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Let Ω ⊂ R
n be open. Given a homeomorphism f ∈ W 1,1

loc (Ω, R
n) of finite distortion

with |Df | in the Lorentz space Ln−1,1(Ω), we show that f−1 ∈ W 1,1
loc (f(Ω), R

n) and
f−1 has finite distortion. A class of counterexamples demonstrating sharpness of the
results is constructed.

1. Introduction

Suppose that Ω ⊂ R
n is an open set and let f : Ω → f(Ω) ⊂ R

n be a homeomor-
phism. In this paper we address the issue of the regularity of f−1 under regularity
assumptions on f . The starting point for us is the following very recent result
from [6].

Theorem 1.1. Let Ω ⊂ R
2 be an open set and f ∈ W 1,1

loc (Ω, R2) be a homeomor-
phism of finite distortion. Then f−1 ∈ W 1,1

loc (f(Ω), R2) and has finite distortion.
Moreover, ∫

f(Ω)
|Df−1| =

∫
Ω

|Df |.

Above, a homeomorphism f ∈ W 1,1
loc is of (or has) finite distortion if its Jaco-

bian Jf is strictly positive almost everywhere (a.e.) on the set where |Df | does
not vanish. Recall that g ∈ W 1,p

loc (Ω, Rn), 1 � p < ∞, means that g is locally
p-integrable and that the coordinate functions of g have locally p-integrable distri-
butional derivatives. The results are new even in the case when we simply assume
that Jf > 0 a.e.

One can then expect for an analogue of theorem 1.1 in space. In such a result,
one should assume that f ∈ W 1,p

loc (Ω, Rn) is a homeomorphism of finite distortion,
but is not a priori clear whether the critical exponent p is 1 as in the plane or some

1267
c© 2006 The Royal Society of Edinburgh

https://doi.org/10.1017/S0308210500004972 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004972


1268 S. Hencl, P. Koskela and J. Malý

larger number. After some experimental computations, the reader should soon be
convinced that the critical case should be p = n − 1. An example showing that no
smaller value of p can work will be given in § 6.

Our first result gives a rather complete analogue of theorem 1.1 in space.

Theorem 1.2. Let Ω ⊂ R
n be an open set. Suppose that f : Ω → R

n is a homeo-
morphism of finite distortion such that |Df | ∈ Ln−1,1(Ω). Then

f−1 ∈ W 1,1
loc (f(Ω), Rn)

and has finite distortion. Moreover,∫
f(Ω)

|Df−1(y)| dy =
∫

Ω

|adjDf(x)| dx.

Here Ln−1,1(Ω) is a Lorentz space. Recall that
⋂

p>n−1

Lp
loc(Ω) ⊂ Ln−1,1

loc (Ω) ⊂ Ln−1
loc (Ω).

We do not know whether the conclusion of theorem 1.2 holds if only |Df | ∈
Ln−1(Ω). Notice that L1,1(Ω) = L1(Ω) and thus theorem 1.2 encompasses the-
orem 1.1. Our proof of theorem 1.2 is different from the proof of the planar case
in [6]; the main new point is the use of the co-area formula.

The assumption that f has finite distortion cannot be dropped from theorem 1.2.
Indeed, consider g(x) = x + u(x) on the real line, where u is the usual Cantor
ternary function. Let h = g−1. Then h−1 fails to be absolutely continuous. By
setting f(x) = (h(x1), x2, . . . , xn) we obtain a Lipschitz homeomorphism whose
inverse fails to be of the class W 1,1

loc .
Let us now compare our result with known facts. The planar case was explored

in [6]. The most relevant work in higher dimensions is [14], because the regularity
assumption there is below W 1,n and the method involves the co-area formula. It
was shown in [14] that if f ∈ W 1,p(Ω, Rn), p > n−1, is a homeomorphism that sat-
isfies the Lusin (N) and (N−1) conditions, then f−1 ∈ W 1,1

loc (f(Ω), Rn). It follows
from the (N−1) condition that such a mapping f satisfies Jf �= 0 a.e. and therefore
either Jf > 0 a.e. or Jf < 0 a.e. Both the (N) and (N−1) conditions can fail in
our setting and, moreover, we can relax the regularity of f to the weaker condi-
tion |Df | ∈ Ln−1,1(Ω). Other related results (see [9,13]) also require that Jf > 0 a.e.
and the much stronger assumption f ∈ W 1,n

loc ; this setting guarantees both the (N)
condition and that the so-called distributional Jacobian coincides with Jf .

As in [6], it is natural to inquire if a stronger condition than being of finite
distortion would result in higher regularity of the inverse. To this end, we consider
the inequality

|Df(x)|n � K(x)Jf (x)

to be satisfied almost everywhere in Ω for some measurable function K with
1 � K(x) < ∞ a.e. We prove in § 4, under the assumptions of theorem 1.2, that
f−1 ∈ W 1,n

loc (Ω) provided that K ∈ Ln−1(Ω). This conclusion is shown to be sharp
in § 6. As in the planar case, there is no interpolation: under the assumptions of the-
orem 1.2, no better regularity than W 1,1

loc is to be expected even when K ∈ Lq(Ω)
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with q < n − 1 close to n − 1. On the other hand, we show in § 4 that we gain
improved regularity for f−1 if we assume that |Df | ∈ Lp(Ω) for some p > n − 1
and that K ∈ Lq(Ω) for some 0 < q < n − 1. The formula obtained is shown to be
sharp.

The paper is organized as follows. Section 2 fixes notation and introduces some
preliminary results. We prove theorem 1.2 in § 3. Section 4 deals with the higher
regularity of f−1. We describe a general procedure for producing homeomorphisms
of finite distortion in § 5. In the final section, § 6, we then use the general procedure
to single out concrete examples that show the sharpness of our results.

2. Preliminaries

Let e1, . . . ,en be the canonical basis in R
n. For x ∈ R

n we denote by xi, i ∈
{1, . . . , n}, its coordinates, i.e. x =

∑n
i=1 xiei. We write Hi for the ith coordinate

hyperplane
Hi = {x ∈ R

n : xi = 0}
and denote by πi the orthogonal projection to Hi, so that

πi(x) = x − xiei, x ∈ R
n.

Since Hi is in fact a copy of R
n−1, the Hausdorff measure on Hi can be identified

with the Lebesgue measure and we can write dz instead of dHn−1(z) for integration
over Hi. The Euclidean norm of x ∈ R

n is denoted by |x|. The closure and interior
of a set A are denoted by Ā and A◦, respectively.

Given a square matrix B ∈ R
n×n, we define the norm |B| as the supremum of |Bx|

over all vectors x of unit Euclidean norm. The adjugate adjB of a regular matrix B
is defined by the formula

B adjB = I det B,

where det B denotes the determinant of B and I is the identity matrix. The oper-
ator adj is then continuously extended to R

n×n.
We use the symbol |E| for the Lebesgue measure of a measurable set E ⊂ R

n. A
mapping f : Ω → R

n is said to satisfy the Luzin condition (N) on E if |f(A)| = 0
for every A ⊂ E such that |A| = 0.

We say that a function f : Ω → R
n has the ACL property or that it is absolutely

continuous on almost all lines parallel to coordinate axes if the following happens:
for every i ∈ {1, . . . , n} and for almost every y ∈ Hi the coordinate functions of f
are absolutely continuous on compact subintervals of π−1

i (y) ∩ Ω.
If f : Ω → R is a measurable function, we define its distribution function m( ·, f)

by
m(σ, f) = |{x : |f(x)| > σ}|, σ > 0,

and the nonincreasing rearrangement f� of f by

f�(t) = inf{σ : m(σ, f) � t}.

The Lorentz space Ln−1,1(Ω) is defined as the class of all measurable functions
f : Ω → R for which ∫ ∞

0
t1/(n−1)f�(t)

dt

t
< ∞.

(For an introduction to Lorentz spaces, see, for example, [12].)
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Let f ∈ W 1,1
loc (Ω, Rn) and E ⊂ Ω be a measurable set. The multiplicity func-

tion N(f, E, y) of f is defined as the number of pre-images of y under f in E. We
say that the area formula holds for f on E if

∫
E

η(f(x))|Jf (x)| dx =
∫

Rn

η(y)N(f, E, y) dy (2.1)

for any non-negative Borel measurable function on R
n. It is well known that there

exists a set Ω′ ⊂ Ω of full measure such that the area formula holds for f on Ω′.
Also, the area formula holds on each set on which the Luzin condition (N) is sat-
isfied. This follows from [1, §§ 3.1.4, 3.1.8, 3.2.5], namely, it can be found there
that Ω can be covered up to a set of measure 0 by countably many sets the restric-
tion to which of f is Lipschitz continuous. For more explicit statements see, for
example, [4, 5].

Notice that the area formula holds on the set where f is differentiable (approx-
imate differentiability would be also enough), and thus in particular the image of
the set of all critical points has zero measure (this is a version of the Sard theorem).

3. Weak differentiability of the inverse

In what follows, Ω ⊂ R
n will be an open set.

The following co-area formula is crucial for our proof of theorem 1.2.

Lemma 3.1. Let h be a continuous mapping with |Dh| ∈ Ln−1,1(Ω). Suppose that
|h| = 1 on Ω. Let E ⊂ Ω be a measurable set. Then

∫
∂B(0,1)

H1({x ∈ E : h(x) = z}) dHn−1(z) =
∫

E

|adjDh| dx.

Proof. If h is Lipschitz, the formula can be found in [1, §§ 3.2.12]. In the general
case, we cover the domain of h up to a set of measure 0 by countably many sets
of the type {h = hj} with hj Lipschitz. It remains to consider the case in which
E = N with |N | = 0. By the co-area formula [8] applied to πi ◦ u,

∫
Hi

H1({x ∈ N : πi(h(x)) = y}) dHn−1(y) = 0.

Since this holds for all i = 1, . . . , n, we conclude that

H1({x ∈ N : h(x) = z}) = 0

for Hn−1-a.e. z ∈ ∂B(0, 1). This concludes the proof.

The following lemma will give us the W 1,1
loc -regularity of f−1.

Lemma 3.2. Let f ∈ W 1,1(Ω, Rn) be a homeomorphism of finite distortion, and
suppose that |Df | ∈ Ln−1,1(Ω). There then exists g ∈ L1(f(Ω)) such that for each
ball B = B(y0, r0) ⊂ f(Ω) we have

∫
B

|f−1(y) − c| dy � Cr0

∫
B

g(y) dy, (3.1)
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where
c = −

∫
B

f−1(y) dy

and C = C(n).

Proof. We fix y′ = f(x′) ∈ B. Denote

h(x) =
f(x) − y′

|f(x) − y′| .

If y′′ = f(x′′) ∈ B and co({y′′, y′}) is the line segment connecting y′ and y′′, then
f−1(co({y′′, y′})) is a curve connecting x′ and x′′ and thus

|x′′ − x′| � H1(f−1(co({y′′, y′}))). (3.2)

We have

y ∈ co{y′′, y′} =⇒ y − y′

|y − y′| =
y′′ − y′

|y′′ − y′| . (3.3)

Hence, if r = |y′′ − y′|, then

|f−1(y′′) − f−1(y′)| � H1(f−1(co({y′′, y′})))

� H1

({
x ∈ f−1(B) : h(x) =

y′′ − y′

r

})
.

Given r > 0, using lemma 3.1 we estimate∫
B∩∂B(y′,r)

|f−1(y′′) − f−1(y′)|dHn−1(y′′)

�
∫

B∩∂B(y′,r)
H1

({
x ∈ f−1(B) : h(x) =

y′′ − y′

r

})
dHn−1(y′′)

� rn−1
∫

∂B(0,1)
H1({x ∈ f−1(B) : h(x) = z}) dHn−1(z)

� rn−1
∫

f−1(B)
|adjDh(x)| dx

� Crn−1
∫

f−1(B)

|adjDf(x)|
|f(x) − f(x′)|n−1 dx, (3.4)

where the last inequality follows using the chain rule, the formula |adj(AB)| �
C|adjA| |adjB| and the estimate

∣∣∣∣ adjD
z − y′

|z − y′|

∣∣∣∣ � C

|z − y′|n−1 .

There is a set Ω′ ⊂ Ω of full measure such that the area formula (2.1) holds for f
on Ω′. We define a function g : f(Ω) → R by setting

g(f(x)) =

⎧⎪⎨
⎪⎩

|adjDf(x)|
Jf (x)

if x ∈ Ω′ and Jf (x) > 0,

0 otherwise.
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Since f is a mapping of finite distortion, we have

|adjDf(x)| = g(f(x))Jf (x) a.e. in Ω. (3.5)

Hence, ∫
f−1(B)

|adjDf(x)|
|f(x) − f(x′)|n−1 dx =

∫
f−1(B)∩Ω′

g(f(x))Jf (x)
|f(x) − f(x′)|n−1 dx

=
∫

B

g(y)
|y − y′|n−1 dy. (3.6)

Using (3.4) and (3.6) we estimate

|B||f−1(y′) − c| �
∫

B

|f−1(y′′) − f−1(y′)| dy′′

=
∫ 2r0

0

(∫
B∩∂B(y′,r)

|f−1(y′′) − f−1(y′)| dHn−1(y′′)
)

dr

� C

∫ 2r0

0
rn−1

(∫
B

g(y)
|y − y′|n−1 dy

)
dr

� Crn
0

∫
B

g(y)
|y − y′|n−1 dy.

Integrating with respect to y′ and then using Fubini’s theorem on the right-hand
side (as in the standard proof of the (1, 1)-Poincaré inequality), we obtain (3.1). It
remains to show that g ∈ L1(f(Ω)). But, by the area formula for f on Ω′ and (3.5)
we have ∫

f(Ω)
g(y) dy =

∫
Ω′

g(f(x))Jf (x) dx =
∫

Ω

|adjDf(x)| dx < ∞.

Proof of theorem 1.2. By lemma 3.2 the pair f, g satisfies a (1, 1)-Poincaré inequal-
ity in f(Ω). From [2, theorem 9] we then deduce that f−1 ∈ W 1,1

loc (f(Ω), Rn).
Suppose that f−1 is not a mapping of finite distortion. Then we can find a

set Ã ⊂ f(Ω) such that |Ã| > 0 and for every y ∈ Ã we have Jf−1(y) = 0 and
|Df−1(y)| > 0. Since f−1 satisfies the ACL property we may assume without loss
of generality that f−1 is absolutely continuous on all lines parallel to coordinate
axes that intersect Ã and that f−1 has classical partial derivatives at every point
of Ã.

We claim that we can find a Borel set A ⊂ Ã such that |A| > 0 and |f−1(A)| = 0.
We divide Ẽ := f−1(Ã) into three sets: E1 consists of the points at which f is
differentiable with Jf �= 0, E2 consists of the points at which f is differentiable
with Jf = 0 and E3 consists of the points of non-differentiability for f . From [10]
we know that |E3| = 0 and by the Sard theorem we have |f(E2)| = 0. Suppose
that x ∈ E1. Then f−1 is differentiable at f(x) and Jf−1(f(x))Jf (x) = 1. However,
this is not possible since Jf−1 = 0 on Ã. It follows that E1 = ∅. Now we can find
a Borel set A ⊂ f(E3) such that |A| = |f(E3)|. From E1 = ∅ and |f(E2)| = 0 we
obtain |A| = |Ã| > 0.
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Clearly, there exists i ∈ {1, . . . , n} such that the subset of A in which

∂f−1(y)
∂yi

�= 0

has positive measure. Without loss of generality we will assume that

∂f−1(y)
∂yi

�= 0 for every y ∈ A.

