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Elliptic hyperlogarithms
Benjamin Enriquez and Federico Zerbini
Abstract. Let E be a complex elliptic curve and S be a non-empty finite subset of E. We show that the
functions Γ̃ introduced in [BDDT] out of string theory motivations give rise to a basis (as a vector
space) of the minimal algebra AE/S of holomorphic multivalued functions on E/S which is stable
under integration, introduced in [EZ]; this basis is alternative to the basis of AE/S constructed in
loc. cit. using elliptic analogs of the hyperlogarithm functions.

1 Introduction

The hyperlogarithms (HLs) are a family of multivalued holomorphic functions on
the punctured complex plane, which were first introduced in [LD, Po]. They are
natural one-variable specializations of the family of multiple polylogarithms, which
have found numerous applications in mathematics (see [BB] for a survey, as well as
[Br]). The HLs also found applications in particle physics (see [Pa] and the references
therein). If S ⊂ C is a finite subset, the HLs on C/S are defined by iterated integration
of a flat connection on a trivial bundle over C/S with values in a suitable free Lie
algebra ([Br], Section 5.1), which corresponds to a Maurer–Cartan element on C/S
with values in this Lie algebra, and which is closely related with the KZ connection
(see [EZ], Remark 2.20).

Both the algebra HC/S generated by the HLs on C/S and the algebra O(C/S) of
regular functions on C/S are subalgebras of the algebra of holomorphic multivalued
functions onC/S. Their productHC/S ⋅O(C/S)within this algebra is stable under the
operators intω ∶ f ↦ (z ↦ ∫

z
z0

f ω) for ω in the space Ω(C/S) of regular differentials
on C/S, where z0 is a fixed point of C/S ([Br], Cor 5.6), and it coincides with the
minimal algebra with these properties AC/S (see [EZ], Theorem A). It is proven in
[Br], Section 5.2, thatHC/S ⋅O(C/S) is isomorphic toO(C/S) ⊗HC/S , and thatHC/S
is isomorphic to an explicit shuffle algebra; this enables to prove that this product is a
free module over O(C/S), and that a basis is given by the HLs (see [Br] Corollary 5.6,
and also [DDMS]).

WhenC/S is replaced by an arbitrary affine curve C, one can similarly attach to any
Maurer–Cartan element J, non-degenerate in the sense of [EZ], an algebra HC(J) of
multivalued holomorphic functions on C (see [EZ], Section 2.3). The above result for
the punctured complex plane extends to this case, namely the product of the algebra
HC(J) with the algebra O(C) of regular functions on C coincides with the minimal
subalgebra AC of the algebra of multivalued functions on C that is stable under the
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2 B. Enriquez and F. Zerbini

analogs intω of the above operators, where ω runs over the space Ω(C) of regular
differentials on C ([EZ], Theorem A(b)), and is therefore independent of J. The algebra
AC can also be characterised as the set of multivalued holomorphic functions on C
which have moderate growth at the cusps of C and have unipotent monodromy, in
the sense that the representation of the fundamental group of C generated by such
a function is a finite iterated extension of the trivial representation ([EZ], Theorem
C). In [EZ], Theorem A(b), one shows the isomorphisms of AC with O(C) ⊗HC(J)
and of HC(J) with an explicit shuffle algebra; this enables us to attach to a family of
Ω(C), whose image is a basis of Ω(C)/dO(C), a basis of AC as an O(C)-module
(Definition 2.6 and Lemams 2.5 and 2.7), whose elements are analogs of the classical
HLs.

In this article, we will be interested in the particular case where C has genus one;
more precisely, we take it to coincide with the affine curve ES ∶= E/S, for E a complex
elliptic curve and S ⊂ E a finite non-empty subset. In §2.5, we exhibit an explicit family
of Ω(ES)whose image is a basis of Ω(ES)/dO(ES); according to Lemmas 2.5 and 2.7,
this gives rise to a basis of AES as an O(ES)-module, whose elements will be called
elliptic hyperlogarithms.

Recent development in particle physics led to the introduction of two (closely
related) classes of multivalued functions Γ̃ and E3 on ES (see [BDDT], and [BK,
BMMS] for applications in string theory). The functions Γ̃ are defined as iterated
integrals of multivalued holomorphic differential forms on C/pr−1(S), pr ∶ C→ E

being a universal covering map. One can show that the functions Γ̃ may also be
defined, using iterated integration, out of a holomorphic flat connection on a non-
trivial bundle over ES , which can be identified with a connection obtained upon
restriction from the “universal KZB” connection of [CEE] (or [LR] if ∣S∣ = 1).

The main result of this article is a proof that the collection of functions Γ̃ gives rise
to a basis of AES over O(ES) (see Theorem 4.27), alternative to the family of elliptic
HLs from §2.5. This relies on two main steps:

(a) We prove that AES is equal to an algebra G generated by the functions Γ̃ (Theo-
rem 4.20): the inclusion G ⊂ AES (Corollary 4.4) is based on the characterization
of AES as the set of multivalued functions sharing certain differential properties,
and the inclusion G ⊃ AES is based on the characterization of AES as the minimal
algebra of multivalued functions which are stable under the endomorphisms intω
(see Theorem 4.20).

(b) We prove a linear independence result for the functions Γ̃ (see Proposition 4.26),
based on a criterion of [DDMS] and on a precise analysis of differential algebras
attached to ES .

The definition of the functions E3 relies on the additional datum of a degree 2
covering map π ∶ E→ P1

C
and a finite subset S0 ⊂ P1

C
. It is shown in [BDDT], §5 (see

also Proposition 5.4 in this paper) that the vector spaces of multivalued functions
generated by the Γ̃ and by the E3 coincide if S = π−1(S0). In [BDDT] it also shown that
an algebra constructed out of the functions E3 is stable under integration (Section 6,
based on explicit computation). A consequence of (a) is an alternative proof of this
stability result (see Proposition 5.6).
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Elliptic hyperlogarithms 3

1.1 History and outlook

The first appearance of elliptic analogs of hyperlogarithms dates back to [BL], Section
10.1, where the authors construct functions called “elliptic Debye hyperlogarithm” via
averaging of classical polylogarithm functions, generalizing analogous constructions
of [Bl, Le, Z1]. These functions are holomorphic and multivalued, and we expect them
to be contained in the algebra AES (work in progress). They are closely related (see
[BL], Section 10.3) to certain real-analytic functions defined via iterated integration
out of a real-analytic version of the KZB connection of [CEE]; such functions may be
seen as real-analytic analogs of elliptic hyperlogarithms, and were recently generalized
to higher-genus Riemann surfaces in [DHS].

1.2 Organisation of the article

In Section 2, we recall from [EZ] the construction and properties of the algebra AC
attached to a curve C, and we specialize these results to the situation of an elliptic
curve; in particular, we exhibit a basis of AES overO(ES)which consists of elliptic HLs
(§2.5). We then recall in Section 3 the definition of the functions Γ̃ ([BDDT]), paying
special attention to regularization issues. Section 4 is devoted to proving our main
result: the family of functions Γ̃ gives rise to a basis of AES overO(ES) (Theorem 4.27),
alternative to the basis from Section 2.5. In Section 5, we apply results from Section 4
to deduce a new proof of a result of [BDDT] on the stability under integration of an
algebra A3 constructed out of the functions E3.

1.3 Conventions, notation

In this paper, all vector spaces and algebras will be understood to be with base field C.

1.3.1 Filtrations

A filtered vector space F●V is the data of a vector space V and a collection of
subspaces (FnV)n≥0 such that FnV ⊂ Fn+1V for any n ≥ 0; by convention, F−1V = 0.
A morphism of filtered vector spaces F●V → F●W is a linear map f ∶ V →W , such
that f (FnV) ⊂ FnW for any n ≥ 0. The associated graded of the filtered vector space
F●V is the graded vector space gr(V) ∶= ⊕n≥0grn(V), where grn(V) ∶= FnV/Fn−1V .
If F●V is a filtration of a vector space V, we denote by x ↦ x the projection map
FnV → grn(V) for any n ≥ 0. If F●V and F●W are filtered vector spaces, their tensor
product F●(V ⊗W) is the data of V ⊗W , equipped with the filtration given by
Fn(V ⊗W) ∶= ∑n

p=0 FpV ⊗ Fn−pW . A filtered algebra is an algebra A equipped with
a filtration F●A, such that the product of A is a morphism of filtered vector spaces
F●(A⊗ A) → F●A.

The total space of a filtered vector space F●V is the subspace F∞V ∶= ∪n≥0FnV of
V. The total space F∞A of a filtered algebra F●A is then a subalgebra of A.
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4 B. Enriquez and F. Zerbini

1.3.2 Meromorphic functions

For Σ ⊂ C a discrete subset, let Omer(C, Σ) be the algebra of meromorphic functions
on C with sets of poles contained in Σ. It is contained in the algebra Ohol(C/Σ)
of holomorphic functions on C/Σ, and it is equipped with a derivation ∂ ∶= ∂/∂z;
we use the notation f ′ ∶= ∂( f ). For a ∈ C, we denote by Ta the automorphism of
the algebra of meromorphic functions on C (equal to ∪ΣOmer(C, Σ)) defined by
Ta f ∶= (z ↦ f (z − a)).

2 Minimal stable subalgebras and elliptic hyperlogarithms (based
on [EZ])

In §§2.1–2.3, we recall material from [EZ]. More precisely, to each smooth affine
complex curve C, we attach a subalgebra AC of the algebra of holomorphic functions
Ohol(C̃) on a universal cover of C (see Lem-Definition 2.2), called the minimal stable
subalgebra (Section 2.1); we define an algebra filtration Fδ

●Ohol(C̃) of Ohol(C̃) with
AC = Fδ

∞Ohol(C̃) (see Theorem 2.3(b)) (see Section 2.2); we express an O(C)-basis
of AC in terms of HL functions associated with C (Section 2.3). In §2.4, we introduce
the elliptic setup needed for the main results of the paper; then C = ES . In §2.5, we
formulate a result of [EZ] in the elliptic context, namely the expression of a O(ES)-
basis of AES in terms of elliptic HL functions.

2.1 The minimal stable subalgebra AC associated with a curve C

Let C be a smooth affine complex curve, which we view as a Riemann surface. Let us fix
a universal cover p ∶ C̃ → C and let Ohol(C̃) be the algebra of holomorphic functions
on C̃.

Let Ω(C) be the space of regular differentials on C. For any ω ∈ Ω(C), the map
f ↦ f ⋅ p∗(ω) is a linear map Ohol(C̃) → Ωhol(C̃), where Ωhol(V) is the space of
holomorphic differential 1-forms on a complex manifold V. For any z0 ∈ C̃ and any α ∈
Ωhol(C̃), the assignment α ↦ [z ↦ ∫

z
z0

α] is well-defined as C̃ is simply-connected,
and defines a linear map Ωhol(C̃) → Ohol(C̃). For ω ∈ Ω(C), let intω be the linear
endomorphism of Ohol(C̃) given by f ↦ [z ↦ ∫

z
z0

f ⋅ p∗(ω)].

Definition 2.1 A stable subalgebra of Ohol(C̃) is a subalgebra with unit, which is
stable under the endomorphism intω for any ω ∈ Ω(C).

Although the definition of the operators intω depends on a choice of z0, one checks
that the notion of stable subalgebra is independent of such a choice.
Lemma-Definition 2.2 (see [EZ], Section 5.3) If AC ∶= ∩A stable subalgebra of Ohol (C̃)A,
then AC is a stable subalgebra of Ohol(C̃), which is minimal for the inclusion; it is called
the minimal stable subalgebra of Ohol(C̃).

2.2 Relation of AC with the differential filtration

Define inductively a collection of subspaces (Fδ
nOhol(C̃))n≥0 of Ohol(C̃) by

Fδ
0 Ohol(C̃) ∶= C, and Fδ

n+1Ohol(C̃) ∶= { f ∈ Ohol(C̃) ∣ d f ∈ Fδ
nOhol(C̃) ⋅ p∗Ω(C)}for

n ≥ 0. Define also the subspace Fδ
∞Ohol(C̃) ∶= ∪n≥0Fδ

nOhol(C̃) of Ohol(C̃).
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Let us denote by O(C) the algebra of regular functions on C.
Theorem 2.3 (see [EZ]) (a) Fδ

●Ohol(C̃) is an algebra filtration of Ohol(C̃), such that
p∗O(C) ⊂ Fδ

1 Ohol(C̃).
(b) Fδ

∞Ohol(C̃) = AC .
Proof The fact that Fδ

● is an algebra filtration is proven in [EZ], Prop 5.5(a). The
inclusion p∗O(C) ⊂ Fδ

1 Ohol(C̃) follows from the n = 0 case of Prop 5.5(b) in [EZ].
Statement (b) follows from [EZ], Theorem C. ∎

2.3 Analogs of HLs on a curve C

For W a complex vector space, denote by Sh(W) the shuffle Hopf algebra of W.
This is the vector space ⊕k≥0W⊗k (the element w1 ⊗ ⋅ ⋅ ⋅ ⊗wk ∈W⊗k is denoted
[w1∣ ⋅ ⋅ ⋅ ∣wk]), equipped with the shuffle product⊔⊔, which is commutative, the decon-
catenation coproduct Δ given by [w1∣ ⋅ ⋅ ⋅ ∣wk] ↦ ∑k

j=0[w1∣ . . . ∣w j] ⊗ [w j+1∣ . . . ∣wk],
the counit ε given by 1↦ 1 and [w1∣ ⋅ ⋅ ⋅ ∣wk] ↦ 0 for k > 0, and the antipode given by
[w1∣ . . . ∣wk] ↦ (−1)k[wk ∣ . . . ∣w1]. A linear map ϕ ∶W →W ′ induces a Hopf algebra
morphism Sh(W) → Sh(W ′), also denoted ϕ.

Let z0 ∈ C̃. There is a unique linear map

Iz0 ∶ Sh(Ω(C)) → Ohol(C̃)(2.3.1)

satisfying the identities Iz0(a)(z0) = ε(a) and d(Iz0([ω1∣ ⋅ ⋅ ⋅ ∣ωn]) =
Iz0([ω1∣ ⋅ ⋅ ⋅ ∣ωn−1]) ⋅ ωn for any n ≥ 0 and ω1 , . . . , ωn ∈ Ω(C), so that
Iz0([ω1∣ ⋅ ⋅ ⋅ ∣ωn]) = intωn(Iz0([ω1∣ ⋅ ⋅ ⋅ ∣ωn−1])); such a map Iz0 is an algebra morphism,
given by iterated integration based at z0 (see [EZ], Lemma 2.2).

Set HC ∶= Ω(C)/dO(C). Let σ ∶ HC → Ω(C) be a section of the projection map
Ω(C) → HC .
Lemma 2.4 ([EZ]) (a) Let σ∗ ∶ Sh(HC) → Sh(Ω(C)) be algebra morphism induced
by σ, then f̃σ ,z0 ∶= Iz0 ○ σ ∶ Sh(HC) → Ohol(C̃) is an injective algebra morphism.

(b) The image of f̃σ ,z0 is independent of z0; it is a subalgebra of Ohol(C̃), denoted
HC(σ).

