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Abstract
Given complex numbers w1, . . . ,wn, we define the weight w(X) of a set X of 0–1 vectors as the sum of
wx1

1 · · ·wxn
n over all vectors (x1, . . . , xn) in X. We present an algorithm which, for a set X defined by a

system of homogeneous linear equations with at most r variables per equation and at most c equations
per variable, computes w(X) within relative error ε > 0 in (rc)O( ln n−ln ε) time provided |wj|� β(r√c)−1 for
an absolute constant β > 0 and all j= 1, . . . , n. A similar algorithm is constructed for computing the
weight of a linear code over Fp. Applications include counting weighted perfect matchings in hypergraphs,
counting weighted graph homomorphisms, computing weight enumerators of linear codes with sparse
code generating matrices, and computing the partition functions of the ferromagnetic Potts model at low
temperatures and of the hard-core model at high fugacity on biregular bipartite graphs.

2010 MSC Codes: Primary 68Q25; Secondary 68W25, 82B20, 52C07, 52B55

1. Weighted counting of 0–1 vectors
1.1 Weight of a set of 0–1 vectors
Let us fix complex numbers w1, . . . ,wn, referred to as weights in what follows. We define the
weight w(x) of a 0–1 vector x ∈ {0, 1}n by

w(x)=wξ11 · · ·wξnn =
∏

j : ξj=1
wj, where x= (ξ1, . . . , ξn).

Here we agree that 00 = 1, so that w(x) is a continuous function of w1, . . . ,wn for a fixed x.
We define the weight of a finite set X ⊂ {0, 1}n by

w(X)=
∑
x∈X

w(x)=
∑
x∈X,

x=(ξ1,...,ξn)

wξ11 · · ·wξnn . (1.1)

†Research partially supported by NSF grant DMS 1361541.
‡Research supported by a personal NWO Veni grant.

© Cambridge University Press 2019

https://doi.org/10.1017/S0963548319000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000105
mailto:barvinok@umich.edu
https://doi.org/10.1017/S0963548319000105


Combinatorics, Probability and Computing 697

Given X ⊂ {0, 1}n, the value of w(X) as a function of w1, . . . ,wn is also known as the partition
function or generating function of X.

Our first main result is as follows.

Theorem 1.1. Let A= (aij) be an m× n integer matrix, and let us define X ⊂ {0, 1}n by

X =
{
x ∈ {0, 1}n, x= (ξ1, . . . , ξn) :

n∑
j=1

aijξj = 0 for i= 1, . . . ,m
}
.

Suppose that the number of non-zero entries in every row of A does not exceed r for some r� 2 and
that the number of non-zero entries in every column of A does not exceed c for some c� 1. There is
an absolute constant α > 0 such that if w1, . . . ,wn ∈C are weights satisfying

|wj|� α

r
√
c

for j= 1, . . . , n,

then

w(X) �= 0.

One can choose α = 0.46.

Geometrically, the setX in Theorem 1.1 is the set of 0–1 vectors in a subspace.We are interested
in efficient algorithms to computew(X) approximately. Theorem 1.1 implies that such an efficient
algorithm exists for a non-trivial range of weights w1, . . . ,wn provided the matrix A is sufficiently
sparse (i.e. r and c are sufficiently small), even when the dimension n of the ambient space is
allowed to be large. This connection between the sparsity condition forA (frequent in applications
and easily verified) and the computational complexity of w(X) appears to be new.

1.2 Computing w(X)
Theorem 1.1 implies that w(X) can be efficiently approximated as long as the weights wj satisfy a
slightly stronger inequality,

|wj|� β

r
√
c
, for j= 1, . . . , n (1.2)

for any β < α, fixed in advance, so one can choose β = 0.45. We describe the connection below;
see also Section 1.2 of [2].

Without loss of generality we assume that the matrix A has no zero rows and no zero columns
(although this assumption is not needed in this section, it will be relevant later in Section 5).
Indeed, zero rows of A can be ignored and if, say, the nth column of A is zero, we have

w(X)= (1+wn)w(X̂),

where X̂ ⊂ {0, 1}n−1+ is the set defined by the system Âx= 0, where Â is the m× (n− 1) matrix
obtained from A by deleting the nth column.

For a ζ ∈C, let ζw1, . . . , ζwn be the scaling of the weights and let w(X;ζ ) be the corresponding
weight of X so that w(X;1)=w(X) while w(X;0)= 1 (note that 0 ∈ X). Theorem 1.1 implies that
as long as the weights wj satisfy (1.2), we have

w(X;ζ ) �= 0 provided |ζ |� α

β
= :γ . (1.3)

Note that γ > 1.
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Let us choose a continuous branch of f (ζ )= lnw(X;ζ ) for |ζ |� γ , and let

Ts(ζ )= f (0)+
s∑

k=1

f (k)(0)
k! ζ k (1.4)

be the Taylor polynomial of f of some degree s computed at ζ = 0. Since (1.3) holds and w(X;ζ ) is
a polynomial of degree at most n in ζ, we have

| f (1)− Ts(1)|� n
(s+ 1)γ s(γ − 1)

(see Lemma 2.2.1 of [2]). Using that γ > 1, we conclude that to approximate f (1)= lnw(X) within
an additive error ε > 0 by Ts(1), it suffices to choose s=O( ln n− ln ε), where the implied con-
stant in the ‘O’ notation depends only on γ . We then say that eTs(1) approximates w(X) within
relative error ε.

We have f (0)= 0, and computing f (k)(0) for k= 1, . . . , s reduces to computing

dk

dζ k
w(X;ζ )

∣∣
ζ=0 for k= 1, . . . , s (1.5)

in O(s2) time. Indeed, it is not hard to see that the values f (k)(0) are the solutions of a
non-degenerate triangular system of linear equations with right-hand side given by (1.5): see
Section 2.2.2 of [2]. Furthermore,

dk

dζ k
w(X;ζ )

∣∣
ζ=0 = k!

∑
x∈X,

x=(ξ1,...,ξn) :
ξ1+···+ξn=k

wξ11 · · ·wξnn ,

so computing (1.5) reduces to the inspection of all points x ∈ X, x= (ξ1, . . . , ξn), satisfying
ξ1 + · · · + ξn � s, which can be done through the exhaustive search in mnO(s) time. Given that
s=O( ln n− ln ε), this produces an algorithm approximatingw(X) within a relative error ε > 0 in
quasi-polynomial nO( ln n−ln ε) time, where the implied constant in the ‘O’ notation depends only
on γ in (1.3). In Section 5 we show that we can compute f (k)(0) in (1.4) faster, in (rc)O( ln n−ln ε)

time. In particular, if r and c are fixed in advance, we obtain a polynomial-time approximation
algorithm.

Next, we consider enumerating 0–1 vectors in affine subspaces, not necessarily containing the
origin.

1.3 Non-homogeneous linear equations in 0–1 vectors
We interpret a vector x= (ξ1, . . . , ξn) as a column n-vector. Let A be an m× n integer matrix as
above, let b be an integerm-vector and let

X = {x ∈ {0, 1}n : Ax= b}
be the set of 0–1 vectors satisfying a system of linear equations with matrix A. In general, it is an
NP-hard problem to decide whether X is empty, so there is no hope of computingw(X) efficiently.

Suppose, however, that we are presented with a point y ∈ X, y= (η1, . . . , ηn). Every point x ∈ X
can be uniquely written as x= y+ z, z = (ζ1, . . . , ζn), where Az = 0 and ζj ∈ {−1, 0} if ηj = 1 and
ζj ∈ {0, 1} if ηj = 0. Let a1, . . . , an be the columns of A and let Â be the matrix obtained from A by
replacing aj with −aj whenever ηj = 1. Let

Z = {z ∈ {0, 1}n : Âz = 0}.
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Hence every point x ∈ X, x= (ξ1, . . . , ξn), can be uniquely written as ξj = ηj + σjζj, where for
z = (ζ1, . . . , ζn) we have z ∈ Z and

σj =
{
1 if ηj = 0,
−1 if ηj = 1.

Then, for the weight of Z, we have

w(Z)=
∑
z∈Z,

z=(ζ1,...,ζn)

n∏
j=1

wζjj =
∑
x∈X,

x=(ξ1,...,ξn)

n∏
j=1

wσj(ξj−ηj)j =
∑
x∈X,

x=(ξ1,...,ξn)

∏
j:ξj �=ηj

wj. (1.6)

For x ∈ {0, 1}n, x= (ξ1, . . . , ξn), let
dist(x, y)= |{ j : ξj �= ηj}|

be the Hamming distance between x and y.
In particular, if we choose

w1 = · · · =wn =ω

for some ω, we get

w(Z)=
∑
x∈X

ωdist(x,y). (1.7)

Assuming that every row of A contains no more than r� 2 non-zero entries and every column of
A contains no more than c� 1 non-zero entries, we conclude that the sum (1.7) can be computed
within relative error ε > 0 in (rc)O( ln n−ln ε) time provided

|ω|� β

r
√
c
,

where β > 0 is an absolute constant (one can choose β = 0.45). If r and c are fixed in advance, we
have a polynomial-time approximation algorithm of (n/ε)O(1) complexity.

In the next section we consider combinatorial applications of our result. We first consider a
variation of Theorem 1.1 that applies to codes.

1.4 Weight of a code
Let κ > 1 be an integer. We consider n-vectors x= (ξ1, . . . , ξn) with coordinates ξj taking values
in the set {0, . . . , κ − 1}, which we interpret as the set Z/κZ of remainders modulo κ . Given n
complex numbers w1, . . . ,wn, we define the weight w(x) of a vector x ∈ (Z/κZ)n by

w(x)=
∏
j:ξj �=0

wj for x= (ξ1, . . . , ξn)

and the weight w(X) of a set X ⊂ (Z/κZ)n by

w(X)=
∑
x∈X

w(x)

(we agree that the weight of the zero vector is 1).
We obtain the following result.

Theorem 1.2. Let A= (aij) be an m× n integer matrix and let us define a set X ⊂ (Z/κZ)n by

X =
{
x ∈ (Z/κZ)n, x= (ξ1, . . . , ξn):

n∑
j=1

aijξj ≡ 0 mod κ for i= 1, . . . ,m
}
.
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Suppose that the number of non-zero entries in every row of A does not exceed r for some r� 2
and that the number of non-zero entries in every column of A does not exceed c for some c� 1. There
is an absolute constant α > 0 such that if w1, . . . ,wn ∈C are weights satisfying

|wj|� α

(κ − 1)r
√
c

for j= 1, . . . , n,

then
w(X) �= 0.

One can choose α = 0.46.

As in Section 1.2, we obtain an algorithm of (rc)O( ln κn−ln ε) complexity to approximate w(X)
within relative error ε > 0 provided

|wj|� β

(κ − 1)r
√
c

for j= 1, . . . , n,

where β < α is fixed in advance (we can choose β = 0.45). For r and c fixed in advance, the
algorithm has polynomial (κn/ε)O(1) complexity.
Organization.We deduce Theorem 1.1 and Theorem 1.2 from a general result asserting that∫

Tm
ep(z) dμ �= 0,

for some Laurent polynomials p : Tm −→C on the torus Tm endowed with a product probability
measure μ (see Theorem 3.1 and Corollary 3.2 below). After that, the proofs of Theorems 1.1
and 1.2 are completed in a more or less straightforward way in Section 4.

In Section 5, we provide details of an approximation algorithm for w(X). We do not discuss an
analogous algorithm for codes in Theorem 1.2 as it is very similar.We first consider some concrete
combinatorial applications of these results in Section 2 below.

2. Combinatorial applications
We apply Theorem 1.1 to weighted counting of perfect matchings in hypergraphs, computing
the partition function of the hard-core model at high fugacity for biregular bipartite graphs and
to weighted counting of graph homomorphisms. We apply Theorem 1.2 to computing weight
enumerators of linear codes with sparse code generating matrices and to computing the partition
function of the ferromagnetic Potts model at low temperatures.

2.1 Perfect matchings in hypergraphs
A hypergraph H = (V , E) is a finite set V of vertices together with a collection E of non-empty
subsets V , called edges of the hypergraph. The degree of a vertex v is the number of edges e ∈ E
that contain v. A perfect matching in H is a set of pairwise disjoint edges e1, . . . , en, such that
e1 ∪ · · · ∪ en =V . Let us introduce a 0–1 variable xe for each e ∈H. We encode a collection of
edges of H by a 0–1 vector, where

xe =
{
1 if e is in the collection,
0 otherwise.

Then e1, . . . , en is a perfect matching if and only if∑
e:v∈e

xe = 1 for all v ∈V . (2.1)
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In the system (2.1) the number of variables per equation is the maximum degree d of a vertex
of H and the number of equations per variable is the maximum cardinality k of an edge. It is an
NP-complete problem to find if a given hypergraph contains a perfect matching provided k� 3:
see e.g. Problem SP1 in [1]. However, as follows from Section 1.3, given one perfect matching
M0, we can efficiently approximate a certain statistic over all perfect matchings M of H, namely
the sum ∑

M∈M(H)
ωdist(M0,M), (2.2)

where M(H) is the set of all perfect matchings, dist(M0,M) is the Hamming distance between
matchings, that is, the number of edges where the matchings differ and

|ω|� β

d
√
k
.

The complexity of the algorithm approximating (2.2) within relative error ε > 0 is (dk)O( ln |E|−ln ε).
If d and k are fixed in advance, the algorithm achieves polynomial (|E|/ε)O(1) complexity. This can
be contrasted with the fact that knowing one solution of a problem generally does not help to find
another or to count all solutions: see [23] and [24].

Is is shown in [4] that if the hypergraph is uniform and k-partite, that is, we have V =V1 ∪
· · · ∪Vk with pairwise disjoint V1, . . . ,Vk such that |V1| = · · · = |Vk| = n and every edge e ∈ E
contains exactly one vertex from each Vi, then one can efficiently approximate (2.2) under the
weaker condition

|ω|� β√
d − 1

for any β < 1, fixed in advance.

2.2 The hard-core model at high fugacity
Given an undirected graph G= (V , E), a set S⊂V of vertices is called independent if no two
vertices of S span an edge of G (we agree that S= ∅ is always independent). The independence
polynomial of G is a univariate polynomial defined by

pG(λ)=
∑
S⊂V

S is independent

λ|S| (2.3)

(see e.g. Chapter 6 of [2]). It is also known as the partition function of the hard-core model. The
parameter λ is known as the fugacity.

The problem of (approximately) computing the number of independent sets in a bipartite
graph is considered to be computationally hard. It is the basis of the class of #BIS hard problems,
and it is known that approximating the pG(λ) on bipartite graphs of maximum degree d is a #BIS
hard problem, provided λ> ((d − 1)d−1)/((d − 2)d) [10]. Moreover, as Cai et al. [10] informed
us, it follows from their construction that computing pG(λ) for sufficiently large λ remains a
#BIS-hard problem when restricted to bipartite d-regular graphs G.

However, Jenssen, Keevash and Perkins [16] showed that for d� 3 there exists λ∗ = λ∗(d)> 0
such that, for all λ> λ∗ and all d-regular, bipartite, expander graphs G, the value of pG(λ) can
be approximated in polynomial time. Here we will use Theorem 1.1 to show that for each fixed
d1, d2 ∈N such that d2 − d1 � 1, there exists λ0 = λ0(d1, d2)> 0 such that for all λ> λ0 and any
biregular, bipartite graph with degrees d1, d2, we can approximate pG(λ) in polynomial time.

To that end, let us fix a biregular bipartite graph G= (V , E) with degrees d1 and d2 � d1 +
1. We write V = L∪ R for the bipartition, and we assume that each vertex in L has degree
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d1 and each vertex in R has degree d2. For an independent set I we write IL:= I ∩ L and
IR:= I ∩ R.

We wish to encode pG(λ) as the weight w(X) of a suitably defined set X. We direct all edges
from L to R, thus making G a directed graph. We associate with each vertex v ∈V a 0–1 variable
xv and with each edge (u, v) ∈ E a 0–1 variable xuv. LetX be the solution set to the following system
of equations:

− xu + xv + xuv = 0 for each directed edge (u, v) ∈ E. (2.4)
Any x ∈ X uniquely corresponds to an independent set I of G. Indeed, let I be the the sets of
vertices u ∈ L for which xu = 0 and vertices v ∈ R for which xv = 1. Then, for u ∈ IL, none of its
neighbours will be contained in I, since for each edge (u, v) the value of xv is forced to be zero.
Similarly, for any v ∈ IR, none of its neighbours will be contained in I since for each edge (u, v),
the value of xu is forced to be 1. Hence the set I is independent. Conversely, if I is an independent
set, setting

xu =
{
0 if u ∈ IL,
1 if u ∈ L \ IL, xv =

{
1 if v ∈ IR,
0 if v ∈ R \ IR, xuv =

{
0 if u ∈ IL or v ∈ IR
1 if u ∈ L \ IL and v ∈ R \ IR

gives a solution to (2.4).
Next, we introduce weightswu for the coordinates xu with u ∈ L, weightswv for the coordinates

xv with v ∈ R and weights wuv for the coordinates xuv with (u, v) ∈ E as follows:

wu =ω(d2−d1)/2 for u ∈ L,

wv =ω(d2−d1)/2 for v ∈ R, and
wuv =ω for (u, v) ∈ E.

For a solution x ∈ X corresponding to an independent set I, we then have

w(x)=
( ∏
v∈L\IL

ω(d2−d1)/2
)( ∏

{u,v}∈E
u,v/∈I

ω

)(∏
u∈IR

ω(d2−d1)/2
)

=ω(d2−d1)(|L|−|IL|)/2 ·ω|E|−d1|IL|−d2|IR| ·ω(d2−d1)|IR|/2

=ω(d2−d1)|L|/2+|E| ·ω−(d1+d2)|IL|/2 ·ω−(d1+d2)|IR|/2

=ω(d1+d2)|L|/2ω−(d1+d2)|I|/2.
In other words, for the weight of X, we have

w(X)=ω(d1+d2)|L|/2pG
(

1
ω(d1+d2)/2

)
for the independence polynomial pG defined by (2.3).

Now, since in (2.4) the number of variables per equation is 3 and the number of equations per
variable is at most d2, it follows from Theorem 1.1 that if

|λ|� (6.7
√
d2)d1+d2 >

(
3
√
d2

0.45

)d1+d2
,

then pG(λ) �= 0, and moreover that we can efficiently approximate pG (in polynomial time if d2 is
fixed in advance). Moreover, we note that with a similar argument, for a d-regular bipartite graph
G= (L∪ R, E), we can efficiently approximate the sum∑

I⊂L∪R
I is independent

λ|I∩L|
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for large λ. This is somewhat similar in spirit to a result of van den Berg and Steiff [5], who showed
that for the integer lattice Zd, assigning λ1 > 0 to vertices with even coordinate sum and λ2 > 0 to
vertices with odd coordinate sum, for all but a countable set of pairs (λ1, λ2) the associated Gibbs
measure is unique.

2.3 Weighted counting of graph homomorphisms
Let G1 = (V1, E1) be an undirected graph without loops or multiple edges and let G2 = (V2, E2)
be an undirected graph without multiple edges, but possibly with loops. We assume that V2 =
{1, . . . , n} and assume that G1 and G2 are both connected. A map φ : V1 −→V2 is called a homo-
morphism if φ(u) and φ(v) span an edge of G2 whenever u and v span an edge of V1. If V2 is the
complete graph without loops then every homomorphism φ : G1 −→G2 is naturally interpreted
as a colouring of the vertices of G1 with a set of n colours such that no two vertices spanning an
edge of G1 are coloured with the same colour (such colourings are called proper). For any fixed
n� 3, it is an NP-complete problem to decide whether a given graph admits a proper n-colouring:
see e.g. Problem GT5 in [1]. Our goal is to encode all homomorphisms φ : G1 −→G2 that map a
fixed vertex a ∈V1 to a fixed vertex, say n, of G2 as the set of 0–1 solutions to a system of linear
equations.

We say that vertices u, v ∈V1 are neighbours if {u, v} ∈ E1. We orient the edges ofG1 arbitrarily,
so that an edge of G1 is an ordered pair of neighbours (u, v). Let us introduce 0–1 variables xuvij
indexed by (now directed) edges (u, v) ∈ E1 and ordered pairs 1� i, j� n such that {i, j} ∈ E2 (we
may have i= j). The idea is to use the variables xuvij to encode a map φ : V1 −→V2, so that

xuvij =
{
1 if φ(u)= i and φ(v)= j,
0 otherwise.

(2.5)

For every ordered pair of neighbours (u, v) and every vertex i ∈V2, we define the sum

Su,vi =
∑

j:{i,j}∈E2
xuvij if (u, v) ∈ E1 and Su,vi =

∑
j:{i,j}∈E2

xvuji if (v, u) ∈ E1, (2.6)

and for every u ∈V1 and every i ∈V2, we introduce the following equations:

Fix u ∈V1 \ {a} and i ∈V2.
The sums Su,vi , where v is a neighbour of u, are all equal.

(2.7)

The idea, of course, is that the sums (2.6) are all equal to 1 if φ(u)= i and equal to 0 if φ(u) �= i.
Next, we encode the condition φ(a)= n by the following system of equations:

For all neighbours v of a, Sa,vn = 1 and Sa,vj = 0 for j �= n. (2.8)

Now we claim that for every 0–1 solution {xuvij } of the system (2.7)–(2.8), for any vertex u ∈V1,
there is a unique vertex iu ∈V2 such that the following equations hold:

For all neighbours v of u, we have Su,viu = 1 and Su,vj = 0 for j �= iu. (2.9)

Then, for the map φ : V1 −→V2 defined by φ(u)= iu, the conditions (2.5) are satisfied.
Clearly, if a choice u �−→ iu exists, it is unique. Because of (2.8), equations (2.9) hold for u= a

and iu = n. Since G1 is connected, it suffices to show that whenever (2.9) holds for some vertex
u, then for every neighbour w of u we can define iw ∈V2 so that (2.9) holds with u replaced by w
throughout. Indeed, let w be a neighbour of u such that (u,w) ∈ E1. It follows by (2.9) that there
exists iw such that

xuwiuiw = 1 and xuwjk = 0 whenever j �= iu or k �= iw.
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From (2.7) it follows that for any neighbour v of w, we have

Sw,viw = Sw,uiw = 1 and Sw,vj = Sw,uj = 0 for j �= iw,

as required. The case of neighbours w of u such that (w, u) ∈ E1 is handled similarly. This proves
that 0–1 solutions {xuvij }, if any, of the system (2.7)–(2.8), are in one-to-one correspondence with
graph homomorphisms φ : G1 −→G2 such that φ(a)= n.

As we are interested in keeping the system (2.7)–(2.8) as sparse as possible, we arrange equa-
tions (2.7) as follows. For a given u ∈V1, we list the neighbours v of u in some order v1, . . . , vm
and then equate Su,vki − Su,vk+1

i = 0 for k= 1, . . . ,m− 1. When the chosen vertex a is a neighbour,
we let v1 = a. This way the system (2.7)–(2.8) has no more than 2d2 variables per equation, where
d2 is the largest degree of a vertex of G2, and no more than 4 equations per variable.

Suppose that we are given a homomorphism φ : G1 −→G2 satisfying the constraint φ(a)= n
for a fixed vertex a of G1 and a fixed vertex n of G2. As in Section 1.3, for an ω ∈C we consider
the sum ∑

ψ : ψ(a)=n
ω2dist(φ,ψ), (2.10)

where ψ ranges over all graph homomorphisms satisfying ψ(a)= n and dist(φ,ψ) is the number
of directed edges where φ and ψ disagree. As follows from Section 1.3, we can approximate (2.10)
within relative error ε > 0 in dO( ln |E1|+ln |E2|−ln ε)

2 time provided

|ω|� γ

d2
(2.11)

for some absolute constant γ > 0 (we can choose γ = 0.1). If the largest degree d2 of a vertex of
G2 is fixed in advance, we obtain a polynomial-time approximation algorithm.

Suppose that G2 is the complete graph with n vertices and no loops, so that a homomorphism
G1 −→G2 is interpreted as a proper n-colouring of G1 and d2 = n− 1. If n> d1, where d1 is the
largest degree of a vertex ofG1, it is trivial to come up with a homomorphism (proper n-colouring)
φ :G1 −→G2 having a prescribed value on a prescribed vertex. In this case, the sum (2.10) is taken
over all proper n-colourings ψ of G2 and each colouring is counted with weight exponentially
small in the number of edges of G1 whose colouring differ under φ andψ . If we could choose ω=
1 in (2.10), we would have counted all proper n-colourings ofG1 with n> d1 colours, a notoriously
difficult problem; see [25] and [11] for a randomized polynomial-time approximation algorithm
for counting n-colourings assuming that n> (11/6)d1.