Set E := f−1(A). Then |E| = 0 as E ⊂ E3. Since |Df | ∈ Ln−1,1(Ω), by the co-area
formula from [8] we have

∫
Hi

H1({x ∈ E : πif(x) = z}) dz = 0, (3.7)

whereas, by the Fubini theorem,∫
Hi

H1(A ∩ π−1
i (z)) dz = |A| > 0.

Therefore, there exists z ∈ Hi with

H1(E ∩ f−1(π−1
i (z))) = H1({x ∈ E : πif(x) = z}) = 0

and

H1(A ∩ π−1
i (z)) > 0.

Applying the one-dimensional area formula to the absolutely continuous mapping

t 
→ f−1(z + tei)

we obtain

0 <

∫
A∩π−1

i (z)

∣∣∣∣∂f−1

∂yi
(y)

∣∣∣∣ dH1(y)

=
∫

Rn

N(f−1, A ∩ π−1
i (z), x) dH1(x)

=
∫

E∩f−1(π−1
i (z))

N(f−1, A ∩ π−1
i (z), x) dH1(x)

= 0,

which is a contradiction.
We have proven that f ∈ W 1,1

loc (f(Ω), Rn) has finite distortion and we are left to
verify that ∫

f(Ω)
|Df−1(y)| dy =

∫
Ω

|adjDf(x)| dx.

To this end, we claim that there is a Borel set A ⊂ f(Ω) so that f−1 is differentiable
on A with Jf−1 > 0 and so that |Df−1(y)| = 0 a.e. on f(Ω)\A. Since f−1 is a map-
ping of finite distortion, we have Jf−1(y) = 0 ⇒ |Df−1(y)| = 0 and therefore we can
restrict our attention to the set where Jf−1 > 0. We divide Ã := {y : Jf−1(y) > 0}
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into three sets: A1 consists of the points y such that f is differentiable at f−1(y) and
Jf (f−1(y)) > 0, A2 consists of the points y such that f is differentiable at f−1(y)
and Jf (f−1(y)) = 0 and A3 consists of the points such that f is not differentiable
at f−1(y). Since A2 is an image of a set of critical points of f , by the Sard theo-
rem we have |A2| = 0. From (2.1) and the almost everywhere differentiability of f
(see [10]) we have

∫
A3

Jf−1(y) dy = |f−1(A′
3)| � |f−1(A3)| = 0,

where A′
3 is a subset of full measure in A3 for which the area formula holds, see

the explanation around (2.1). Since Jf−1 > 0 on A3, this implies that |A3| = 0.
We may thus choose a desired Borel set A from within A1. Since f is differentiable
at f−1(A) with Jf > 0 we find that f−1 is differentiable at A. Notice also that, by
the construction of A, Jf (x) = 0 a.e. in Ω \ f−1(A). Because f has finite distortion
also Df(x) = 0 and adjDf(x) = 0 a.e. in Ω \ f−1(A).

Applying (2.1), the fact that f−1 satisfies the Luzin condition (N) on A, the
formula for the derivative of the inverse mapping and basic linear algebra we deduce
that ∫

f(Ω)
|Df−1(y)| dy =

∫
A

|Df−1(y)| dy

=
∫

f−1(A)
|Df−1(f(x))|Jf (x) dx

=
∫

f−1(A)
|(Df(x))−1|Jf (x) dx

=
∫

f−1(A)
|adjDf(x)| dx

=
∫

Ω

|adjDf(x)| dx.

4. Higher regularity of the inverse mapping

We prove two results on the improved integrability of Df−1. For the sharpness of
our conclusions see § 6.

Theorem 4.1. Let Ω ⊂ R
n be an open set. Suppose that f : Ω → R

n is a homeo-
morphism of finite distortion such that |Df | ∈ Ln−1,1(Ω) and K ∈ Ln−1(Ω). Then
f−1 ∈ W 1,n

loc (f(Ω), Rn) and f−1 is a mapping of finite distortion.

Proof. From theorem 1.2 we already know that f−1 ∈ W 1,1
loc and that f−1 is a

mapping of finite distortion. Therefore, it is enough to prove that
∫

f(Ω) |Df−1|n is
finite.

By the proof of theorem 1.2, we only need to consider the integral over the set A
where f−1 is differentiable with Jf−1 > 0. Arguing as at the end of the proof of
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theorem 1.2 we conclude that∫
f(Ω)

|Df−1(y)|n dy =
∫

f−1(A)
|(Df(x))−1|nJf (x) dx

=
∫

f−1(A)

|adjDf(x)|n
Jf (x)n−1 dx

�
∫

f−1(A)

|Df(x)|(n−1)n

Jf (x)n−1 dx

�
∫

Ω

K(x)n−1 dx.

Theorem 4.2. Let p ∈ (n − 1,∞], 1 < q < n, and set

a =
(q − 1)p
p + q − n

(for p = ∞ we set a = (q − 1)). Let Ω ⊂ R
n be an open set and suppose that

f ∈ W 1,p
loc (Ω, Rn) is a homeomorphism of finite distortion such that Ka ∈ L1(Ω).

Then f−1 ∈ W 1,q
loc (f(Ω), Rn).