(c) The composition O(C) ⊗HC(σ) ↪ Ohol(C̃) ⊗Ohol(C̃) → Ohol(C̃) of the
canonical injections with the product map of Ohol(C̃) yields an algebra isomorphism
O(C) ⊗HC(σ) ≃ AC .
Proof Statements (a) and (c) are consequences of Theorem A(b) in [EZ] with J equal
to the element Jσ defined in Definition 1.2 of [EZ]. Statement (b) follows from [EZ],
Theorem A(a). ∎
Lemma 2.5 Let d ∶= dim(HC) and (h i)i∈[[1,d]] be1 a C-basis of HC . Then the family

( f̃σ ,z0([h i1 ∣ . . . ∣h is ]))s≥0,(i1 , . . . , is)∈[[1,d]]s

is a C-basis of HC(σ), as well as an O(C)-basis of AC .
Proof The first statement follows from [EZ], Proposition 5.10, and the second
statement follows from its combination with Lemma 2.4(c). ∎

1We set [[1, d]] ∶= {1, . . ., d}.
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6 B. Enriquez and F. Zerbini

Definition 2.6 If (α i)i∈[[1,d]] is a family of Ω(C) whose image in HC =
Ω(C)/d(O(C)) is a C-basis, set

Lα i1 , . . . ,α is
∶= Iz0([α i1 ∣ . . . ∣α is ])(2.3.2)

for any s ≥ 0 and i1 , . . . , is ∈ [[1, d]].
We call (2.3.2) the hyperlogarithm functions associated with the family (α i)i∈[[1,d]].

Lemma 2.7 If (α i)i∈[[1,d]] is a family of Ω(C) as in Definition 2.6, then there exists a
unique pair (σ , (h i)i)where σ ∶ HC → Ω(C) is a section of the projection Ω(C) → HC
and (h i)i∈[[1,d]] is a C-basis of HC , such that α i = σ(h i) for any i. One then has the
identity

Lα i1 , . . . ,α is
= f̃σ ,z0([h i1 ∣ . . . ∣h is ]).(2.3.3)

Proof This is straightforward. ∎

2.4 Background on elliptic curves

2.4.1 Elliptic curves and coverings

Let us denote by H the complex upper half-plane. Until the end of §4, an element τ in
H is fixed. Let Λ ∶= Z +Zτ⊂C.

Definition 2.8 We set E ∶= C/Λ, and we denote pr ∶ C→ C/Λ = E the canonical
projection.

E is a compact genus-one Riemann surface, and pr is a universal cover map for E.

Definition 2.9 Let S be a finite subset of E containing pr(0). We set ES ∶= E/S, and
we fix a universal cover p ∶ ẼS → ES .

The restriction of pr is a covering mapC/pr−1(S) → ES . The universal cover map p
then admits a factorization p = ϖ ○ pr, where ϖ ∶ ẼS → C/pr−1(S) is a universal cover
map, so that the following diagram commutes

ẼS
ϖ ��

p
���

��
��

��
� C/pr−1(S)

pr
�����

���
���

�

ES

Definition 2.10 (a) Let s ↦ s̃ be a section of the map pr ∶ pr−1(S) → S such that
pr(0) ↦ 0.

(b) We denote by S̃ the subset of pr−1(S) defined as the image of the map s ↦ s̃.

One has pr−1(S) = ∪s∈S(s̃ + Λ) (equality of subsets of C).

2.4.2 Functions in Omer(C, pr−1(S))

For r ∈ Z≥1 and z ∈ C/Λ, let

Er(z) ∶= ∑
λ∈Λ

1
(z + λ)r ∈ C,
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where the series is absolutely convergent for r > 2, and is defined by Eisenstein
summation for r = 1, 2 (see [BMMS], footnote 8), and let Er be the function z ↦ Er(z);
then Er belongs to Omer(C, Λ). If r ≥ 2, then the function Er is elliptic, i.e., Λ-
invariant; on the other hand, E1 satisfies the identities2

T1E1 = E1 , TτE1 = E1 + 2πi .(2.4.1)

For every r ≥ 1, the function Er satisfies the identity

E′r = −r Er+1 .(2.4.2)

Moreover, for every r ≥ 1 consider also the Eisenstein series

er ∶= ∑
λ∈Λ/{0}

1
λr ∈ C ,(2.4.3)

which is again defined via the Eisenstein summation for r ≤ 2, and vanishes when r is
odd.

The Weierstrass ℘-function attached to Λ is given by ℘ ∶= E2 − e2. One then has

∀r ≥ 0, ℘(r) = (−1)r(r + 1)!Er+2 − e2δr ,0 .(2.4.4)

Definition 2.11 We denote by (gn)n≥0 the family of meromorphic functions3 in
Omer(C, Λ) defined via the following identity of generating series in the formal
variable α:

∑
n≥0

gn αn−1 ∶= 1
α

exp ( −∑
r≥1

(−α)r

r
(Er − er)) .(2.4.5)

In particular, g0 = 1 and g1 = E1 has a simple pole with residue 1 at all points of Λ.
Fourier expansions for the functions gn can be found in [BMMS], Equations (3.35)
and (3.36).

Lemma 2.12 (see [Ma], Prop 2.1.3) The function gn is regular at 0 for any n ≥ 2.

The left-hand side of (2.4.5) is an element of the ring Omer(C, Λ)((α)) of formal
Laurent series with coefficients in Omer(C, Λ), which we denote by F.

Remark 2.13 F is the expansion at α = 0 of a meromorphic function of two variables,
known as the Kronecker function ([W, Z2]).

Lemma-Definition 2.14 (a) For every a ∈ pr−1(S) and every n ≥ 0, the function
Ta gn = (z ↦ gn(z − a)) belongs to Omer(C, pr−1(S)).

(b) Set ωn ,a ∶= Ta(gn) ⋅ dz, then ωn ,a belongs to Ωhol(C/pr−1(S)).
Proof The first statement follows from Ta(Omer(C, Λ)) = Omer(C, a + Λ)
and a + Λ ⊂ pr−1(S). The second statement follows from the module structure
of Ωhol(C/pr−1(S)) over Ohol(C/pr−1(S)), and the inclusion Omer(C, Λ) ⊂
Ohol(C/pr−1(S)). ∎

2We set i ∶=
√
−1.

3Notice the slight change of notation with respect to [BMMS] and [BDDT], where these functions
are denoted g(n), in order to avoid confusion with n-th derivatives.
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2.4.3 Functional equations

Lemma 2.15 For every n ≥ 1, one has4 the following equalities in Omer(C, Λ):

T1 gn = gn , (Tτ − id)(gn) =
n−1
∑
k=0

(2πi)n−k

(n − k)! gk ,(2.4.6)

g′n =
n−1
∑
k=0
(−1)n−k En−k+1 gk .(2.4.7)

Proof Applying (2.4.1) and (2.4.2) to the right-hand side of (2.4.5), we obtain that

F(z + 1,α) = F(z, α) , F(z + τ, α) = e−2πiα F(z, α) ,
∂

∂z
F(z, α) = (∑

r≥1
(−α)r Er+1(z)) F(z, α) ,

(the first line is (3.13) in [BMMS]). The statement follows by comparing these identities
with the left-hand side of (2.4.5). ∎
Corollary 2.16 For any n ≥ 0 and a ∈ pr−1(S), one has

ωn ,a+1 = ωn ,a , ωn ,a+τ =
n
∑
k=0

(2πi)n−k

(n − k)! ωk ,a .(2.4.8)

Proof Follows from (2.4.6) and from the invariance of dz under Ta , a ∈ pr−1(S). ∎

2.5 An O(ES)-basis of AES arising from elliptic HLs

We introduce the shorthand notation OS ∶= O(ES); then OS is a subalgebra of
Omer(C, pr−1(S)).
Definition 2.17 ∂ is the derivation of OS arising from the restriction of the action of
∂ on Omer(C, pr−1(S)) (see Section 1.3.2).

Set S⋆ ∶= S ⊔ {⋆}. Define a map S⋆ → Ω(ES), s ↦ αs by αs ∶= (Ts − id)(g1) ⋅ dz if
s ∈ S/{0}, α⋆ ∶= dz, α0 ∶= E2 ⋅ dz.

Lemma 2.18 The family (αs)s∈S⋆ is a family of Ω(ES) whose image in HES =
Ω(ES)/d(OS) is a C-basis.

Proof The residue map induces a linear map OS/∂(OS) → (CS)0, where (CS)0 ⊂
CS is the set of tuples whose sum is equal to 0.

If f ∈ OS is a representative of an element of the kernel of OS/∂(OS) → (CS)0,
then the residue of f dz at any s ∈ S is zero, so that the function z ↦ ∫

z
z0

f (u)du
is single-valued around each s ∈ S. It follows that there exist a, b ∈ C such that z ↦
∫

z
z0

f (u)du − az − bg1(z) belongs to OS , and therefore f ≡ a + bg′1 = a − bE2 mod
∂(OS). This implies that the kernel of OS/∂(OS) → (CS)0 is spanned by 1 and E2.

4Equation (2.4.6) shows that gn is not regular on the whole of C, contrary to the statement of
[BDDT], three lines after (4.24).
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The map OS/∂(OS) → (CS)0 is surjective, because a preimage of (as)s ∈ (CS)0 is
∑s∈S as Ts̃(g1). Therefore OS/∂(OS) fits in an exact sequence

0→ Span
C
(1, E2) → OS/∂(OS) → (CS)0 → 0.

A basis of OS/∂(OS) is therefore the union of a basis of Span
C
(1, E2) and of

the preimage of a basis of (CS)0. Since (1, E2) is linearly independent and since
((Ts̃ − id)(g1))s∈S/{0} is such a preimage, the image of

1, E2 , ((Ts̃ − id)(g1))s∈S/{0}(2.5.1)

in OS/∂(OS) forms a C-basis of OS/∂(OS).
The linear isomorphism− ⋅ dz ∶ OS → Ω(ES), f ↦ f ⋅ dz is such that (− ⋅ dz) ○ ∂ =

d (equality of linear maps OS → Ω(ES)). This linear isomorphism therefore induces a
linear isomorphism − ⋅ dz ∶ OS/∂(OS) → Ω(ES)/d(OS). The statement follows from
this and from the fact that the claimed family is the image of (2.5.1) by − ⋅ dz. ∎
Corollary 2.19 The family

Lαs1 , . . . ,αsk
= Iz0([αs1 ∣ ⋅ ⋅ ⋅ ∣αsk ]), k ≥ 0, (s1 , . . . , sk) ∈ Sk

⋆ .(2.5.2)

is an OS-basis of the OS-module AES .

Proof This follows from Lemmas 2.5 and (2.3.3). ∎

3 The multivalued functions Γ̃ from [BDDT]

The article [BDDT] introduces a family of functions Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−), with r ≥ 0,

n i ≥ 0 and a i ∈ pr−1(S) for5 i ∈ [[1, r]], which are multivalued functions onC/pr−1(S)
defined as regularized iterated integrals of the forms (ωn ,a)n≥0,a∈pr−1(S) from Sec-
tion 2.4, where the integration path starts at 0. It follows from the functional equation
(2.4.8) that this vector space is spanned by the collection of the same functions, where
the parameters satisfy the restricted condition a i ∈ S̃ for any i ∈ [[1, r]]. Since one of
the possible forms, namely ω1,0, has a pole at this point, regularisation is needed for
the definition of the functions Γ̃ even in the restricted case.

The regularization procedure indicated in [BDDT] relies on replacing the endpoint
0 by a small ε and extracting a value from the asymptotic expansion in ε; this procedure
was rigourously carried out in a similar situation in [BGF], Section 3.8, which is
based on the “tangential base points” ideas of [De], Section 15. On the other hand,
the regularization procedure indicated in [BK] for the definition of the functions
Γ̃ ( n1 n2 . . . nr

a1 a2 . . . ar ;−) is an analog of the procedure from [Br], §5.1 (see also [Pa], Section
3.3), for the definition of hyperlogarithm functions in genus zero, which relies on a
decomposition result for the shuffle algebra of a vector space (see Lem 3.13).

We show that both the “tangential base point” and the “shuffle” regularization
procedures amount to the construction of algebra morphisms k ⃗0 , k⊔⊔0 ∶ Sh(V) →
Ohol(ẼS) (Section 3.1, Lemma 3.10 and Section 3.2, Lemma 3.14) where V is a suitable
vector space, which we show to coincide (Section 3.2, Lem 3.15). In Section 3.3, we then

5For a ≤ b ∈ Z, we set [[a, b]] ∶= {a, a + 1, . . . , b}.
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10 B. Enriquez and F. Zerbini

apply the construction of these two equal morphisms to the definition of the functions
Γ̃ ( n1 n2 . . . nr

a1 a2 . . . ar ;−) and to the proof of their properties.

3.1 Tangential base point regularisation

For each z0 ∈ ẼS , the linear map Iz0 defined in (2.3.1) extends to a unique linear map

Iz0 ∶ Sh(Ωhol(ẼS)) → Ohol(ẼS)

satisfying the identities Iz0(a)(z0) = ε(a) and d(Iz0([ω1∣ ⋅ ⋅ ⋅ ∣ωn]) =
Iz0([ω1∣ ⋅ ⋅ ⋅ ∣ωn−1]) ⋅ ωn for any n ≥ 0 and ω1 , . . . , ωn ∈ Ωhol(ẼS); then Iz0 is an
algebra morphism, given by iterated integration based at z0.

Definition 3.1 (a) V is the complex vector space freely generated by the symbols ( n
a ),

where (n, a) ∈ Z≥0 × S̃, where S̃ is as in Definition 2.10(b).
(b) V+ ⊂ V is the vector subspace generated by ( n

a ), where (n, a) ≠ (1, 0).
(c) Sh∗(V) is the subspace C1⊕ [V+∣Sh(V)] of Sh(V).

One checks that Sh∗(V) is a subalgebra of Sh(V).

Definition 3.2 (a) κ ∶ V → Ωhol(ẼS) is the linear map induced by ( n
a ) ↦ ωn ,a for

any (n, a) ∈ Z≥0 × S̃.
(b) We denote by κ∗ ∶ Sh(V) → Sh(Ωhol(ẼS)) the induced Hopf algebra mor-

phism.
(c) For z0 ∈ ẼS , kz0 ∶ Sh(V) → Ohol(ẼS) is the composed algebra morphism

Iz0 ○ κ∗.

We fix δ > 0 such that ]0, δ[⊂ C/pr−1(S); we fix a continuous map sect ∶ ]0, δ[→ ẼS
such that ϖ ○ sect is the canonical inclusion.

Definition 3.3 F ⊂ C]0,δ[ is the set of functions ϕ ∶ ]0, δ[→ C, such that for some
α > 0 one has ϕ(t) = O(t1−α) when t → 0.

Lemma 3.4 (a) The map C[X] ⊗ F → F given by P ⊗ ϕ ↦ P ● ϕ ∶=
(t ↦ P(log(t))ϕ(t)) is well-defined and makes F into a C[X]-module.

(b) The direct sum C[X] ⊕ F, equipped with the product given by (P, ϕ) ⋅ (Q , ψ) =
(PQ , P ● ψ + Q ● ϕ + ϕψ), is a commutative and associative algebra.

(c) The algebra from (b) is equipped with a pair of algebra morphisms

C
ev← C[X] ⊕ F

can↪ C]0,δ[

where ev(P, ϕ) ∶= ϕ(0) and can(P, ϕ) ∶= (t ↦ P(log(t)) + ϕ(t)), and the algebra
morphism can is injective.

Proof (a) follows from the fact that for any r ≥ 0, one has (log(t))r = O(t−α) at the
neighborhood of 0 for any α > 0. (b) is an immediate direct check. Let us prove (c).
The fact that ev and can are algebra morphisms can be verified directly. Let us prove
the injectivity of can (see also [BGF], Lemma 3.350). Assume that (P, ϕ) ∈ C[X] ⊕ F

and can(P, ϕ) = 0. If P is nonzero, let d ≥ 0 be its degree and ad Xd be its dominant
term. Then can(P, ϕ)(t) ∼ ad(log(t))d at the neighborhood of 0, which contradicts
can(P, ϕ) = 0, therefore P = 0. Then can(0, ϕ) = ϕ, which implies ϕ = 0. ∎
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In what follows, we will view C[X] ⊕ F as a subalgebra of C]0,δ[, making use of the
injectivity of the morphism can.

Lemma 3.5 For a ∈ Sh(V) and z ∈ ẼS , denote by k(a, z) the assignment ]0, δ[ ∋ t ↦
ksect(t)(a)(z) ∈ C; then k(a, z) ∈ C]0,δ[. For any z ∈ ẼS , the map a ↦ k(a, z) is an
algebra morphism Sh(V) → C]0,δ[.

Proof This follows from the fact that for any z ∈ ẼS and t ∈]0, δ[, the map a ↦
ksect(t)(a)(z) is an algebra morphism Sh(V) → C (see Definition 4.2(c)). ∎

Lemma 3.6 For each z ∈ ẼS , there exists a complex number G(z) such that the
function ]0, δ[ ∋ t ↦ ∫

z
sect(t) ω1,0 + log(t) belongs to G(z) + F. Then G ∈ Ohol(ẼS) and

(t ↦ G(sect(t))) ∈ (t ↦ log(t)) + F.

Proof Since ω1,0 has a pole of order 1 at 0, for any z ∈ ẼS , the map t ↦ ∫
z

sect(t) ω1,0 +
log(t) is an analytic function; denoting by G(z) its value at 0, it therefore belongs to
G(z) + F. One then has G(z) = G(sect(δ/2)) + ∫

z
sect(δ/2) ω1,0 for any z ∈ ẼS , which

implies the holomorphicity statement. ∎

Notice that one has

Sh(V) = ⊕r≥0[( 1
0 ) ∣ . . . ∣ ( 1

0 )
'*****************************,****************************-

r factors

∣Sh∗(V)].(3.1.1)

Definition 3.7 (a) The degree of an element a ∈ Sh(V) is −∞ if a = 0, and is
the maximum of the set of integers r ≥ 0 such that the projection of a in the r-th
component of the decomposition (3.1.1) is nonzero if a ≠ 0.

(b) The degree of an element of C[X] ⊕ F is the polynomial degree of the first
component.

Lemma 3.8 (a) For a ∈ Sh(V) and z ∈ ẼS , one has k(a, z) ∈ C[X] ⊕ F, and
deg(k(a, z)) ≤ deg(a).

(b) For any z ∈ ẼS , the map Sh(V) ∋ a ↦ k(a, z) ∈ C[X] ⊕ F is an algebra mor-
phism.

Proof (a) By (3.1.1), it suffices to prove that for any r ≥ 0 and a ∈ [( 1
0 ) ∣ . . . ∣ ( 1

0 )
'*****************************,****************************-

r factors

∣a∗],

with a∗ ∈ Sh∗(V), one has k(a, z) ∈ C[X]≤r ⊕ F. The element k(a, z) ∈ C]0,δ[ is the
map taking t ∈ ]0, δ[ to the first term of the sequence of equalities

Isect(t)([ω1,0∣ . . . ∣ω1,0
'***************************,***************************-

r factors

∣κ(a∗)])(z) = Isect(t)([dG∣ . . . ∣dG
'**********************,*********************-

r factors

∣κ∗(a∗)])(z)

= 1
r!

Isect(t)([(G −G(sect(t)))r ⊙ κ∗(a∗)])(z)

=
r
∑
l=0

1
l !(r − l)! (−G(sect(t))l Isect(t)([Gr−l ⊙ κ∗(a∗)])(z)

where ⊙ is the linear map Ohol(ẼS) ⊗ Sh(Ohol(ẼS)) → Sh(Ohol(ẼS)) given by
f ⊙ (a1 ⊗ ⋅ ⋅ ⋅ ⊗ an) ∶= ( f a1) ⊗ ⋅ ⋅ ⋅ ⊗ an . One shows that for any l ∈ [[0, r]], the
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map t ↦ Isect(t)[Gr−l ⊙ κ∗(a∗)] belongs to C + F. It follows from Lemma 3.6 that
for any l ∈ [[0, r]], the function t ↦ (−G(sect(t))l belongs to (t ↦ (log(t))l) +
F. Since ((t ↦ (log(t))l) + F) ⋅ (C + F) ⊂ C(t ↦ (log(t))l) +F, k(a, z) belongs to
∑r

l=0 C(t ↦ (log(t))l) + F, which is C[X]≤r +F.
Statement (b) follows from (a), Lemma 3.5 and the injectivity of can (see

Lemma 3.4(c)). ∎

Definition 3.9 For a ∈ Sh(V), k ⃗0 (a) ∈ C
ẼS is the function ẼS → C given by z ↦

k ⃗0 (a)(z) ∶= ev(k(a, z)).

Lemma 3.10 (a) The map Sh(V) → CẼS given by a ↦ k ⃗0 (a) is an algebra morphism.
(b) For z ∈ ẼS , a ∈ Sh(V), one has

k(a, z) = k(a(1) , sect(δ/2))ksect(δ/2)(a(2))(z),

where we denote Δ(a) as a(1) ⊗ a(2) (equality in C[X] ⊕ F).
(c) For any a ∈ Sh(V), k ⃗0 (a) belongs to the subalgebra Ohol(ẼS) ⊂ CẼS .
(d) The map k ⃗0 ∶ Sh(V) → Ohol(ẼS) is an algebra morphism.

Proof (a) For each z ∈ ẼS , the composition Sh(V) k(−,z)→ C[X] ⊕ F
ev→ C is an alge-

bra morphism as it is a composition of such morphisms (see Lemma 3.8(b) and
Lemma 3.4(c)). The map k ⃗0 ∶ Sh(V) → CẼS is the composition Sh(V) → Sh(V)ẼS →
CẼS , where the first map is the diagonal morphism and the second map is the product
∏z∈ẼS

(ev ○ k(−, z)). Since both the diagonal morphism and ev ○ k(−, z) are algebra
morphisms for each z ∈ ẼS , k ⃗0 is an algebra morphism, which proves (a).

(b) Both sides belong to C[X] ⊕ F, which is contained in C]0,δ[, so it suffices the
prove that they coincide as functions on ]0, δ[. For t ∈ ]0, δ[, one has

k(a, z)(t) = ksect(t)(a)(z) = ksect(t)(a(1))(sect(δ/2))ksect(δ/2)(a(2))(z)
= k(a(1) , sect(δ/2))(t) ⋅ ksect(δ/2)(a(2))(z)

where the first and last equalities follow from definitions, and the middle equality
follows from [EZ], Lemma 2.5.

(c) Applying ev to the identity of (b), for any a ∈ Sh(V) and any z ∈ ẼS one finds

k ⃗0 (a)(z) = k ⃗0 (a
(1))(sect(δ/2))ksect(δ/2)(a(2))(z)

(equality in C). Since, for any b ∈ Sh(V), the map z ↦ ksect(δ/2)(a(2))(z) belongs to
Ohol(ẼS) ⊂ CẼS , it follows that the map z ↦ k ⃗0 (a)(z) also belongs to Ohol(ẼS).

(d) This statement follows from (a) and (c). ∎

3.2 Shuffle regularization

We now present the construction of the algebra morphism k⊔⊔0 ∶ Sh(V) → Ohol(ẼS).
In this approach, Lemma 3.4 is replaced by:
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Lemma 3.11 Let us equip C⊕ F with the algebra structure such that 1 ∈ C is the unity
and F is a nonunital subalgebra. There is a diagram of algebra morphisms

C
ev0← C⊕ F

can0↪ C]0,δ[

where ev0 is the projection C⊕ F → C and can0(λ, ϕ) = λ + ϕ.

Proof Obvious. ∎
Remark 3.12 The diagram from Lemma 3.11 is the pull-back of the diagram C←
C([0, δ[) ↪ C]0,δ[ by the corestriction C⊕ F → C([0, δ[) of can0, where C([0, δ[)
is the space of continuous complex functions on [0, δ[, where C([0, δ[) → C is the
evaluation at 0 and where C([0, δ[) ↪ C]0,δ[ is the natural inclusion.

One also uses the following.

Lemma 3.13 (see [Pa], Lemma 3.2.4) There exists a unique algebra isomorphism
Sh∗(V)[X] → Sh(V) given by a ↦ a for a ∈ Sh∗(V) and X ↦ ( 1

0 ).
Lemma-Definition 3.14 (a) For a ∈ Sh∗(V) and z ∈ ẼS , the function ]0, δ[∋ t ↦
ksect(t)(a)(z) belongs to C⊕ F; denote by k⊔⊔0 (a)(z) ∈ C its image by ev0. Then, for
any z ∈ ẼS , a ↦ (t ↦ ksect(t)(a)(z)) is an algebra morphism Sh∗(V) → C⊕ F, and
a ↦ k⊔⊔0 (a)(z) is an algebra morphism Sh∗(V) → C.

(b) For a ∈ Sh∗(V), the function z ↦ k⊔⊔0 (a)(z) belongs to Ohol(ẼS); we denote by
k⊔⊔0 ∶ Sh∗(V) → Ohol(ẼS) the map taking a to this function. Then k⊔⊔0 is an algebra
morphism.

(c) There is a unique algebra morphism k⊔⊔0 ∶ Sh(V) → Ohol(ẼS) that extends k⊔⊔0 ∶
Sh∗(V) → Ohol(ẼS) and such that ( 1

0 ) ↦ G.

Proof (a) The first statement follows from the specialization of Lemma 3.8(a) for
deg(a) ≤ 0. The second statement follows from the fact that for any pair (z, t), the map
a ↦ ksect(t)(a)(z) is an algebra morphism Sh∗(V) → C, and from the first statement;
the last statement follows from the second statement by composing with ev0.

(b) Let a ∈ Sh∗(V). Since Δ(Sh∗(V)) ⊂ Sh∗(V) ⊗ Sh(V), the equality from
Lemma 3.10(b) takes place in C⊕ F. Applying ev0 to it, one obtains that for every
z ∈ ẼS

k⊔⊔0 (a)(z) = k⊔⊔0 (a(1))(sect(δ/2))ksect(δ/2)(a(2))(z)
(equality in C). The first part of (b) then follows from the fact that for any a ∈ Sh(V),
the map z ↦ ksect(δ/2)(a(2))(z) belongs to Ohol(ẼS) ⊂ CẼS . The second part of (b)
follows from its first part, combined with statement that the maps a ↦ (z ↦ k⊔⊔0 (a))
is an algebra morphism Sh∗(V) → CẼS , which follows from (a).

(c) This follows from (b) and from Lemma 3.13. ∎
Proposition 3.15 One has k ⃗0 = k⊔⊔0 .

Proof One checks that the restrictions of k ⃗0 and k⊔⊔0 to Sh∗(V) coincide.
Let us compute k ⃗0 ((

1
0 )). For z ∈ ẼS , k(( 1

0 ) , z) is the function ]0, δ[ ∋
t ↦ ksect(t)(( 1

0 ))(z) = ∫
z

sect(t) ω1,0. By Lemma 3.6, this function belongs to
(t ↦ −log(t) +G(z)) + F = P(log(t)) + F, where P(X) = G(z) − X ∈ C[X]. It
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follows that k ⃗0 ((
1
0 ))(z) = G(z) = k⊔⊔0 (( 1

0 ))(z), hence that k ⃗0 ((
1
0 )) = k⊔⊔0 (( 1

0 )).
By Lemma 3.13, this implies the statement. ∎

Lemma 3.16 (a) For any z0 ∈ ẼS and any a ∈ Sh(V) one has the equality (in
Ohol(ẼS))

k ⃗0 (a) = k ⃗0 (a
(1))(z0) ⋅ kz0(a(2)).(3.2.1)

(b) For any z0 ∈ ẼS , the images of the morphisms kz0 and k ⃗0 ∶ Sh(V) → Ohol(ẼS)
coincide.

Proof (a) Fix a ∈ Sh(V) and z ∈ ẼS . By [EZ], Lemma 2.5, one has the iden-
tity ksect(t)(a)(z) = ksect(t)(a(1))(z0) ⋅ kz0(a(2))(z) for any t ∈ ]0, δ[. One derives
from this the equality (in C]0,δ[) (t ↦ ksect(t)(a)(z)) = (t ↦ ksect(t)(a(1))(z0)) ⋅
kz0(a(2))(z). Since both sides actually belong to the subalgebra C[X] ⊕ F ⊂ C]0,δ[,
then this may be viewed as an equality in C[X] ⊕ F. Applying to both sides the mor-
phism ev ∶ C[X] ⊕ F → C, one derives the equality (in C) k ⃗0 (a)(z) = k ⃗0 (a

(1))(z0) ⋅
kz0(a(2))(z).

It follows that, for any a ∈ Sh(V), one has (z ↦ k ⃗0 (a)(z)) = (z ↦ k ⃗0 (a
(1))(z0)) ⋅

kz0(a(2))(z) (equality in CẼS ). Both sides actually belong to Ohol(ẼS), and are
respectively equal to the two sides of (3.2.1), which proves (a).

(b) Equation (3.2.1) implies the inclusion k ⃗0 (Sh(V)) ⊂ kz0(Sh(V)), and also
implies the relation kz0(a) = k ⃗0 (S(a

(1)))(z0) ⋅ k ⃗0 (a
(2)) for any a ∈ Sh(V), where

S is the antipode of Sh(V), which implies the opposite inclusion kz0(Sh(V)) ⊂
k ⃗0 (Sh(V)). ∎

3.3 The functions Γ̃

Definition 3.17 (see [BDDT], Equation (4.13)) For any r ≥ 1, any n1 , . . . , nr ≥ 0 and
any a1 , . . . , ar ∈ S̃, one defines the function Γ̃ ( n1 n2 . . . nr

a1 a2 . . . ar ;−) ∈ Ohol(ẼS) by

Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−) ∶= k ⃗0 ([(

n1
a1 ) ∣ . . . ∣ ( nr

ar )]).

One also sets Γ̃ ( ;−) ∶= 1 for r = 0.

It follows from Proposition 3.15 that Γ̃ ( 1
0 ;−) = G.

Lemma 3.18 (see also [Pa], Lemma 3.3.4) For any t ∈ Sh(V) and (n, a) ∈ Z≥0 × S̃,
one has

d(k ⃗0 ([ t ∣ ( n
a )]) = k ⃗0 (t) ⋅ ωn ,a

(equality in Ωhol(ẼS)). Equivalent formulation: for any n1 , . . . , nr ≥ 0 and a1 , . . . , ar ∈
S̃, one has

d(Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−)) = Tar(gnr) ⋅ Γ̃ ( n1 n2 . . . nr−1

a1 a2 . . . ar−1 ;−) ⋅ dz(3.3.1)

Proof The identity

d(ksect(δ/2)([ t ∣ ( n
a )]) = ksect(δ/2)(t) ⋅ ωn ,a(3.3.2)
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for any t and (n, a) as above follows from [EZ], Equation (2.1.1). Let us define the
map ∂V ∶ Sh(V) → Sh(V) ⊗ V by setting ∂V(1) = 0 and ∂V([t∣v]) ∶= t ⊗ v for any
t ∈ Sh(V) and v ∈ V . For t ∈ Sh(V), denote ∂V(t) by t[1] ⊗ t[2]. Then (3.3.2) implies
the identity

d(ksect(δ/2)(t)) = ksect(δ/2)(t[1]) ⋅ ω(t[2]),(3.3.3)

where ω ∶ V → Ωhol(ẼS) is the map given by ( n
a ) ↦ ωn ,a .

Applying Lemma 3.16 with z0 ∶= sect(δ/2), one finds that, for any t ∈ Sh(V),

k ⃗0 (t) = k ⃗0 (t
(1))(sect(δ/2)) ⋅ ksect(δ/2)(t(2))(3.3.4)

(equality in Ohol(ẼS)), which gives rise to the first equality in

d(k ⃗0 (t)) = k ⃗0 (t
(1))(sect(δ/2)) ⋅ d(ksect(δ/2)(t(2)))

= k ⃗0 (t
(1))(sect(δ/2)) ⋅ ksect(δ/2)((t(2))[1]) ⋅ ω((t(2))[2])

= k ⃗0 ((t
[1])(1))(sect(δ/2)) ⋅ ksect(δ/2)((t[1])(2)) ⋅ ω(t[2])

= k ⃗0 (t
[1]) ⋅ ω(t[2]),

where the second equality follows from (3.3.3), the third equality follows from (id ⊗
∂V) ○ Δ = (Δ⊗ id) ○ ∂V , and the fourth equality follows from (3.3.4). One derives
d(k ⃗0 (t)) = k ⃗0 (t

[1]) ⋅ ω(t[2]), from which the claimed identity follows. ∎

4 Expression of a basis of the algebra AES in terms of the
functions Γ̃

Recall the notation OS ∶= O(ES) from Section 2.5. The purpose of this section is
to show that the collection of functions Γ̃ gives rise to a basis of AES over OS
(Theorem 4.27), alternative to the family of elliptic HLs (see §2.5). For this, we
introduce an algebra G generated by the functions Γ̃ and show its inclusion in AES

(§4.1). In §§4.2 and 4.3, we carry out a precise analysis of differential algebras related
to ES , which enables us in §4.4 to prove the equality G = AES (see Theorem 4.20). In
§4.5, we prove a linear independence result for the functions Γ̃ (see Proposition 4.26),
based on the criterion of [DDMS], thereby proving Theorem 4.27. In §4.6, we give
examples of the relations implied by Theorem 4.27 between the functions Γ̃ and the
elliptic HLs from Section 2.5.

4.1 The algebra G and its inclusion in AES

Definition 4.1 G is the subalgebra of Ohol(ẼS) generated by OS[g1] and by the
functions Γ̃ ( n1 n2 . . . nr

a1 a2 . . . ar ;−), where r ≥ 0, n1 , . . . , nr ≥ 0 and a1 , . . . , ar ∈ S̃ (see Defi-
nition 3.17), namely

G ∶= OS[g1][Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−) ∣ r ≥ 0, n1 , . . . , nr ≥ 0, a1 , . . . , ar ∈ S̃] .

In this definition, the subalgebra OS[g1] of Ohol(C/pr−1(S)) is viewed as a
subalgebra of Ohol(ẼS) via the morphism ϖ∗ ∶ Ohol(C/pr−1(S)) → Ohol(ẼS).
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16 B. Enriquez and F. Zerbini

Recall now the filtration Fδ
●Ohol(ẼS) of the algebra Ohol(ẼS) defined in Sec-

tion 2.2.

Lemma 4.2 For any n ≥ 0 and s̃ ∈ S̃, one has Ts̃ gn ∈ Fδ
nOhol(ẼS).

Proof Let s̃ ∈ S̃. It follows from (2.4.7) that the collection of functions (Ts̃ gn)n≥0
satisfies the relation d(Ts̃ gn) = ∑n−1

k=0(−1)n−k Ts̃ gk ⋅ Ts̃(En−k+1) ⋅ dz for any n ≥ 1.
Let us prove the statement by induction on n ≥ 0. For n = 0, one has Ts̃ g0 = 1 ∈
Fδ

0 Ohol(ẼS). Assume that Ts̃ gk ∈ Fδ
kOhol(ẼS) for k < n. Since Ts̃ E l ∈ O(ES) for l ≥ 2,

one has Ts̃(E l) ⋅ dz ∈ Ω(ES) for these values of l, hence d(Ts̃ gn) = ∑n−1
k=0(−1)n−k Ts̃ gk ⋅

Ts̃(En−k+1) ⋅ dz ∈ Fδ
n−1Ohol(ẼS) ⋅ p∗Ω(ES), and therefore Ts̃ gn ∈ Fδ

nOhol(ẼS). ∎

Proposition 4.3 For any r ≥ 0, any n1 , . . . , nr ≥ 0 and any a1 , . . . , ar ∈ S̃, the function
Γ̃ ( n1 n2 . . . nr

a1 a2 . . . ar ;−) belongs to Fδ
r+n1+ ⋅ ⋅ ⋅ +nr

Ohol(ẼS).

Proof Let us prove the statement by induction on r. If r = 0, the statement is clear.
If r > 0, assume the statement to be true until r − 1, so that Γ̃ ( n1 n2 . . . nr−1

a1 a2 . . . ar−1 ;−) belongs
to Fδ

r−1+n1+ ⋅ ⋅ ⋅ +nr−1
Ohol(ẼS). By Lemma 4.2(b), one has Tar gnr ∈ Fδ

nr
Ohol(ẼS). The

facts that Fδ
●Ohol(ẼS) is an algebra filtration and that dz ∈ p∗Ω(ES) then imply that

the right-hand side of (3.3.1) belongs to Fδ
r−1+n1+ ⋅ ⋅ ⋅ +nr

Ohol(ẼS) ⋅ p∗Ω(ES), which
implies that Γ̃ ( n1 n2 . . . nr

a1 a2 . . . ar ;−) belongs to Fδ
r+n1+ ⋅ ⋅ ⋅ +nr

Ohol(ẼS). This concludes the
proof by induction. ∎

Corollary 4.4 One has G ⊂ AES .

Proof One has OS = O(ES) ⊂ Fδ
1 O(ẼS) ⊂ Fδ

∞O(ẼS). Moreover, Lemma 4.2 with s̃ =
0 and n = 1 implies g1 ∈ Fδ

1 O(ẼS) ⊂ Fδ
∞O(ES). Together with Proposition 4.3 and the

fact that Fδ
∞O(ES) is an algebra, this implies that G ⊂ Fδ

∞O(ES). By [EZ], Theorem C,
one has Fδ

∞O(ES) = AES , which implies the result. ∎

Proposition 4.3, together with the functional characterization of the algebra
Fδ
∞Ohol(ẼS) in Theorem C from [EZ], implies that the functions Γ̃ ( n1 n2 . . . nr

a1 a2 . . . ar ;−)have
moderate growth at the cusps in the sense explained in [EZ], Section 3.1, and unipotent
monodromy in the sense of the introduction.

4.2 The differential algebra O(E0)[g1]

Let us set E0 ∶= E{pr(0)}(= E/{pr(0)}), and O ∶= O{pr(0)}(= O(E0)). Then O is the
algebra of regular functions onE0, which coincides with the subalgebra of Λ-invariant
functions in Omer(C, Λ). The derivation ∂ = ∂/∂z of Omer(C, Λ) restricts to a deriva-
tion of O.

It is well-known that a linear C-basis of O is {1,℘(k) ∣ k ≥ 0}. It follows from (2.4.4)
that an alternative linear C-basis of O is {En ∣ n ∈ Z≥0/{1}}, where we set E0 ∶= 1. Let
us define an algebra filtration on O by the order of poles at pr(0). One then has
Fn O ∶= ∑k∈[[0,n]]/{1}CEk . The associated graded algebra gr(O) is isomorphic to the
subalgebra C⊕ Y 2C[Y] of the polynomial algebra C[Y], where Y has degree 1; more
precisely, one has grn(O) ≃ C ⋅ Y n for any n ∈ Z≥0/{1}, with En ≃ Y n .

Let us equip C[X] with the degree filtration, given by FnC[X] = ⊕k∈[[0,n]]CXk for
any n ≥ 0; then gr(C[X]) ≃ C[X], where X has degree 1.
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Moreover, let us equip the tensor product algebra O ⊗C[X] with the tensor
product filtration, so that Fn(O ⊗C[X]) = ∑n

k=0 Fk O ⊗ Fn−kC[X]. The associated
graded algebra gr(O ⊗C[X]) is then isomorphic to gr(O) ⊗ gr(C[X]), which is
isomorphic to the graded subalgebraC[X] ⊕ Y 2C[X , Y] ofC[X , Y], where X , Y have
degree 1.

Recall that g1 = E1 ∈ Omer(C, Λ), and g′1 = −E2. Let O[g1] be the subalgebra of
Omer(C, Λ) generated by O and g1. It follows from g′1 = −E2 that the subalgebra O[g1]
of Omer(C, Λ) is stable under ∂.

Lemma 4.5 One has O[g1] ∩Ohol(C) = C.

Proof Let us prove inductively on d ≥ 0 that if a0 , . . . , ad ∈ O and ∑i a i g i
1 ∈

Ohol(C), then a0 ∈ C and a1 = . . . = ad = 0. If d = 0, then a0 ∈ O ∩Ohol(C) = C,
which proves the statement for d = 0. Assume the statement at step d − 1 and let us
prove it at step d. Let a0 , . . . , ad ∈ O be such that f ∶= ∑i a i g i

1 ∈ Ohol(C). Then
d−1
∑
j=0

g j
1(∑

i> j
a i(

i
j
)(2πi)i− j) = ∑

(i , j)∣ j<i
a i(

i
j
)g j

1 (2πi)i− j = ∑
i

a i((g1 + 2πi)i − g i
1)

= (Tτ − id)( f ) ∈ Ohol(C),

which by the induction assumption implies that ∑i>0 a i(2πi)i ∈ C and for any j =
1, . . . , d − 1, ∑i> j a i(i

j)(2πi)i− j = 0. This implies a2 = . . . = ad = 0 and a1 ∈ C. Then
a0 + a1 g1 ∈ Ohol(C). Assume a1 ≠ 0. Since g1 has a simple pole at 0 with residue 1,
and since a0 + a1 g1 ∈ Ohol(C), a0 has a simple pole at 0 with residue −a1, which
contradicts a0 ∈ O. Therefore a1 = 0. Then a0 ∈ Ohol(C) ∩ O = C, which implies the
statement at step d. ∎

Lemma 4.6 The algebra morphism OS ⊗C[X] → OS[g1] induced by f ⊗ 1↦ f for
f ∈ OS and 1⊗ X ↦ g1 is an isomorphism.

Proof Let P belong to the kernel of this morphism and let d be its degree as a
polynomial in X. If P ≠ 0, then there exist f0 , . . . , fd ∈ OS with fd ≠ 0, such that
P = ∑d

i=0 f i ⊗ X i . Then ∑d
i=0 f i g i

1 = 0. Applying (Tτ − id)d to this equality, using
the invariance of f i under Tτ and the relation (Tτ − id)d(g i

1) = δ i ,d(2πi)d d! for
i ∈ [[0, d]], one obtains fd = 0, a contradiction. ∎

Let us equip O[g1] with the image F●(O[g1]) of the algebra filtration F●(O ⊗
C[X]) by the algebra isomorphism of Lemma 4.6, specialized to S = {0}. One then
has

∀n ≥ 0, Fn(O[g1]) =
n
∑
k=0
(Fk O) ⋅ gn−k

1 , grn(O[g1]) ≃ C ⋅ Xn ⊕ Y 2 ⋅C[X , Y]n−2 ,

(4.2.1)

where the notation C[X , Y]n−2 indicates the subspace of C[X , Y] of polynomials
which are homogeneous of degree n − 2.

Lemma 4.7 If A is an algebra equipped with a filtration F●A and if (an)n≥1 is a
sequence such that an ∈ Fn A for n ≥ 1, then:

https://doi.org/10.4153/S0008414X24001068 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24001068


18 B. Enriquez and F. Zerbini

(a) the sequence (bn)n≥1 of elements of A defined by 1 +∑n≥1 bn αn =
exp(∑n≥1 an αn) (equality in A[[α]])) is such that bn ∈ Fn A for any n ≥ 1;

(b) one has 1 +∑n≥1 bn = exp(∑n≥1 an) (equality in ⊕̂n≥0grn(A)).
The combination of (b) with the specialization of Lemma 4.5 to S = {0} enables one

to prove a strengthening of (b), namely the image of the family (gn)n≥0 is a C-basis of
the cokernel O[g1]/∂(O[g1]).
Proof One has for any n ≥ 1 the identity

bn = ∑
k≥1

1
k! ∑

n1+ ⋅ ⋅ ⋅ +nk=n ,
(n1 , . . . ,nk)∈Z

k
≥1

an1 ⋅ ⋅ ⋅ ank ,

which together with the algebra filtration properties implies (a). This identity implies
that, for any n ≥ 1,

bn = ∑
k≥1

1
k! ∑

n1+ ⋅ ⋅ ⋅ +nk=n ,
(n1 , . . . ,nk)∈Z

k
≥1

an1 ⋅ ⋅ ⋅ ank ,

where a i , b i are the classes of a i , b i in gri(A), from which one derives (b). ∎
Lemma 4.8 (a) For every n ≥ 0 one has gn ∈ Fn(O[g1]). Moreover, the degree n poly-
nomial (X − Y)n−1(X + (n − 1)Y)/n! (by convention equal to 1 when n = 0) belongs to
C[X] ⊕ Y 2C[X , Y] and is equal to the image of gn ∈ grn(O[g1]) by the isomorphism
in (4.2.1).

(b) The family (gn)n≥0 of elements of O[g1] is C-linearly independent.
(c) There is a direct sum decomposition

Span
C
{gn ∣ n ≥ 0} ⊕ ∂(O[g1]) = O[g1];(4.2.2)

in particular, {gn ∣ n ≥ 0} is a C-basis of the cokernel of the endomorphism ∂ of O[g1].
Proof Equation (2.4.5) implies the identity

1 +∑
n≥1

gn αn = exp ((1⊗ X) α −∑
r≥2

(−1)r

r
((Er − er) ⊗ 1) αr),

(equality in (O ⊗C[X])[[α]]) where for n ≥ 1, gn is identified with its image in
O ⊗C[X]. The first statement in (a) follows from this equality, combined with
Lemma 4.7(a) and the relations X ∈ F1C[X] and Er − er ∈ Fr O for any r ≥ 2, which
imply 1⊗ X ∈ F1(O ⊗C[X]) and (Er − er) ⊗ 1 ∈ Fr(O ⊗C[X]) for r ≥ 2. The second
statement in (a) follows from Lemma 4.7(b), which implies that

1 +∑
n≥1

gn = exp (1⊗ X −∑
r≥2

(−1)r

r
(Er − er) ⊗ 1)

= exp (X −∑
r≥2

(−1)r

r
Y r) = eX−Y(1 + Y),

(equality in the subalgebra C[[X]] ⊕ Y 2C[[X , Y]] of C[[X , Y]]), which in
turn implies that gn = (X − Y)n/n! + Y(X − Y)n−1/(n − 1)! = (X − Y)n−1(X + (n −
1)Y)/n!.
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(b) If∑n λn gn = 0 is a nontrivial linear dependence relation, let i ∶=max{i∣λ i ≠ 0}.
Then 0 = ∑n λn gn ∈ Fi(O[g1]), and the image of this element in gri(O[g1]) is λ i g i ,
which is nonzero, this yielding a contradiction.

(c) Let D be the endomorphism of O ⊗C[X] defined by D( f ⊗ P) ∶= ∂ f ⊗ P −
f E2 ⊗ P′. Then D is a derivation of O ⊗C[X], which is interwined with ∂ under the
specialization of the isomorphism from Lemma 4.6 to S = {0}.

The derivation ∂ of O is of filtration degree 1, i.e., ∂(Fk O) ⊂ Fk+1O for any k ≥ 0. The
associated graded endomorphism gr(∂) is then a degree 1 derivation of C⊕ Y 2C[Y].
The image of the derivation Y 2∂/∂Y of C[Y] is contained in Y 2C[Y], therefore
Y 2∂/∂Y induces a derivation of C⊕ Y 2C[Y] of degree 1, which can be seen to
coincide with gr(∂). One deduces from this that the derivation ∂ ⊗ id of O ⊗C[X]
is of filtration degree 1, and that its associated graded is the derivation Y 2∂/∂Y of
C[X] ⊕ Y 2C[X , Y].

The endomorphism f ⊗ P ↦ −E2 f ⊗ P′ is a derivation of O ⊗C[X], which is
also of filtration degree 1, as E2 has filtration degree 2 and P ↦ P′ has filtration
degree −1. The associated graded of the endomorphism f ↦ E2 f of O (resp. P ↦ P′
of C[X]) is the endomorphism f ↦ Y 2 f of C⊕ Y 2C[Y] (resp. ∂/∂X of C[X]),
therefore the associated graded of f ⊗ P ↦ −E2 f ⊗ P′ is the degree 1 derivation of
C[X] ⊕ Y 2C[X , Y] given by −Y 2∂/∂X.

It follows that D has filtration degree 1, and that its associated graded is the
derivation of C[X] ⊕ Y 2C[X , Y] induced by the derivation Y 2( ∂

∂Y −
∂

∂X ) of C[X , Y].
We now prove by induction on k ≥ 0 the equality of subspaces of O[g1]

Fk+1(O[g1]) = ∂(Fk(O[g1])) + Span
C
(1, g1 , . . . , gk+1).(4.2.3)

One has F0(O[g1]) = C and F1(O[g1]) = Span
C
(1, g1), which implies (4.2.3) for

k = 0. Assume k > 0 and Fk(O[g1]) = ∂(Fk−1(O[g1])) + Span
C
(1, g1 , . . . , gk), and let

us show (4.2.3). The inclusion of the right-hand side in the left-hand side is obvious,
so one has to show that this inclusion is an equality.

Recall that the space ∂(Fk(O[g1])) is a subspace of Fk+1(O[g1]). It follows from
the commutativity of

Fk(O[g1]) ∂ ��

��

Fk+1(O[g1])

��
grk(O[g1]) grk(∂)

�� grk+1(O[g1])

and from the surjectivity of Fk(O[g1]) → grk(O[g1]) that the image of this subspace
in grk+1(O[g1]) is equal to the image of grk(∂) ∶ grk(O[g1]) → grk+1(O[g1]), which
is identified with the map

Y 2 ( ∂
∂X
− ∂

∂Y
) ∶ CXk ⊕ Y 2 ⋅C[X , Y]k−2 → CXk+1 ⊕ Y 2 ⋅C[X , Y]k−1 .(4.2.4)
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The image of (4.2.4) is obviously contained in Y 2 ⋅C[X , Y]k−1, which induces a linear
map

Y 2 ( ∂
∂X
− ∂

∂Y
) ∶ CXk ⊕ Y 2 ⋅C[X , Y]k−2 → Y 2 ⋅C[X , Y]k−1 .(4.2.5)

The kernel of the linear endomorphism Y 2( ∂
∂X −

∂
∂Y ) of C[X , Y] is C[X + Y], which

implies that the kernel of the linear map Y 2( ∂
∂X −

∂
∂Y ) ∶ C[X , Y]k → C[X , Y]k+1 is the

one-dimensional vector space C ⋅ (X + Y)k . The kernel of (4.2.5) is the intersection
of this vector space with the source of (4.2.5), which is zero as the coefficient of
Y Xk−1 in (X + Y)k is nonzero; this implies that the map (4.2.5) is injective. The
source and target of (4.2.5) both have dimension k; the equality of these dimensions,
together with the injectivity of (4.2.5), implies that (4.2.5) is a linear isomorphism. All
this implies that the image of (4.2.4) is equal to Y 2 ⋅C[X , Y]k−1, therefore that the
image of ∂(Fk(O[g1])) by Fk+1(O[g1]) → grk+1(O[g1]) ≃ CXk+1 ⊕ Y 2 ⋅C[X , Y]k−1
is Y 2 ⋅C[X , Y]k−1.

On the other hand, Span
C
(1, g1 , . . . , gk) ⊂ Fk(O[g1]), which implies that the image

of Span
C
(1, g1 , . . . , gk+1) under Fk+1(O[g1]) → grk+1(O[g1]) is C gk+1, whose image

in CXk+1 ⊕ Y 2 ⋅C[X , Y]k−1 is given by (a).
Then the image of ∂(Fk(O[g1])) + Span

C
(1, g1 , . . . , gk+1) under Fk+1(O[g1]) →

grk+1(O[g1]) is the sum of the images of ∂(Fk(O[g1])) and Span
C
(1, g1 , . . . , gk+1)

under this map, which is equal to the sum Y 2 ⋅C[X , Y]k−1 +C(X − Y)k(X +
kY)/(k + 1)!, that can be simplified into C ⋅ Xk ⊕ Y 2 ⋅C[X , Y]k−1 ≃ grk+1(O[g1]).

It follows that the image of ∂(Fk(O[g1])) + Span
C
(1, g1 , . . . , gk+1) under the pro-

jection Fk+1(O[g1]) → grk+1(O[g1]) is equal to its target. The space ∂(Fk(O[g1])) +
Span

C
(1, g1 , . . . , gk+1) also contains ∂(Fk−1(O[g1])) + Span

C
(1, g1 , . . . , gk), which by

the induction hypothesis is equal to Fk(O[g1]), and therefore also to the kernel of the
projection Fk+1(O[g1]) → grk+1(O[g1]). All this implies the equality ∂(Fk(O[g1])) +
Span

C
(1, g1 , . . . , gk+1) = Fk+1(O[g1]), which proves the induction step. This proves

(4.2.3) for any k ≥ 0.
Let us now prove by induction on k ≥ 0 the equality of subspaces of Fk+1(O[g1])

∂(Fk(O[g1])) ∩ Span
C
(1, g1 , . . . , gk+1) = {0}.(4.2.6)

One has F0(O[g1]) = C hence ∂(F0(O[g1])) = 0, which implies (4.2.6) for k = 0.
Assume k > 0 and ∂(Fk−1(O[g1])) ∩ Span

C
(1, g1 , . . . , gk) = {0}, and let us show

(4.2.6). Let P ∈ Fk(O[g1]), (λ i)i∈[0,k+1] ∈ Ck+2 be such that ∂(P) = ∑i λ i g i . The
image of this equality under the projection Fk+1(O[g1]) → grk+1(O[g1]) is λk+1 gk+1 =
grk(∂)(P), where P is the image of P in grk(O[g1]). The map grk(∂) ∶ grk(O[g1]) →
grk+1(O[g1]) is injective (as this maps can be identified with (4.2.5) which has been
proved to be injective), and its image does not contain gk+1 (as this image has been
proved to be identified to Y 2C[X , Y]k−1 and in view of the identification of gk+1 in
(a)). It follows that λk+1 = 0 and P = 0, therefore in the equality ∂(P) = ∑i λ i g i the left-
hand side belongs to ∂(Fk−1(O[g1])) and the right-hand side to Span

C
(1, g1 , . . . , gk),

which by the induction assumption implies ∂(P) = 0 and λ0 = . . . = λk = 0. This
proves the induction step, therefore (4.2.6) holds for any k ≥ 0.
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Then

O[g1] = ∑
k≥0

Fk+1(O[g1]) = ∑
k≥0

∂(Fk(O[g1])) + Span
C
(1, g1 , . . . , gk+1)

= ∑
k≥0

∂(Fk(O[g1])) + ∑
k≥0

Span
C
(1, g1 , . . . , gk+1)

= ∂(∑
k≥0

Fk(O[g1])) + Span
C
(g i , i ≥ 0)

= ∂(O[g1]) + Span
C
(g i , i ≥ 0),(4.2.7)

where the second equality follows from (4.2.3).
For any k, l ≥ 0, one has

∂(Fk O[g1]) ∩ Span
C
(1, g1 , . . . , g l+1) ⊂ ∂(Fmax(k , l)O[g1])

∩ Span
C
(1, g1 , . . . , gmax(k , l)+1) = 0,

where the last equality follows from (4.2.6). This implies

∀k, l ≥ 0, ∂(Fk O[g1]) ∩ Span
C
(1, g1 , . . . , g l+1) = 0.(4.2.8)

Then

∂(O[g1]) ∩ Span
C
(g i , i ≥ 0) = (∪k≥0∂(Fk O[g1])) ∩ (∪l≥0Span

C
(1, g1 , . . . , g l+1)

= ∪k , l≥0∂(Fk O[g1]) ∩ Span
C
(1, g1 , . . . , g l+1) = 0,(4.2.9)

where the last equality follows from (4.2.8).
The statement then follows from the combination of (4.2.7) and (4.2.9). ∎

4.3 The differential algebra O(ES)[g1]

Let us denote by C(E) the field of rational functions on E. As an algebra, it can
be identified with the algebra of Λ-invariant meromorphic functions on C. Recall
that, for a ∈ C, the translation Ta is an automorphism of the algebra of meromorphic
functions on C; it induces an automorphism of C(E), which moreover depends only
on the class of a in E.

Recall the map s ↦ s̃ from Definition 2.10(a).

Lemma 4.9 (a) For any s ∈ S, one has (Ts̃ − id)(g1) ∈ OS .
(b) OS = ∑s∈S Ts(O) +∑s∈S/{pr(0)}C ⋅ (Ts̃ − id)(g1) (equality of subspaces of

C(E)).

Proof The relations T1 g1 = g1 and Tτ g1 = g1 + 2πi, together with the commutativity
of the various Ta , a ∈ C, implies that for any s ∈ S the function (Ts̃ − 1)(g1) is
Λ-invariant. It has simple poles at 0 and s, which implies that it belongs to OS ,
which proves (a). One clearly has Ts(O) ⊂ OS for any s ∈ S, so that (a) implies the
inclusion OS ⊃ ∑s∈S Ts(O) +∑s∈S/{pr(0)}C ⋅ (Ts̃ − 1)(g1). If now f ∈ OS , let ( fs)s∈S
be the collection where fs ∈ C((z − s̃)) is the local expansion of f at s̃. The map
O → C((z)) → C((z))/z−1C[[z]] is surjective, so for any s ∈ S one can find os ∈ O
whose image by this map coincides with the image of fs by the map C((z − s̃)) ≃
C((z)) → C((z))/z−1C[[z]]. Then g ∶= f −∑s∈S Ts(os) belongs to OS and has at
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most simple poles at S. Then g −∑s∈S/pr(0) ress(g ⋅ dz) ⋅ (Ts̃ − id)(g1) belongs to OS
and is regular on S/pr(0); hence it belongs to O and has at most a simple pole at pr(0),
which implies that it is constant. This proves the desired opposite inclusion. ∎

Recall that Omer(C, pr−1(S)) is the algebra of meromorphic functions on C with
set of poles contained in pr−1(S). Then Λ acts by translation on Omer(C, pr−1(S)),
and OS = Omer(C, pr−1(S))Λ . The operator ∂ = d/dz defines a derivation on
Omer(C, pr−1(S)), which restricts to a derivation of OS .

Consider the subalgebra OS[g1] of Omer(C, pr−1(S)). Then ∂(g1) = −E2 ∈ OS
implies that OS[g1] is stable under ∂.

Lemma 4.10 Let a ∈ C/Λ.
(a) If f ∈ Omer(C, Λ ∪ (a + Λ)) is such that T1( f ) = f and (Tτ − id)( f ) ∈ O[g1] +

Ta(O[g1]), then f ∈ O[g1] + Ta(O[g1]).
(b) If f ∈ Omer(C, Λ ∪ (a + Λ)) is such that T1( f ) = f and that for some n ≥ 1 one

has (Tτ − id)n( f ) ∈ O[g1] + Ta(O[g1]), then f ∈ O[g1] + Ta(O[g1]).
(c) For any n ≥ 0, one has

gn
1 ⋅ Ta(g1) ⊂ O[g1] + Ta(O[g1]).(4.3.1)

Proof (a) The automorphism Tτ of Omer(C, Λ ∪ (a + Λ)) restricts to automor-
phisms of the subalgebras O[g1] and Ta(O[g1]), therefore to an automorphism of
the vector subspace O[g1] + Ta(O[g1]).

The O-algebra morphism O[X] → O[g1] induced by X ↦ g1 intertwines the linear
endomorphism Tτ − id of O[g1] with the linear endomorphism exp(2πi∂X) − 1 of
O[X], where ∂ is the derivation of O[X] given by O ↦ 0 and X ↦ 1. On the other
hand, exp(2πi∂X) − 1 = exp(2πi∂X)−1

∂X
○ ∂X , where exp(2πi∂X)−1

∂X
is a linear automorphism

of O[X] as ∂X is locally nilpotent, and ∂X is surjective. It follows that the linear
endomorphism exp(2πi∂X) − 1 of O[X] is surjective. It follows from this surjectivity,
from the interwtining of this operator with Tτ − id and from the surjectivity of the
map O[X] → O[g1] that the linear endomorphism Tτ − id of O[g1] is surjective.
This implies the surjectivity of the linear endomorphism Tτ − id of Ta(O[g1]), and
therefore that of the linear endomorphism Tτ − id of O[g1] + Ta(O[g1]).

Let now f be as in the (a). It follows from the surjectivity of the linear endo-
morphism Tτ − id of O[g1] + Ta(O[g1]) that there exists f̃ ∈ O[g1] + Ta(O[g1]),
such that (Tτ − id)( f̃ ) = (Tτ − id)( f ) (equality in O[g1] + Ta(O[g1])). Then f − f̃
belongs toOmer(C, Λ ∪ (a + Λ)) and is invariant both under T1 and Tτ , which implies
that it belongs to O{pr(0), pr(a)}, which by Lemma 4.9(b) for S = {pr(0), pr(a)}
is equal to O + Ta(O) +C(Ta − id)(g1), and is therefore contained in O[g1] +
Ta(O[g1]). The statement then follows from f̃ ∈ O[g1] + Ta(O[g1]) and f − f̃ ∈
O[g1] + Ta(O[g1]).

(b) The proof is by induction on n ≥ 1. For n = 1, the statement follows from (a).
Assume the statement at step n and let us prove it at step n + 1. Let g ∈ Omer(C, Λ ∪
(a + Λ)) be such that T1(g) = g and (Tτ − id)n+1(g) ∈ O[g1] + Ta(O[g1]). Then
f ∶= (Tτ − id)(g) is such that T1( f ) = f as T1 commutes with Tτ − id, and (Tτ −
id)n( f ) ∈ O[g1] + Ta(O[g1]). By the induction assumption, this implies f ∈ O[g1] +
Ta(O[g1]). Then one has T(g) = g and (Tτ − id)(g) ∈ O[g1] + Ta(O[g1]), which by
(a) implies g ∈ O[g1] + Ta(O[g1]). This proves the statement at step n + 1.
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(c) This follows from (b) and from the invariance of gn
1 ⋅ Ta(g1) under T1, which

follows from that of g1 and of Ta(g1), and from (Tτ − id)n+2(gn
1 ⋅ Ta(g1)) = 0. ∎

Lemma 4.11 One has OS[g1] = ∑s∈S Ts̃(O[g1]) (equality of subspaces of
Omer(C, pr−1(S))).

Proof For s ∈ S, one has Ts̃(O) ⊂ OS ⊂ OS[g1], where the first inclusion
follows from Lemma 4.9(b). Moreover, Ts̃(g1) = g1 + (Ts̃ − id)(g1) ∈ OS[g1] by
Lemma 4.9(a). Then Ts̃(O[g1]) is the subalgebra of Omer(C, pr−1(S)) generated by
Ts̃(O) and Ts̃(g1), which are both contained in OS[g1], which implies the inclusion
Ts̃(O[g1]) ⊂ OS[g1] as OS[g1] is an algebra. As OS[g1] is stable under summation,
this implies the inclusion OS[g1] ⊃ ∑s∈S Ts̃(O[g1]).

In order to show the opposite inclusion, let us first show that ∑s∈S Ts̃(O[g1])
is a subalgebra of Omer(C, pr−1(S)). For each s ∈ S, the subspace Ts̃(O[g1]) is a
subalgebra ofOmer(C, pr−1(S)). So it is enough to prove that for any s ≠ t ∈ S, one has
Ts̃(O[g1]) ⋅ Tt̃(O[g1]) ⊂ Ts̃(O[g1]) + Tt̃(O[g1]). By translation invariance, it suffices
to prove this for t = 0, in which case t̃ = 0, i.e., to prove

O[g1] ⋅ Ta(O[g1]) ⊂ O[g1] + Ta(O[g1])(4.3.2)

for a ∈ C/Λ.
One has O ⋅ Ta(O) ⊂ O{pr(0), pr(a)} = O + Ta(O) +C ⋅ (Ta − id)(g1) where the

first inclusion follows from the fact that both O and Ta(O) are contained in
O{pr(0), pr(a)} and that the latter set is an algebra and the second inclusion follows from
Lemma 4.9(b) for S = {pr(0), pr(a)}. This implies O ⋅ Ta(O) ⊂ O[g1] + Ta(O[g1]).
Now O[g1] ⋅ Ta(O[g1]) is the sub-C[g1 , Ta(g1)]-module of Omer(C, pr−1(S)) gener-
ated by O ⋅ Ta(O), therefore in order to prove (4.3.2) it suffices to show that O[g1] +
Ta(O[g1]) is a sub-C[g1 , Ta(g1)]-module of Omer(C, pr−1(S)), i.e., is stable under
multiplication by g1 and Ta(g1). The inclusions O[g1] ⋅ g1 ⊂ O[g1] and Ta(O[g1]) ⋅
Ta(g1) ⊂ Ta(O[g1]) are obvious, it therefore remains to prove

O[g1] ⋅ Ta(g1) ⊂ O[g1] + Ta(O[g1]), Ta(O[g1]) ⋅ g1 ⊂ O[g1] + Ta(O[g1]).
(4.3.3)

For f ∈ O, one has f ⋅ Ta(g1) = f (a)Ta(g1) + ( f − f (a))(Ta − id)(g1) +
( f − f (a))g1. Then f (a)Ta(g1) ∈ CTa(g1), ( f − f (a))g1 ∈ O[g1] and ( f − f (a))
(Ta − id)(g1) ∈ O as f − f (a) belongs to O and vanishes at a, while (Ta − id)(g1)
belongs to O{0,a} and has only a simple pole at a. It follows that

O ⋅ Ta(g1) ⊂ O[g1] +CTa(g1).(4.3.4)

Then one has Ogn
1 ⋅ Ta(g1) ⊂ O[g1]gn

1 +CTa(g1)gn
1 ⊂ O[g1] + Ta(O[g1]) by

virtue of (4.3.4) and (4.3.1). This proves the first inclusion in (4.3.3), the second
inclusion is a consequence of it (applying T−a and replacing a by −a).

This ends the proof of the fact that ∑s∈S Ts̃(O[g1]) is a subalgebra of
Omer(C, pr−1(S)).
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One has OS = ∑s∈S Ts(O) +∑s∈S/{pr(0)}(Ts̃ − id)(g1) ⊂ ∑s∈S Ts̃(O[g1]), where
the equality follows from Lemma 4.9(b) and the inclusion follows from (Ts̃ −
id)(g1) ∈ O[g1] + Ts̃(O[g1]) for any s ∈ S/{pr(0)}. One also has g1 ∈ T0(O[g1]) ⊂
∑s∈S Ts̃(O[g1]). These two statements, together with the fact that ∑s∈S Ts̃(O[g1]) is
an algebra, implies the inclusion OS[g1] ⊂ ∑s∈S Ts̃(O[g1]). ∎

Lemma 4.12 The vector subspace∑s∈S Ts̃(Span
C
{gn ∣ n ≥ 0}) ⊂ OS[g1] is such that

∑
s∈S

Ts̃(Span
C
{gn ∣ n ≥ 0}) + ∂(OS[g1]) = OS[g1];

in other words, the cokernel of the endomorphism ∂ of OS[g1] is linearly spanned by the
image of the family {Ts̃(gn) ∣ (s, n) ∈ S ×Z≥0}.

Proof One has

OS[g1] = ∑
s∈S

Ts̃(O[g1]) = ∑
s∈S

Ts̃(∂(O[g1]) + Span
C
{gn ∣ n ≥ 0})

= ∑
s∈S

Ts̃(∂(O[g1])) +∑
s∈S

Ts̃(Span
C
{gn ∣ n ≥ 0})

= ∂(∑
s∈S

Ts̃(O[g1])) +∑
s∈S

Ts̃(Span
C
{gn ∣ n ≥ 0})

= ∂(OS[g1]) +∑
s∈S

Ts̃(Span
C
{gn ∣ n ≥ 0}),

where the first and last equalities follow from Lemma 4.11, the second equality follows
from (4.2.2), the third equality follows from the linearity of Ts̃ , and the fourth equality
follows from the commutativity of ∂ and Ts̃ . ∎

Lemma 4.13 The sum map

C1⊕ (⊕
s∈S

Ts̃Span{gn ∣n > 0}) ⊕ ∂(OS[g1]) → OS[g1]

is a vector space isomorphism.

Proof One has

OS[g1] = ∑
s∈S

Ts̃(O[g1]) = ∑
s∈S

Ts̃(C1 + Span{gn ∣n > 0} + ∂(O[g1]))

= C1 +∑
s∈S

Ts̃(Span{gn ∣n > 0}) + ∂(∑
s∈S

Ts̃(O[g1]))

= C1 +∑
s∈S

Ts̃(Span{gn ∣n > 0}) + ∂(OS[g1])

where the second equality follows from Lemma 4.8(c), the third equality follows from
the commutativity of Ts̃ with ∂, the fourth equality follows from Lemma 4.11; this
implies that the said sum map is surjective.

Let us prove its injectivity. Let P ∈ OS[g1] and S ∋ s ↦ ts ∈ Span{gn ∣n > 0} and λ ∈
C be such that

λ + ∂(P) +∑
s∈S

Ts̃(ts) = 0.
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By Lemma 4.11, there exists a map S ∋ s ↦ Ps ∈ O[g1] such that P = ∑s∈S Ts̃(Ps). Then

λ +∑
s∈S

Ts̃(∂(Ps) + ts) = 0

(equality in OS[g1] ⊂ Omer(C, p−1(S))).
For each s ∈ S̃, the equality Ts̃(∂(Ps) + ts) = −λ −∑s′∈S/{s} Ts̃′(∂(P′s) + t′s) implies

that the set of poles of Ts̃(∂(Ps) + ts) is contained in p−1(s) ∩ p−1(S/{s}), which is
empty; so Ts̃(∂(Ps) + ts) is an element of O[g1]which is holomorphic on C, therefore
is constant by Lemma 4.5. Therefore there exists a map S ∋ s ↦ λs ∈ C such that
Ts̃(∂(Ps) + ts) = λs for any s ∈ S, and therefore

λ +∑
s∈S

λs = 0.

Then ∂(Ps) = T−1
s̃ (λs) − ts = λs − ts for any s ∈ S. By Lemma 4.8(c), one has for any

s ∈ S, ts − λs = 0 and ∂(Ps) = 0. Since ts ∈ Span{gn ∣n > 0} and by Lemma 4.8(b), one
derives ts = λs = 0. Therefore ∂(P) = ∑s ∂(Ps) = 0, λ = ∑s λs = 0, which implies the
injectivity. ∎

4.4 The equality G = AES

Lemma 4.14 G is equal to the OS[g1]-submodule of Ohol(ẼS) generated by the
functions Γ̃ ( n1 n2 . . . nr

a1 a2 . . . ar ;−), where r ≥ 0, n1 , . . . , nr ≥ 0 and a1 , . . . , ar ∈ S̃, namely

G = ∑
r≥0, n1 , . . . ,nr≥0,

a1 , . . . ,ar∈S̃

OS[g1] ⋅ Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−) .

Proof This follows from the shuffle identity satisfied by the functions Γ̃, which
follows from the algebra morphism status of k ⃗0 . ∎

Set int ∶= intω0 , where ω0 ∶= dz. Then int is the endomorphism of Ohol(ẼS) given
by f ↦ [z ↦ ∫

z
z0

f ω0], where z0 is fixed in ẼS .

Definition 4.15 For r ≥ 0, let us set

Fr(G) ∶= ∑
r′≤r

∑
((n1 ,a1), . . . ,(nr′ ,ar′))∈(Z≥0×S̃)r′

OS[g1] ⋅ Γ̃ ( n1 n2 . . . nr′
a1 a2 . . . ar′

;−) .

One checks that F●(G) is an algebra filtration of G.

Lemma 4.16 For any r, n, n1 , . . . , nr ≥ 0, a1 , . . . , ar ∈ S̃ and s ∈ S, one has

int(Ts̃(gn) ⋅ Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−)) ∈ Fr+1(G).

Proof Both int(Ts̃(gn) ⋅ Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−)) and Γ̃ ( n1 n2 . . . nr n

a1 a2 . . . ar s̃ ;−) −
Γ̃ ( n1 n2 . . . nr n

a1 a2 . . . ar s̃ ; z0)are elements of Ohol(ẼS). By (3.3.1) their images by
d ∶ Ohol(ẼS) → Ωhol(ẼS) coincide, and they both vanish at z0. It follows that

int(Ts̃(gn) ⋅ Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−)) = Γ̃ ( n1 n2 . . . nr n

a1 a2 . . . ar s̃ ;−) − Γ̃ ( n1 n2 . . . nr n
a1 a2 . . . ar s̃ ; z0) .(4.4.1)

This identity implies the statement. ∎
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Lemma 4.17 For any r, n1 , . . . , nr ≥ 0 and a1 , . . . , ar ∈ S̃, one has

int(∂(OS[g1]) ⋅ Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−)) ⊂ Fr(G).

Proof By induction on r. For r = 0, and f ∈ OS[g1], one has int(∂( f )) = f −
f (z0) ∈ F0(G). Assume the statement at step r − 1. For f ∈ OS[g1], n1 , . . . , nr ≥ 0 and
a1 , . . . , ar ∈ S̃, integration by parts together with (3.3.1) yields

int(∂( f ) ⋅ Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−)) = f ⋅ Γ̃ ( n1 n2 . . . nr

a1 a2 . . . ar ;−) − f (z0) ⋅ Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ; z0)

− int( f ⋅ Tar(gnr) ⋅ Γ̃ ( n1 n2 . . . nr−1
a1 a2 . . . ar−1 ;−)).

Note that f ⋅ Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−) ∈ Fr(G) and f (z0) ⋅ Γ̃ ( n1 n2 . . . nr

a1 a2 . . . ar ; z0) ∈ C ⊂ F0(G).
Moreover, f ∈ OS[g1] and Tar(gnr) ∈ OS[g1] by Lemma 4.12, which implies that
f ⋅ Tar(gnr) ∈ OS[g1]. By Lemma 4.12, one may then decompose f ⋅ Tar(gnr) as ∂(g) +
∑(n ,a)∈Z≥0×S̃ λn ,a Ta(gn), with g ∈ OS[g1] and λn ,a ∈ C. Then

int( f ⋅ Tar(gnr) ⋅ Γ̃ ( n1 n2 . . . nr−1
a1 a2 . . . ar−1 ;−))

= int(∂(g) ⋅ Γ̃ ( n1 n2 . . . nr−1
a1 a2 . . . ar−1 ;−)) + ∑

(n ,a)∈Z≥0×S̃
λn ,a int(Ta(gn) ⋅ Γ̃ ( n1 n2 . . . nr−1

a1 a2 . . . ar−1 ;−)).

By the induction assumption, int(∂(g) ⋅ Γ̃ ( n1 n2 . . . nr−1
a1 a2 . . . ar−1 ;−)) belongs to Fr−1(G). More-

over, for each (n, a), int(Ta(gn) ⋅ Γ̃ ( n1 n2 . . . nr−1
a1 a2 . . . ar−1 ;−)) ∈ Fr(G)by Lemma 4.16. All this

implies int(∂( f ) ⋅ Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−)) ∈ Fr(G), which concludes the inductive argu-

ment. ∎

Proposition 4.18 For any z0 ∈ ẼS , the linear endomorphism int of Ohol(ẼS) maps G
to itself.

Proof For r ≥ 0, set

grr(G) ∶= ∑
n1 , . . . ,nr≥0,
a1 , . . . ,ar∈S̃

OS[g1] ⋅ Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−) .

One then has Fr(G) = ∑r′∈[[0,r]] grr′(G). We will prove the inclusion int(Fr(G)) ⊂
Fr+1(G) by induction on r ≥ 0. Let us first prove that int(F0(G)) ⊂ F1(G).

For f ∈ OS[g1], one has int(∂( f )) = f − f (z0) ∈ OS[g1], which implies that

int(∂(OS[g1])) ⊂ OS[g1] ∈ F0(G).(4.4.2)

It follows from (4.4.1) with r = 0 that, for s ∈ S and n ≥ 0, one has int(Ts̃(gn)) =
Γ̃ ( n

s̃ ;−) − Γ̃ ( n
s̃ ; z0), which implies that

int(Ts̃(gn)) ∈ F1(G).(4.4.3)

Then

int(F0(G)) = int(OS[g1]) = int(∂(OS[g1]) +∑
s∈S

Ts̃(Span
C
{gn ∣ n ≥ 0}))

= int(∂(OS[g1])) + ∑
s∈S ,n≥0

C ⋅ int(Ts̃(gn)) ⊂ F0(G) + ∑
s∈S ,n≥0

F1(G) = F1(G),
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where the first equality follows from F0(G) = OS[g1], the second equality follows from
Lemma 4.12 and the inclusion follows from (4.4.2) and (4.4.3). This proves the initial
step of the induction.

Assume that r ≥ 1 and that int(Fr−1(G)) ⊂ Fr(G). Let us prove that int(Fr(G)) ⊂
Fr+1(G). One has Fr(G) = Fr−1(G) + grr(G), so by the induction assumption it suffices
to prove that int(grr(G)) ⊂ Fr+1(G).

Combining Lemma 4.12 with the definition of grr(G), one finds

grr(G) = ∑
n1 , . . . ,nr≥0,
a1 , . . . ,ar∈S̃

∂(OS[g1]) ⋅ Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−)

+ ∑
n≥0,s∈S

∑
n1 , . . . ,nr≥0,
a1 , . . . ,ar∈S̃

C ⋅ Ts̃(gn) ⋅ Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−) ,

which implies that

int(grr(G)) = ∑
n1 , . . . ,nr≥0,
a1 , . . . ,ar∈S̃

int(∂(OS[g1]) ⋅ Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−))

+ ∑
n≥0,s∈S

∑
n1 , . . . ,nr≥0,
a1 , . . . ,ar∈S̃

C ⋅ int(Ts̃(gn) ⋅ Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−)),

It follows from Lemma 4.17 (resp. Lemma 4.16) that the first (resp. second) summand
of the right-hand side of this equality is contained in Fr(G) (resp. Fr+1(G)), which
implies that int(grr(G)) ⊂ Fr+1(G). ∎

Proposition 4.19 The subspace G of Ohol(ẼS) is stable under the endomorphism intω
for any ω ∈ Ω(ES).

Proof Since ω0 = dz is a nowhere vanishing holomorphic differential, there exists
fω ∈ OS such that ω = fω ⋅ ω0. Then for f ∈ G, one has intω( f ) = int( fω ⋅ f ) ∈ G, where
the equality follows from ω = fω ⋅ ω0 and the inclusion follows from fω ⋅ f ∈ G, which
stems from the fact that G is an OS -module, and from Proposition 4.18. ∎

Theorem 4.20 One has the equality G = AES .

Proof Proposition 4.19 implies that G is a subalgebra with unit of Ohol(ẼS) which
is stable under the endomorphism intω for any ω ∈ Ω(ES). Together with Lemma-
Definition 2.2, this implies that G ⊃ AES . The statement follows from the combination
of this inclusion with Corollary 4.4. ∎

4.5 An O(ES)-basis of AES arising from the functions Γ̃

Since the ring OS is an integral domain, it injects into its fraction field, which is equal
to the field C(E) of rational functions on E and is therefore independent of S, and will
be denoted K. There is a unique extension of the derivation ∂ of OS to a derivation of
K, which will also be denoted ∂.

Lemma 4.21 One has OS ∩ ∂(K) = ∂(OS) (equality of subspaces of K).
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Proof For f ∈ K/{0}, let Pole( f ) ⊂ E be the set of its poles. If f is nonconstant,
then both f and ∂( f ) are in K/{0}, and one has Pole(∂ f ) = Pole( f ). On the other
hand, OS = { f ∈ K/{0} ∣Pole( f ) ⊂ S} ∪ {0}. Let now f ∈ K be such that ∂( f ) ∈ OS . If
∂( f ) = 0, then f is constant and so f ∈ OS . If ∂( f ) ≠ 0, then f is nonzero and Pole( f ) =
Pole(∂ f ) ⊂ S, therefore f ∈ OS . All this proves the implication ( f ∈ K and ∂( f ) ⊂
OS) :⇒ ( f ∈ OS), which implies the inclusion OS ∩ ∂(K) ⊂ ∂(OS). The opposite
inclusion is obvious. ∎

Under the isomorphism OS[X] ≃ OS[g1], the derivation ∂ of OS[g1] is intertwined
with the derivation ∂ of OS[X], uniquely defined by the conditions that it extends the
derivation ∂ of OS and that ∂(X) = −E2 ⊂ O ⊂ OS . This derivation further extends to
a derivation ∂ of K[X], extending the derivation ∂ of K.

Lemma 4.22 The natural map OS[X]/∂(OS[X]) → K[X]/∂(K[X]) is injective.

Proof We first prove inductively on n ≥ 0 the statement

(Sn) ∶ (P ∈ OS[X]≤n , Q ∈ K[X]≤n+1 , P = ∂(Q)) :⇒ (Q ∈ OS[X]≤n+1).

Let us prove (S0). Let P, Q be polynomials satisfying the premise. Then there exist
a0 ∈ OS and b0 , b1 ∈ K such that P = a0 and Q = b0 + b1 X. The coefficients of X and
of 1 in P = ∂(Q) respectively yields the equations

∂(b1) = 0, a0 + b1 ⋅ E2 = ∂(b0).

The first equation implies b1 ∈ C ⊂ OS . The relation b1 ∈ C then implies that the left-
hand side of the second equation belongs to OS , while b0 ∈ K. By Lemma 4.21, this
implies b0 ∈ OS . This proves that Q ∈ OS[X]≤1, and therefore (S0).

Assume now (Sn−1) to be true for fixed n ≥ 1, and let us prove (Sn). Let P, Q be
polynomials satisfying the premise. Let a0 , . . . , an ∈ OS and b0 , . . . , bn+1 ∈ K be such
that P = a0 + ⋅ ⋅ ⋅ + an Xn and Q = b0 + ⋅ ⋅ ⋅ + bn+1 Xn+1. The coefficients of Xn+1 and
Xn in P = ∂(Q) respectively yield

∂(bn+1) = 0, an + (n + 1)bn+1 ⋅ E2 = ∂(bn).

The first equation implies bn+1 ∈ C ⊂ OS . The relation bn+1 ∈ C then implies that the
left-hand side of the second equation belongs to OS , while bn ∈ K. By Lemma 4.21,
this implies bn ∈ OS . Let us set Q̃ ∶= Q − bn+1 Xn+1 − bn Xn and P̃ ∶= ∂(Q̃). Then Q̃ ∈
K[X]≤n−1, which implies P̃ ∈ K[X]≤n−1 (because P̃ = ∂(Q̃) and ∂ maps K[X]≤n−1
to itself) and P̃ ∈ OS[X] (because P̃ = P − ∂(bn+1 Xn+1 + bn Xn)), and therefore P̃ ∈
OS[X]≤n−1. The relation Q̃ ∈ K[X]≤n−1 also implies Q̃ ∈ K[X]≤n . Hence (P̃, Q̃) satisfy
the assumptions of (Sn−1). It follows that Q̃ ∈ OS[X]≤n−1. Since bn , bn+1 ∈ OS , then
Q = Q̃ + bn+1 Xn+1 + bn Xn ∈ OS[X]≤n+1. Therefore (P, Q) satisfy the conclusion of
(Sn), which proves by induction that (Sn) is true for any n ≥ 0.

Assume now that Q ∈ K[X] is such that ∂(Q) ∈ OS[X]. Let n ≠ 0 be such that
Q ∈ K[X]≤n . Then ∂(Q) ∈ K[X]≤n because ∂ takes K[X]≤n to itself, and since ∂(Q) ∈
OS[X] one has ∂(Q) ∈ OS[X]≤n . But one also has Q ∈ K[X]≤n+1, hence (P, Q) satisfy
the assumptions of (Sn), and therefore Q ∈ OS[X]. All this implies the inclusion
OS[X] ∩ ∂(K[X]) ⊂ ∂(OS[X]). Since the opposite inclusion is obvious, one gets
OS[X] ∩ ∂(K[X]) = ∂(OS[X]), which concludes the proof. ∎
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Lemma 4.23 OS[X] is an integral domain, and OS[X] ↪ K(X) can be identified
with the injection of OS[X] in its fraction field. There is a unique derivation ∂ of K(X)
extending the derivation ∂ of OS[X].

Proof The first statement follows from fact that OS is an integral domain. The field
K(X) contains OS[X] as a subalgebra, and coincides with the smallest of its subfields
containing OS[X], which implies the identification of Frac(OS[X]) with K(X). The
last statement follows from the fact the a derivation of an integral domain admits a
unique extension to its fraction field. ∎

Recall the family (1, (Ts̃ gn)s∈S ,n≥1) of OS[X] (see Lemma 4.12).

Lemma 4.24 The image of the family (1, (Ts̃ gn)s∈S ,n≥1) in K(X)/∂(K(X)) is C-
linearly independent.

Proof Expansion for X at infinity induces a field extension K(X) ⊂ K((X−1)), where
K((X−1)) is the field of Laurent series in the formal variable X−1 with coefficients in
K. On the other hand, there is a double ring inclusion OS[X] ⊂ K[X] ⊂ K(X), thus
yielding a sequence of ring inclusions

OS[X] ⊂ K[X] ⊂ K(X) ⊂ K((X−1)).(4.5.1)

There is a unique derivation ∂ of K[X], extending ∂ on K and such that ∂(X) =
−E2. Since the derivation ∂ of K(X) shares these properties, both derivations are
compatible. The endomorphism of K((X−1)) given by ∑i∈Z f i X i ↦∑i∈Z(∂( f i) −
E2(i + 1) f i+1)X i is well-defined and is a derivation of K((X−1)). The restriction of
this derivation to OS[X] coincides with the derivation ∂ of this algebra, therefore its
restriction to K(X) also coincides with the derivation ∂ of this field. Hence one obtains
a family of compatible derivations on the rings in the sequence of morphisms (4.5.1).
From this one derives a sequence of linear maps

OS[X]/∂(OS[X])
α→ K[X]/∂(K[X])
β→ K(X)/∂(K(X)) γ→ K((X−1))/∂(K((X−1))).(4.5.2)

The derivation ∂ of K((X−1)) is compatible with the direct sum decomposition
K((X−1)) = K[X] ⊕ X−1K[[X−1]], because it is compatible with the derivation ∂ of
K[X] and because (∀i ≥ 0, f i = 0) :⇒ (∀i ≥ 0, ∂( f i) − (i + 1)E2 f i+1 = 0). It fol-
lows that the map γ ○ β is injective, and so that β is injective. By Lemma 4.22, the
map α is injective. It follows that β ○ α is injective, and in particular that it takes C-
linearly independent families to C-linearly independent families. Then Lemma 4.13,
which says that the image of (1, (Ts̃ gn)s∈S ,n≥1) in OS[X]/∂(OS[X]) is C-linearly
independent, implies the statement. ∎

The following statement is a direct consequence of the main result of [DDMS].

Theorem 4.25 (see [DDMS], Theorem 1) Let (A, d) be a commutative associative
differential algebra with unit over a field k of characteristic 0, and let C be a differential
subfield of A (i.e., d(C) ⊂ C). Let X be a set, x ↦ ux be a map X → C, and let
(r, (x1 , . . . , xr)) ↦ fx1 , . . . ,xr be a map ⊔r≥0 Xr → A, such that f∅ = 1 and d( fx1 , . . . ,xr) =
ux1 ⋅ fx2 , . . . ,xr for any r ≥ 1 and x1 , . . . , xr ∈ X.

https://doi.org/10.4153/S0008414X24001068 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24001068


30 B. Enriquez and F. Zerbini

If the image of the family x ↦ ux inC/d(C) is k-linearly independent, then the family
(r, (x1 , . . . , xr)) ↦ fx1 , . . . ,xr is C-linearly independent.

Proof The hypothesis of the statement is (iii) of Theorem 1 in [DDMS], and its
conclusion is (i) in the same theorem; the statement then follows from Theorem 1
in loc. cit. ∎
Proposition 4.26 (a) G is a free OS[g1]-module with basis

(Γ̃ ( n1 n2 . . . nr
a1 a2 . . . ar ;−))((n1 ,a1), . . . ,(nr ,ar))∈⊔r≥0{(n ,a)∈Z≥0×S̃∣a=0 if n=0}r .(4.5.3)

(b) G is a free OS-module with basis

(g i
1 ⋅ Γ̃ ( n1 n2 . . . nr

a1 a2 . . . ar ;−))i≥0,((n1 ,a1), . . . ,(nr ,ar))∈⊔r≥0{(n ,a)∈Z≥0×S̃∣a=0 if n=0}r .(4.5.4)

Proof (a) It follows from Lemma 4.14 that (4.5.3) is a generating family of G as an
OS[g1]-module.

Recall from Lemma 4.23 that OS[g1] is a integral domain; it therefore fits in an
algebra inclusion

OS[g1] ⊂ Frac(OS[g1]).(4.5.5)

On the other hand, there is an algebra inclusion

G ⊂ Omer(ẼS),(4.5.6)

where Omer(ẼS) is the algebra of all meromorphic functions on ẼS . Moreover, this
inclusion is compatible with (4.5.5) and with the module structure of both sides of
(4.5.6) over the corresponding algebras of (4.5.5).

Let us show that the image of (4.5.3) under (4.5.6) is Frac(OS[g1])-linearly
independent. Set (A, d) ∶= (Omer(ẼS), ∂), set k ∶= C, set C ∶= Frac(OS[g1]), set X ∶=
{(n, a) ∈ Z≥0 × S̃ ∣ a = 0 if n = 0}, let x ↦ ux be the map X → C given by (0, 0) ↦ 1
and (n, a) ↦ Ta gn for n > 0, let (r, (x1 , . . . , xr)) ↦ fx1 , . . . ,xr be the map ⊔r≥0 Xr → A

given by (4.5.3).
It follows from (3.3.1) that the identities f∅ = 1 and d( fx1 , . . . ,xr) = ux1 ⋅ fx2 , . . . ,xr are

satisfied. It follows from Lemma 4.24 and from the identification Frac(OS[g1]) ≃
K(X) (see Lemma 4.23) that the image of x ↦ ux in C/d(C) is C-linearly indepen-
dent. We can therefore apply Theorem 4.25, which implies that the image of (4.5.3)
under (4.5.6) is Frac(OS[g1])-linearly independent. By the injectivity of the maps
(4.5.5) and (4.5.6), this implies the announced statement.

(b) Let F ∶= ⊔r≥0{(n, a) ∈ Z≥0 × S̃ ∣ a = 0 if n = 0}. Let C(F) be the set of finitely
supported complex functions on F. Then (a) says that the map OS[g1] ⊗C(F) → G

induced by the family from (a) is a linear isomorphism. Moreover, Lemma 4.6 implies
that the map OS ⊗C(Z≥0×F) → OS[g1] ⊗C(F) given by f ⊗ δ(i ,x) ↦ f ⋅ g i

1 ⊗ δx for
any x ∈ F, i ∈ Z≥0, f ∈ OS , is a linear isomorphism. Composing these two linear
isomorphisms, one obtains that the map OS ⊗C(Z≥0×F) → G induced by the family
from (b) is a linear isomorphism, which proves (b). ∎
Theorem 4.27 Both families (2.5.2) and (4.5.4) are OS-bases of the OS-module AES .

Proof The statement on the family (2.5.2) follows from Lemma 2.19. The statement
on the family (4.5.4) follows from Proposition 4.26(b) and from Theorem 4.20. ∎
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4.6 Examples of relations between elliptic HLs and the functions Γ̃

The fact that the iterated integration basepoint for the elliptic HLs Lα i1 ⋅ ⋅ ⋅ α in
from

Section 2.5 is a fixed point z0 different from 0, whereas the iterated integration
basepoint for the functions Γ̃ is precisely the point 0, makes it a bit cumbersome to
pass from one basis to the other. We provide below a few examples of expressions
which relate elements of the two basis in the simplest setting where S = pr(0) consists
only of one point. In this case, the basis of differential forms considered in Section 2.5
reduces to α ∶= dz and β ∶= E2 dz.

Let us introduce the lighter notation

Γ̃(n1 . . . nr ;−) ∶= Γ̃ ( n1 n2 . . . nr
0 0 ... 0 ;−) .

Since Γ(0, . . . , 0
'*********,*********-

n

; z) = zn

n! and Lα ⋅ ⋅ ⋅ α
� *******�*******�

n

(z) = (z−z0)
n

n! , one immediately finds the formula

Lα ⋅ ⋅ ⋅ α
� *******�*******�

n

=
n
∑
j=0

(−z0)n− j

(n − j)! Γ̃(0, . . . , 0
'*********,*********-

j

;−) .

Furthermore, since E2 = −g′1, it follows that

Lβ = −g1 + g1(z0).(4.6.1)

Combining this relation with the fact that Γ̃(1; z) = Γ̃(1; z0) + ∫
z

z0
g1(u)du, one gets

Γ̃(1;−) = −Lβα + g1(z0)Lα + Γ̃(1; z0).

Moreover, from (4.6.1) and the shuffle product identity Lk
β = k!Lβ ⋅ ⋅ ⋅ β

��������� ��������
k

, one gets for

n ≥ 1

Lβ ⋅ ⋅ ⋅ β
� ******� ******�

n

= (g1(z0) − g1)n

n!
,

gn
1 =

n
∑
k=0

(−1)k n!
(n − k)! gn−k

1 (z0)Lβ ⋅ ⋅ ⋅ β
� ******� ******�

k

.(4.6.2)

Finally, let us express Γ̃(2;−) in terms of elliptic HLs. By Equation (2.4.5), one
has g2 = (g2

1 − E2 + e2)/2. Moreover, Equation (4.6.2) for n = 2 gives g2
1 = 2Lββ −

2g1(z0)Lβ + g2
1 (z0). Combining these two observations, one gets

Γ̃(2;−) = Lββα − g1(z0)Lβα +
e2 + g2

1 (z0)
2

Lα −
1
2

Lβ + Γ̃(2; z0).

5 Relation of the functions Γ̃ with the functions E3

The purpose of this section is to give an alternative proof, based on the results of
§4, of the fact that an algebra A3 attached to an elliptic curve Eal g equipped with
a degree 2 ramified covering Eal g → P1 which was constructed in [BDDT] is stable
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under integration. In §5.1, we relate the framework of the present paper with the
one of [BDDT]. In Section 5.2, we attach to each finite subset S0 ⊂ P1

C
containing∞

an algebra A3(S0), which we prove to be stable under integration using Theorem.
4.20; we derive the fact that the inductive limit of the algebras A3(S0) is stable under
integration, and identify this inductive limit with the algebra A3 of [BDDT], thereby
giving an alternative proof of the result of this paper (Proposition 5.6(c)).

5.1 Reminders on uniformisation of elliptic curves

Let us denote by (z, τ) ↦ E2(z∣τ) (resp. τ ↦ e2(τ)) the meromorphic (resp. holomor-
phic) function on C ×H (resp. H) such that for any τ ∈ H, the map z ↦ E2(z∣τ) (resp.
the element e2(τ) ∈ C) coincides with the function E2 (resp. the number e2 ∈ C) from
§2.4.2. For τ ∈ H, we set ℘(z∣τ) ∶= E2(z∣τ) − e2(τ).

Denote by C3
∗ be the complement of the diagonals in C3.

Lemma 5.1 Let (a1 , a2 , a3) ∈ C3
∗. There exists τ ∈ H, a ∈ C× and b ∈ C such that

(a1 , a2 , a3) = (a℘(1/2∣τ) + b, a℘(τ/2∣τ) + b, a℘((τ + 1)/2∣τ) + b).

Proof The set C3
∗ is equipped with the commuting actions of the group C× ⋉C by

(a, b) ⋅ (a1 , a2 , a3) ∶= (aa1 + b, aa2 + b, aa3 + b) and of the symmetric group S3 by
permutation. The set C/{0, 1} is equipped with an action of S3, generated by the
involutions λ ↦ 1 − λ and λ ↦ 1/λ.

The map C3
∗ → C/{0, 1} given by (a1 , a2 , a3) ↦ a21/a31, where we set ai j = ai − a j ,

is S3-equivariant; it can be identified with the projection C3
∗ → (C× ⋉C)/C3

∗ of C3
∗

on its set of orbits under the action of C× ⋉C.
The map C/{0, 1} → C induced by λ ↦ 256(1 − λ + λ2)3/(λ2(1 − λ)2) is S3-

invariant, and can be identified with the projection C/{0, 1} →S3/(C/{0, 1}) of
C/{0, 1} on the set of its orbits under the action of S3.

The map j ∶ H→ C defines a bijection j ∶ SL2(Z)/H→ C. On the other hand,
the map λ ∶ H→ C/{0, 1} defined by τ ↦ (℘(τ/2∣τ) − ℘(1/2∣τ))/(℘((1 + τ)/2∣τ) −
℘(1/2∣τ)) is compatible with the group morphism SL2(Z) → SL2(F2) ≃S3; it there-
fore defines a map λ ∶ Γ(2)/H→ C/{0, 1}, which is a bijection. The map λ is also
the composition with the projection C3

∗ → C/{0, 1} of the map H→ C3
∗ given by

τ ↦ (℘(1/2∣τ),℘(τ/2∣τ),℘((τ + 1)/2∣τ)).
The situation is summarized in the diagram

C3
∗

C
×⋉C�� C/{0, 1} S3 �� C

H

��

SL2(Z)

��
Γ(2) �� Γ(2)/H S3 ��

λ ∼

��

SL2(Z)/H

j∼

��

where the notation X Γ→ Y means that the map X → Y is Γ-invariant, and sets up a
bijection Γ/X ∼→ Y .
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Let now (a1 , a2 , a3) ∈ C3
∗. Its image by the composition C3

∗ → C/{0, 1} → C
j−1

→
SL2(Z)/H is a well-defined SL2(Z)-orbit in H. Let τ0 ∈ H be an element of this
orbit. By the properties of the above diagram, there exists σ ∈S3 such that λ(τ0) ∈
C/{0, 1} is related to a21/a31 by a21/a31 = σ ⋅ λ(τ0). Let σ̃ ∈ SL2(Z) be a lift of σ ,
one then has a21/a31 = λ(τ), where τ = σ ⋅ τ0. Then the elements (a1 , a2 , a3) and
(℘(1/2∣τ),℘(τ/2∣τ),℘((τ + 1)/2∣τ)) of C3

∗ have the same image in C/{0, 1}, which
implies that they are related by the action of C× ⋉C. ∎

In the rest of §5.1, we fix a⃗ = (a1 , a2 , a3) ∈ C3
∗.

Definition 5.2 Ealg is the projective curve in P2(C) defined by the equation Y 2T =
(X − a1T)(X − a2T)(X − a3T), where [X ∶ Y ∶ T] is the canonical system of projec-
tive coordinates on P2(C).
Lemma 5.3 Let (a, b, τ) ∈ C× ×C ×H be as in Lemma 5.1, let Λ ∶= Z +Zτ and
E ∶= C/Λ. Let a3/2 be a square root of a3, and denote by (z, τ) ↦ ℘′(z∣τ) the partial
derivative of (z, τ) ↦ ℘′(z∣τ) with respect to z.

(a) There is a unique isomorphism iso ∶ E→ Ealg, given by pr(z) ↦ [a℘(z∣τ) + b ∶
(1/2)a3/2℘′(z∣τ) ∶ 1] for z ∉ Λ and pr(0) ↦ [0 ∶ 1 ∶ 0].

(b) The image by iso of pr(1/2), pr(τ/2) and pr((1 + τ)/2) are respectively
[a1 ∶ 0 ∶ 1], [a2 ∶ 0 ∶ 1] and [a3 ∶ 0 ∶ 1]. The isomorphism iso intertwines the involution
pr(z) ↦ pr(−z) of E with the involution [X ∶ Y ∶ T] ↦ [X ∶ −Y ∶ T] of Ealg.

Proof (a) follows from the fact that functions (z, τ) ↦ ℘(z∣τ) and ℘′(z∣τ)
satisfy the identity ℘′(z∣τ)2 = 4(℘(z∣τ) − ℘(1/2∣τ))(℘(z∣τ) − ℘(τ/2∣τ))(℘(z∣τ) −
℘((1 + τ)/2∣τ)) (see [Kn], Theorem 6.15) and from the relation from Lemma 5.1. The
first part of (b) follows from Lemma 5.1, from the vanishing for fixed τ of the function
z ↦ ℘′(z∣τ) at 1/2, τ/2 and (1 + τ)/2, which follows from its oddness and from its Λ-
periodicity, and its second part follows from the evenness of the function z ↦ ℘(z∣τ)
and oddness of the function z ↦ ℘′(z∣τ) for τ being fixed. ∎

5.2 An alternative proof of a result of [BDDT]

Let a⃗ = (a1 , a2 , a3) ∈ C3
∗, let (a, b, τ) ∈ C× ×C ×H be as in Lemma 5.1 and let E,Ealg

be as in Lemma 5.3 and Definition 5.2.
Let π ∶ Ealg → P1(C) be the morphism given by the composition Ealg ⊂ P2(C) →

P1(C), where the last morphism is [X ∶ Y ∶ T] ↦ [X ∶ T]. Let S0 ⊂ P1(C) be a finite
subset containing∞. Let Salg ∶= π−1(S0) and S ∶= iso−1(Salg).

Then S is a finite subset of E, which is stable under the involution pr(z) ↦ pr(−z),
and which contains {pr(0)}; moreover, there is an isomorphism

iso ∶ E/S → Ealg/Salg .

In [BDDT], (3.16), one defines the family of multivalued holomorphic functions

x ↦ E3( n1 ⋅ ⋅ ⋅ nk
c1 ⋅ ⋅ ⋅ ck ; x)

on Ealg/Salg (denoted x ↦ E3( n1 ⋅ ⋅ ⋅ nk
c1 ⋅ ⋅ ⋅ ck ; x , a⃗)in loc. cit. to underscore the dependence

in (a1 , a2 , a3)), indexed by tuples (n1 , c1), . . . , (nk , ck) in ⊔k≥0Ik , where I ∶= (Z ×
Sunr

0 ) ⊔ (Z≥0 × Sram
0 ) and Sram

0 ∶= S0/(S0 ∩ {a1 , a2 , a3 ,∞}) and Sunr
0 ∶= S0/Sram

0 ; one
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therefore has for each i ∈ [[1, k]] the relations (n i , c i) ∈ Z × S0, with6 n i ≥ 0 whenever
c i ∈ {a1 , a2 , a3 ,∞}.

Recall that (z ↦ Γ̃( n1 ⋅ ⋅ ⋅ nk
a1 ⋅ ⋅ ⋅ ak ; z)) is a family of multivalued holomorphic functions

on E/S, indexed by tuples (n1 , a1), . . . , (nk , ak) in ⊔k≥0(Z≥0 × S̃)k .

Proposition 5.4 (see also [BDDT], Section 5) The map iso∗ induces an isomorphism
of vector spaces between the linear spans Span

C
{x ↦ E3( n1 ⋅ ⋅ ⋅ nk

c1 ⋅ ⋅ ⋅ ck ; x) ∣ k ≥ 0, (n i , c i) ∈
(Z × Sunr

0 ) ⊔ (Z≥0 × Sram
0 )} and Span

C
{z ↦ Γ̃( n1 ⋅ ⋅ ⋅ nk

a1 ⋅ ⋅ ⋅ ak ; z) ∣ k ≥ 0, (n i , a i) ∈ Z≥0 ×
S̃}.

Proof The family of functions x ↦ E3( n1 ⋅ ⋅ ⋅ nk
c1 ⋅ ⋅ ⋅ ck ; x) with variable

(k, (n1 , c1), . . . , (nk , ck)) is defined in [BDDT] as follows. One introduces in
loc. cit. a family of multivalued meromorphic differentials φn(c, t)dt on Ealg, where
(n, c) ∈ (Z × Sunr

0 ) ⊔ (Z≥0 × Sram
0 ) and Sram

0 ∶= S0/(S0 ∩ {a1 , a2 , a3 ,∞}) with sets
of poles contained in pr−1

alg(Salg), where pralg ∶ Ẽalg → Ealg is a universal cover.
The functions x ↦ E3( n1 ⋅ ⋅ ⋅ nk

c1 ⋅ ⋅ ⋅ ck ; x) are the iterated integrals of these differentials
starting from the point [0 ∶ √−a1a2a3 ∶ 1] in Ealg, where √−a1a2a3 is a square root
of −a1a2a3. The isomorphism iso ∶ E→ Ealg induces an isomorphism ĩso ∶ Ẽ→ Ẽalg,
and the image by ĩso∗ of Span

C
(φn(c, t)dt ∣ (n, c) ∈ (Z × Sunr

0 ) ⊔ (Z≥0 × Sram
0 ))

is a space of multivalued meromorphic differentials on E, with sets of poles
contained in pr−1(S), which is shown in [BDDT], Section 5 to coincide with
Span

C
(dz, Ta gn ⋅ dz, a ∈ pr−1(S)). It follows from (2.4.6) that the latter space

is equal to Span
C
(dz, Ta gn ⋅ dz, a ∈ S̃). So the linear span of the functions

x ