us,
since the logic Lβα is fixed throughout the article.

2.2. The semantics of Lβα . A model M for language L is a nonempty set M enriched
with operations RM ⊆ Mrank(R), for each R ∈ L (for a sentential constant P, PM ⊆ M0 =
{∅}).4 An assignment in M is a function τ that assigns for each variable an element of
the set M. Let ϕ ∈ Fm be any formula. The satisfiability relation M, τ |� ϕ is defined
recursively as follows:

2 It is also important to note that the equality symbol is always assumed, even if β ≤ 2. Therefore,
the set of formulas is not empty unless L = ∅ and α = 0.

3 These are nondeterministic definitions; ∃v0(v0 �= v0) for the empty disjunction and ∃v0(v0 = v0)
for the empty conjunction could be better ones, but these deterministic definitions require the
assumption α ≥ 1.

4 So the meaning PM of a sentential constant P can be either true (T = {∅}) or false (F = ∅).
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M, τ |� R(vim : m < rank(R)) iff (τ (vim) : m < rank(R)) ∈ RM, 5

M, τ |� vi = vj iff τ (vi) = τ (vj),

M, τ |� ϕ ∧ ψ iff M, τ |� ϕ and M, τ |� ψ,

M, τ |� ¬ϕ iff M, τ �|� ϕ,

M, τ |� ∃vi ϕ iff there is a ∈ M such that M, τ [vi �→ a] |� ϕ,

where τ [vi �→ a] is the assignment which agrees with τ on every variable except τ [vi �→
a](vi) = a. The cardinality of M is defined to be the cardinality of M. A formula ϕ is
said to be true in M, in symbols M |� ϕ, iff M, τ |� ϕ, for every assignment τ in M. A
formula ϕ is said to be a tautology iff it is true in every model for L. The theory of M is
defined as

Th(M)
def= {ϕ ∈ Fm : M |� ϕ}.

We say that two models M and N for language L are isomorphic iff there is a bijection
f : M → N between their underlying sets that respects the meaning of the relation symbols,
i.e., for each R ∈ L,

(ai : i < rank(R)) ∈ RM ⇐⇒ (f (ai) : i < rank(R)) ∈ RN.

2.3. Theories in the logic Lβα .

DEFINITION 2.1. A theory T is a pair (L,A), where L is a language and A ⊆ Fm is a
subset of its set of formulas.

We use the same superscripts and subscripts for theories and their corresponding languages.
For example, if we write T ′ is a theory, then we understand that T ′ is a theory of language
L′ whose set of formulas is Fm′. For simplicity, we will loosely assume that a theory T is
a set of formulas, but we know that a language is given in the background. In this sense,
we may assume that the same theory can be given in different languages, or in different
logics.

A model for theory T is a model for L in which every ψ ∈ T is true. We say that theory
T is consistent iff there is at least one model for T .

DEFINITION 2.2. Let T be a theory and let κ be any cardinal. The spectrum of T, in
symbols I(T, κ), is the number of its different models (up to isomorphism) of cardinality
κ . This number is defined to be ∞ if T has infinitely many nonisomorphic models of
cardinality κ .

We say that a formula ϕ is a consequence of theory T , in symbols T |� ϕ, iff ϕ is true
in every model for T . With this definition, one may have: if T |� ϕ, then T |� ∀viϕ, but
one does not have: if T ∪ {ϕ} |� ψ then T |� ϕ → ψ . Kit Fine [14, p. 65] calls such an
approach “truth to truth” rather than “case to case.” The set of consequences of theory T is
defined as follows:

Cn(T) def= {ϕ ∈ Fm : T |� ϕ}.
DEFINITION 2.3. Two theories T1 and T2 are called logically equivalent, in symbols T1 ≡
T2, iff they have the same consequences, i.e., Cn(T1) = Cn(T2).

5 If rank(P) is 0, then (τ (vim ) : m < rank(P)) is the empty sequence ∅. Hence M, τ |� P iff PM

is true.
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2.4. More notions for theory-equivalence. A translation of language L1 into lan-
guage L2 is a map tr : Fm1 → Fm2 such that the following are true for every ϕ,ψ ∈ Fm
and every vi, vj.

• The free variables of tr(ϕ) are among the free variables of ϕ.
• tr(vi = vj) is vi = vj.
• tr commutes with the Boolean connectives:

tr(¬ϕ) = ¬tr(ϕ) and tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ).

• Finally, tr(∃vi ϕ) = ∃vi tr(ϕ).6

DEFINITION 2.4. Suppose that T1 and T2 are theories in languages L1 and L2, respec-
tively, and tr is a translation of L1 into L2. The translation tr is said to be an interpretation
of T1 into T2 iff it maps consequences of T1 into consequences of T2, i.e., for each formula
ϕ ∈ Fm1,

T1 |� ϕ �⇒ T2 |� tr(ϕ).

(a) An interpretation tr of T1 into T2 is called a faithful interpretation of T1 into T2 iff
for each formula ϕ ∈ Fm1,

T1 |� ϕ ⇐⇒ T2 |� tr(ϕ).

(b) An interpretation tr12 of T1 into T2 is called a definitional equivalence between T1
and T2 iff there is an interpretation tr21 of T2 into T1 such that

• T1 |� tr21
(
tr12(ϕ)

) ↔ ϕ,
• T2 |� tr12

(
tr21(ψ)

) ↔ ψ .

for every ϕ ∈ Fm1 andψ ∈ Fm2. In this case, tr21 is also a definitional equivalence.

DEFINITION 2.5. Two theories T1 and T2 are said to be definitionally equivalent, in
symbols T1 � T2, iff there is a definitional equivalence between them.

In the literature, there are several ways to define definitional equivalence, e.g., [3], [10],
[21], and [29]. Here, we use a variant of the definition in [19, Definition 4.3.42 and Theo-
rem 4.3.43]. Our notion here for definitional equivalence was shown to be an equivalence
relation [26], this will play a role in the following sections. For a discussion on the different
definitions of definitional equivalence, see [26], and we refer to [31] for a category theory
based discussion.

