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Experiments and theory show that hydrodynamic instabilities can arise during flow
of viscoelastic liquids in curved geometries. A recent study has found that a relatively
weak steady transverse flow can delay the onset of instability in the circular Couette
geometry until the azimuthal Weissenberg number Weθ is significantly higher than
without axial flow. In this work we investigate the effect of superposition of a
time-periodic axial Couette flow on the viscoelastic circular Couette and Dean flow
instabilities. The analysis, carried out for the upper-convected Maxwell and Oldroyd-
B fluids, generally shows increased stability compared to when there is no axial flow.
However, we also find that the system shows instability – synchronous resonance –
for some values of the axial Weissenberg number, Wez and forcing frequency ω. In
particular, instability can be induced not only when ω is of the order of the inverse
relaxation time of the fluid but also when it is much smaller. Scaling arguments and
numerical results indicate that the high-ω, low-Wez regime is essentially equivalent to
Wez = 0 in the steady case, implying no stabilization. At high values of ω and Wez ,
scaling analysis shows that the flow will always be stable. Numerical results are in
agreement with these conclusions. Consistent with previous results on parametrically
forced systems, we find that the zero-frequency limit is singular. In this limit, the
disturbances display quiescent intervals punctuated by periods of large transient
growth and subsequent decay.

This study also presents linear and nonlinear stability results for the addition of
steady axial Couette and Poiseuille flows to viscoelastic instabilities in azimuthal Dean
flows. It is shown that, for high Wez , the qualitative effect of adding a steady axial
flow is similar to that in the circular Couette geometry, with a linear relationship
between the critical Weθ and Wez . For low Wez , we find that the flow is stabilized,
unlike in the circular Couette flow where the critical value of Weθ decreases at low
Wez . Further, weakly nonlinear analysis shows that the criticality of the bifurcation
depends on the value of Wez and the solvent viscosity, S . Finally, we also show
the presence of a codimension-2 Takens–Bogdanov bifurcation point in the linear
stability curve of Dean flow. This point represents a transition from one mechanism
of instability to another.

1. Introduction
The problem of stability and dynamics of viscoelastic liquids in curved geometries

has attracted considerable interest in recent years. Larson, Shaqfeh & Muller (1990,
referred to from here on as LSM) first performed theoretical and experimental
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analysis of hydrodynamic instabilities arising in flow of viscoelastic fluids in an
annular gap between concentric cylinders. It was shown that this ‘viscoelastic Taylor–
Couette’ (VETC) instability was a purely elastic effect arising even at negligible
Reynolds number. The criterion for instability to occur is that ε1/2Weθ = O(1), where
Weθ is the azimuthal Weissenberg number (ratio between material and flow time
scales) and ε is the gap width, non-dimensionalized with respect to the radius of the
cylinder. The scaling reflects how large Weθ must be for the azimuthal normal (hoop)
stress to contribute to the leading-order radial momentum balance. The mechanism of
destabilization proposed by LSM and later refined by Joo & Shaqfeh (1994) to include
non-axisymmetric modes, was based on the coupling of stress perturbations to the
base-state velocity gradient to produce an azimuthal normal stress that drives radial
and transverse motions leading to the formation of cells. The analysis of LSM for the
upper-convected Maxwell (UCM) and Oldroyd-B models showed that the instability
occurs as a degenerate Hopf bifurcation with the exact wave structure to be determined
from nonlinear analysis (Golubitsky, Schaeffer & Stewart 1985). Avgousti & Beris
(1993) provide a detailed discussion of symmetry issues in the context of axisymmetric
perturbations. Later works (Joo & Shaqfeh 1994; Sureshkumar, Beris & Avgousti
1994) using the Oldroyd-B fluid model have shown that in fact non-axisymmetric
modes are the most dangerous, with nonlinear analysis (Sureshkumar et al. 1994)
predicting subcritical bifurcation for these modes and supercritical bifurcation for
axisymmetric ones. Further, Renardy et al. (1996) conducted a nonlinear analysis to
study mode interactions arising from the introduction of inertia – and thus the classical
Taylor–Couette instability – into the system. Computations (Northey, Armstrong &
Brown 1992; Avgousti, Liu & Beris 1993; Avgousti & Beris 1993) and experiments
(Shaqfeh, Muller & Larson 1992) have shown that finite gap effects tend to stabilize
the flow.

Joo & Shaqfeh (1991, 1992) were the first to report elastic instabilities in azimuthal
Dean (pressure-driven) flow. In contrast to the VETC case, the Dean flow instability
occurs as a steady bifurcation, and the most dangerous disturbance is axisymmetric.
The mechanism of instability involves coupling of base-state hoop stresses with
velocity perturbations. Joo & Shaqfeh (1994) also perform an a posteriori energy
analysis to elucidate the mechanism of the instability.

Experimental and theoretical evidence shows that purely elastic instabilities are
common in flows with curved streamlines (Shaqfeh 1996), and McKinley, Pakdel
& Öztekin (1996) have described a method for generalizing the instability criterion
for various geometries. Given the importance of such flows in polymer processing
operations such as adhesive coating and the severe limitations in operating conditions
that these instabilities impose, it is of practical importance to come up with schemes
that can be used to suppress them. A recent study by Graham (1998) has shown
that the addition of a relatively weak transverse secondary flow results in significant
stabilization of the VETC flow. Superposition of transverse motion increases the
critical azimuthal Weissenberg number for instability and moves the most unstable
mode to longer wavelengths. The increased stability is due to the additional axial
normal stresses generated by the transverse flow, which increase the resistance to
radial displacements. Furthermore, scaling analysis and computations show that
non-axisymmetric disturbances are strongly suppressed. A nonlinear analysis was
performed which showed that in the narrow gap limit, the VETC instability is
subcritical for the UCM fluid. However, the addition of a transverse Poiseuille flow
resulted in a supercritical bifurcation, indicating a stable solution past the bifurcation
point, while with superposed Couette flow, the bifurcation remained subcritical. One
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aspect of the current work is the extension of that analysis to study the effect of
superposed steady axial motion on Dean flow instabilities. A linear and weakly
nonlinear stability analysis is carried out that elucidates the stability characteristics
when the transverse motion is imposed by means of an axial pressure drop or by
motion of the inner cylinder. As will be shown in §4, the onset of instability is delayed
by the addition of transverse flow. In particular, it is shown that at large axial shear
rates, the critical value of ε1/2Weθ scales linearly with the axial shear rate, confirming
that a relatively weak transverse flow results in increased stability. This is similar to
the behaviour seen in the VETC flow.

Having established that the addition of steady axial flow does stabilize the VETC
and Dean flows, we investigate the effect of time-periodic axial motion on these
flows. With its characteristic relaxation time scales, a viscoelastic fluid might be
expected to interact with the time scale of a parametric forcing, giving rise to
interesting dynamical phenomena. The effect of adding an oscillatory transverse flow
has been examined for Newtonian Taylor–Couette flows, with experiments (Weisberg,
Kevrekidis & Smits 1997) and analysis (Hu & Kelly 1995; Marques & Lopez 1997)
showing that modulated axial flow does result in stabilization of the classical Taylor–
Couette instability. Furthermore, the superposition of transverse oscillatory motion in
shear flows has recently been used in a novel rheometer design (Vermant et al. 1997).
Clearly, flow stability in such an apparatus is a natural concern. The questions we seek
to answer in this paper are: Does time-periodic axial flow result in stabilization of
the viscoelastic system? If so, at what regimes of oscillation frequency and amplitude
do we obtain stabilization? Does the external forcing result in resonant modes that
are characteristic of parametrically excited systems?

We begin with the formulation of the problem for an Oldroyd-B fluid with the
narrow gap approximation in §2. Section 3 describes the details of the linear stability
analysis used in the study. The external modulation gives rise to time-dependent co-
efficients in the disturbance equations. Linear stability analysis of the time-dependent
equations is performed using Floquet theory, which is implemented through an
Arnoldi technique to determine the dominant Floquet multipliers. The Arnoldi scheme
is coupled to a time integration routine for the viscoelastic equations of motion. Sec-
tion 4 summarizes the results of the effect of steady axial flow and presents results
from the effect of axial flow on the Dean flow instability. Finally, in §5 we show results
from our time-dependent analysis. The linear stability results obtained numerically
are compared with predictions from high- and low-frequency asymptotic analysis. We
also investigate the singularity of the zero frequency limit which has been reported in
the literature by Marques & Lopez (1997) for Newtonian Taylor–Couette flows.

2. Formulation
We consider the inertialess flow of a UCM or Oldroyd-B fluid in the annular region

between infinitely long circular cylinders. We assume that the annulus is open, i.e. we
do not impose a constraint on the net axial flow rate. The fluid has relaxation time
λ; the polymer and solvent contributions to the viscosity are ηp and ηs respectively,
with the ratio ηs/ηp denoted by S . For the Couette problem, the inner cylinder, with
radius R1 is rotating with angular velocity Ω while the outer cylinder, with radius R2,
is stationary. Dean flow kinematics are produced by holding both cylinders fixed and
imposing an azimuthal pressure drop. Schematics of the circular Couette and Dean
flow geometries are shown in figures 1 (a) and 1 (b) respectively.
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(a)
R2

R1

X

R2

R1

(b)

Kh

Figure 1. Schematic diagram of (a) the circular Couette (shown with an imposed axial Couette
flow) and (b) Dean (shown with an imposed axial Poiseuille flow) geometries.

The dimensionless momentum, constitutive, and continuity equations are

∇ · τ − ∇p+Weθ S∇2v = 0, (2.1)

τ +Weθ

(
∂τ

∂t
+ v · ∇τ − (τ · ∇v + (τ · ∇v)T

))
= Weθ

(∇v + ∇vT
)
, (2.2)

∇ · v = 0, (2.3)

where v is the velocity, p is the pressure and τ is the polymer stress tensor. No-slip
boundary conditions are imposed at the two cylinders. For Couette flow, the azimuthal
Weissenberg number, Weθ , is defined by

Weθ =
λΩ(1− ε)

ε
, (2.4)

where

ε =
R2 − R1

R2

, (2.5)

and the corresponding definition for Dean flow in terms of the pressure drop Kθ =
∂P/∂θ is given by

Weθ = −Kθλε

2ηp
. (2.6)

The Newtonian fluid is recovered for S → ∞ with the pressure p rescaled accord-
ingly. Note that ε/(1 − ε) measures the maximum streamline curvature. Length
is scaled with the gap width R2 − R1 = εR2 and stress with ηp/λ. Velocity is
scaled with the speed of inner cylinder rotation (1 − ε)R2 Ω for the Couette ge-
ometry and by −Kθ ε

2R2/2ηp for the Dean geometry, which is the maximum shear
rate times the length scale. Time is non-dimensionalized by εR2/v

∗, where v∗ is
the velocity scale for the appropriate geometry. The dimensionless flow domain is
{(r, θ, z) : (1− ε)/ε < r < 1/ε, 0 < θ 6 2π,−∞ < z < ∞}. We also define a new radial
coordinate, ρ = r + 1− 1/ε, so that ρ = 0 is the inner cylinder and ρ = 1 the outer.

Time-periodic axial Couette flow is imposed by moving the inner cylinder with
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velocity V cos(ωt), where V is the amplitude of the modulation and ω is the frequency
which is scaled with (1−ε)Ω/ε, the azimuthal shear rate. Axial flow introduces another
dimensionless group, Wez , defined as

Wez =
λV (1− ε)
R2ε

. (2.7)

At leading order in ε, i.e. in the narrow gap limit, ω = 0 gives us the steady circular
Couette with superimposed axial Couette flow (CCAC) discussed in Graham (1998),
and the steady Dean flow with superposed axial Couette (DAC) flow presented later
in this paper. When ω 6= 0 we have the circular Couette with superimposed modulated
axial Couette flow (CCMAC) and the Dean flow with superposed modulated axial
Couette (DMAC) flow. Later in this paper we show that ω → 0 is a singular limit.
We also show results for the Dean axial Poiseuille (DAP) flow where axial flow is due
to a steady pressure gradient Pz in which case we redefine Wez to be

Wez = −Pz λεR2

2ηp
. (2.8)

For a UCM or Oldroyd-B fluid, one can find analytical expressions for the base-state
velocities v̄ and polymer stresses τ̄ in a circular Couette and Dean flow subjected to
superposed time-periodic or steady axial flow. These expressions are shown in the Ap-
pendix. We are interested in the stability of these periodic solutions to infinitesimal per-
turbations. We define a vector of perturbations u = (τ̃rr, τ̃rθ, τ̃rz , τ̃θθ, τ̃θz, τ̃zz , ṽr, ṽθ, ṽz , p̃),
where, for example, τ̃θθ = τθθ − τ̄θθ. It was shown by LSM for Couette flow and
Joo & Shaqfeh (1991) for Dean flow that to recover the relevant regime for elastic
instabilities, we must rescale the azimuthal Weissenberg number, Weθ to be O(ε−1/2).
This is enforced by defining a new scaled Weissenberg number Wp = ε1/2Weθ , which
is O(1) as ε → 0. Following LSM and Graham (1998), we also have the following
scalings on the stresses and the velocities: τ̃rr = O(1), τ̃rθ = O(ε−1/2), τ̃rz = O(1), τ̃θθ =
O(ε−1), τ̃θz = O(ε−1/2), τ̃zz = O(1), ṽr = O(ε1/2), ṽθ = O(1), ṽz = O(ε1/2), p̃ = O(1) and
Wez = O(1). This scaling can be inferred from the solution to the base-state stresses
and velocities in the Appendix. In the equations with modulated axial forcing, a
balance of terms is obtained by letting ω = ω1ε

1/2 and t = t1ε
−1/2 where ω1 and t1

are O(1). With this scaling, the dimensionless relaxation time of the polymer is Wp.
This is the ‘low frequency’ regime that includes all possible terms in the narrow gap
approximation. Setting ω1 = 0 in this regime, we recover the steady equations of
Graham (1998) for the CCAC and DAC flow equations shown later in this paper.
We also investigate the effect of imposing a ‘high frequency’ oscillation by scaling ω
to be an O(1) quantity, i.e. we specify ω1 = O(ε−1/2). Dimensionally, this corresponds
to a forcing frequency on the order of the azimuthal shear rate. In this regime the
stability characteristics depend on the order of magnitude of the axial shear rate. In
§5 we show that the relative magnitude of Wez with respect to ω1 determines the
appropriate balance of terms that affects the stability of the system. Asymptotic and
numerical results are presented for both regimes later in this paper.

While this paper is concerned exclusively with elastic effects, we digress to comment
on the relative scaling of the Reynolds number needed to include inertial effects in
the formulation. In the narrow gap limit, the azimuthal Reynolds number, Re, must
be O(ε−1/2) for the inertial terms to balance the divergence of the elastic stresses at
leading order. Thus, small non-zero values of Reynolds number do not qualitatively
change the results of the present analysis. The scaling regime ε1/2Re = O(1) is where
the classical (inertial) Taylor–Couette instability occurs.
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3. Stability and numerical analysis
3.1. Floquet theory and linear analysis

To analyse the stability of the system we expand the perturbation vector using
axisymmetric modes of the form

u = δφ(ρ, t)eiαz + O(δ2), (3.1)

where φ = (τ̂rr(ρ, t), τ̂rθ(ρ, t), τ̂rz(ρ, t), τ̂θθ(ρ, t), τ̂θz(ρ, t), τ̂zz(ρ, t), v̂r(ρ, t), v̂θ(ρ, t), v̂z(ρ, t))
and α is the axial wavenumber, which is real and is specified. We emphasize that
since it has been shown by Graham (1998) that in the steady case non-axisymmetric
disturbances are strongly suppressed by axial flow, we restrict our analysis to axisym-
metric modes. For linear stability analysis, these expansions are substituted in the
governing equations and only first-order terms in δ are retained. We first consider
the analysis of CCMAC and DMAC flows. Both flows are time periodic, and can
hence be analysed using Floquet theory (Iooss & Joseph 1989). After applying spatial
discretization, our problem has the form

E u̇ = A(t)u. (3.2)

A(t) is a matrix with time-periodic coefficients such that A(t) = A(t + T ), where T
is the period of the forcing function.† The solution u(T ) at t = T , given the initial
vector u(0), is

u(T ) = Φ(T )u(0), (3.3)

where Φ(T ) is the monodromy matrix, whose eigenvalues β, known as Floquet
multipliers, determine the stability of the system. Stable and unstable behaviour are
indicated by |β| < 1 and |β| > 1 respectively. The Floquet exponent σ is defined by
the relation

β = exp(σ T ). (3.4)

Suppose Ψ is an eigenvector of Φ(T ) corresponding to the Floquet exponent σ. Then,
it can be shown (Iooss & Joseph 1989) that the solution w(t) to E ẇ = A(t)w with
w(0) = Ψ has a T -periodic component ζ(t) given by

ζ(t) = e−σtw(t), (3.5)

such that

ζ(t) = ζ(t+ T ). (3.6)

Thus, the ζ(t) corresponding to the dominant Floquet multiplier gives us information
on the spatial structure and time evolution of the disturbance.

Our goal is to calculate the dominant eigenvalues β of the monodromy matrix
Φ. We use a primitive variable formulation of the constitutive, momentum, and
constitutive equations. Spatial discretization of the equations is carried out via a
Chebyshev collocation technique that includes a staggered grid for the pressure to
avoid the spurious modes that arise otherwise. Specifically, we use the Chebyshev–
Gauss–Lobatto integration points for the velocities and stresses and the Chebyshev–
Gauss points for pressure (Canuto et al. 1988) with 33 modes for velocities and
stresses and 32 for pressure. This choice of spatial resolution is found to be adequate.

† The non-zero entries of WpA(t) in equation 3.2 for the CCMAC and DMAC cases are available
from the authors or the Journal of Fluid Mechanics Editorial Office.
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Since our interest is restricted to picking out the dominant eigenvalues of Φ(T ),
we take recourse to the Arnoldi Method (Arnoldi 1951) to determine the critical
eigenvalue. We use the public domain code arpack (Lehoucq, Sorensen & Yang
1997) to carry out the Arnoldi calculations. The advantage of the Arnoldi method
lies in the fact that we do not need to explicitly construct Φ(T ) in its entirety; we
need only determine the action of the matrix on a vector, q ← Φ(T )p. In our problem
q is the solution vector obtained by integrating the time evolution equations for a
given initial vector p. The choice of the initial vector p is arbitrary, with the only
requirement being that it satisfy the algebraic components of equation (3.2). In our
case, this is ensured by choosing an arbitrary stress profile and solving the linear
momentum and continuity equations for the corresponding velocities and pressure.
To compute the periodic component ζ(t), we calculate the disturbance vector w(t)
by integrating the time evolution equation (3.2) with initial conditions given by the
eigenvector of the monodromy matrix obtained from arpack. This choice of starting
value ensures that the periodicity condition given by equation (3.6) is not violated.

The integration of the time-dependent viscoelastic equations is performed using the
EVSS decomposition (Rajagopalan, Armstrong & Brown 1990) of the total stress into
elastic and viscous components, coupled with a fully implicit first-order time-stepping
procedure. The time integration and eigenvalue routines were benchmarked against
known eigenvalues for the steady case (ω = 0) from Graham (1998) for CCAC flow
and against the DAC results presented in this paper. In addition, the plane Couette
flow limit was checked against the exact analytical results of Gorodtsov & Leonov
(1967). Most calculations are performed with a time step ∆t = T/100, while at very
low frequencies we employ increased temporal resolution of ∆t = T/2500. This high
resolution is necessary to ensure the accuracy of the eigenvalue computation, which
is checked by monitoring the periodicity of ζ(t).

Next, we briefly discuss the linear stability analysis of DAC and DAP flows. The
analysis closely follows the corresponding one for circular Couette flows in Graham
(1998) and only an abbreviated version is presented below. The equations governing
the evolution of perturbations to the base flow can be written succinctly as

E u̇ = Lu+ N(u), (3.7)

where L is the linearization of the governing equations about the base flow, and N
comprises the strictly nonlinear terms. In the analysis of the steady DAC and DAP
flows, expansions (3.1) are written as

u = δφ(ρ)eiα(z−ct) + O(δ2), (3.8)

where c = cr + i ci is the complex growth rate. This expression is substituted into
equation (3.7). Retaining only terms linear in the amplitude δ and applying the narrow
gap approximation yields a complex generalized eigenvalue problem for the growth
rate c. For given values of α and Wez , the base solution loses stability at the value of
Wp for which ci = 0.

3.2. Weakly nonlinear analysis

Following the methodology of Graham (1998) which in turn follows Iooss & Joseph
(1989), we conduct a weakly nonlinear analysis to determine the criticality of the
bifurcation in DAC and DAP flows. In the presence of either type of axial flow,
the loss of stability takes the form of a Hopf bifurcation, while in the absence of
axial flow the bifurcation is a pitchfork. In either case, the vectors take the form
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of complex conjugates, and since we are only interested in real-valued solutions, the
analysis described below works whether or not an axial flow is present.

The nonlinear solutions are constructed by expanding all variables as a power
series in the amplitude δ, substituting in equation (3.7), and applying the narrow gap
approximation at each order. We let µ = Wp −Wpc, ω̂0 = −αcr , and s = ω̂t. Thus,
the solution takes the form u(z, s, δ)

µ(δ)
ω̂(δ)− ω̂0

 =

∞∑
k=1

δk

k!

 uk(z, s)
µk
ω̂k

 , (3.9)

where u is taken to be the solution at the Chebyshev points. The linear operator L
can be written as

L(µ) = L0 + δµ1L
′ +

δ2

2
µ2L

′′ + . (3.10)

Further, we define the following inner products:

〈a(z, s), b(z, s)〉 ≡ α

4π2

∫ 2π/α

0

∫ 2π

0

a(z, s) b̄(z, s) ds dz, (3.11)

and

[a(z, s), b(z, s)] ≡
9(N+1)+N−1∑

l=0

〈al(z, s), bl(z, s)〉. (3.12)

At O(δ), we recover the linear stability problem, which has the real-valued solution
u1 = z + z∗. Note that u is time-independent in the absence of axial flow, and a
travelling wave otherwise. The eigenvectors are normalized so that [z, z̄] = 1, where z̄
is the solution to the adjoint problem. A solvability condition at O(δ2) gives

−2i ω̂1 [Eu1, z
∗] + 2µ1[L

′u1, z
∗] = −2 [N2(u), z

∗]. (3.13)

The structure of the solutions at first order implies that the right-hand side of this
equation vanishes. Upon separating the real and imaginary parts, the coefficient
matrix of the resulting 2×2 real system has, in general, a non-vanishing determinant,
and hence admits only the trivial solution for µ1 and ω̂1.

Substituting these values into the O(δ2) problem, we see that the particular solution
at that order can be written as

u2 = u20 + u22e
2i(α z+s) + ū22e

−2i(α z+s). (3.14)

Here, u20 is given by

L0,0u20 = −2〈N2(u), 1〉, (3.15)

where L0,0 is obtained by replacing α by 0 in L0. The vector u22 is given by

(−2iω̂0E + L0,2α)u22 = −2〈N2(u), 1e2i(αz+s)〉, (3.16)

where L0,2α is obtained by replacing α with 2α in L0. Unlike in Graham (1998), the
present formulation retains pressure in the momentum equations. Hence, neither of
the above equations is singular and the solution is obtained by LU decomposition.
A solvability condition at O(δ3) gives the single complex equation (or the 2× 2 real
system)

−iω̂2[Eu1, z
∗] + µ2[L

′u1, z
∗] = −2[N3(u), z

∗], (3.17)

from which µ2 and ω̂2 can be obtained.
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4. Effect of steady axial flow
In this section we recapitulate the results of Graham (1998) for the superposition

of steady axial flow on circular Couette geometry (CCAC) and present results from
a similar exercise to study the effect of axial flow on instabilities observed in the
azimuthal Dean flow problem by Joo & Shaqfeh (1991). As mentioned in §3, the
results presented in this paper consider only axisymmetric modes.

Analysis of the CCAC case indicates that the bifurcation is a subcritical Hopf.
Low values of Wez result in destabilization, i.e. minimum critical values of Wp are
lower than in the absence of axial flow, while at higher Wez significant stabilization
is achieved. Let us denote by Wpc the critical value of Wp at a given α and Wez . Let
Wpc,min be the value of Wpc at the global minimum of the neutral stability curve at
a given Wez , and αmin the corresponding value of α. For Wez � 1, scaling analysis
shows that Wpc,min = O(Wez), which is recovered numerically when Wez & 1. This
may be rewritten as ε1/2Weθ = O(Wez), which implies that for a given azimuthal
Weissenberg number one needs to impose a relatively small axial flow rate to stabilize
the flow. The inclusion of solvent viscosity S has an overall stabilizing effect, shifting
the neutral curves upwards while having no effect on the scaling result.

We now present results from a linear stability analysis for the DAC and DAP flows.
As reported by Joo & Shaqfeh (1994), axisymmetric modes are the most unstable in
Dean flow, and our calculations indicate that this behaviour persists when axial flow is
added. For the sake of brevity, we only present the results for axisymmetric modes and
zero solvent viscosity. These are shown in figure 2 (a) for DAC flow and figure 2 (b) for
DAP flow at high α. In contrast to the CCAC and CCAP cases, stabilization occurs
for all values of Wez . Figure 3 shows a plot of Wpc,min vs. Wez for both DAC and
DAP flows. The linear scaling of Wpc,min with Wez at high axial shear rates is evident.
Non-zero solvent viscosity has a stabilizing effect, shifting the neutral curves upward,
while decreasing the critical wavenumber. This is similar to the behaviour observed
at Wez = 0 by Joo & Shaqfeh (1992). Finally, figure 4 shows the neutral stability
curve for pure Dean flow. We point out that there is a change in the slope of the
curve at α = 21.9, where the bifurcation changes from a pitchfork to a Hopf. This is
a codimension-2 Takens–Bogdanov bifurcation point (Takens 1974; Bogdanov 1975;
Knobloch & Proctor 1981; Guckenheimer & Knobloch 1983). Hereafter, we refer to
this value of α as αtk . For wavenumbers greater than αtk , the bifurcation is a Hopf, with
a four-dimensional centre manifold, similar to the one in circular Couette flow. As we
decrease α towards αtk , the period of the Hopf bifurcation increases, reaching infinity
at αtk , where the form of the bifurcation changes to a pitchfork. From a physical
point of view, this bifurcation point is expected, since large-wavenumber disturbances
are localized in a small region near the outer cylinder, and hence experience a base
velocity profile that is locally linear, similar to the profile in circular Couette flow.
Thus, we expect that for large wavenumbers, the destabilization mechanism, and
hence the nature of the bifurcation, will be similar to the one in circular Couette flow.

Recent experimental results by Genieser (1997) on the flow of viscoelastic fluids
through a planar contraction display instabilities that occur as transitions from
steady flow to either steady or oscillatory flow, depending on contraction ratio.
The oscillatory flows have very low frequency, so it may be that these observations
are another manifestation of Takens–Bogdanov bifurcation and concomitant change
in destabilization mechanism found here. The unfolding of a Takens–Bogdanov
bifurcation in an O(2) symmetric system (i.e. a system with axial translation and
reflection symmetry, such as the one we have here) was performed by Dangelmayr
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Figure 2. Neutral curve for (a) DAC and (b) DAP flow for varying Wez . Wpc,min is marked by a •
for each case.
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Figure 3. Plot of Wpc,min vs. Wez for DAC and DAP flows.

& Knobloch (1987). They showed that, depending on the value of the bifurcation
parameters, observable patterns include a non-trivial steady state, travelling waves,
standing waves and modulated waves.

The results of the weakly nonlinear analysis at Wpc,min and αmin are summarized
in table 1 for DAC flow and table 2 for DAP flow. Negative values of µ2 indicate
subcritical behaviour while positive values imply supercriticality. We note that in
the absence of solvent viscosity, S = 0, the bifurcation changes from subcritical to
supercritical at Wez ≈ 0.05 while at finite solvent viscosity the change occurs at
Wez ≈ 1. Results for higher Wez show that for S 6= 0 the bifurcations revert back
to being subcritical. Clearly, by varying the extent of axial motion we may not only
change the position of the bifurcation point but also ensure that we stay in a regime
that admits stable solutions. Similar behaviour arises for the DAP flow, where there
is a change in the sign of µ2 at Wez ≈ 0.25 for S = 0, and Wez ≈ 1.0 when S = 1.
Here, however, non-zero S does not change the criticality of the dominant unstable
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Figure 4. Neutral curve for DAC flow at high α. The change in slope at αtk = 21.9 indicates the
Takens–Bogdanov bifurcation.

S = 0

Wez αmin Wpc,min µ2 ω̂2

0 6.6 4.06 −11.21 0
0.05 6.6 4.07 −6.91 −0.74
0.1 6.5 4.07 0.27 −0.58
1.0 4.4 5.25 7.05 −0.48
2.0 2.9 7.39 26.92 −0.42
3.0 2.2 9.73 46.21 0.24
4.0 1.8 12.18 52.65 0.57
5.0 1.5 14.68 54.15 0.66

S = 1

Wez αmin Wpc,min µ2 ω̂2

0 6.3 5.88 −484.67 0
1.0 4.8 7.03 −38.17 −2.58
2.0 3.6 9.36 144.25 0.40
3.0 3.0 11.81 123.18 4.15
4.0 2.6 14.28 −145.25 4.77
5.0 2.3 16.76 −528.80 3.69

Table 1. µ2 and ω̂2 for DAC flow for S = 0 and S = 1.

mode at higher values of Wez . We note that a change in the criticality of bifurcation
has also been observed in the weakly nonlinear analysis of cone-and-plate flow of an
Oldroyd-B fluid (Olagunju 1997).

5. Effect of modulated axial flow
Our goal here is to investigate whether the addition of a periodic transverse flow

will result in stabilization or destabilization of the primary azimuthal flow. From the
Appendix, we observe that the expression for the steady-state axial stress τ̄zz is the
sum of a constant O(We2

z) contribution and a periodic component. We know from
Graham (1998) that the stabilization when the axial flow is steady is due to the
We2

z term (refer to Graham (1998) for details of the stabilization mechanism) and
in our problem the additional time-varying component can serve to strengthen or
weaken the stabilizing effect leading to a stable or an unstable system. We observe both
characteristics depending on the amplitude, Wez , and frequency, ω of the deformation
rate. To study the transitions in stability arising from the variation of Wez and ω,
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S = 0

Wez αmin Wpc,min µ2 ω̂2

0 6.6 4.06 −11.21 0
0.2 6.5 4.08 −3.95 −0.42
0.3 6.5 4.10 2.20 −0.14
1.0 5.6 4.54 7.73 −0.38
2.0 4.1 5.91 22.55 −2.05
3.0 3.2 7.60 40.10 −3.65
4.0 2.6 9.63 47.64 −2.83
5.0 2.1 11.70 20.18 0.46

S = 1

Wez αmin Wpc,min µ2 ω̂2

0 6.3 5.88 −484.67 0
1.0 5.7 6.42 −95.63 − 1.35
2.0 4.5 7.92 151.33 − 1.20
3.0 3.7 9.89 459.44 7.99
4.0 3.2 11.99 717.29 19.51
5.0 2.8 14.24 813.98 25.62

Table 2. µ2 and ω̂2 for DAP flow for S = 0 and S = 1.

we use a combination of scaling and numerical analysis. Unless otherwise stated, all
analysis presented here implicitly assumes that the solvent viscosity S = 0. Non-zero
solvent viscosity does not change the conclusions of the asymptotic analysis and has
no qualitative effect on the numerical results.

5.1. Scaling analysis

We begin by examining the results from a high-ω asymptotic analysis of the model
equations. The results of such an analysis are invariant to whether the flow kinematics
are governed by CCMAC or DMAC geometry.

To gain insight into the stability characteristics of the system at high frequency,
we scale ω1 to be O(ε−1/2) with the time variable rescaled appropriately to reflect the
shorter time scales. Further, we also retain the scalings on the axial and azimuthal
wavenumbers Wez = Wp = O(1) and restrict α to be O(1). In this regime, the axial
strain rate is large, but the strain amplitude is small (O(ε1/2)), and we find that the
leading-order evolution equation for τ̃zz does not contain the We2

z contribution that
has been established to be the source of high normal axial stresses that contribute
to the stabilization in the flow. The We2

z term comes from the time-averaged non-
zero base-state axial stress (refer to the Appendix for τ̄zz), which tends to zero with
increasing ω and fixed Wez . Thus, we expect decreased stabilization in this regime.
Further, the ω1 = O(ε−1/2) regime also lets us apply the method of averaging, a
rigorous asymptotic technique (Sanders & Verhulst 1985), to the time-dependent
equations. Briefly, the averaging method transforms the system

ẋ = ε̂f(x, t, ε̂) with f(x, t, ε̂) = f(x, t+ T , ε̂), (5.1)

to an autonomous system

ẏ = ε̂
1

T

∫ T

0

f(y, t, 0) dt = ε̂f̄(y). (5.2)

In other words, the averaging procedure replaces the time-dependent coefficients with
their averages over the period of oscillation. This procedure is valid for arbitrary
amplitude of oscillation as long as ε̂ � 1. It can be shown that in our problem the
equations governing the stress perturbations in this regime are of the form shown in
equation (5.1) with ε̂ = ε1/2, ε being the dimensionless gap width defined by equation
(2.5). Importantly, we note the absence of the contribution due to the zero-frequency
terms in τ̄zz in the leading-order equations for τ̃rz and τ̃zz . The remaining coefficients
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of Wez are periodic with zero mean and drop out in the averaging procedure, leaving a
system that is independent of Wez and ω1. Hence in the ω1 = O(ε−1/2) and Wez = O(1)
regime, the system is reduced to the steady circular Couette or Dean flow limit with
no axial motion. Computational results presented later in this section corroborate
this prediction.

In the second high-frequency regime of interest we investigate the effect of O(1)
axial deformation on the dynamics of the system. In this regime we have ω1 = O(ε−1/2)
and Wez = O(ε−1/2). By considering time scales of the order of the relaxation time of
the fluid, we discover the presence of stress boundary layers near the cylinders of size
O(1/Wez) for O(1) wavenumbers and of size O(1/αWez) for O(ε−1/2) wavenumbers.
The existence of boundary layers at high shear rates is consistent with the analysis
of Graham (1998) and Renardy (1997). The asymptotic balances reveal that the
destabilizing azimuthal stress, τ̃θθ, drops out of the radial momentum balance in
both CCMAC and DMAC flows. The propagation of the purely elastic instability of
viscoelastic liquids in curved geometries is through the development of an unstable
stratification of the hoop stress. The absence of this contribution in the asymptotic
limit points to a stable flow. Again, computational results confirm this prediction.

5.2. Numerical analysis

The numerical results are based on perturbation equations for ω1 = O(1) and
Wez = O(1) with the remaining variables and parameters scaled as shown in §2.
As discussed there, this frequency regime includes all possible terms in the narrow
gap approximation, with ω1 = 0 reducing identically to the steady equations of
Graham (1998). For most of our simulations, we choose S = 0 and Wp = 5.93
for CCMAC flow and Wp = 4.06 for the DMAC flow. These are the minimum
critical values of Wp for the UCM fluid in the absence of axial flow. The presence of
solvent viscosity has no qualitative effect on the results. The results in this section also
serve to benchmark our numerical implementation against analytical results presented
above. In our computations we vary ω1 from 0.005 to 5.0 and Wez from 0.1 to 4.0.
We find that this range of parameters is sufficient to capture the salient features and
confirm predictions from asymptotic analyses of different frequency regimes. As stated
previously, we restrict our analysis to axisymmetric modes with axial wavenumbers,
α, varying from 2.0 to 9.0.

Figures 5 (a)–5 (d) summarize the stability information at various ω1 and α for
Wp = 5.93, S = 0, and Wez = 1.0, 1.5, 2.0 and 2.5 respectively in the CCMAC case.
Computations are carried out for each marked point, which specifies ω1 and α, and
the result is shown by a ◦ if the dominant Floquet multiplier has magnitude less
than unity indicating stability and a N otherwise. Results for Wez = 0.1, Wez = 3.0
and Wez = 4.0 are not shown here since at these values Floquet analysis yields
stability for all wavenumbers and frequencies. The plots show that at any specified
axial shear rate one can find oscillation frequencies ω1 where the flow is stabilized
for all wavenumbers that we have considered. This establishes the fact that periodic
forcing can be used to stabilize the flow. Indeed, we note that low forcing amplitudes
(Wez < 1) that were shown to be destabilizing for the steady case can now have
a stabilizing effect by judicious choice of the excitation frequency. In particular, we
draw attention to Wez = 0.1 which shows stability at all ω1 and α in contrast to
steady results of Graham (1998), which predict Wez = 0.1 to be destabilizing. The
stabilization is illustrated in figure 6 (a) which shows the evolution of the norm of
τ̃θθ for Wez = 1.0, α = 4.0, and ω1 = 0.383 for CCMAC flow while figure 6 (b) shows
the same information for DMAC flow at ω1 = 0.5. In both these cases the initial
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Figure 5. Stability maps for Wp = 5.93, varying Wez , ω1, and α: (a) Wez = 1.0, (b) Wez = 1.5,
(c) Wez = 2.0, (d) Wez = 2.5. Calculations for Wez = 0.1, Wez = 3.0 and Wez = 4.0 are not shown
here since |β| < 1 for all wavenumbers and frequencies considered in this work.

condition for the time evolution is chosen to be the eigenvector at criticality in the
absence of axial flow. Observe that the perturbation in the CCMAC case oscillates
about the decaying exponential, consistent with the fact that the VETC instability
occurs as a Hopf bifurcation, whereas the corresponding plot for DMAC flow shows
a steady decay, which agrees with the analysis that the elastic instability in pure Dean
flow takes the form of a pitchfork. We note further that for ω1 > 0.5 stabilization
is achieved at all Wez . For these ω1, plotting values of |β| vs. ω1 (in figure 7) for
α = 6.7 and varying Wez we find that the magnitude of the critical Floquet multiplier
asymptotes to unity (i.e. to marginal stability) with increasing ω1. This is consistent
with our asymptotic analysis that predicts the recovery of the pure circular Couette
limit in the ω1 = O(ε−1/2), Wez = O(1) regime. Likewise, for higher Wez the stable
Floquet multipliers are consistent with the ω1 = O(ε−1/2), Wez = O(ε−1/2) asymptotics
that predict complete stabilization. In fact for Wez > 2.5 we find stability for all
frequencies and wavenumbers that have been investigated. The stabilization trend is
even stronger in the DMAC flow where we have found stabilization (|β| < 1) for
all Wez , ω1, and α that we have considered. As in the CCMAC case, the asymptotic
predictions are corroborated by the numerical results.

Although complete stabilization occurs at some frequencies, there are clearly non-
trivial regions where the oscillation destabilizes the CCMAC flow. These can be seen
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Figure 6. Norm of τ̃θθ vs. t/T (a) CCMAC flow with Wp = 5.93, Wez = 1.0, ω1 = 0.383, α = 6.7.
The disturbance decays in approximately 25 periods of oscillation. (b) DMAC flow with Wp = 4.06,
Wez = 1.0, ω1 = 0.5, α = 6.6. The disturbance decays in approximately 15 periods of oscillation.
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Figure 7. Floquet multiplier, |β| vs. ω1 for ω1 > 0.5. Note that |β| asymptotes to 1
with increasing ω1.

in figures 5 (a)–5 (d). In all cases of instability, we find that a Floquet multiplier passes
through unity, so the bifurcating solutions are always periodic, with the period of the
response equal to the period of the forcing: synchronous resonance. One might a priori
expect resonant instability when ω1 ≈ 1/Wp, since this is the characteristic frequency
of the Hopf bifurcation that occurs in the absence of axial flow and corresponds
dimensionally to the inverse relaxation time of the polymer. We do indeed observe
instability in the neighbourhood of ω1 = 1/Wp, but we also find that instability can
occur at frequencies much lower than 1/Wp. Indeed at the lower values of Wez , this
low-frequency region is where the largest range of wavenumbers is excited. We discuss
first some typical results from the regime where instabilities at ω1 ≈ 1/Wp dominate,
and then turn to the behaviour at lower frequencies.

When Wez = 2, instability occurs in a band of frequencies near 1/Wp. Figure 8
shows the magnitude of the dominant Floquet multiplier, β vs. ω1 for this value of
Wez and a number of values of α. Note the increase in the magnitude of β when the
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Figure 8. |β| vs. ω1 for varying α. The maximum value occurs near the inverse dimensionless
relaxation time, ω1 ≈ 1/Wp.

excitation frequency is near 1/Wp regardless of the overall stability of the system.
To better illustrate the instability, we show in figures 9 (a) and 9 (b) the structure of
τ̃θθ component of ζ(t) corresponding to the dominant value of β, for ω1 = 1/Wp
(unstable) and ω1 = 0.533/Wp (stable) respectively, with all other parameters held
constant at Wp = 5.93, α = 4.0, and Wez = 2.0. Note that for ω1 = 0.533/Wp
the variations are localized in a boundary layer near the outer cylinder while for
ω1 = 1/Wp the distribution is more uniform and approaches the radial travelling
wave structure of the pure circular Couette instability.

In contrast to the behaviour when Wez = 2, when Wez = 1 there is a broad band
of destabilizing frequencies, stretching from ω1 ≈ 1/Wp down to ω1 = 0.005, the
lowest non-zero frequency studied. In the unstable wavenumber band, β increases
dramatically as ω1 decreases, and the calculations are no longer reliable (i.e. ζ(t) is no
longer periodic) below ω1 = 0.005. At these low frequencies, we see from figure 5 (b)
that the band of unstable wavenumbers roughly extends from 3 to 7. However,
when steady axial flow is imposed, so ω1 ≡ 0, only the band from about 2 to 5 is
destabilized. Clearly, the addition of periodic axial flow can have a destabilizing effect
even when the corresponding steady flow is stabilizing.

The qualitative difference in the stability of the modulated and steady systems
as ω1 → 0 results is indicative of a singular limit. This has also been observed
in the stabilization of Newtonian Taylor–Couette flow (Marques & Lopez 1997).
The singularity of the zero frequency limit has been previously established in the
literature for linear stability analysis of time-dependent flows (Rosenblat 1968; von
Kerczek & Davis 1974). Davis & Rosenblat (1977) analysed a damped Mathieu–Hill
equation with externally imposed modulation and showed that at low frequencies
the eigenfunctions have large temporal increases in magnitude within the period of
oscillation; these become unbounded as ω1 → 0. Thus, while the Floquet analysis may
predict overall stable behaviour for a suitable choice of parameters at low frequencies,
the long periods of oscillation allow for large transient increases in the response. Since
the perturbations in the system are now no longer infinitesimally small as is required
for linear stability analysis, one would have to resort to a nonlinear theory to be able
to adequately represent the solution of the system. We find that similar behaviour
occurs in the CCMAC and DMAC flows. Figure 10 plots a norm of ζ(t) vs. t/T as it
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Figure 9. Fluctuations in the τ̃θθ component of ζ(t) at Wp = 5.93, Wez = 2.0, α = 3.0:
(a) ω1 = 1/Wp, (b) ω1 = 0.533/Wp.
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Figure 10. Norm of τ̃θθ component of ζ(t) for ω1 = 0.005 and ω1 = 1.0 with Wp = 5.93,
Wez = 1.0, and α = 4.0.

evolves in time for ω1 = 0.005 and ω1 = 1.0 for the CCMAC case with Wez = 1.0 and
α = 4.0. For ω1 = 0.005, the parameter set is unstable. At approximately t = 0.22T and
t = 0.72T there are large bursts in the perturbation amplitude for ω1 = 0.005 while for
ω1 = 1.0 the amplitude is uniform in time. The increases are approximately 60 times
the average magnitude outside the localized region for ω1 = 0.005 while for ω1 = 1.0
the response has no sharp increases and a maximum that is 1.02 times the initial
amplitude. Figure 11 shows the fluctuations in the τ̃θθ component of ζ(t) across the
gap for the CCMAC flow in the neighbourhood of t = 0.22T . Notice that the relative
magnitudes of ζ(t) at t = 0.156T and t = 0.284T are negligible when compared to
the disturbances at t = 0.22T , with spatial variations not discernible within the scale
chosen in the plot. Similar trends are seen in ζ(t) for DMAC flow at low frequencies,
although destabilization does not occur. Thus, we find that the singular behaviour of
ζ(t) as ω → 0 holds regardless of whether we are in a stable region or not.

The locations of the maxima coincide with the time instants when the imposed
axial velocity, given by Wez/Wp cos(2πt/T ), goes to zero. This result would not be
predicted by a quasi-steady analysis based on the results of Graham (1998). With
steady axial flow, the Wez = 0 state is more stable than are flows with small but non-
zero Wez . Thus, from quasi-steady arguments, one would predict that the disturbance
amplitude would be smallest at the times when the axial shear rate, and thus the
local (in time) Weissenberg number is smallest. This failure of quasi-steady arguments
again underscores the singularity of the zero-frequency limit.

As a possible means to avoid the large temporal increases at low frequencies, we
also investigate the effect of an axial deformation which is a sawtooth in time. This
gives a velocity gradient that is a constant Wez/Wp for 0 < t 6 T/2 and −Wez/Wp
for T/2 < t 6 T . The rationale behind this exercise is that instantaneous changes
in velocity gradients might serve to damp out the large growths in the response
that accompanies the slow and smooth transition in the direction of oscillation in
a sinusoidally excited system at low frequencies. However, numerical calculations
indicate otherwise, with stability maps showing large regions of instability for a wide
spectrum of wavenumbers and frequencies investigated. It appears that the large
number of harmonics present in a sawtooth deformation each tend to resonate with
the applied frequency and hence lead to instability.
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t = 0.156T
Outer cylinder

t = 0.172T t = 0.188T

t = 0.236T t = 0.204T

t = 0.252T t = 0.284Tt = 0.268T

t = 0.220T

Inner cylinder

Figure 11. Snapshot of fluctuations in the neighbourhood of 0.22T for CCMAC flow with
ω1 = 0.005, Wp = 5.93, Wez = 1.0, and α = 4.0.

The results presented above reflect the stability properties of the forced system
relative to the critical Wp of the pure Couette and Dean flows. These results show
that the axial oscillations affect stability, but not the degree of stabilization. We end
with sample calculations showing how the minimum critical value of Wp is shifted
by the presence of axial oscillations. For CCMAC flow, when S = 0, ω1 = 0.383,
Wez = 2.0 we find Wpc,min = 6.4 and αmin = 5.0. Similarly, DMAC simulations for
S = 0, ω1 = 0.8,Wez = 2.0 yield Wpc,min = 4.37 and αmin = 6.0. Note that in both cases
we find Wpc,min is greater than Wpc,min from the pure Couette (5.93) or Dean (4.06)
flows indicating increased stabilization. Again, the decrease in αmin with the addition
of modulated flow is consistent with the analysis of Graham (1998). For comparison,
the values of Wpc,min for Wez = 2 in steady axial flow would be 7.82 and 7.39 for the
CCAC and DAC cases, respectively.

6. Conclusions
We have demonstrated that the superposition of axial periodic motion on the cir-

cular Couette and Dean flows can be used to delay the onset of viscoelastic instability.
While the Dean flow with superposed modulated axial Couette (DMAC) flow analy-
sis reveals that transverse motion is stabilizing for all frequencies and wavenumbers
that we have investigated, the circular Couette with superimposed modulated axial
Couette flow (CCMAC) system reveals distinct regimes corresponding to low and
high axial Weissenberg number Wez where the flow is stabilized for all wavenumbers.
Intermediate values of Wez show instability at certain wavenumbers. One interesting
region of instability is when Wez = 2 where the instability occurs at frequencies close
to the inverse of the relaxation time of the fluid. Asymptotic analysis also indicates
that at high frequencies and axial Weissenberg numbers (ω = O(1), Wez = O(ε−1/2))
the flow reduces to a planar shear flow that is known to be stable. This is confirmed
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from our numerical results which yield stable Floquet multipliers in these regimes.
Another regime of interest is when ω = O(1) and Wez = O(1) where averaging
theory shows that no stabilization occurs. Again, numerical computations confirm
this behaviour. Further, we have examined the singularity of the ω → 0 limit, finding
that the disturbances can display bursts of large magnitude separated by quiescent
intervals.

We have also reported linear and weakly nonlinear stability results from the
superposition of steady axial flow on Dean flow instabilities. For Wez � 1 the scaling
analysis follows Graham (1998) with critical Wp varying linearly with Wez . Low
Wez results in stabilization, which is qualitatively different from the circular Couette
analysis of Graham (1998). Weakly nonlinear analysis reveals that the bifurcation
may be subcritical or supercritical depending on the values of Wez and S . Finally, we
report a codimension-2 Takens–Bogdanov bifurcation point at an axial wavenumber
α = 21.9 for Dean flow without axial forcing. This bifurcation point represents a
change in the mechanism of the instability.

This work was supported by an NSF CAREER Award number CTS-9502677.

Appendix. Base-state solutions
To leading order, the steady-state velocities and polymer stresses of an Oldroyd-B

fluid are given below.
DAP flow:

v̄r = 0, (A 1)

v̄θ = ρ(1− ρ), (A 2)

v̄z =
Wez

Wp
ρ(1− ρ)ε1/2, (A 3)

τ̄rr = 0, (A 4)

τ̄rθ =
Wp (1− 2ρ)

ε1/2
, (A 5)

τ̄rz = Wez(1− 2ρ), (A 6)

τ̄θθ =
2(1− 2ρ)2Wp2

ε
, (A 7)

τ̄θz =
2(1− 2ρ)2WezWp

ε1/2
, (A 8)

τ̄zz = 2(1− 2ρ)2We2
z . (A 9)

CCMAC: The equations correspond to the regime where ω = O(ε1/2) and t =
O(ε−1/2) with all other variables scaled as in §2. We define ω1 = ε−1/2ω = O(1) and
t1 = ε1/2t = O(1).

v̄r = 0, (A 10)

v̄θ = (1− ρ), (A 11)

v̄z =
Wez(1− ρ)ε1/2 cos(ω1t1)

Wp
, (A 12)
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τ̄rr = 0, (A 13)

τ̄rθ = −Wp
ε1/2

, (A 14)

τ̄rz = −Wez cos (ω1t1)

(1 + ω2
1Wp

2)
− ω1WpWez sin (ω1t1)

(1 + ω2
1Wp

2)
, (A 15)

τ̄θθ =
2Wp2

ε
, (A 16)

τ̄θz =
WezWp(2 cos (ω1t1) + 3Wpω1 sin (ω1t1) + ω3

1Wp
3 sin (ω1t1))

ε1/2(1 + ω2
1Wp

2)2
, (A 17)

τ̄zz =

−−We2
z(−1− 4ω2

1Wp
2 − cos (2ω1t1) + 2ω2

1Wp
2 cos (2ω1t1)− 3ω1Wp sin (2ω1t1))

(1 + 4ω2
1Wp

2)(1 + ω2
1Wp

2)
.

(A 18)

DMAC: The scalings for ω and t are the same as for CCMAC. The steady axial
flow (DAC) equations are obtained by setting ω1 = 0.

v̄r = 0, (A 19)

v̄θ = (ρ− ρ2), (A 20)

v̄z =
Wez(1− ρ)ε1/2

Wp
cos(ω1t), (A 21)

τ̄rr = 0, (A 22)

τ̄rθ =
Wp (1− 2 ρ)

ε1/2
, (A 23)

τ̄rz = −Wez cos(ω1t1) +Wpω1 sin(ω1t1)

(1 + ω2
1Wp

2)
, (A 24)

τ̄θθ =
2Wp2(1− 2ρ)2

ε
, (A 25)

τ̄θz =
WezWp(−1 + 2ρ)(2 cos(ω1t1) +Wpω1(3 +Wp2ω2

1) sin(ω1t1))

ε1/2(1 +Wp2ω12)2
, (A 26)

τ̄zz =
−We2

z(−1− 4ω2
1Wp

2 − cos(2ω1t1) + 2ω2
1Wp

2 cos(2ω1t1)− 3ω1Wp sin(2ω1t1))

(1 + 4Wp2ω2
1)(1 +Wp2ω2

1)
.

(A 27)
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