Given a pair of graphs G1 and G2, let us modify G2 to a graph Ĝ2 by adding an extra vertex
n+ 1 with a loop and connected to all other vertices ofG2. Then there is always a homomorphism
φ : G1 −→ Ĝ2 which sends every vertex of G1 to the newly added vertex n+ 1. In this case the
sum (2.10) with G2 replaced by Ĝ2 and n replaced by n+ 1 is interpreted as the sum over all
homomorphisms of the induced subgraphs of G1 to G2.

2.4 Computing weight enumerators of linear codes
If κ is a prime, the set Z/κZ is identified with the finite field Fκ with κ elements, and (Z/κZ)n is
the n-dimensional vector space over Fκ . A set X ⊂ F

n
κ is called a code. The univariate polynomial

pX(z)= 1+
n∑

k=1

pk(X)zk,

where pk(X) is the number of vectors in X with exactly k non-zero coordinates, is called theweight
enumerator of X: see e.g. Chapter 3 of [18].
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Suppose that X ⊂ F
n
κ is defined by a system of linear equations

X = {x ∈ F
n
κ : Ax= 0}, (2.12)

where A= (aij) is an m× n matrix with entries aij ∈ Fκ . Hence X ⊂ F
n
κ is a subspace, called a

linear code. Generally, it is hard to compute pX(z) as it is hard to determine the smallest k� 1 with
pk(X) �= 0: see [6] and [8].

Suppose now that the number of non-zero entries in every row of A does not exceed r� 2 and
the number of non-zero entries in every column of A does not exceed c� 1. Let us define weights

w1 = · · · =wn = z
for some z ∈C. Then

w(X)= pX(z),
and Theorem 1.2 implies that pX(z) �= 0 provided |z|� α/(κ − 1)r

√
c and that pX(z) can be

approximated within relative error ε > 0 in (rc)O( ln κn−ln ε) time, provided |z|� β/(κ − 1)r
√
c,

where β < α is fixed in advance. Again, if r and c are fixed in advance, we obtain an algorithm
of polynomial m(κn/ε)O(1) complexity. Linear codes X (typically binary, i.e. for κ = 2) for which
the number of non-zero entries in each row of the matrix A in (2.12) is small are called low-
density parity-check codes. They have many desirable properties and are of considerable interest:
see Section 11 of [20].

Let C = X⊥, C ⊂ F
n
κ , be the subspace (linear code) spanned by the rows of A (we say that A is

the generator matrix of C). The MacWilliams identity for the weight enumerators of pX and pC
(see Theorem 3.5.3 of [18]) states that

pX(z)= 1
κdim C

(
1+ (κ − 1)z

)npC(
1− z

1+ (κ − 1)z

)
.

It follows that

pC
(

1− z
1+ (κ − 1)z

)
�= 0 provided |z|� α

(κ − 1)r
√
c

and that the value of

pC
(

1− z
1+ (κ − 1)z

)
can be efficiently approximated provided

|z|� β

(κ − 1)r
√
c
.

In other words, the weight enumerator pC(z) of a linear codeCwith a sparse code generatormatrix
is non-zero and can be efficiently approximated provided |1− z| =O(1/r

√
c), where r is an upper

bound on the number of non-zero entries in every row, c is an upper bound on the number of
non-zero entries in every column of the matrix and the implied constant in the ‘O’ notation is
absolute (in particular, it does not depend on κ).

One notable example of such a code with a sparse generating matrix is the binary cut code
consisting of the indicators of cuts in a given graph G= (V , E) with set V of vertices and set
E of edges (see Section 1.9 of [13] and [8]), that is, indicators of subsets ES ⊂ E consisting of
the edges with one endpoint in S⊂V and the other in V \ S. The rows of the code generating
matrix are parametrized by vertices v ∈V of the graph, the columns are parametrized by the edges
e of the graph and the (v, e) entry of the matrix is 1 if v is an endpoint of e and 0 otherwise
(hence each row is the indicator of the cut associated with the corresponding vertex). We observe
that the code generating matrix of a cut code contains at most d(G) non-zero entries in every
row, where d(G) is the largest degree of a vertex of G, and exactly two non-zero entries in every
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column. The algorithm obtained for computing the weight of a cut code achieves roughly the same
approximation as the algorithms of [21] and of Chapter 7 of [2], where we approach computing
weights of cuts via the graph homomorphism partition function.

2.5 Ferromagnetic Potts model at low temperatures
Let G= (V , E) be a connected undirected graph, without loops or multiple edges. Given a real
β > 0 and an integer κ > 1, we consider the sum

PG,κ (β)=
∑

φ:V−→{0,...,κ−1}
exp

{
β

∑
{u,v}∈E

δφ(u)φ(v)
}
, (2.13)

where

δij =
{
1 if i= j,
0 if i �= j.

The expression (2.13) is known as the partition function of the ferromagnetic (since β > 0) Potts
model with κ colours: see e.g. [14]. Here the numbers 0, 1, . . . , κ − 1 are interpreted as colours: we
colour the vertices of G with κ colours in all possible ways, and each edge of G with identically
coloured endpoints contributes to the inner sum. The number β plays the role of the inverse
temperature. Using cluster expansions, it was shown in [15] that for some induced subgraphs G
of the lattice Zd the sum (2.13) can be approximated in polynomial time provided β > β0(d, κ)
for some constant β0 (i.e. at sufficiently low temperatures). Here we deduce this result for a wide
family of graphs and an explicit bound on β0 from our Theorem 1.2.

First, we rewrite (2.13) in the form

PG,κ (β)= eβ|E| ∑
φ:V−→{0,...,κ−1}

∏
{u,v}∈E

w(φ(u), φ(v)), (2.14)

where w(i, j)=wβ(i, j)= eβ(δij−1). Since β > 0, we have |w(i, j)|� 1 and w(i, j)= 1 if and only if
i= j.

Next, we write the sum in (2.14) in the form w(X), where X is the set in Theorem 1.2. For
that, we interpret colours 0, 1, . . . , κ − 1 as remainders modulo κ . We direct the edges of G in an
arbitrary way and with every, now directed, edge (u, v) we associate a variable xuv taking values in
Z/κZ. The intended meaning of the variables xuv is that

xuv ≡ φ(v)− φ(u) mod κ for all (u, v) ∈ E, (2.15)

so that xuv ≡ 0 if and only if the endpoints of the edge {u, v} are coloured with the same colour.
Given a set {xuv : (u, v) ∈ E}, a solution φ : V −→Z/κZ to the system (2.15) exists if and only if
{xuv} satisfy the system of linear equations, constructed as follows. We pick a cycle C in G, orient
it arbitrarily, and write ∑

{u,v}∈C:
(u,v) is co-oriented with C

xuv −
∑

{u,v}∈C:
(u,v) is counter-oriented with C

xuv ≡ 0 mod κ . (2.16)

Moreover, since G is connected, as long as equations (2.16) are satisfied for all cycles C, the system
(2.15) has exactly κ solutions, that differ by a shift of an element of Z/κZ. Indeed, if equations
(2.15) are satisfied then clearly (2.16) holds. On the other hand, given a solution to (2.16), we
pick a vertex v and assign the value of φ(v) arbitrarily. Then, for every vertex w we choose a path
connecting w to v and assign values of φ to the vertices along the path (in a necessarily unique
way) so that equations (2.15) are satisfied. Because of (2.16), the value of φ(w) does not depend on
the chosen path.
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Let X ⊂ (Z/κZ)E be the set of solutions of the system (2.16). We introduce a weight wuv = e−β
for each coordinate xuv with (u, v) ∈ E and write (2.14) as

PG,κ (β)= κeβ|E|w(X),
where X is the set of solutions to the system (2.16).

Equations (2.16) are not independent: it suffices to write (2.16) for a set of cycles C that generate
the homology group H1(G;Z). In view of Theorem 1.2, we would like to choose such a generating
set C of H1(G;Z) so that the number of edges in each cycle C ∈ C does not exceed some r� 2 and
the number of cycles C ∈ C containing a given edge does not exceed some c� 1, for the smallest
possible values of r and c. Then we can approximate the partition function PG,κ (β) of (2.13)–(2.14)
provided

β � 0.8+ ln ((κ − 1)r
√
c)>− ln 0.45+ ln ((κ − 1)r

√
c),

and for fixed r and c, we get a polynomial-time approximation algorithm.
For example, suppose that G is an induced subgraph of the integer lattice Z

d (with d� 2)
constructed as follows. Given a point (a1, . . . , ad) ∈Z

d, we call the set

{(x1, . . . , xd) : ak � xk � ak + 1 : k= 1, . . . , d}
an elementary cube. We take finitely many elementary cubes whose unionU is a simply connected
subset of Rd and let G be the induced subgraph with vertices in U. Then there is a system of
generators, C, of H1(G;Z) consisting of cycles with r = 4 edges each and such that every edge
of C ∈ C belongs to at most c= 2(d − 1) cycles (we choose the cycles on the boundary of two-
dimensional faces of the elementary cubes comprising U). Hence, for such a graph G, we obtain a
polynomial-time approximation algorithm for PG,κ (β) provided

β � 2.6+ ln ((κ − 1)
√
d − 1)> ln

4
√
2

0.45
+ ln ((κ − 1)

√
d − 1).

3. Integrating over the torus
We begin our preparations to prove Theorems 1.1 and 1.2.

3.1 Laurent polynomials on the torus
Let

S
1 = {z ∈C : |z| = 1}

be the unit circle in the complex plane and let

T
m = S

1 × · · · × S
1

be the direct product of m copies of S1 (torus), endowed with the product measure μ=μ1 ×
· · · ×μm, where μi is a Borel probability measure on the ith copy of S1. We consider Laurent
polynomials p : Tm −→C,

p(z1, . . . , zm)=
∑
a∈A

γaza, (3.1)

as random variables on T
m. Here A⊂Z

m is a finite set of integer vectors, γa ∈C for all a ∈A and

za = zα11 · · · zαmm provided a= (α1, . . . , αm),

where z0i = 1. We are interested in conditions on the coefficients γa which ensure that Eep �= 0.
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For a ∈A we define the support of a by
supp a= {i : αi �= 0} where a= (α1, . . . , αm).

Consequently, |supp a| is the number of non-zero coordinates of a ∈Z
m. In this section, we prove

the following main result.

Theorem 3.1. Let p : Tm −→C be a Laurent polynomial as in (3.1). Suppose that for some
0� θ1, . . . , θm < 2π/3 we have

2
∑
a∈A:

i∈supp a

|γa|
∏

j∈supp a

1
cos (θj/2)

� θi for i= 1, . . . ,m. (3.2)

Then
Eep �= 0.

By choosing θi in a particular way, we obtain the following corollary.

Corollary 3.2. There exists an absolute constant τ > 0 such that if p : Tm −→C is a Laurent
polynomial as in (3.1) and

|supp a|� c for all a ∈A
and some c� 1, and ∑

a∈A:
i∈supp a

|γa|� τ√
c

for i= 1, . . . ,m,

then
Eep �= 0.

One can choose τ = 0.56.

The proof is somewhat similar to that of [3] for Eep where p : {−1, 1}m −→C is a polynomial
on the Boolean cube.

We start with a simple lemma (a discrete version of this lemma was suggested by Bukh [9]).

Lemma 3.3. Let f :�−→C be a random variable and let 0� θ < 2π/3 be a real number such that
f (ω) �= 0 for all ω ∈� and the angle between any two complex numbers f (ω1) �= 0 and f (ω2) �= 0
considered as vectors in R

2 =C does not exceed θ . Suppose further that E| f |<+∞. Then

|Ef |�
(
cos

θ

2

)
E| f |.

Proof. First, we claim that 0 does not lie in the convex hull of vectors f (ω) ∈C=R
2. Otherwise

we conclude by the Carathéodory theorem that 0 is a convex combination of some 3 vectors f (ω1),
f (ω2) and f (ω3) and the angle between some two of them is at least 2π/3, which is a contradiction.
Hence the vectors f (ω) lie in some convex cone (angle)K ⊂Cmeasuring atmost θ andwith vertex
at 0. Let L : R2 −→ R

2 be the orthogonal projection onto the bisector of K. Then

|Ef |� |L(Ef )| = |EL( f )| =E|L( f )|�E

(
|f | cos θ

2

)
=

(
cos

θ

2

)
E| f |.

Here the first (reading from left to right) inequality follows since the length of the orthogonal
projection of a vector does not exceed the length of the vector; the next identity follows since L

https://doi.org/10.1017/S0963548319000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000105


Combinatorics, Probability and Computing 709

is a linear operator; the next identity follows since for all z ∈K the vectors L(z) are non-negative
multiples of each other; the next inequality follows since

|L(z)|�
(
cos

θ

2

)
|z| for all z ∈K;

and the final identity follows since the expectation is a linear operator.

Proof of Theorem 3.1. For a function f : Tm −→C and a subset I ⊂ {1, . . . ,m}, we let EI f
denote the conditional expectation of f obtained by integrating f over the variables zi with i ∈ I.
Hence, if f is a function of z1, . . . , zm and I ⊂ {1, . . . ,m}, then hI =EI f is a function of zi for i /∈ I.
In particular, hI = f if I = ∅ and hI =Ef if I = {1, . . . ,m}. If I consists of a single element i, we
write Eif instead of E{i}f . We let

I = {1, . . . ,m} \ I
denote the complement of I. We will consider functions f = ep where p : Tm −→C is a Laurent
polynomial.

For 0� θ1, . . . , θm < 2π/3, we let Pm(θ1, . . . , θm) denote the set ofm-variate Laurent polyno-
mials p for which the inequalities (3.2) hold. Note that the condition p ∈Pm(θ1, . . . , θm) is a finite
system of linear inequalities for |γa|, a ∈A.

Let us choose p ∈Pm(θ1, . . . , θm), let us fix some values zi ∈ S
1 for I ⊂ {1, . . . ,m} and consider

p as a function of zi for i /∈ I. It is not hard to see that p ∈Pm−|I|(θi : i /∈ I).
We prove the following statements by induction onm.

Statement 1m. For any p ∈Pm(θ1, . . . , θm), we have Eep �= 0. Moreover, suppose that p, q ∈
Pm(θ1, . . . , θm) are two Laurent polynomials that differ in at most one monomial, and the poly-
nomial p is obtained from q by multiplying the coefficient γb of some zb by some ζ ∈ S

1. Then the
angle between Eep �= 0 and Eeq �= 0 does not exceed

2|γb|
∏

i∈supp b

1
cos (θi/2)

.

Statement 2m. Let p ∈Pm(θ1, . . . , θm) be a Laurent polynomial. Let I = {1, . . . ,m} \ {i} for some
1� i�m and let hI(zi)=EIep. Then for any z′i , z′′i ∈ S

1, we have hI(z′i) �= 0, hI(z′′i ) �= 0 and the
angle between the two complex numbers does not exceed θi.

We start by proving Statement 21. Then

p(z)=
∑
a∈A

γaza for some finite A⊂Z

is a univariate Laurent polynomial. For any z ∈ S
1, we have

| arg ep(z)|� |� p(z)|� |p(z)|�
∑
a∈A

|γa|� 1
2
θ1

and the result is immediate.
Next, we prove that Statements 2s for s�m imply Statement 1m.
Let us choose p ∈Pm(θ1, . . . , θm). For a set I ⊂ {1, . . . ,m}, let

hI(zi : i /∈ I)=EIep.
Assuming that I �= {1, . . . ,m}, let us pick an i /∈ I. Then

hI∪{i} =EihI .

Let us fix variables zj ∈ S
1 with j /∈ I ∪ {i} arbitrarily and consider p as a Laurent polynomial

from Pr(θk : k ∈ I ∪ {i}) with r = |I| + 1. Thus hI is a function of a single variable zi ∈ S
1 and by
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Statement 2r for any two z′i , z′′i ∈ S
1, the angle between hI(z′i) �= 0 and hI(z′′i ) �= 0 does not exceed

θi. It follows from Lemma 3.3 that hI∪{i}(zj : j /∈ I ∪ {i}) �= 0 and, moreover,

|hI∪{i}| = |EihI|�
(
cos

θi
2

)
Ei|hI|> 0.

Iterating, we obtain

|hI∪J | = |EJhI|�
(∏

j∈J
cos

θj

2

)
EJ |hI|> 0 provided J ∩ I = ∅. (3.3)

In particular, choosing J = I, we obtain that Eep �= 0.
Suppose now that p, q ∈Pm(θ1, . . . , θm) where p is obtained from q by replacing a single mono-

mial γbzb by γbζzb for some ζ ∈ S
1. Let us fix all the remaining coefficients of p and q and

consider Eep as a function of the coefficient γb of zb as long as the resulting polynomial remains
in Pm(θ1, . . . , θm) (note that the set of admissible values of |γb| is convex and includes 0). Since
Eep �= 0 for all p ∈Pm(θ1, . . . , θm), we can choose a continuous branch of lnEep as a function of
γb. Then we have

∂

∂γb
lnEep = (∂/∂γb)Eep

Eep
= E(zbep)

Eep
.

Let I = supp b. Then

|E(zbep)| = |EIEI(z
bep)| = |EI(zbEIe

p)| = |EIzbhI|�EI|hI|.
Similarly,

|Eep| = |EIEIe
p| = |EIhI|�

(∏
i∈I

cos
θi
2

)
EI|hI|> 0

by (3.3). Therefore, ∣∣∣∣ ∂∂γb lnEep
∣∣∣∣� ∏

i∈supp b

1
cos (θi/2)

and hence

| lnEep − lnEeq|� 2|γb|
∏

i∈supp b

1
cos (θi/2)

.

Statement 1m now follows.
Next, we prove that Statement 1m implies Statement 2m+1.
Let p ∈Pm+1(θ1, . . . , θm+1) be a polynomial and let us choose an 1� i�m+ 1. Let I =

{1, . . . ,m+ 1} \ {i} and let hI(zi)=EIep. If we fix zi, we can consider p as a Laurent polynomial
in Pm(θj : j �= i). Moreover, if we change the value of zi = z′i to zi = z′′i , then only the coefficients
γa of p with i ∈ supp a are affected, and each of those coefficients gets multiplied by some ζa ∈ S

1.
Repeatedly applying Statement 1m, we conclude that hI(z′i) �= 0, hI(z′′i ) �= 0 and the angle between
the two complex numbers does not exceed

2
∑
a∈A:

i∈supp a

|γa|
∏

j∈supp a

1
cos (θj/2)

,

which does not exceed θi by the definition of Pm+1(θ1, . . . , θm+1), and Statement 2m+1 follows.
This concludes the induction and proves that Eep �= 0.
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Proof of Corollary 3.2. Let us choose

θ1 = · · · = θm = δ√
c

for some 0< δ < 2π/3 to be determined later. To have the conditions of Theorem 3.1 satisfied, it
suffices to have

2
∑
a∈A:

i∈supp a

|γa|
(
cos

δ

2
√
c

)−c
� δ√

c
for i= 1, . . . ,m.

Since (
cos

δ

2
√
c

)c
� cos

δ

2
for 0� δ � π

(see [3]), it suffices to have ∑
a∈A:

i∈supp a

|γa|� δ cos (δ/2)√
c

for i= 1, . . . ,m.

Optimizing over δ, we choose δ = 1.72 and

τ = δ cos (δ/2)
2

≈ 0.561,

which concludes the proof.

4. Proofs of Theorems 1.1 and 1.2
First, we prove Theorem 1.1. Let Tm = S

1 × · · · × S
1 be the torus as in Section 3 and let us choose

μi to be the rotation invariant (Haar) probability measure on the ith copy of S1. Let μ=μ1 ×
· · · ×μm be the Haar probability measure on T

m.

Lemma 4.1. Let X ⊂ {0, 1}n be a set and let w1, . . . ,wn be complex weights as in Theorem 1.1. Let
aj, j= 1, . . . , n, be the columns of the matrix A, considered as integer m-vectors and let us define a
Laurent polynomial q : Tm −→C by

q(z1, . . . , zm)=
n∏
j=1

(1+wjzaj),

where

za = zα11 · · · zαmm provided a= (α1, . . . , αm).

Then

w(X)=Eq.

Proof. Since for a ∈Z
m, we have

Eza =
{
1 if a= 0,
0 if a �= 0,

https://doi.org/10.1017/S0963548319000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000105


712 A. Barvinok and G. Regts

expanding the product that defines q, we get

Eq=
∑

ξ1,...,ξn∈{0,1}:
ξ1a1+···+ξnan=0

wξ11 · · ·wξnn =w(X).

Proof of Theorem 1.1. Let q(z1, . . . , zm) be the Laurent polynomial of Lemma 4.1, so that
w(X)=Eq. Assuming that |wj|< 1 for j= 1, . . . , n, we write

ln q=
n∑
j=1

ln (1+wjzaj)=
n∑
j=1

∞∑
k=1

(− 1)k−1w
k
j z

kaj

k
.

For a positive integer N, let us define a Laurent polynomial

pN(z1, . . . , zm)=
n∑
j=1

N∑
k=1

(− 1)k−1w
k
j z

kaj

k
,

which is just a truncation of the series expansion for ln q. Let γa �= 0 be the coefficient of the
Laurent monomial za in pN . Then

|supp a|� c,

and for i= 1, . . . ,m we have

∑
a:i∈supp a

|γa|�
∑
j:aij �=0

N∑
k=1

|wj|k
k

� r max
j=1,...,n

− ln (1− |wj|)� 0.56√
c

as long as

|wj|� 0.46
r
√
c

for j= 1, . . . , n. (4.1)

(We use that − ln (1− x)� 1.2x for 0� x� 0.3 and that r� 2.) Therefore, by Corollary 3.2,
EepN �= 0 as long as (4.1) holds. On the other hand, EepN is an analytic function of w1, . . . ,wn
in the polydisc (4.1) and EepN converges to Eq uniformly on compact subsets of the polydisc. By
the Hurwitz theorem (see e.g. Section 7.5 of [17]), we have either Eq �= 0 in the polydisc or Eq≡ 0
in the polydisc. Since for w1 = · · · =wn = 0, we have Eq= 1, we conclude that Eq �= 0 provided
(4.1) holds.

Proof of Theorem 1.2. We modify the choice of the probability measure μ on T
m as follows:

we choose μi to be the uniform probability measure on the roots of unity of degree κ and let
μ=μ1 × · · · ×μm. We note that for a ∈Z

m, a= (α1, . . . , αm), we have

Eza =
{
1 if αi ≡ 0 mod κ for i= 1, . . . ,m,
0 otherwise.

Given anm× n integer matrix A= (aij), we define q(z1, . . . , zm) by

q(z1, . . . , zm)=
n∏
j=1

(1+wjzaj + · · · +wjz(κ−1)aj).
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Then

Eq=
∑

ξ1,...,ξn:
ai1ξ1+···+ξnain≡0 mod κ

for i=1,...,m,
ξj∈{0,1,...,κ−1}
for j=1,...,n

∏
j:ξj �=0

wj =w(X).

Assuming that |wj|< (κ − 1)−1 for j= 1, . . . , n, we expand

ln q=
n∑
j=1

ln (1+wjzaj + · · · +wjz(κ−1)aj)=
n∑
j=1

∞∑
s=1

(− 1)s
(wjzaj + · · · +wjz(κ−1)aj)s

s
.

For a positive integer N, let us define a Laurent polynomial

pN(z1, . . . , zm)=
n∑
j=1

N∑
s=1

(− 1)s
(wjzaj + · · · +wjz(κ−1)aj)s

s
.

For every Laurent monomial za which appears in pN with a coefficient γa �= 0, we have |supp a|�
c. If i ∈ supp a, then the coefficient of za in the polynomial (zaj + · · · + z(κ−1)aj)s is non-zero only
if aij �= 0. Hence for i= 1, . . . ,m, we have

∑
a:i∈supp a

|γa|�
∑
j:aij �=0

N∑
s=1

(
(κ − 1)|wj|

)s
s

� r max
j=1,...,n

− ln
(
1− (κ − 1)|wj|

)
� 0.56√

c

provided

|wj|� 0.46
(κ − 1)r

√
c

for j= 1, . . . , n.

The proof is then concluded like the proof of Theorem 1.1.

5. Approximatingw(X) faster
Let X ⊂ {0, 1}n be the set defined in Theorem 1.1. We assume that them× nmatrix A has no zero
rows or columns: see Section 1.2. Recall that r� 2 is an upper bound on the number of non-zero
entries in a row of A and c� 1 is an upper bound on the number of non-zero entries in a column
of A. As in Section 1.2, we define a univariate polynomial w(X;ζ ), that is, the weight of the set X
under the scaled weights ζw1, . . . , ζwn, so w(X;ζ ) is a polynomial of some degree d� n. We let
f (ζ )= lnw(X;ζ ) for ζ in a neighbourhood of 0.

Our goal is to show that the term f (k)(0) in the Taylor expansion (1.4) can be computed in
n(rc)O(k) time, where we assume the standard RAMmachine model with logarithmic-sized words,
and additionally we assume that given a column index j of the matrixA= (aij) we can in timeO(c)
compute the row indices i such that aij �= 0 (otherwise the running time is bounded by nm(rc)O(k)).
We note that in this section, all the implied constants in the ‘O’ notation are absolute. In particular,
if k=O( ln n− ln ε) as in Section 1.2, and r and c are fixed beforehand, we obtain an algorithm of
a polynomial in n/ε complexity.

Our algorithm relies heavily on the ideas of [21]; see also [19].
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5.1 The idea of the algorithm
Since w(X;0)= 1, we can write

w(X;ζ )=
d∏

i=1

(
1− ζ

ζi

)
,

where ζ1, . . . , ζd �= 0 for some d� n are the roots of w(X;ζ ), listed with multiplicity. Then

f (ζ )=
d∑

i=1
ln

(
1− ζ

ζi

)
and

f (k)(0)
k! = −1

k

d∑
i=1

ζ−k
i .

We introduce the power sums

σk(A,w)= ζ−k
1 + · · · + ζ−k

d . (5.1)

Hence our goal is to compute σk(A,w) in n(rc)O(k) time.
The crucial feature of the power sums σk(A,w) is that they are additive functions of A, as is

explained below.
In what follows, we consider the set M of integer matrices A with rows and columns indexed

by non-empty finite subsets of the setN of positive integers and without zero rows or columns. For
non-empty finite subsets R, C ⊂N, an R× C integer-valued matrix A ∈M is a function A : R×
C −→Z and we write the (i, j)th entry of A as A(i, j) for i ∈ R and j ∈ C. We fix complex weights
wj and define

XA =
{
(ξj : j ∈ C) ∈ {0, 1}C :

∑
j∈C

A(i, j)ξj = 0 for i ∈ R
}
. (5.2)

Similarly, we define univariate polynomials

w(XA;ζ )=
∑
x∈XA

x=(ξj:j∈C)

∏
j∈C

(ζwj)ξj (5.3)

and define power sums σk(A,w) by (5.1), where ζ1, . . . , ζd are the roots of w(XA;ζ ), listed with
multiplicity.

Let A1,A2 ∈M be respectively R1 × C1 and R2 × C2 matrices. Suppose that R1 ∩ R2 = ∅ and
C1 ∩ C2 = ∅. We define the direct sum A=A1 ⊕A2 as the R× C matrix, where R= R1 ∪ R2, C =
C1 ∪ C2 and

A(i, j)=

⎧⎪⎨⎪⎩
A1(i, j) if i ∈ R1 and j ∈ C1,
A2(i, j) if i ∈ R2 and j ∈ C2,
0 elsewhere.

Clearly, A ∈M.
Let A1,A2 ∈M be matrices such that A=A1 ⊕A2 is defined. We observe that

w(XA;ζ )=w(XA1 ;ζ )w(XA2 ;ζ )

and hence

σk(A1 ⊕A2,w)= σk(A1,w)+ σk(A2,w). (5.4)
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Given an R× CmatrixA ∈M and an R1 × C1 matrix B ∈M, we define the index ind(B,A)= 1
if R1 ⊂ R, C1 ⊂ C,

A(i, j)= B(i, j) for all i ∈ R1 and all j ∈ C1

and

A(i, j)= 0 for all i ∈ R \ R1 and all j ∈ C1.

Otherwise, we say that ind(B,A)= 0.
We define a filtration

M1 ⊂M2 ⊂ · · · ⊂Mk ⊂ · · · ,
whereMk ⊂M consists of the matrices with at most k columns.

In Lemma 5.2 below we show that we can write

σk(A;w)=
∑

B∈Mk

ind(B,A)μk(B,w) for all A ∈M (5.5)

and some complex numbers μk(B,w). Although the sum in (5.5) contains infinitely many terms,
for each A ∈M, only finitely many terms are non-zero, so (5.5) is well-defined.

We say that a matrix B ∈M is connected if it cannot be represented as a direct sum B= B1 ⊕ B2
for somematrices B1, B2 ∈M and disconnected otherwise. In Corollary 5.4 below, we deduce from
the additivity property (5.4) that μk(B,w)= 0 in (5.5) unless B is connected. In Section 5.2 we
show for any givenm× nmatrix Awith at most r non-zero entries in each row and at most c non-
zero entries in each column, the number of connected matrices B ∈Mk with ind(B,A)= 1 is at
most n(rc)O(k) and that all suchmatrices B can be found in n(rc)O(k) time. Finally, in Section 5.3 we
show that for each connected B ∈Mk, one can compute μk(B,w) in cn2O(k) time. This produces
an algorithm of n(rc)O(k) complexity for computing σk(A,w).

Next, we supply the necessary details. We start with a technical result describing how the func-
tion ind(B, ·) behaves under multiplication. Let B1 ∈M be an R1 × C1 matrix and let B2 ∈M be
an R2 × C2 matrix. If the restrictions of B1 and B2 onto (R1 ∩ R2)× (C1 ∩ C2) coincide, we define
the connected sum B= B1#B2, B ∈M, as the (R1 ∪ R2)× (C1 ∪ C2) matrix such that

B(i, j)=

⎧⎪⎨⎪⎩
B1(i, j) if i ∈ R1 and j ∈ C1,
B2(i, j) if i ∈ R2 and j ∈ C2,
0 otherwise.

In particular, if R1 ∩ R2 = ∅ andC1 ∩ C2 = ∅, then B1#B2 = B1 ⊕ B2 is the direct sum of B1 and B2.

Lemma 5.1. Let B1 ∈M be an R1 × C1 matrix and let B2 ∈M be an R2 × C2 matrix.
Suppose that the following conditions (1)–(3) are satisfied.

(1) For all i ∈ R1 ∩ R2 and all j ∈ C1 ∩ C2 we have B1(i, j)= B2(i, j).
(2) For all i ∈ R1 \ R2 and all j ∈ C1 ∩ C2 we have B1(i, j)= 0.
(3) For all i ∈ R2 \ R1 and all j ∈ C1 ∩ C2 we have B2(i, j)= 0.

Then B= B1#B2 is defined and
ind(B1,A)ind(B2,A)= ind(B,A) for all A ∈M.

If any of conditions (1)–(3) are violated then
ind(B1,A)ind(B2,A)= 0 for all A ∈M.

Proof. Clearly, if (1) is violated then ind(B1,A)ind(B2,A)= 0 for all A ∈M. Suppose that (2) is
violated. We assume R1 ⊂ R, for ind(B1,A)= 0 otherwise. If ind(B2,A)= 1 then A(i, j)= 0 for all
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i ∈ R1 \ R2 and all j ∈ C1 ∩ C2 and hence ind(B1,A)= 0 so that ind(B1,A)ind(B2,A)= 0. Similarly,
if (3) is violated then ind(B1,A)ind(B2,A)= 0 for all A ∈M.

Hence it remains to consider the case when (1)–(3) hold. Without loss of generality we assume
that R1 ∪ R2 is a subset of the rows of A and that C1 ∪ C2 is a subset of the columns of A.

If ind(B1,A)= 0 for some A ∈M, then either B1(i, j) �=A(i, j) for some i ∈ R1 and some
j ∈ C1, or A(i, j) �= 0 for some i /∈ R1 and some j ∈ C1. In either case ind(B,A)= 0. Similarly,
if ind(B2,A)= 0 then ind(B,A)= 0. If ind(B1,A)= ind(B2,A)= 1 then B(i, j)=A(i, j) for all
i ∈ R1 ∪ R2 and all j ∈ C1 ∪ C2, while A(i, j)= 0 for all i /∈ R1 ∪ R2 and all j ∈ C1 ∪ C2 and hence
ind(B,A)= 1 as well.

If the conditions (1)–(3) of Lemma 5.1 are satisfied, we say that the matrices B1 and B2 are
compatible, denoted by B1 ∼ B2. Nowwe are ready to prove the existence of a decomposition (5.5).

Lemma 5.2. For a positive integer k and a matrix B ∈Mk, one can define complex numbers
μk(B,w) so that (5.5) holds for all A ∈M.

Proof. Wewrite the polynomial (5.3) in the monomial basis. Assuming thatA is an R× Cmatrix,
we have

w(XA;ζ )= 1+
n∑

k=1

πk(A,w)ζ k,

where
πk(A,w)=

∑
x=(ξj:j∈C):

x∈XA,∑
j∈C ξj=k

∏
j∈C

wξjj ,

where XA is defined by (5.2).
We say that a set S⊂ C is the support of a vector x ∈ XA, x= (ξj : j ∈ C), provided ξj �= 0 if and

only if j ∈ S. Clearly, the support of a vector x contributing to πk(A,w) is a set S⊂ C satisfying
|S|� k, and the vector xS = (ξj : j ∈ S) satisfies ASxS = 0, where AS is the R× S matrix consisting
of the columns of A with indices in S.

This allows us to write
πk(A,w)=

∑
B∈Mk

ind(B,A)λk(B,w), (5.6)

where for R1 × C1 matrix B we have

λk(B,w)=
∑

x=(ξj:j∈C1):x∈XB,
support of x is C1,∑

j∈C1 ξj=k

∏
j∈C1

wξjj . (5.7)

Although formally the sum (5.6) is infinite, for each A ∈Mwe have ind(B,A) �= 0 for only finitely
many B ∈M, so (5.6) is well-defined.

We observe that
πk(A,w)= (− 1)kek(ζ−1

1 , . . . , ζ−1
d ),

where ek is the kth elementary symmetric function and ζ1, . . . , ζd are the roots of w(XA;ζ ), listed
with their multiplicities (recall that the constant term of w(XA;ζ ) is 1). Therefore, the Newton
identities imply that

kπk(A,w)= −
k∑

i=1
πk−i(A,w)σi(A,w) for all k� 1, (5.8)
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where we define
π0(A,w)= 1.

We define
μ1(B,w)= −λ1(B,w) for B ∈M1.

Assuming that μi(B,w) are defined for B ∈Mi and i= 1, . . . , k− 1, for k� 2 we define for
B ∈Mk

μk(B,w)= −kλk(B,w)−
∑

B1∈Mk−i,B2∈Mi
for 1�i�k−1:

B1∼B2 and B1#B2=B

λk−i(B1,w)μi(B2,w). (5.9)

Here the sum is taken over all distinct ordered pairs of compatible matrices (B1, B2) such that
B1#B2 = B (in particular, we may have B1 = B2). We observe that for each B the sum contains
only finitely many terms, so μk(B,w) is well-defined. The identity (5.5) now follows from (5.6),
(5.8) and Lemma 5.1.

Our next goal is to show that in (5.5) we have μk(B,w) �= 0 only for connected matrices B. We
start with a general structural result, very similar in spirit to Lemma 4.2 of [12]; see also [21].

Lemma 5.3. Let us consider a function f :M−→C defined by

f (A)=
∑
B∈S

μBind(B,A),

where S ⊂M is a (possibly infinite) set and μB ∈C \ {0} for all B ∈ S (for each A ∈M only finitely
many summands are non-zero, so f is well-defined). Suppose that

f (A1 ⊕A2)= f (A1)+ f (A2)
for any two matrices A1,A2 ∈M such that A1 ⊕A2 is defined. Then each B ∈ S is connected, that
is, cannot be written as B= B1 ⊕ B2 for some B1, B2 ∈M.

Proof. Seeking a contradiction, assume that there is a disconnected B ∈ S . We observe that if
B ∈M is connected, then

ind(B,A1 ⊕A2)= ind(B,A1)+ ind(B,A2)
for any two A1,A2 ∈M such that A1 ⊕A2 is defined (since B is connected, we cannot have
ind(B,A1)= ind(B,A2)= 1 provided A1 ⊕A2 is defined). Therefore, without loss of generality,
we assume that all B ∈ S are disconnected. Let us choose a D ∈ S that has the smallest number of
columns. Hence we have D=D1 ⊕D2 for some D1 and D2. Then

f (Di)=
∑
B∈S

μBind(B,Di)= 0 for i= 1, 2,

since Di has fewer columns than any matrix B ∈ S . Therefore,
f (D)= f (D1)+ f (D2)= 0.

On the other hand, ind(B,D)= 0 for all B ∈ S \ {D} and
f (D)=μDind(D,D)=μD �= 0,

which is a contradiction.

Corollary 5.4. In the expansion (5.5), we have μk(B,w)= 0 whenever B is disconnected.

Proof. Follows by (5.4) and Lemma 5.3.
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5.2 Enumerating connectedmatrices
Given an integer k� 1 and an R× C matrix A ∈M with at most r non-zero entries in each row
and at most c non-zero entries in each column, we want to compile a list of all connected matri-
ces B ∈Mk such that ind(B,A)= 1. First, we observe that an R1 × C1 matrix B ∈M such that
ind(B,A)= 1 is uniquely determined by its set of columns C1 ⊂ C, since R1 ⊂ R is then the set of
rows of A whose restriction onto C1 are not zero.

We define a graph G= (C, E). The vertices of G are the columns of A, and two vertices c1 and
c2 span an edge of G if and only if there is a row of A with non-zero entries in columns c1 and
c2. We note that the degree of each vertex of G does not exceed d = rc. To enumerate connected
matrices B ∈Mk such that ind(B,A)= 1 is to enumerate sets of vertices of cardinality at most k in
C that induce a connected subgraph of G. This is done as in [22]. The crucial observation is that
as long as one vertex c is chosen, there are at most

k−1
(

kd
k− 1

)
� (ed)k−1

2
connected induced subgraphs with k� 2 vertices containing c: see Lemma 2.1 of [7].
Consequently, there are ndO(k) induced connected subgraphs with at most k vertices in G. Once
the vertex c is chosen, the subgraphs are enumerated with dO(k) complexity, by successively
exploring adjacent vertices: see [22] for details.

5.3 Summary of the algorithm
Given an m× n matrix A without zero rows and columns, we interpret it as an R× C matrix
A ∈M, where R= {1, . . . ,m} and C = {1, . . . , n}. Given a positive integer k, as in Section 5.2 we
compile a list C of all connected matrices B ∈Mk such that ind(B,A)= 1. We define the filtration

C1 ⊂ C2 ⊂ · · · ⊂ Ck−1 ⊂ Ck = C,
where Ci is the set of matrices B ∈ C with at most i columns.

Given complex numbers w1, . . . ,wn, from Lemma 5.2 and (5.7) in particular, we obtain

μ1(B,w)= −λ1(B,w)= 0 for B ∈ C1,
since by our assumption B has no zero rows.

Suppose that we have computed μi(B,w) for i= 1, . . . , k− 1 and all B ∈ Ck−1 for k� 2. To
compute μk(B,w) for all B ∈ Ck, we use formula (5.9). Since every matrix B ∈ Ck has at most k
columns, there are nomore than 4k pairs of matrices B1 ∈Mk−i and B2 ∈Mi such that B1#B2 = B
and all such pairs can be found by inspection in O(4k) time. We then use (5.7) to compute the
terms λk−i(B1,w) for i= 0, . . . , k− 1. We note that there are

(k−i−1
|S|−1

)
� 2k−i non-negative integer

vectors with support S and the sum k− i of the coordinates, so each λk−i(B1,w) is computed in
c(k− i)n2O(k−i) time.

This gives us the list of values μk(B,w) for all B ∈ Ck. We then compute

σk(A,w)=
∑
B∈Ck

μk(B,w),

as desired.
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