REMARK 2.6. Let T1 and T2 be two theories and suppose that tr12 : Fm1 → Fm2 is a
definitional equivalence between T1 and T2, then tr12 is also a faithful interpretation.

DEFINITION 2.7. Let T1 and T2 be two theories. We say that T2 is a conservative extension
of T1, in symbols T1 � T2, iff Fm1 ⊆ Fm2 and, for all ϕ ∈ Fm1, T2 |� ϕ ⇐⇒ T1 |� ϕ.

6 In the case of ordinary first-order logic (when α = β = ω), to define a translation tr : Fm1 →
Fm2, it suffices to define tr on the basic formulas in Fm1 of the form R(v0, . . . , vm−1). Then,
using Tarski’s substitution observation, we can define

tr(R(vi0 , . . . , vim−1)) = ∃y0(y0 = vi0 ∧ · · · ∧ ∃ym−1(ym−1 = vim−1∧
∃v0(v0 = y0 ∧ · · · ∧ ∃vm−1(vm−1 = ym−1 ∧ tr(R(v0, . . . , vm−1)))))),

where yi = vl+i and l is the maximum of 0, . . . ,m − 1, i0, . . . , im−1. This can be extended in a
unique way to a translation that covers the whole Fm1.
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We note that T1 � T2 iff the identity translation id : Fm1 → Fm2 is a faithful
interpretation. It is also worth mentioning that T1 � T2 ⇐⇒ T1 ≡ Cn(T2) ∩ Fm1.

§3. Cluster networks & step distance. Now, we introduce a general way of defining
a distance on any given class X. We note that our target is to define distances on the class
of all theories, thus we need to work with classes which are not necessarily sets.7

DEFINITION 3.1. By a cluster (X,E) we mean a nonempty class X equipped with an
equivalence relation E.

We are interested in distances according to which some different objects are indistin-
guishable. Indeed, it is natural to treat equivalent theories as if they were of distance 0 from
each other. As we mentioned in the introduction, there are several notions of equivalence
between theories. Such equivalence thus can be represented in the cluster of theories by
the relation E.

DEFINITION 3.2. A cluster network is a triple (X,E, S), where (X,E) is a cluster and S is
a symmetric relation on X.

Given a cluster network (X,E, S). A path leading from x ∈ X to x′ ∈ X in (X,E, S)
is a finite sequence b1, . . . , bm of 0’s and 1’s such that there is a sequence x0, . . . , xm of
members of X with x0 = x, xm = x′ and, for each 1 ≤ i ≤ m,

bi = 0 �⇒ xi−1 E xi and bi = 1 �⇒ xi−1 S xi.

The length of this path is defined to be
∑m

i=1 bi. Two objects x, x′ ∈ X are connected in
(X,E, S) iff there is a path leading from one of them to the other in (X,E, S).

DEFINITION 3.3. Let X = (X,E, S) be a cluster network. The step distance on X is the
function dX : X × X → N ∪ {∞} defined as follows. For each x, x′ ∈ X:

• If x and x′ are not connected in (X,E, S), then dX (x, x′) def= ∞.
• If x and x′ are connected in (X,E, S), then

dX (x, x′) def= min{k ∈ N : ∃ a path leading from x to x′ whose length is k}.
The equivalence relation E represents pairs that cannot be distinguished by the step

distance, whereas the symmetric relation S represents the pairs of objects that are (at most)
one step away from each other. The step distance then counts the minimum number of
steps needed to reach an object starting from another one.

EXAMPLE 3.4. Let X be any class, let E be the identity relation on X, and let S = X×X.
Then, X = (X,E, S) is a cluster network and its step distance is the following discrete
distance:

dX (x, x′) =
{

0 if x = x′,
1 if x �= x′.

THEOREM 3.5. Let X = (X,E, S) be a cluster network and let dX : X × X → N ∪ {∞}
be the step distance on X . The following are true for each x1, x2, x3 ∈ X:

(a) dX (x1, x2) ≥ 0, and dX (x1, x2) = 0 ⇐⇒ x1 E x2.

7 All definitions in this section can be formulated within von Neumann–Bernays–Gödel set theory.
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(b) dX (x1, x2) = dX (x2, x1).

(c) dX (x1, x2) ≤ dX (x1, x3)+ dX (x3, x2),
(where addition with ∞ is defined in the natural way).

(d) If d(x1, x2) = n and m + k = n, then there is a y ∈ X such that d(x1, y) = m and
d(y, x2) = k.

Proof. Straightforward. �

REMARK 3.6. Let X = (X,E, S) and X ′ = (X′,E′, S′) be cluster networks such that
X ⊆ X′, E ⊆ E′, and S ⊆ S′. Since every path in X is contained in X ′, it is easy to see that
dX (x1, x2) ≥ dX ′(x1, x2) for each x1, x2 ∈ X.

Now, we use the above general settings to define distances between theories. Before we
start, we need the following convention: suppose that we are given two theories T and T ′
of the same language. We write T ↽ T ′ iff there is ϕ ∈ Fm such that T ∪ {ϕ} ≡ T ′. We
also write T � T ′ iff either T ↽ T ′ or T ′ ↽ T . Conventionally, we call the relation ↽
axiom adding, whereas the converse relation ⇀ is called axiom removal. It is easy to see
that the following are true for any theories T1, T2 and T3:

T1 ↽ T2 & T2 ↽ T3 �⇒ T1 ↽ T3,

T1 ≡ T2 & T2 ↽ T3 �⇒ T1 ↽ T3,

T1 ↽ T2 & T2 ≡ T3 �⇒ T1 ↽ T3.

DEFINITION 3.7. Let T be a class of some theories (in the logic Lβα) and consider the
cluster network (T ,≡,�). We call the step distance on this cluster network axiomatic
distance on T . This step distance will be denoted by AdT .

