
RESEARCH PERSPECTIVE

Developmental arrest: from sea urchins to seeds 

Steven Footitt1 and Marc Alan Cohn*
Department of Plant Pathology and Crop Physiology, 302 Life Sciences Building, Louisiana State University
Agricultural Center, Baton Rouge, Louisiana 70803, USA

Abstract

The phenomenon of dormancy extends beyond the
boundaries of the plant kingdom. While plant biologists
typically associate dormancy-breaking treatments only
with seeds, buds or tubers, these chemicals and
environmental stimuli have much broader activity as
general terminators of developmental arrest in other,
non-plant species. The activation of growth by these
treatments is associated with signal transduction
processes, metabolic upregulation and changes in gene
expression, in addition to other events that may or may
not be species specific. The study of both the classic and
current developmental arrest literature beyond the
boundaries of plant biology may be helpful in generating
useful ideas and analogies for meaningful experimental
progress towards understanding seed dormancy.
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Introduction

To survive adverse environmental conditions (e.g.
cold, water limitations, oxygen deprivation, etc.)
many species enter an arrested state (e.g. Henis, 1987;
Cáceres, 1997 and references therein). Generally, this
state can be primarily metabolic arrest alone
(quiescence) (Hochachka and Guppy, 1987; Guppy
and Withers, 1999) or in combination with

developmental arrest (dormancy or diapause)(e.g.
Hand, 1991), where an individual is genetically
programmed and specifically prevented from
entering subsequent growth stages of its life cycle.
Organisms entering developmental arrest generally
do so before attaining their adult form. For example,
developmental arrest is observed in the egg (Arbacia
sp.) (Epel, 1989), blastocyst (Capreolus capreolus)
(Renfree, 1978), cyst (Artemia sp.) (Drinkwater and
Crowe, 1987), larval (Haemonchus contortus)
(Petronijevic et al., 1986), gemmule (Eunapius fragilis)
(Loomis et al., 1996), pupal (Sarcophaga crassipalpis)
(Denlinger et al., 1980), seed (Bewley and Black, 1982,
1994) and spore (Phycomyces blakesleeanus) (Thevelein
et al., 1979) stages. However, a developmentally
arrested state is not an obligatory component of all
life cycles (Sussex, 1978).

Developmental arrest occurs when an organism
enters a form resistant to adverse conditions. As
growth and development cease, metabolic activities
are concertedly down-regulated to minimal levels to
retain viability. An ametabolic state does not
generally occur, as metabolism can be detected in
both dry and hydrated systems (Bewley and Black,
1982; Hand and Gnaiger, 1988; Footitt et al., 1995;
Hand and Hardewig, 1996; Brooks and Storey, 1997).
Development does not continue when optimum
environmental conditions simply resume. An
activating stimulus is required to terminate
developmental arrest (i.e. to break dormancy). This
activating stimulus is usually not required for
additional further growth. The nature of
developmental arrest has been reviewed in a number
of model systems, such as eggs (Loeb, 1913; Epel,
1989, 1990), insects (Jungreis, 1978), seeds (Bewley
and Black, 1982; Simpson, 1990; Hilhorst, 1995, 1998;
Bewley, 1997), spores (Sussman and Halvorson, 1966)
and diapausing aquatic animals (Hand and
Podrabsky, 2000).

Therefore, dormancy is a phenomenon common
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from the monera to the animal kingdom. For almost
100 years dormancy research has tended to remain
within the bounds of its respective kingdom. This has
held back progress in a field that directly and
indirectly affects human health and welfare. Progress
in our laboratory was contained within the same
boundaries until we discovered the sea urchin egg
activation research and some early 20th-century seed
papers buried in the literature. The conceptual flood
gates then opened, and by reviewing the field of
dormancy-breaking chemicals without regard to
kingdom or species, a pattern emerged that may help
to cast light on the underlying mechanism of
physiological dormancy-breaking. In the past few
years such ideas have started to spread, primarily
from the field of egg activation, bringing an
increasing awareness of advances in diverse and
seemingly unrelated model systems. Focusing upon
genetically programmed developmental arrest, this
review highlights the widespread nature and
commonalities of chemical-based dormancy-breaking
treatments and a few consequences of such
treatments.

Early development of chemical-based dormancy-
breaking treatments

Towards the end of the 19th century, the properties of
chemicals capable of perturbing biological systems
attracted increasing attention. Fungal spore
susceptibility to toxic acids was related to the
presence of the undissociated acid form (Clark, 1898).
Cell permeability to weak bases was equated with
their degree of dissociation and lipophilicity (Harvey,
1911). Alcohol partition coefficients (lipophilicity) and
anaesthetic potency were found to increase with
carbon number (Overton, 1901). At the same time,
developmental biologists recognized these properties
as affecting the activity of chemicals that terminated
developmental arrest (Loeb, 1913).

Common thematic features of chemical-based
dormancy-breaking treatments

Structural features

A large number of dormancy-breaking chemicals are
active in surprisingly diverse model systems
(examples in Table 1). Small molecular weight
substances, known to many of us only as seed
dormancy-breaking chemicals (e.g. weak acids,
aldehydes, ketones and alcohols), terminate
developmental arrest in a variety of species. From this
survey, the common structural features of dormancy-
breaking chemicals can be identified (see following

sections). In our laboratory, consideration of these
features increased both the successful use and
discovery of seed dormancy-breaking chemicals.
Lipophilicity plots proved especially useful for
predicting the concentration range for dormancy-
breaking activity of previously untested chemicals
(Cohn, 1989, 1997; Cohn et al., 1989, 1991). In addition
to lipophilicity, the nature and position of oxidizable
functional groups were critical factors governing
activity (reviewed in Cohn, 1996a).

The pH effect and the impact of dissociation
constants

Acid scarification, a common seed treatment,
terminates developmental arrest in systems other
than seeds. A number of reports have shown that
inorganic acids at pH 2 break dormancy (Loeb, 1913;
Lillie, 1926; Sibilia, 1930; Bingham and Meyer, 1979;
Adkins et al., 1985; Petronijevic et al., 1986). Whether
activation is a result of acid scarification/mechanical
injury or acid loading is not clear. Weak acids and
bases also break dormancy under milder, more
controlled conditions in a pH-dependent manner, and
this effect is related to their dissociation constants
(pKs). Dormancy-breaking activity requires the
presence of the uncharged chemical species. This has
been recognized in a number of model systems (Loeb,
1913; Lillie, 1926; Toole and Cathey, 1961; Palevitch
and Thomas, 1976; Cohn and Hughes, 1986;
Petronijevic et al., 1986; Van Mulders et al., 1986; Cohn
et al., 1987; Petronijevic and Rogers, 1987a).

Contact time

The application of dormancy-breaking chemicals as a
pulse is more effective than continuous contact (Loeb,
1913; Lillie, 1926; Zagorski and Lewak, 1984; Cohn
and Hughes, 1986). This is almost certainly due to the
detrimental effect of prolonged exposure to
dormancy-breaking chemicals on normal develop-
ment (Loeb, 1913; Lillie, 1926; Mayer and Evenari,
1953). These reports also confirm what has been
commonly known for many seeds: conditions for the
termination of developmental arrest can be very
different from those supporting growth.

Lipophilicity and molecular size

In several model systems the dormancy-breaking
activity of organic acids and their derivatives is
correlated with their lipophilicity (Loeb, 1913;
Thevelein et al., 1979; Belmans et al., 1983; Taylorson,
1988; Cohn et al., 1989). In seeds, this correlation is
modified by a functional group effect, with weak
acids being more active (Cohn et al., 1989). The
activity of some compounds (e.g. inorganic nitrogen
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Chemical activation of dormant organisms 5

Table 1. Chemicals showing dormancy-breaking activity and the kingdoms in which they are found to be active. In each
kingdom, the number designates a species where the appropriate chemical shows activity. The chemicals and species identified
are representative only; other examples can be found in the cited literature. Species are identified in the species key below.
Within each kingdom, species are arranged by phyla

Kingdom

Chemical Monera Protista Fungi Plantae Animalia

Alkanes
Butane 2
Pentane 2 10
Hexane 2 9, 10
Heptane 10
Iso-octane 10
Cyclohexane 10