Proof. We reason as in the proof of theorem 4.1 and use Hölder’s inequality to
conclude that∫

f(Ω)
|Df−1(y)|q dy �

∫
f−1(A)

|adjDf(x)|q
Jf (x)q−1 dx

�
∫

f−1(A)
|Df(x)|n−qK(x)q−1 dx

� ‖Df‖n−q
Lp(Ω)

(∫
Ω

K(x)a dx

)(p+q−n)/p

.

5. General construction

5.1. Canonical transformation

Let Q0 = [−1, 1]n be the unit cube in R
n. If c, r ∈ R

n, r1, . . . , rn > 0, we use the
notation

Q(c, r) := [c1 − r1, c1 + r1] × · · · × [cn − rn, cn + rn].

for the interval with centre at c and half-edges ri, i = 1, . . . , n. If Q = Q(c, r), the
affine mapping

ϕQ(y) = (c1 + r1y1, . . . , cn + rnyn)

is called the canonical parametrization of the interval Q. Let P and P ′ be concentric
intervals, P = Q(c, r), P ′ = Q(c, r′), where

0 < ri < r′
i, i = 1, . . . , n.
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Figure 1. The canonical transformation of P ′ \ P ◦ onto P̃ ′ \ P̃ ◦ for n = 2.

We set

ϕP,P ′(t, y) = (1 − t)ϕP (y) + tϕP ′(y), t ∈ [0, 1], y ∈ ∂Q0.

This mapping is called the canonical parametrization of the rectangular annulus
P ′ \ P ◦. It has the following properties:

(i) ϕP,P ′(0, y) = ϕP (y), y ∈ ∂Q0,

(ii) ϕP,P ′(1, y) = ϕP ′(y), y ∈ ∂Q0,

(iii) ϕP,P ′( ·, y) is affine on [0, 1], y ∈ ∂Q0,

(iv) ϕP,P ′ is a bi-Lipschitz homeomorphism of [0, 1] × ∂Q0 onto P ′ \ P ◦.

Now, we consider two rectangular annuli, P ′ \ P ◦, and P̃ ′ \ P̃ ◦, where P =
Q(c, r), P ′ = Q(c, r′), P̃ = Q(c̃, r̃) and P̃ ′ = Q(c̃, r̃′), The mapping

h = ϕP̃ ,P̃ ′ ◦(ϕP,P ′)−1

is called the canonical transformation of P ′ \ P ◦ onto P̃ ′ \ P̃ ◦ shown in figure 1.
From now on we consider the case when

r1 = · · · = rn−1 = a, rn = b,

r′
1 = · · · = r′

n−1 = a′, r′
n = b.

We will use the notation e.g. Q(c, (a, b)) for Q(c, r) with r as above. Let us estimate
the action of ϕP,P ′ in one of the sides {yi = ±1}. For t ∈ [0, 1] fixed we denote

a′′ = (1 − t)a + ta′,

b′′ = (1 − t)b + tb′,

ã′′ = (1 − t)ã + tã′,

b̃′′ = (1 − t)b̃ + tb̃′.

The image of the side has the shape of a pyramidal frustum. We must distinguish
two cases, according to the position of the first variable.
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Case A. We will represent the possibilities

ϕP,P ′(t, 1, z2, . . . , zn), ϕP,P ′(t, −1, z2, . . . , zn),
...

...
ϕP,P ′(t, z1, . . . zn−2, 1, zn), ϕP,P ′(t, z1, . . . zn−2,−1, zn)

by
ϕ(t, z) = ϕP,P ′(t, 1, z), z = (z2, . . . , zn).

The matrix of Dϕ(t, z) is then
⎛
⎜⎜⎜⎜⎜⎜⎝

a′ − a, 0, 0, . . . , 0
(a′−a)z2, a′′, 0, . . . , 0
(a′−a)z3, 0, a′′, . . . , 0

...
(b′−b)zn, 0, 0, . . . , b′′

⎞
⎟⎟⎟⎟⎟⎟⎠

and (Dϕ(t, z))−1 can be computed as
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
a′ − a

, 0, 0, . . . , 0

− z2

a′′ ,
1
a′′ , 0, . . . , 0

− z3

a′′ , 0,
1
a′′ , . . . , 0

...

−zn

b′′
b′ − b

a′ − a
, 0, 0, . . . ,

1
b′′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Also,
Jϕ(t, z) = (a′ − a)(a′′)n−2b′′. (5.1)

Case B. A representative is

ϕ(t, z) = ((ϕP,P ′)n(t, z, 1), (ϕP,P ′)1(t, z, 1), . . . , (ϕP,P ′)n−1(t, z, 1)),
z = (z1, . . . , zn−1).

The purpose of the permutation of coordinates is that this leads to a triangular
matrix which is easier to handle. The matrix of Dϕ(t, z) is

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b′ − b, 0, 0, . . . , 0
(a′−a)z1, a′′, 0, . . . , 0
(a′−a)z2, 0, a′′, . . . , 0

...
(a′−a)zn−1, 0, 0, . . . , a′′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

https://doi.org/10.1017/S0308210500004972 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004972


1278 S. Hencl, P. Koskela and J. Malý

and (Dϕ(t, z))−1 can be computed as
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
b′ − b

, 0, 0, . . . , 0

− z1

a′′
a′ − a

b′ − b
,

1
a′′ , 0, . . . , 0

− z2

a′′
a′ − a

b′ − b
, 0,

1
a′′ , . . . , 0

...

−zn−1

a′′
a′ − a

b′ − b
, 0, 0, . . . ,

1
a′′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Also, Jϕ(t, z) = (b′ − b)(a′′)n−1. Let h = ϕ
P̃ ,P̃ ′ ◦(ϕP,P ′)−1 be a canonical transfor-

mation of P ′ \ P ◦ onto P̃ ′ \ P̃ ◦. We have

Dh(ϕ(t, z)) = Dϕ̃(t, z)(Dϕ(t, z))−1.

In case A this is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ã′ − ã

a′ − a
, 0, 0, . . . , 0

(
ã′ − ã

a′ − a
− ã′′

a′′

)
z2,

ã′′

a′′ , 0, . . . , 0

(
ã′ − ã

a′ − a
− ã′′

a′′

)
z3, 0,

ã′′

a′′ , . . . , 0

...

(
b̃′ − b̃

a′ − a
− b̃′′

b′′
b′ − b

a′ − a

)
zn, 0, 0, . . . ,

b̃′′

b′′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.2)

and in case B
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̃′ − b̃

b′ − b
, 0, 0, . . . , 0

(
ã′ − ã

b′ − b
− ã′′

a′′
a′ − a

b′ − b

)
z1,

ã′′

a′′ , 0, . . . , 0

(
ã′ − ã

b′ − b
− ã′′

a′′
a′ − a

b′ − b

)
z2, 0,

ã′′

a′′ , . . . , 0

...

(
ã′ − ã

b′ − b
− ã′′

a′′
a′ − a

b′ − b

)
zn−1, 0, 0, . . . ,

ã′′

a′′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.3)
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Figure 2. Intervals Qv and Q′
v for v ∈ V

1 and v ∈ V
2 for n = 2.

Remark 5.1. We observe that the inverse of a canonical transformation between
two rectangular annuli is again canonical and a superposition of two canonical
transformations is again a canonical transformation if the domain of the outer
transformation coincides with the range of the inner transformation.

5.2. Construction of a Cantor set

By V we denote the set of 2n vertices of the cube [−1, 1]n. The sets V
k = V ×

· · · × V, k ∈ N, will serve as the sets of indices for our construction. If w ∈ V
k and

v ∈ V, then the concatenation of w and v is denoted by w ∧ v.

Lemma 5.2. Let n � 2. Suppose that we are given two sequences of positive real
numbers {ak}k∈N0 , {bk}k∈N0 ,

a0 = b0 = 1, (5.4)
ak < ak−1, bk < bk−1, for k ∈ N. (5.5)

There then exist unique systems {Qv}v∈
⋃

k∈N
Vk , {Q′

v}v∈
⋃

k∈N
Vk of intervals

Qv = Q(cv, (2−kak, 2−kbk)), Q′
v = Q(cv, (2−kak−1, 2−kbk−1)) (5.6)

such that

Q′
v,v ∈ V

k are non-overlapping for fixed k ∈ N, (5.7)

Qw =
⋃
v∈V

Q′
w∧v for each w ∈ V

k, k ∈ N, (5.8)

cv = 1
2v, v ∈ V, (5.9)

cw∧v = cw +
n−1∑
i=1

2−kakviei + 2−kbkvnen, (5.10)

w ∈ V
k, k ∈ N, v = (v1, . . . , vn) ∈ V.

Proof. The centres and edge lengths of the intervals are given by (5.6), (5.9)
and (5.10) (see figure 2). The properties (5.7) and (5.8) are evidently satisfied.

Remark 5.3. The construction leads to the Cantor set

E =
⋂
k∈N

⋃
v∈Vk

Qv,
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which is clearly a product of n one-dimensional Cantor sets, say E = Ea × Ea ×
· · · × Ea × Eb.

5.3. Construction of a mapping

The following theorem will enable us to construct various examples connected
with the theory of mappings of finite distortion. A similar construction was used
in [6, example 7.1] for n = 2 for specific sequences. The usual constructions of the
type in [3, 7, 11] based on ‘cubical’ Cantor constructions are not suitable for us.

Theorem 5.4. Let n � 2. Suppose that we are given four sequences of positive real
numbers {ak}k∈N0 , {bk}k∈N0 , {ãk}k∈N0 , {b̃k}k∈N0 , such that

a0 = b0 = ã0 = b̃0 = 1, (5.11)

ak < ak−1, bk < bk−1, ãk < ãk−1, b̃k < b̃k−1, for k ∈ N. (5.12)

Let the systems {Qv}v∈
⋃

k∈N
Vk , {Q′

v}v∈
⋃

k∈N
Vk of intervals be as in lemma 5.2, and

similarly systems {Q̃v}v∈
⋃

k∈N
Vk , {Q̃′

v}v∈
⋃

k∈N
Vk of intervals be associated with the

sequences {ãk} and {b̃k}. There then exists a unique sequence {fk} of bi-Lipschitz
homeomorphisms of Q0 onto itself such that:

(i) fk maps each Q′
v \ Qv, v ∈ V

m, m = 1, . . . , k, onto Q̃′
v \ Q̃v canonically;

(ii) fk maps each Qv, v ∈ V
k, onto Q̃v affinely.

Moreover,
|fk − fk+1| � 2−k, |f−1

k − f−1
k+1| � 2−k. (5.13)

The sequence fk converges uniformly to a homeomorphism f of Q0 onto Q0.

Proof. The mapping fk is uniquely determined by its properties. Since the change
from fk to fk+1 proceeds only within the intervals Qv, v ∈ V

k, and similarly for
the inverse, and since the diameters of these intervals are at most C2−k, the
sequence fk converges uniformly to a continuous mapping and the same holds for
the sequence f−1

k . Hence, the limit mapping is a homeomorphism.

The construction above is symmetric, i.e. the inverse of the constructed mapping
can be constructed by the same procedure if we replace the corresponding sequences.
Also, the construction behaves well with respect to superposition. Namely, the
following follows easily from remark 5.1.

Remark 5.5. Let n � 2 and suppose that we are given four sequences of positive
real numbers {ak}k∈N0 , {bk}k∈N0 , {ãk}k∈N0 , {b̃k}k∈N0 which satisfy the assump-
tions of the previous theorem. Denote the mapping constructed in the proof of
theorem 5.4 by f and by g the map which is constructed by the same procedure
with the role of ak, bk and ãk, b̃k interchanged. Then g = f−1.

Remark 5.6. Let n � 2 and suppose that we are given six sequences of positive
real numbers {ak}k∈N0 , {bk}k∈N0 , {ãk}k∈N0 , {b̃k}k∈N0 , {˜̃ak}k∈N0 , {˜̃bk}k∈N0 . Suppose
that f is constructed by theorem 5.4 applied to {ak}k∈N0 , {bk}k∈N0 in the domain
and {ãk}k∈N0 {b̃k}k∈N0 in the range; g is constructed by theorem 5.4 applied to
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{ãk}k∈N0 , {b̃k}k∈N0 in the domain and {˜̃ak}k∈N0 , {˜̃bk}k∈N0 in the range, and finally
h is constructed by theorem 5.4 applied to {ak}k∈N0 , {bk}k∈N0 in the domain and
{˜̃ak}k∈N0 , {˜̃bk}k∈N0 in the range. Then h = g ◦ f .

6. Construction of counterexamples

We begin by showing the sharpness of the regularity of f−1 obtained from theo-
rem 4.2.

Example 6.1. Let p ∈ (n − 1,∞), 1 < q < n, ε > 0 and set a = (q − 1)p/(p +
q − n). There is a homeomorphism f : Q0 → Q0 of finite distortion such that
f ∈ W 1,p(Q0, Q0) and Ka ∈ L1(Q0), but f−1 /∈ W 1,q+ε

loc (Q0, Q0).

Proof. Let α � β > 0, δ � γ > 0. Use theorem 5.4 for

ak =
1

(k + 1)α
, bk =

1
(k + 1)β

, ãk =
1

(k + 1)γ
and b̃k =

1
(k + 1)δ

to obtain the sequence {fk} and the limit mapping f . For fixed t ∈ [0, 1] we denote

a′′
k = (1 − t)ak + tak−1,

b′′
k = (1 − t)bk + tbk−1,

ã′′
k = (1 − t)ãk + tãk−1,

b̃′′
k = (1 − t)b̃k + tb̃k−1.

Since
1
kω

− 1
(k + 1)ω

∼ 1
kω+1 for every ω > 0,

it is easy to check that

ãk−1 − ãk

ak−1 − ak
∼ ã′′

k

a′′
k

∼ kα−γ ,

b̃k−1 − b̃k

bk−1 − bk
∼ b̃′′

k

b′′
k

∼ kβ−δ,

b̃k−1 − b̃k

ak−1 − ak
∼ b̃′′

k

a′′
k

∼ kα−δ,

ãk−1 − ãk

bk−1 − bk
∼ ã′′

k

b′′
k

∼ kβ−γ ,

bk−1 − bk

ak−1 − ak
∼ b′′

k

a′′
k

∼ kα−β .

Let us fix v ∈ V
k and write Q = Qv, Q′ = Q′

v. Let ϕQ,Q′ be the canonical param-
etrization of Q′ \ Q and S be one of the sides of Q0. We will estimate Df in the
pyramidal frustum F := ϕQ,Q′([0, 1] × S). In case A we have (see (5.2))

|Df | ∼ max{kα−δ, kβ−δ} � kα−γ ,
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and in case B (see (5.3))

|Df | � max{kα−γ , kβ−δ, kβ−γ} = kα−γ .

In both cases we have

|Df−1| � kδ−β , Jf ∼ k(n−1)α−(n−1)γ+β−δ,

and therefore

Kf =
|Df |n

Jf
� kα−γ−β+δ.

Let ϕ be the canonical parametrization of F (which can be viewed as the restriction
of ϕQ,Q′ to [0, 1] × S). From (5.1) we have

Jϕ(t, z) ∼ 2−knk−(n−1)α−β−1.

Thus,
∫

F

|Df |p dx =
∫

[0,1]×S

|Df(ϕ(t, z))|pJϕ(t, z) dt dz

� 2−kn (kα−γ)p

k(n−1)α+β+1 , (6.1)

∫
f(F )

|Df−1|q+ε dx � 2−kn (kδ−β)q+ε

k(n−1)γ+δ+1 ,

∫
F

Ka dx � 2−kn (kα−γ−β+δ)a

k(n−1)α+β+1 .

We also estimate (recall that Q = Qv, v ∈ V
k)

∫
Q

|Dfk|p dx � 2−kn (kα−γ)p

k(n−1)α+β+1 . (6.2)

Now, we need to distinguish two cases. First suppose that p � n. Since a < p, we
can choose η > 0 sufficiently small such that

(n − 1)η < ε

(
1
a

− 1
p

)
and η < 1 +

1
a

− n

p
. (6.3)

Set
α =

1
p
, β = 1 − n − 1

p
, γ = η and δ = 1 +

1
a

− n

p
.

It is easy to check that all these expressions are positive and, moreover, that α � β
and γ � δ, so that with the help of (6.3) it is not difficult to verify that

(n − 1)α + β + p(γ − α) = pη > 0,

(n − 1)α + β + a(β − α + γ − δ) = aη > 0,

(n − 1)γ + δ + (q + ε)(β − δ) = (n − 1)η + ε

(
1
p

− 1
a

)
< 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.4)
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We consider k < m. From (6.2) and (6.4) we infer that∫
Q0

|Dfk − Dfm|p dx �
∫

{fk �=fm}
(|Dfk|p + |Dfm|p) dx

�
∑

v∈Vk

∫
Qv

|Dfk|p dx +
m∑

j=k+1

∑
v∈Vj

∫
Q′

v\Qv

|Df |p dx

+
∑

v∈Vm

∫
Qv

|Dfm|p dx

�
m∑

j=k

(jα−γ)p

j(n−1)α+β+1 � k−pη → 0.

It follows that the sequence {fk} converges to f in W 1,p and, in particular, f ∈
W 1,p(Q0, R

n). From (6.4) we also find that
∫

Q0

|K|a �
∑
k∈N

(kα−γ−β+δ)a

k1+(n−1)α+β
< ∞,

∫
Q0

|Df−1|q+ε �
∑
k∈N

k(q+ε)(δ−β)

k1+(n−1)γ+δ
= ∞.

Now let us return to the second case, i.e. p > n. In this case we set

α =
1
n

, β =
1
n

, γ =
1
n

− 1
p

+ η and δ =
1
n

+
1
a

− 1
p
,

where η is chosen sufficiently small to fulfil η < 1/a and (6.3). The computations
in this case are similar to the computations above and we therefore leave them to
the reader.

We deduce that the p-integrability of K, p < n − 1, guarantees no improvement
on the regularity of f−1 if we only assume that |Df | ∈ Ln−1,1(Ω).

Corollary 6.2. Let 0 < δ < 1. There exists a homeomorphism f : Q0 → Q0 of
finite distortion such that |Df | ∈ Ln−1,1(Q0) and Kn−1−δ ∈ L1(Q0), but f−1 /∈
W 1,1+δ(Q0, Q0).

Proof. Set q = 1 + 1
2δ and ε = 1

2δ. We can clearly find η > 0 sufficiently small such
that for p = n − 1 + η we have

a =
(q − 1)p
p + q − n

> n − 1 − δ;

therefore the statement easily follows from the previous example.

Our final example shows the criticality of the exponent p = n − 1 in a strong
sense.

Example 6.3. Let n � 3 and ε > 0. There exists a mapping of finite distor-
tion f : Q0 → Q0 such that f ∈ W 1,n−1−ε(Q0, Q0) and K ∈ Ln−1−ε(Q0), but
f−1 /∈ W 1,1

loc (Q0, Q0).
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Proof. Choose l ∈ N big enough such that

εl > 2(n − 1 − ε) (6.5)

and set

ak =
1

(k + 1)l
, bk =

1
2

+
1

2(k + 1)
, ãk =

1
2

+
1

2(k + 1)
, b̃k =

1
k + 1

.

We can use theorem 5.4 to obtain our mapping f . Similarly, as in example 6.1 we
easily obtain

∫
Q0

|Df |n−1−ε � C
∑
k∈N

1
k1+(n−1)l k

(n−1−ε)l

� C
∑
k∈N

1
k1+lε

< ∞

and
∫

Q0

Kn−1−ε � C
∑
k∈N

1
k1+(n−1)l

(
kln

kl−1kl(n−2)k−1

)n−1−ε

+ C
∑
k∈N

1
k1+(n−1)l+1

(
kln

kl(n−1)

)n−1−ε

� C
∑
k∈N

1
k1+εl−2(n−1−ε) < ∞.

We claim that f−1 does not satisfy the ACL property and therefore

f−1 /∈ W 1,1
loc (Q0, Q0).

It is clear from the construction in theorem 5.4 that there are Cantor sets Ea, Eb,
Eã and Eb̃ such that f−1 maps the Cantor set Eã × Eã × · · · × Eã × Eb̃ onto the
Cantor set Ea × Ea × · · · × Ea × Eb. Clearly, H1(Ea) = H1(Eb̃) = 0, H1(Eb) > 0,
H1(Eã) > 0 and it is not difficult to check that for every ỹ ∈ [−1, 1]n−1 such that
ỹ ∈ Eã × · · · × Eã there exists y ∈ Ea×· · ·×Ea such that f−1({ỹ}×Eb̃) = {y}×Eb.
It follows that f−1(ỹ, ·) does not satisfy the Luzin condition (N) and therefore can-
not be absolutely continuous there. Since Hn−1(Eã × · · · × Eã) > 0, we see that f−1

does not satisfy the ACL property.
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