Let T be a class of theories. We note the following: If there is a path between T, T ′ ∈ T
in the cluster network (T ,≡,�), then both T and T ′ must be formulated in the same lan-
guage. In other words, if T, T ′ are formulated on different languages, then AdT (T, T ′) =
∞. This is because, if T ≡ T ′ or T � T ′, then L = L′.

EXAMPLE 3.8. Suppose that α ≥ 1 or β ≥ 1. Let T be a class of theories. Let
T, T⊥ ∈ T be two theories formulated in the same language. Suppose that T is consistent
while T⊥ is inconsistent. Then, adding a contradiction to T ensures that AdT (T, T⊥) = 1.
Consequently, if T, T ′ ∈ T are formulated on the same language and an inconsistent
theory T⊥ of that language is in T , then AdT (T, T ′) ≤ 2 since we have T ⇀ T⊥ ↽ T ′.

EXAMPLE 3.9. Let T be a class of theories. Let T, ∅L ∈ T be two theories formulated
in the same language L such that ∅L is the empty theory of L (i.e., empty set of formulas).
Suppose that T is finitely axiomatizable, then we have either

AdT (T, ∅L) = 1 or T ≡ ∅L.
Thus, in the class of all theories, the axiomatic distance between any two finitely axiom-

atizable theories of the same language is ≤2.

EXAMPLE 3.10. Suppose that α ≥ 3 and β ≥ 3. Let T be the set of all consistent
theories of binary relations, let TP be the theory of strict partial orders, and let TE be
the theory of equivalence relations. Then AdT (TP, TE) = 2. Clearly, AdT (TP, TE) ≥ 2
because none of TP or TE implies the other, and, by Example 3.9 and Theorem 3.5 (c),
AdT (TP, TE) ≤ AdT (TP, ∅)+ AdT (∅, TE) = 2.
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All these examples suggest that the axiomatic distance, in most of the cases, has re-
stricted measures. Let CONβα be the class of all consistent theories in Lβα . For simplicity,
we will denote the axiomatic distance in the class CONβα by Ad instead of AdCONβα

.

PROPOSITION 3.11. Let T, T ′ ∈ CONβα be two theories with the same language L.
Then the axiomatic distance Ad(T, T ′) ≤ 3. Moreover, if T �≡ T ′ and they are complete,
then Ad(T, T ′) = 2.

Proof. Let T, T ′ ∈ CONβα be two theories with the same language L. If T ≡ T ′, then
Ad(T, T ′) = 0. Otherwise, and without loss of generality, we may assume that there is a
formula ϕ such that T �|� ϕ and T ′ |� ϕ. We note that, since T �|� ϕ, the theory T ∪ {¬ϕ}
is consistent. We define a theory W on the language L as follows:

W
def= {¬ϕ → ψ : ψ ∈ T} ∪ {ϕ → χ : χ ∈ T ′}.

Theory W ∪ {¬ϕ} is consistent since T ∪ {¬ϕ} is so. Since T ′ |� ϕ, we find that
W ∪ {ϕ} ≡ T ′. We now have:

T � T ∪ {¬ϕ} ≡ W ∪ {¬ϕ} � W � W ∪ {ϕ} ≡ T ′.

Therefore, the axiomatic distance between T and T ′ in CONβα is at most 3. Now, suppose
that theories T and T ′ are complete and T �≡ T ′, then their axiomatic distance cannot be ≤1.
Let ϕ be as in our previous argument. By the completeness of T , it follows that T |� ¬ϕ.
Consequently,

T ≡ W ∪ {¬ϕ} � W � W ∪ {ϕ} ≡ T ′,
which implies that the axiomatic distance between T and T ′ in CONβα is precisely 2. �

COROLLARY 3.12. Let T, T ′ ∈ CONβα . Then,

Ad(T, T ′) = ∞ ⇐⇒ T and T ′ are formulated in different langauges.

THEOREM 3.13. Fix a language L for the logic Lβα . Let T ∈ CONβα be any theory on
language L and let ∅L be the empty theory on L. The following are true:

1. Ad(∅L, T) = 0 iff T is trivial (T ≡ ∅L).

2. Ad(∅L, T) = 1 iff T is finitely axiomatizable and nontrivial.

3. Ad(∅L, T) = 2 iff T is not finitely axiomatizable, but has a finitely axiomatizable
consistent extension.

4. Ad(∅L, T) = 3 iff T has no finitely axiomatizable consistent extension.

Proof. The proof of this is easy (given that the last item is the remaining case of the
other items by the result in Proposition 3.11). �

EXAMPLE 3.14. Let PA stand for Peano Arithmetic with its usual axioms in the relation
language for arithmetic L. Then Ad(∅L,PA) = 3, because PA has no finitely axiomatiz-
able consistent extension, see the Ryll-Nardzewski Theorem [31].

The above results may point to the fact that the measure of distance Ad is of limited
use; however, Theorem 3.13 suggests that Ad does capture a reasonably natural notion. It
might be true that the distance defined in this way does not give us much information on
the nature of the axioms separating two theories, adding any axiom is considered to be one
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step. One can overcome this problem by giving weights to the axiom adding steps, e.g.,
considering the addition of certain kind of axioms as two or more steps.

§4. Conceptual distance. Now, we introduce the notion of conceptual distance by a
careful translation of the algebraic idea, described in the introduction, in terms of logic.

DEFINITION 4.1. We say that theory T ′ is a one-concept-extension of theory T and we
write T � T ′ iff L′ = L ∪ {R}, for some relation symbol R, and T � T ′ (i.e., T ′ is a
conservative extension of T). We also write T � T ′ iff T � T ′ or T ′ � T, and in this
case we say that T and T ′ are separated by at most one concept.8

DEFINITION 4.2. Recall that � denotes definitional equivalence, see Definition 2.5. Let
T be a class of theories. The step distance induced by the cluster network (T ,�,�) is
called conceptual distance on T and is denoted by CdT . In the case when T is the class
of all theories in Lβα , we denote the conceptual distance on T by Cdβα .