Alkenes
Ethylene 10, 11, 13, 14
Propylene 2 13, 14
Propadiene 14
1-Butene 2
1-Hexene 10

Monocarboxylic acids
Methanoic acid 2 1 7 4, 12, 15
Ethanoic acid 2 2, 3 1,3 1, 3, 7 6, 12, 13, 15
Propanoic acid 2 1, 4 7 12, 15
2-Propenoic acid 1
Butanoic acid 2 1, 3, 4 1, 2, 7 12, 13, 15
Isobutanoic acid 1, 3 7 12
Isopentanoic acid 1 7 12
Pentanoic acid 2 1, 3 7 12, 15
Hexanoic acid 2 1 7 12, 15
Isohexanoic acid 12
Heptanoic acid 15
Octanoic acid 15
Nonanoic acid 15
Decanoic acid 15
Palmitic acid 9
Oleic acid 8, 9
Linoleic acid 8, 9 10
Linolenic acid 8

Dicarboxylic acids
Fumaric acid 7
Malonic 7
Oxalic acid 7 6, 15
Succinic acid 7 7

Tricarboxylic acids
Citric acid 7 15

Hydroxyacids
Glycolic acid 7
Ascorbic acid 3, 4
Lactic acid 7 12
�-Hydroxybutyric acid 7 15

Aldehydes
Formaldehyde 6
Acetaldehyde 3, 7
Propionaldehyde 7
Pentanal 9
Hexanal 8, 9 15
2,4-Hexadienal 8
Heptanal 7, 9
Octanal 7, 8, 9 15
Nonanal 7, 9

Continued over
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Table 1. Continued

Kingdom

Chemical Monera Protista Fungi Plantae Animalia

Decanal 9
Hexadecanal 8

Esters
Methyl formate 7
Methyl propionate 7
Ethyl acetate 7 10
Ethyl butyrate 2

Ketones
Propanone 2 7a, 9 9, 10
Butanone 10
2-Pentanone 10
3-Pentanone 10
1-Penten-3-one 8, 9
2-Hexanone 6, 7
2-Heptanone 6, 7 15
2-Octanone 5, 6, 7 15, 16
2-Nonanone 5, 6, 7 15, 16

Alcohols
Methanol 3 1, 2 7, 9, 10, 11
Ethanol 1, 2 3, 4, 5, 7, 8, 11 8, 12
Propanol 1, 2 3, 4, 5, 7, 8 12
Isopropanol 2 7, 11, 16
2-Propen-1-ol 4
Butanol 2 1, 2 3, 4, 5, 7 10, 12
Isobutanol 7a

Pentanol 2 1, 2 5, 7, 8
Hexanol 2 1, 2 7a

Heptanol 1, 2 7a

Octanol 1, 2 7a

3-Octanol 1
1-Octene-3-ol 1
Nonanol 7
2-Nonanol 7 15, 16
3-Nonanol 16
1-Nonen-3-ol 16

Amines
Hydroxylamine 2 3, 7, 10
Methylamine 1 5
Ethylamine 2 5
Propylamine 7a

Butylamine 5, 13
Heptylamine 2
Octylamine 2
Decylamine 2
Dodecylamine 2

Ethers
Diethyl ether 9, 11 8, 10, 11

Aromatics
Benzene 10
Benzoic acid 7 12, 15
Benzyl acetate 5, 7
Benzaldehyde 5, 7 16
Benzyl alcohol 5, 8
Benzyl amine 5, 13
Phenol 1
Salicylic acid 1 7 12
Salicylhydroxamic acid 13, 15
Methyl salicylic acid 5, 7 10
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Table 1. Continued

Kingdom

Chemical Monera Protista Fungi Plantae Animalia

Salicylaldehyde 7
Toluene 10
Xylene 10
Xylol 8, 11

Inorganics
Ammonia 1 1 3, 7a, 12 2, 3, 4, 5, 13
Azide 3, 7, 10
Carbon dioxide 1, 2, 3, 4, 5, 6 5, 7, 9 2, 3, 4, 7, 12, 13, 14, 15
Cyanide 7, 10, 13 12, 14
Hydrogen peroxide 6 7
Hydrogen sulphide 5 7a 4
Nitrate 2 2, 3 3, 10 12
Nitrite 3, 7, 10
Nitric oxide 5
Nitrogen dioxide 7

a Unpublished data.

Key to species:
MONERA
Schizophyta: 1, Bacillus cereus endospore (Preston and Douthit, 1988); 2, Bacillus megaterium endospore (Levinson and Sevag,
1953; Rode and Foster, 1961, 1965); 3, Thermoactinomyces vulgaris endospore (Kirillova et al., 1974).

PROTISTA
Sarcomastigophora: 1, Giardia muris cyst (Schaefer et al., 1984); 2, Hartmannella rhysodes cyst (Datta, 1979); 3, Schizopyrenus russelli
cyst (Datta, 1979).
Apicomplexa: 4, Eimeria bovis cyst (Jensen et al., 1976); 5, Eimeria stiedai cyst (Jensen et al., 1976); 6, Eimeria tenella cyst (Nyberg et
al., 1968; Jensen et al., 1976).
Ciliophora: 7, Pleurotricha lanceolata cyst (Jeffries, 1956, 1962).

FUNGI
Amastigomycota: 1, Phycomyces blakesleeanus conidiospore (Thevelein et al., 1979, 1983; Van Mulders et al., 1986); 2, Neurospora
tetrasperma ascospore (Belmans et al., 1983); 3, Hygrophorus russula basidiospore (Ohta, 1988); 4, Tricholoma flavovirens uredospore
(French, 1984); 6, Uromyces vignae uredospore (French, 1984); 7, Uromyces rumicis uredospore (French et al., 1986); 8, Alternaria
alternata conidiospore (Harman et al., 1980); 9, Fusarium solani conidiospore (Harman et al., 1980).

PLANTAE
Phaeophycophyta: 1, Fucus vesiculosus egg (Overton, 1913); 2, Sargassum piluliferum egg (Hiroe and Inoh, 1954).
Anthophyta: 3, Avena fatua seed (Adkins et al., 1984a, b, 1985; Cairns and De Villiers, 1986); 4, Avena sativa seed (Corbineau et al.,
1991); 5, Echinochloa crus-galli seed (Taylorson, 1988; Leather et al., 1992); 6, Hordeum vulgare seed (Hareland and Madson, 1989;
Fontaine et al., 1994); 7, Oryza sativa seed (Tseng, 1964; Major and Roberts, 1968; Cohn et al., 1983, 1987, 1989; Cohn and Castle,
1984; Cohn and Hughes, 1986); 8, Panicum capillare seed (Taylorson, 1989); 9, Panicum dichotomiflorum seed (Taylorson and
Hendricks, 1979; Taylorson, 1980); 10, Amaranthus albus seed (Hendricks and Taylorson, 1974; Taylorson, 1979); 11, Amaranthus
retroflexus seed (Taylorson, 1979, 1989; Schonbeck and Egley, 1980); 12 Berbera verna seed (Hendricks and Taylorson, 1974); 13,
Lactuca sativa seed (Brooks et al., 1985; Abeles, 1986); 14, Portulaca oleracea seed (Taylorson, 1979); 15, Rumex acetosella seed
(French and Leather, 1979); 16. Rumex crispus seed (French and Leather, 1979; Taylorson, 1984; French et al., 1986).

ANIMALIA
Nematoda: 1, Bursaphelenchus xylophilus juvenile (Matsumori et al., 1989); 2, Ascaris suum juvenile (Petronijevic and Rogers,
1987a); 3, Haemonchus contortus juvenile (Petronijevic et al., 1986; Petronijevic and Rogers, 1987a, b); 4, Nematospiroides dubius
juvenile (Petronijevic et al., 1986).
Annelida: 5. Polynoe sp. egg (Loeb, 1913); 6, Thalassema mellita egg (Loeb, 1913).
Arthropoda: 7, Artemia franciscana cyst (Drinkwater and Crowe, 1987; Clegg et al., 1996); 8, Melanoplus differentialis egg (Slifer,
1946); 9, Manduca sexta pupae (Denlinger et al., 1980); 10, Sarcophaga crassipalpis pupae (Denlinger et al., 1980); 11, Loxostege
sticticalis pupae (Pepper, 1937).
Echinodermata: 12, Asterias forbesii egg (Lillie, 1910, 1913, 1926, 1927); 13, Arbacia sp. egg (Lyon, 1903; Loeb, 1913; Harding,
1951); 14, Paracentrotus lividus egg (Lyon, 1903; Loeb, 1913); 15, Strongylocentrotus purpuratus egg (Loeb, 1913).
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compounds) appears to be better related to molecular
size rather than lipophilicity (Cohn et al., 1989).
Overall, it is somewhat disappointing that features,
identified by Loeb (1913) in the activation of sea
urchin eggs (contact time, dissociation constant and
lipophilicity), have taken so long to be recognized in
other model systems, especially seeds. On the other
hand, detailed structure–activity studies of chemicals
that activate eggs have yet to be conducted.

Is there a common mechanistic basis for cross-
kingdom chemical activities?

Many plant species exhibit physiological seed
dormancy, i.e. resulting not from an impermeable
seed coat, physical restraint or an immature embryo,
but from the consequences of a developmental
programme. Physiological dormancy can be broken in
response to environmental, physical and chemical
agents (Bewley and Black, 1994). Several hypotheses
have been presented to explain the dormancy-
breaking ability of these agents (reviewed in Bewley
and Black, 1982, 1994; Cohn, 1987). In the case of
chemical agents, hypotheses tend to centre on specific
components of metabolism (e.g. Roberts and Smith,
1977; Taylorson and Hendricks, 1980/81; Esashi et al.,
1981a, b). These hypotheses attempt to explain the
dormancy-breaking action of specific groups of
compounds. However, until recently they have not
been able to address the fundamental question of why
a wide range of apparently unrelated chemicals are
able to break dormancy (see Cohn and Hilhorst,
2000). 

Of the known dormant forms in the kingdoms of
life, the majority are activated by representatives from
many of the chemical classes shown in Table 1. A
notable exception has been the alkanes, which appear
to have no dormancy-breaking activity in seeds
(Taylorson, 1979; Abeles, 1986; Cohn et al., 1989).
Initially, it may appear unusual that such a wide
variety of chemicals should be active in such a diverse
number of species. However, this can be
accommodated if similar dormancy-breaking
mechanisms operate in all kingdoms. 

Markers for dormancy-breaking and early
germination events

In previous publications, we have documented the
need for physiological/biochemical markers as
guideposts for the time course that seeds experience
as they progress from dormancy to germination
processes as a consequence of the application of
dormancy-breaking chemicals (Footitt and Cohn,
1992, 1995; Cohn and Footitt, 1993; Footitt et al., 1995;

Cohn, 1996a, b). These have included changes in
tissue pH, levels of fructose 2,6-bisphosphate, as well
as uptake kinetics and metabolism of dormancy-
breaking chemicals. Review of the historical literature
indicates that some of these putative markers have
wider relevance beyond the world of seeds.

Intracellular pH

Many developmentally arrested systems exhibit a
change in internal pH upon activation (Table 2). In
unicellular systems such as sea urchin and Xenopus
eggs, one of the early events of fertilization or
artificial activation is an increase in intracellular pH
(Grainger et al., 1979; Whitaker and Steinhardt, 1982;
Busa and Nuccitelli, 1984; Charbonneau and Grandin,
1989; Epel, 1989; Freeman and Ridgway, 1993; Miller
and Epel, 1999). By contrast, intracellular pH
decreases upon activation of dormant multicellular
systems, such as diapause cysts of the brine shrimp,
Artemia franciscana (Drinkwater and Crowe, 1987),
larvae and juveniles of the nematodes, Caenorhabditis
elegans and Haemonchus contortus (Petronijevic and
Rogers, 1987b; Wadsworth and Riddle, 1988), and
upon proliferation of Syrian hamster embryo cells
(Isfort et al., 1993, 1995). In plants, intracellular pH is
also higher in dormant than in non-dormant tissues,
e.g. Jerusalem artichoke tuber buds (Gendraud and
Lafleuriel, 1983), red rice embryos (Footitt and Cohn,
1992) and barley aleurone cells (Van Beckum et al.,
1993). The pH of dormant seed embryos decreased
during dormancy-breaking treatments and
germination (Table 2). These observations identify
changes in intracellular pH as a potential marker for
the change in developmental pattern.

Small molecular weight substances

At some time interval after the application of a
dormancy-breaking chemical to seeds, there must be
a resumption of metabolic activity associated with
normal germination that occurs prior to radicle
emergence. One of the challenges of seed dormancy
research is to avoid confusing activities associated
with the dormancy-breaking process in contrast to
these germination events. Identification of
biochemical markers to delineate these processes
would be of significant interpretive value. Because of
the numerous synthetic processes required for
germination, particularly transcription and
translation, one of the earliest manifestations of the
germination process would be increased carbon flux
through energy-generating pathways such as
glycolysis (Botha et al., 1992) and an increase in the
metabolic regulator, fructose 2,6-bisphosphate (Fru
2,6-P2), which activates pyrophosphate:fructose 6-
phosphate 1-phosphotransferase (PPi-PFK) and
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inhibits cytosolic fructose 1,6-bisphosphatase (Van
Schaftingen, 1987; Stitt, 1990). PPi-PFK-specific
activity can increase when oxygen is limiting during
seedling growth (Mertens et al., 1990; Mertens, 1991),
and this could also occur in the dense tissues of a
germinating seed, as seems to be the case in Phaseolus
vulgaris (Botha and Small, 1987). In dormant tubers
and roots, restoration of metabolic activity led to an
increase in Fru 2,6-P2 (Van Schaftingen and Hers,
1983; Kowalczyk, 1989). In Phycomyces blakesleeanus
spores and seeds of Avena sativa, dormancy-breaking
chemical treatments induced a transient rise in Fru
2,6-P2 (Van Laere et al., 1983; Larondelle et al., 1987).
In non-dormant Avena sativa, a transient increase was
also seen in the germination phase prior to radicle
protrusion (Larondelle et al., 1987). The Avena sativa
study used intact caryopses. Thus, the transient
increase may result from anaerobic conditions in the
embryo resulting from oxygen uptake by microflora
or the glumes (Lenoir et al., 1986; Briggs and
McGuinness, 1992), although under similar
conditions no transient increase was seen in barley
(Thornton, Footitt and Bryce, unpublished data).
After the application of nitrite or propionaldehyde to
break dormancy in red rice grains, a dramatic
increase in [Fru 2,6-P2] was observed within 4 h of
chemical treatment. However, other dormancy-
breaking chemicals did not elicit increased [Fru 2,6-
P2] until the time of radicle protrusion, possibly due
to inhibitory side-effects of dormancy-breaking weak
acids and their esters on glycolytic activity (Footitt
and Cohn, 1995). Considering all of this information
together, Fru 2,6-P2 may have potential value as a
marker for increased metabolic activity during
dormancy-breaking and germination in some well-
characterized situations. However, the differential

sensitivity of seed tissue [Fru 2,6-P2] to various
chemical and environmental factors prevents
adoption of [Fru 2,6-P2] as a ‘fail-safe’, universal
marker for dormancy-breaking or the dormant/non-
dormant transition.

In dry wild oat (Avena fatua) seeds, the adenosine
triphosphate (ATP) concentration is lower in dormant
than in non-dormant seeds (Adkins and Ross, 1983).
On hydration, differences in developmental state
were not reflected in the ATP levels or energy charge
(Adkins and Ross, 1983; Larondelle et al., 1987; Côme
et al., 1988). Gibberellic acid (Adkins and Ross, 1983)
and ethanol (Larondelle et al., 1987) broke dormancy,
but ATP levels were the same as in dormant seeds.
However, in dormant Kalanchoë blossfeldiana seeds, a
non-saturating dose of red light increased ATP
content without breaking dormancy, in effect
inducing a physiological response in a dormant seed
(De Greef et al., 1989; Dedonder et al., 1992). As ATP
levels are highly buffered, the level of unbound
adenosine diphosphate (ADP) has been suggested as
a more useful measure of energy status (Guppy et al.,
1994). Results to date suggest that ATP content and
energy charge of seeds may not be useful as uniform
markers for the transition between the dormant and
germinating states.

Ammonia production is a recently identified
marker for the germination phase that merits further
investigation. In non-dormant Arabidopsis thaliana
seed, ammonia levels increased rapidly 24 h prior to
radicle emergence (Garciarrubio et al., 1997;
Garciarrubio, personal communication). Further work
is required to determine whether such an increase
occurs in other species and the timing of such an
increase in arrested seeds after a dormancy-breaking
treatment.

Chemical activation of dormant organisms 9

Table 2. Examples of species exhibiting a change in pH upon termination of developmental arrest

Species pH Reference

Unicellular systems
Strongylocentrotus purpuratus ⇑ Johnson et al. (1976)
Xenopus laevis ⇑ Nuccitelli et al. (1981)
Carcinus maenas ⇑ Hervé et al. (1989)
Urechis caupo ⇑ Gould and Stephano (1993)

Multicellular systems
Crataegus gloriosa ⇓ Eckerson (1913)
Avena fatua ⇓ Atwood (1914)
Tilia americana ⇓ Rose (1919)
Acer saccharinum ⇓ Jones (1920)
Juniperus virginiana ⇓ Pack (1921)
Helianthus tuberosa ⇓ Gendraud and Lafleuriel (1983)
Artemia franciscana ⇓ Drinkwater and Crowe (1987)
Haemonchus contortus ⇓ Petronijevic and Rogers (1987b)
Oryza sativa ⇓ Footitt and Cohn (1992)
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Enzyme activity

Enzyme levels and activities might be expected to
increase in both the dormant/non-dormant transition
and the germination phase. To date, studies on seeds
have failed to provide an enzyme as a transitional
developmental marker between the dormant and
germinating states. This is not the case in other model
systems. In tubers, enzyme activities differ between
tissue from dormant tubers and tissue slices aged in
vitro to induce respiration. In aged tissue, the activity
of glycolytic enzymes increased, and their
distribution changed from the soluble to the
particulate fraction (Moorhead and Plaxton, 1988). In
animal systems, studies on the activation of sea
urchin and clam eggs have also found changes in
enzyme activity and location. Total in vitro activity of
glucose 6-phosphate dehydrogenase (G6PD) was the
same in extracts from fertilized and unfertilized eggs.
However, upon fertilization, its localization changed
from the insoluble (inactive) to soluble (active)
fraction (Isono, 1963; Isono et al., 1963; Ii and Rebhun,
1982; Swezey and Epel, 1986, 1995). If G6PD was
assayed in situ using permeabilized eggs, the enzyme
activity increased rapidly following fertilization, as
did NADPH levels (Epel, 1989; Rees et al., 1996).
These egg experiments suggest the need for
refinement of the ‘grind and find’ approach
previously used in seed studies. (As a side issue, these
egg activation data support an important role of the
pentose shunt following fertilization in sea urchin.
Therefore, there still may be some life in the pentose
shunt hypothesis regarding seed dormancy!).

By identifying a series of markers during and
following a dormancy-breaking chemical treatment, a
time-line of events can be constructed. The position of
events on the time-line will suggest other associated
events as markers. Hence, the time-line will also fulfil
a predictive function. Ultimately, this approach will
make it possible to unravel the events that make up
the dormancy-breaking process and identify the
transition points between the developmental states.

Overview

While there is a tendency to view dormancy-breaking
events as a single linear time course, it now seems
that multiple, rapidly interacting paths with different
activation kinetics are triggered in response to a single
dormancy-breaking signal (Footitt and Cohn, 1992,
1995; Footitt et al., 1995; Cohn, 1996a) and during the
germination process as well (Alvarado et al., 2000;
Bradford et al., 2000). If constitutive metabolism is
activated rapidly above the cellular maintenance level
after application of a dormancy-breaking chemical, it
is intriguing to ponder what regulatory changes are

occurring at the level of transcription and translation
(including post-translation) to the control of gene
expression during the transition from the dormant to
non-dormant state and subsequent germination
(Morris et al., 1991; Goldmark et al., 1992; Hance and
Bevington, 1992; Dyer, 1993; Johnson et al., 1995; Li
and Foley, 1995, 1996; Aalen, 1999; Holdsworth et al.,
1999; Alvarado et al., 2000; Bradford et al., 2000).

In addition, one must further consider the role of
abscisic acid (ABA), produced in the embryo, which is
required to induce dormancy (e.g. LePage-Degivry
and Garello, 1992; Hilhorst, 1995; McCarty, 1995;
Koornneef et al., 1998). ABA induces increased
cellular pH (Gehring et al., 1990; Van der Veen et
al.,1992) and the expression of dormancy-associated
genes (Morris et al., 1991; Goldmark et al., 1992; Li and
Foley, 1995), including the gene for the transcription
factor VP1 and its homologues which control embryo
maturation and, in some cases, developmental arrest
(McCarty, 1995; Jones et al., 1997). This suggests the
possible involvement of increased embryo pH in the
expression of genes responsible for the induction/
maintenance of seed dormancy. In this respect, it is
intriguing that dormancy-breaking weak acids acidify
the internal pH (Cohn et al., 1989; Footitt and Cohn,
1992) and inhibit ABA-induced gene expression (Van
der Veen et al., 1992). In contrast, gibberellic acid-
induced gene expression did not appear to be pH
sensitive (Van der Veen et al., 1992; Heimovaara-
Dijkstra et al., 1995). These data suggest that internal
pH may act as a modulator of some developmental
signals, as in the proliferation of Syrian hamster
embryo cells, where transient intracellular
acidification is indispensable for platelet-derived
growth factor-induced proliferation (Isfort et al.,
1995).

The role of cellular acidification in the loss of
dormancy may be to reduce the expression of ABA-
related genes, e.g. VP1 and PKABA1 homologues. In
dormant wild oats, transcription of the afVP1
homologue is reduced as a result of dry after-ripening
and increased on induction of secondary dormancy
(Jones et al., 1997, 2000). VP1, as well as PKABA1,
represses transcription of germination-specific
amylase genes (Hoecker et al., 1995; Walker-Simmons,
1998, 2000; Gómez-Cadenas et al., 1999). VP1 has also
been implicated in repression of key glyoxylate cycle
genes (isocitrate lyase and malate synthase) during
seed development, thus restricting reserve lipid
breakdown prior to germination (Paek et al., 1998).
Thus, it is possible that VP1, PKABA1 and their
homologues have a wider role in repressing the
expression of germination-specific genes. The effect of
dormancy-breaking chemicals may be to down-
regulate expression of VP1 gene homologues or to
interfere with the activity of the transacting factor
itself, via cellular acidification. The slow rate of
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germination observed following some dormancy-
breaking treatments (Footitt and Cohn, 1992, 1995;
Myers et al., 1997) may result from the effects of
residual VP1 homologue gene products, especially in
highly dormant lines (Jones et al., 1997), and the
secondary toxicological effects of dormancy-breaking
chemicals.

To conclude, we have begun to identify potential
molecular, biochemical and physiological markers
that can serve as orientation points for further
dissection of the dormancy-breaking process, the
dormant/non-dormant transition, and germination
processes prior to radicle emergence in seeds. While
most of the markers identified to date are components
of the germination process, some progress has been
made concerning the progression of seeds from the
dormant to the non-dormant state. Based upon
parallels to the termination of development arrest in a
wide range of organisms in addition to plants, it is
highly likely that general components of the current
signalling paradigm (calcium, G proteins, nitric oxide,
protein kinases and phosphatases, etc.) will play a
significant role, as already described extensively for
the aleurone model system (Ritchie et al., 2000). The
results of the literature survey presented here suggest
a role for seed cytosolic pH changes. For future 
seed research, it will be important to confirm
experimentally that existing markers are widely
relevant to a range of species with various dormancy
syndromes, as would be predicted from our cross-
kingdom review of activating chemicals. As
dormancy appears to be so similar in many
embryonic systems, it is also intriguing to wonder
whether homologues to genes such as VP1 and
PKABA1 fulfil related functions in Artemia cysts,
nematodes, unfertilized oocytes and diapausing
insects.
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