Let T be a class of theories and let T1, T2, T ′
1, and T ′

2 be members of T . An immediate
observation can be formulated as follows:

CdT (T1,T2) = 0 if T1 � T2, and CdT (T1,T2) = CdT (T
′
1,T ′

2) if T1 � T ′
1 and T2 � T ′

2.

Moreover, since logically equivalent theories are also definitionally equivalent by trans-
lating formulas to themselves, conceptual distance has also the following two desirable
properties:

CdT (T1,T2) = 0 if T1 ≡ T2, and CdT (T1,T2) = CdT (T
′
1,T ′

2) if T1 ≡ T ′
1 and T2 ≡ T ′

2.

By Remark 3.6, it is clear that Cdβα(T, T ′) ≥ Cdγα (T, T ′) for any ordinal β ≤ γ ≤
α + 1 and any theories T and T ′ in Lβα . It is also apparent that an inconsistent theory is
of an infinite conceptual distance from any consistent theory, because relations � and �

cannot make a consistent theory inconsistent and also cannot make an inconsistent theory
consistent. Now, we give more examples.

THEOREM 4.3. Suppose that β ≥ 1. For every n ∈ N ∪ {∞}, there are theories T and T ′
in Lβα such that Cdβα(T, T ′) = n.

Proof. Let L∞ = {R0,R1, . . .} be a language for Lβα that consists of infinitely many
relation symbols of arbitrary ranks less than β (such a language describes infinitely many
different concepts). For each k ∈ N, let Lk be the language that consists of the first k-many
relation symbols of L∞, i.e.,

L0 = ∅ and Lk = {R0, . . . ,Rk−1} if k ≥ 1,

and let Tk = ∅ be the empty theory on language Lk. It is clear that Cdβα(T

0 , Tn) ≤ n for

each n ∈ N ∪ {∞}. To prove the other direction, we count models of cardinality 1. It is

8 One may think that there is a mismatch between this definition and the algebraic motivation
discussed in the introduction. In the case of FOL, the one-concept extension corresponds to
the one-generator extension as described on page 636. The reason is that R(vi0 , . . . , vin−1 )
is generated from R(v0, . . . , vn−1) (see Footnote 6). However, if R has, say, arity ω, then,
e.g., R(v0, v1, · · · ) and R(v1, v2, . . .) are separate generators (meaning that none of them can
be generated from the other). In fact, there is no mismatch here, because cylindric algebras
correspond to logics with restricted formulas, i.e., formulas where the variables appear in the
atomic subformulas only in their natural order. So formulas of the form R(v1, v2, . . .) are not
included.
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easy to see that I(Tn , 1) = 2n. For any two theories T1 and T2,

T1 � T2 �⇒ I(T2, 1) ≤ 2 · I(T1, 1) (1)

because in a model of cardinality 1 there are at most two relations (of any rank). Therefore,
we need at least n-many steps to increase I(T0 , 1) = 20 = 1 to I(Tn , 1) = 2n. Therefore,
Cdβα(T


0 , Tn) = n as desired. �

The theories we use in the above proof all have models of cardinality 1. In (5) of
Theorem 4.9 below, we show what happens if the theories in question do not have models
of size 1. First, we need the following lemma.

LEMMA 4.4. Suppose that α = β = ω. Let T1, T2 and T3 be theories such that

I(T1, 1) = I(T2, 1) = I(T3, 1) = 0.

Then, if T1 � T2 � T3, then there is a theory T such that T1 � T � T3.

Proof. Suppose T1, T2 and T3 are as required in the statement of the lemma above,
and assume that T1 � T2 � T3. Then L3 = L1 ∪ {R, S} for some relation symbols R
and S. Suppose that rank(R) = n and rank(S) = m. Let l = max{n,m} + 2 (choosing
l = max{n,m} + 1 is enough if n,m ≥ 1). Let L+ def= L3 ∪ {B} = L1 ∪ {R, S,B}, for some
new relation symbol B of rank l. Every model M for L3 can be extended to a model M+
for L+ by defining BM+

as follows:

BM+ def= {
(a0, . . . , al−1) ∈ Ml : there is an assignment τ for which

τ (v0) = a0, . . . , τ (vl−1) = al−1 and M, τ |� β
}
,

where

β(v0, . . . , vl−1)
def= (

R(v0, . . . , vn−1) ∧ vl−2 = vl−1
) ∨ (

S(v0, . . . , vm−1) ∧ vl−2 �= vl−1
)
.

Let L def= L1 ∪ {B} and let

T
def= {

ϕ ∈ Fm : M+ |� ϕ, for every model M for T3
}
.

We will prove that T1 � T and T � T3. To prove that T1 � T , it is enough to show that
T1 � T (because L = L1 ∪ {B}). Let ϕ ∈ Fm1. We have

T1 |� ϕ ⇐⇒ T2 |� ϕ ⇐⇒ T3 |� ϕ ⇐⇒ T |� ϕ,

where the first two equivalences follow by the assumption T1 � T2 � T3, and the last
equivalence follows by the definition of T . To show that T � T3, we define translations
tr : Fm → Fm3 and tr′ : Fm3 → Fm as follows:

tr : B(v0, . . . , vl−2, vl−1) �→ β(v0, . . . , vl−1) and

tr′ : R(v0, . . . , vn−1) �→ ∃vn . . . ∃vl−1
(
B(v0, . . . , vl−2, vl−1) ∧ (vl−2 = vl−1)

)
tr′ : S(v0, . . . , vm−1) �→ ∃vm . . . ∃vl−1

(
B(v0, . . . , vl−2, vl−1) ∧ (vl−2 �= vl−1)

)
We have defined tr and tr′ on specific basic formulas and these can be extended in a

unique way to their domains, see Footnote 6. Let M be a model for T3. By definition of
M+,

M+ |� B(v0, . . . , vl−1) ↔ β(v0, . . . , vl−1). (2)
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Thus, by (2), we have

M+ |� tr′(S(v0, . . . , vm−1)) ↔ ∃vm . . . ∃vl−1
(
B(v0, . . . , vl−2, vl−1) ∧ vl−2 �= vl−1

)
↔ ∃vm . . . ∃vl−1

(((
R(v0, . . . , vn−1) ∧ vl−2 = vl−1

) ∨(
S(v0, . . . , vm−1) ∧ vl−2 �= vl−1

)) ∧ vl−2 �= vl−1

)
↔ ∃vm . . . ∃vl−1

(
S(v0, . . . , vm−1) ∧ vl−2 �= vl−1)

)
↔ S(v0, . . . , vm−1).

The last ↔ follows by the assumption that the cardinality of M is at least 2 (and hence
the same is true for M+). Similarly, M+ |� tr′(R(v0, . . . , vn−1)) ↔ R(v0, . . . , vn−1).
Therefore, by the fact that tr and tr′ are translations, it follows that

M+ |� ϕ ↔ tr(ϕ) and M+ |� ψ ↔ tr′(ψ) (3)

for all ϕ ∈ Fm and ψ ∈ Fm3. By (3), it is not hard to see that tr and tr′ are definitional
equivalences, and the desired follows. �

The above lemma is a direct consequence of the following elementary fact. In Lωω (under
some conditions), for any two relations R and S, there is a relation M such that M is
definable in terms of R and S and, conversely, both R and S are definable in terms of
M, see [16]. The idea of the above proof is distilled from [18, Theorem 2.3.22].

COROLLARY 4.5. Suppose that α = β = ω. Let T1, T2, . . . , Tn, for some n ≥ 2, be
theories such that I(Ti, 1) = 0, for each 1 ≤ i ≤ n. Then,

T1 � T2 � · · · � Tn �⇒ T1 � T � Tn for some theory T.

Proof. This can be proved by a simple induction on n. If n = 2, then we are obviously
done. Suppose that n ≥ 3 and T1 � T2 � · · · Tn−1 � Tn. If by induction hypothesis we
can assume that there is T ′ such that T2 � T ′ � Tn, then T1 � T2 � T ′ � Tn. Therefore,
by the Lemma 4.4, there is theory T such that T1 � T � Tn. �

PROPOSITION 4.6.

T1 � T � Tn for some theory T ⇐⇒ Tn faithfully interprets T1,

if α = β = ω and Tn is formulated on a finite language.

Proof. From left to right, the statement is clear because T faithfully interprets T1 since
it is a conservative extension of T1, and hence Tn also faithfully interprets T1 since T �
Tn. From right-to-left, we can find a theory T∗ whose language contains just one relation
symbol and T∗ � Tn by the trick used in the proof of Lemma 4.4. We have a faithful
interpretation tr1∗ : T1 → T∗. Let T̃∗ be T∗ expanded with the language of T1 using the
faithful interpretation tr1∗. Then we have T1 � T̃∗ � T∗ � Tn. �

Now we are going to investigate the connection between the spectrum of theories and
conceptual distance in Lωω. To do so, let us introduce some notations. Let L∅ denote the
empty language, i.e., the language of pure identity =. Let T ′ be a theory and L an arbitrary
language. We define the restriction of T ′ to L as

T ′|L def= {ϕ ∈ Fm′ ∩ Fm : T ′ |� ϕ}.
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REMARK 4.7. It is straightforward to check that if α ≥ 1 and Fm ⊆ Fm′, then T ′ is
a conservative extension of T ′|L and up to logical equivalence T ′|L is the only theory in
language L whose conservative extension is T ′.

LEMMA 4.8. Suppose that α = β = ω. Let T1 and T2 be two arbitrary theories of
countable languages. Then

T1|L∅ = T2|L∅ ⇐⇒ (∀ cardinal κ)
[
I(T1, κ) �= 0 ⇐⇒ I(T2, κ) �= 0

]
.

Proof. For every n ∈ N, let us introduce formula �(n) saying that there are exactly
n-many objects:

�(n)
def= ∃v0 ∃v1 · · · ∃vn−1

⎛⎝⎛⎝ ∧
0≤i�=j≤n−1

vi �= vj

⎞⎠ ∧ ∀vn

⎛⎝ ∨
0≤i≤n−1

vn = vi

⎞⎠⎞⎠ .

Let us first assume that T1|L∅ = T2|L∅ and let κ be any cardinal. Suppose first that κ is
finite, then T1 does not have a model of size κ iff T1 |� ¬�(κ). But,

T1 |� ¬�(κ) ⇐⇒ T2 |� ¬�(κ)
as ¬�(κ) ∈ Fm∅. Hence, T2 has a model of cardinality κ iff T2 has a model of cardinality κ .
If κ is infinite, then by Lövenheim–Skolem Theorem, T1 and T2 have models of cardinality
κ iff they have infinite models. Let us also introduce formulas �(≤n) saying that there are
at most n-many objects:

�(≤n) def= ∀v0 ∀v1 · · · ∀vn

⎛⎝ ∨
0≤i�=j≤n

vi = vj

⎞⎠ .

Theory T1 has an infinite model iff T1 �|� �(≤n) for all n ∈ N. Since �(≤n) ∈ Fm∅,

T1 |� �(≤n) ⇐⇒ T2 |� �(≤n).

Hence, T1 has an infinite model and thus a model of cardinality κ iff T2 has such a model.
Consequently, I(T1, κ) �= 0 iff I(T2, κ) �= 0 for all cardinal κ .

The converse direction follows from the simple fact that the validity of a formula ϕ ∈
Fm∅ in a model depends only on the cardinality of the model. �

THEOREM 4.9. Suppose that α = β = ω. Let T1 and T2 be two theories formulated in
countable languages. Then,

Cdωω(T1, T2) < ∞ �⇒ (∀ cardinal κ)
[
I(T1, κ) �= 0 ⇐⇒ I(T2, κ) �= 0

]
. (4)

If T1 and T2 are formulated in finite languages, then the converse of (4) is also true and[
Cdωω(T1, T2) < ∞ and I(T1, 1) = I(T2, 1) = 0

] �⇒ Cdωω(T1, T2) ≤ 2. (5)

Proof. Since the validity of formulas of the empty language L∅ is preserved under
conservative extensions and definitional equivalences, we have

Cdωω(T1, T2) < ∞ �⇒ T1|L∅ = T2|L∅ . (6)

Hence, by Lemma 4.8, T1 has a model of cardinality κ iff T2 has such a model because T1
and T2 are formulated on countable languages.

To prove the converse of (4), let us assume that T1 and T2 are formulated in finite
languages and that, for every cardinal κ , T has a model of cardinality κ iff T ′ has such
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a model. By Lemma 4.8, we have T1|L∅ = T2|L∅ . Let T∅ := T1|L∅ = T2|L∅ . Thus, by
Remark 4.7, T∅ � T1 and T∅ � T2. Now, we can add the whole L to L∅ in finitely many
steps, because there only finitely many relation symbols in L, thus Cdωω(T∅, T1) < ∞.
Similarly, Cdωω(T∅, T2) < ∞. Therefore,

Cdωω(T1, T2) ≤ Cdωω(T∅, T1)+ Cdωω(T∅, T2) < ∞.

Now suppose that Cdωω(T1, T2) < ∞ and I(T1, 1) = I(T2, 1) = 0, and that T1 and T2 are
formulated in finite languages. Then, by (6), we can introduce T∅ := T1|L∅ = T2|L∅ as
before. We claim that

Cdωω(T∅, T1) ≤ 1 and Cdωω(T∅, T2) ≤ 1. (7)

To show (7), let us assume that L1 = {Ri : i < m}, for some finite m. If m = 0, then
T∅ ≡ T1 and thus Cdωω(T∅, T1) = 0. Assume that m �= 0. Let L0 = {R0}, . . . ,Lm−1 =
{R0, . . . ,Rm−1} and, for each 0 ≤ i ≤ m − 1, Ti = T1|Fm

i
. Hence, T∅ � T0 �

· · · � Tm−1 ≡ T1. Clearly, for each 0 ≤ i ≤ m − 1, I(Ti , 1) = 0 because ¬�(1) =
¬

(
∃v0 ∀v1 (v0 = v1)

)
is a consequence of T1, and hence is a consequence of Ti . Thus, by

Corollary 4.5, it follows that Cdωω(T∅, T1) ≤ 1. Similarly, one can show that Cdωω(T∅, T2) ≤
1. Therefore, Cdωω(T1, T2) ≤ Cdωω(T∅, T1)+ Cdωω(T∅, T2) ≤ 2. �

COROLLARY 4.10. The conceptual distance between the theories of any two finite
models of different cardinalities is infinite. More precisely, if A and B are two finite models
of different cardinality, then Cdωω

(
Th(A),Th(B)

) = ∞.

For instance, given two cyclic groups 〈k1〉 and 〈k2〉 of orders 5 and 7, respectively, the
conceptual distance between the theories of these groups is ∞. This might seem strange;
these theories are about similar structures. But if we look carefully at the statement of
the above corollary, we will find that it talks about theories of structures, not structures
themselves. In other words, the conceptual distance between the theories of 〈k1〉 and 〈k2〉
cannot be granted as a distance between these two groups as algebraic structures. Instead,
this conceptual distance can be considered to be a distance between the Lindenbaum–
Tarski algebras of the theories of these groups, which are of course of different nature than
the groups themselves.

COROLLARY 4.11. There are infinitely many theories that are, in terms of conceptual
distance, infinitely far from each other in Lωω.

THEOREM 4.12. Let CCωω be the class of all complete and consistent theories in Lωω. Then

Cdωω(T1, T2) = CdCCωω(T1, T2)

for all T1, T2 ∈ CCωω.

Proof. Let T1, T2 ∈ CCωω. Then, clearly, Cdωω(T1, T2) ≤ CdCCωω(T1, T2). In this proof,
let us denote that theory T̃ is a complete and consistent extension of theory T in the same
language as T ⊆cc T̃ . We are going to show the converse inequality using the following
three simple facts:

a.) If T � T ′ and T ⊆cc T̃ , then there is T̃ ′ ∈ CCωω such that T ′ ⊆cc T̃ ′ and T̃ � T̃ ′.

We can take T̃ ′ := {
tr(ϕ) : ϕ ∈ T̃

}
, where tr is the interpretation of T to T ′ showing

T � T ′.
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b.) If T � T ′ and T ⊆cc T̃ , then there is T̃ ′ ∈ CCωω such that T ′ ⊆cc T̃ ′ and T̃ � T̃ ′.

We can take T̃ ′ to be any complete and consistent extension of T̃ ∪ T ′. We have that T̃ ∪ T ′
is also consistent because otherwise there was a formula ϕ in the language of T such that
T ′ |� ϕ and T̃ |� ¬ϕ, but then T �|� ϕ contradicting that T ′ is a conservative extension
of T .

c.) If T �T ′ and T ⊆cc T̃ , then there is T̃ ′ ∈ CCωω such that T ′ ⊆cc T̃ ′ and T̃ �̃T ′.

We can take T̃ ′ to be the restriction of T̃ to the language to T ′.
Using a.), b.) and c.), any chain of theories from T1 to T2 realizing Cdωω(T1, T2) can

be replaced step-by-step with one that contains only complete theories and represents the
same distance. Hence Cdωω(T1, T2) ≥ CdCCωω(T1, T2). �

§5. Conceptual distance in physics. Each physical theory is established based on
some preliminary decisions. These decisions are suggested by the accumulation and the
assimilation of new knowledge. The methods used to improve physical theories are in-
tuitively conceived and applied in a fruitful way, but many obvious ambiguities have
appeared. To eliminate these ambiguities, it was critical to introduce the logical foundation
of the physical theories.

Even today the logic based axiomatic foundation of physical theories is intensively
investigated by several research groups. For example, the Andréka–Németi school axiom-
atizes and investigates special and general relativity theories within ordinary first-order
logic, see, e.g., [5], [2], and [4]. For similar approaches related to other physical theories,
see, e.g., [8] and [23].

Following the tradition of Andréka–Németi school, two theories ClassicalKin and
SpecRel are formulated in ordinary first-order logic Lωω to capture the intrinsic structures
of classical and relativistic kinematics. For the precise definitions of these theories, one
can see [25, p.67 and p. 69]. In this section, we will investigate the conceptual distance
between these two theories.

In [24] and [25], it was shown that these two theories can be turned definitionally
equivalent by the following two concept manipulating steps:

(1) adding the concept of an observer “being stationary” to the theory of relativistic
kinematics SpecRel, and

(2) removing the concept of observers “not moving slower than light” from the theory
of classical kinematics ClassicalKin.

Then, it was shown that even if observers “not moving slower than light” are removed
from ClassicalKin the resulting theory remains definitionally equivalent to ClassicalKin
and hence adding only the concept of “being stationary” to SpecRel is enough to make the
two theories equivalent. Thus, it follows that the conceptual distance between relativistic
and classical kinematics is 1.

THEOREM 5.1. Classical and relativistic kinematics are distinguished from each other
by only one concept, namely the existence of some distinguished observers captured by
formula (8) below, i.e., Cdωω(ClassicalKin,SpecRel) = 1.9

9 It is worth noting that in the proof of Theorem 5.1, we add only a unary concept E to SpecRel to
get a theory definitionally equivalent to ClassicalKin.
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Proof. The key to this result is the surprising theorem stating that the only concept
which needs to be added to SpecRel to make it definitionally equivalent to ClassicalKin
is a concept distinguishing a set of observers that are “being at absolute rest” as shown
in [24, p.72] and [25, p.110]. Let E be a unary relation symbol corresponding to this basic
concept. Axiom AxPrimitiveEther, see [24, p. 46] and [25, p. 87], defines E as follows:

∃v0
[
IOb(v0) ∧ ∀v1

(
E(v1) ↔ [IOb(v1) ∧ st(v0, v1)]

)]
, (8)

where IOb is a unary relation symbol that represents inertial observers and st(v0, v1) is
a formula in the language of SpecRel capturing the idea that observers v0 and v1 are
stationary with respect to each other. In this proof, we only need that st(v0, v1) is a formula
with two free variables in the language of SpecRel; its concrete definition plays no role
here. Let

SpecRelE = SpecRel ∪ {AxPrimitiveEther}.
First, we need to prove that SpecRel � SpecRelE. To do so, it is enough to show that

SpecRelE is a conservative extension of SpecRel, i.e., SpecRel � SpecRelE, because
the languages of these theories differ only in the unary relation symbol E. So, we need to
show that for any formula ρ of the language of SpecRel,

SpecRel |� ρ ⇐⇒ SpecRelE |� ρ.

Let ρ be an arbitrary formula of the language of SpecRel. Since SpecRel ⊆ SpecRelE,
SpecRel |� ρ implies SpecRelE |� ρ. We prove the other direction by proving that, if
SpecRel �|� ρ, then SpecRelE �|� ρ. Let M be a model of SpecRel. Since SpecRel |�
∃v0 IOb(v0), there exists an a ∈ IObM. Let us fix such element a of IObM and let an
extension M′ of M be defined by adding the following relation to M:

EM′ =
{

b ∈ IObM : ∃ an assignment τ
[
τ (v0) = a, τ (v1) = b and M, τ |� st

]}
,

where stM is the binary relation defined by formula st(v0, v1) in model M. By construc-
tion, M′ is a model of SpecRelE. Therefore, if M |� ¬ρ, then M′ |� ¬ρ, because
M′ is an extension of M means that Th(M) � Th(M′). Consequently, SpecRel �|� ρ
implies SpecRelE �|� ρ, which is what we wanted to prove. This completes the proof of
SpecRel � SpecRelE, and hence

Cdωω(SpecRel,SpecRelE) ≤ 1.

By Corollary 9 in [24, p. 72] and [25, p. 110], SpecRelE is definitionally equivalent to
ClassicalKin. Hence,

Cdωω(SpecRelE,ClassicalKin) = 0.

Therefore,

Cdωω(SpecRel,ClassicalKin) ≤ Cdωω(SpecRel,SpecRelE)+ Cdωω(SpecRelE,ClassicalKin) = 1.

Moreover, Cdωω(SpecRel,ClassicalKin) cannot be 0 since SpecRel and ClassicalKin
are not definitionally equivalent, see Theorem 5 in [24] or [25]. Consequently,

Cdωω(SpecRel,ClassicalKin) = 1

and thus the desired result is reached. �
There are several ways of capturing the structures of relativistic and classical kinematics

in first-order logic. Let us now introduce another way to capture these theories. Let R be
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the set of all real numbers. Let Ph ⊆ R
4 × R

4 be such that (x̄, ȳ) ∈ Ph iff coordinate
points x̄ and ȳ can be connected by a light signal, i.e., if (x1 − y1)

2 − (x2 − y2)
2 − (x3 −

y3)
2 − (x4 − y4)

2 = 0. Let S ⊆ R
4 × R

4 be the simultaneity relation, i.e., (x̄, ȳ) ∈ S iff
x1 = y1. Consider the models R = 〈R4,Ph〉 and N = 〈R4,S,Ph〉, these models capture
the structure of special relativity and classical kinematics, respectively.

Let TN = Th(N) and TR = Th(R). Note that TN is in fact a conservative extension of
TR and the conceptual distance between them is 1, i.e., Cdωω(TN, TR) = 1.

PROBLEM 5.2 (Hajnal Andréka). Let T be the class of all theories T such that TR is
faithfully interpreted into T and T is faithfully interpreted into TN. Is the following true:
For all T ∈ T ,

Cdωω(TR, T)+ Cdωω(T, TN) = 1?

If the answer to the question to the above problem is yes, then no matter which classical
(i.e., TN-definable, but not TR-definable) concept we add to special relativity (TR) we will
get classical kinematics (TN). That would be an interesting insight for better understanding
the connection between classical and relativistic concepts.

The investigation in this section opens so many questions: For any two concrete theories
of physics, what is the conceptual distance between them? By Theorem 5.1, relativistic
and classical kinematics are of conceptual distance one. However, the question “what is
the distance between relativistic and classical dynamics?” remains open. Another natural
related open problem is the following.

PROBLEM 5.3 (Jean Paul Van Bendegem). What is the conceptual distance between
classical and statistical thermodynamics?

Of course, any answer to the above problems depends on the chosen axiomatizable
theories capturing the physical theories in question. For an axiomatic approach of these
thermodynamics theories, one can see, e.g., [11], [13], and [27].

§6. Concluding remarks. We have introduced a general framework to investigate
measures of distances between formal theories, and we investigated some basic properties
of two natural examples for concrete distances. One is based on counting axioms separat-
ing logically nonequivalent theories. The other is based on counting concepts separating
definitionally nonequivalent theories.

We have found that, even though it is probably the most natural idea, counting axioms
does not give us much information about the distance between theories. More precisely,
we have shown that axiomatic distance between two theories formulated in the same
language is at most 3, and it is exactly 2 if the theories are complete but not logically
equivalent.

Counting concepts is much more subtle and informative. We have shown that conceptual
distance has a full range, i.e., any possible distance is realized. In ordinary first-order logic,
we found that theories formulated in finite languages are of finite conceptual distance from
each other if they have models over exactly the same cardinals. Consequently, there are
infinitely many theories which are conceptually infinitely far from one another.

Are the notions introduced here the right ones? Do we get useful notions of distance
in this way? Does this approach really contribute to our understanding of theories in
physics (or of other sciences)? We do not know. These ideas are new and we need to
work with them and develop them further before we can really assess their worth. What we
do know is that it is worth developing a working framework in which one can tell how far
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certain nonequivalent theories are from each other. In this article, we tried to lay down the
foundations and to initiate this research direction. Working in this direction may provide a
“logical network” conception of the unity of physics.

To test or refine these notions, to learn which notion of theory-distance will be the most
useful, and to understand how useful investigating distances between theories is, we need
further investigations. Of course, there may be other reasonable ideas that may be worth
considering. For example, it may be natural to check whether using (certain kinds of)
interpretations as steps could lead to a useful notion of distance or not.

Although the problems introduced at the end of §5 and our result that relativistic and
classical kinematics are of conceptual distance 1 from each other already indicates that the
notion of conceptual distance might be useful to understand connections between scientific
theories. It is worth noting that probably not just their distance but also the shortest paths
connecting two theories in the corresponding cluster network is interesting.

Even though our framework is quite general, one may wish to generalize it even further.
For example, in several cases, it might be natural not to assume the symmetry of distances
between theories. For example, any inconsistent theory is understood to be of axiomatic
distance 1 from any consistent theory; we just need to add a contradiction as an axiom. But
starting from an inconsistent theory, we can never reach a consistent one by adding axioms;
so considering this distance to be ∞ seems more natural. By dropping the symmetry
requirement from our Definition 3.2, one can easily generalize our framework to investigate
these kinds of “directed” distances.

Another reasonable way to generalize our framework is to define bidirected distances or
multidirected distances where the minimal steps can be determined by two or more rela-
tions. For example, it might be natural to try introducing a “bidirected conceptual distance”
that measures the minimum number of concepts needed to be added to or removed from
a theory to reach another one up to definitional equivalence. We already have a notion
for concept adding. So only a notion of concept removal is needed. The way the concept
of faster-than-light observers was removed from the theory capturing classical kinematics
in [24] and [25] might be a good starting point to find such a notion of concept removal.
Similarly, one may desire to introduce and investigate a bidirected axiomatic distance
where there are distinct steps for removing and/or adding an axiom.

One area of study that has a close relationship with the notion of conceptual distance is
that of complexity. As we know, complexity, also can be measured in several ways: Turing
complexity, in terms of the analytic hierarchy, and so on. If one theory is more complex
than another in one of these measures, then it is natural to investigate the relationship
between that and the distances we look at here. Some of the significance of the present work
might be in its relationship to complexity theory. This is a subject of future investigation.

The idea of having a notion of distance between theories (of the same nature) seems
applicable in any science. In computer science, programming languages and other systems
can be seen as axiomatized theories. For more details about this, see, e.g., [15], [20], and
[28]. Hence, it seems also natural to search for the best fit notion of equivalence between
these theories. Developing this may give us insight to determine what can be one step
difference between two such theories. Having these in mind, a distance can then be defined
in the same way as §3 herein. The novelty here would be in choosing such equivalence
and one step relation in a way that guarantees that the corresponding step distance is
applicable.

Our work and approach leaves it open what we chose to do next in our investigations con-
cerning the equivalence of theories and the distance between theories. We can change the
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languages of the theories; moving from FOL to another formal language. We can change
the concept used to measure distance (axioms, concepts and so on). We can change the area
of research we investigate (physics, mathematical theories, computer science languages
and so on). It is in trying out the ideas presented here, in these new directions that we gain
new insights, and refine the techniques and definitions started here.
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ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS

BUDAPEST, HUNGARY
E-mail: szekely.gergely@renyi.hu

CENTRE FOR LOGIC AND PHILOSOPHY OF SCIENCE
VRIJE UNIVERSITEIT BRUSSEL

BRUSSELS, BELGIUM
E-mail: koen.lefever@vub.be

DEPARTMENT OF PHILOSOPHY
GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC, USA
and
UNIVERSITÉ DE LILLE
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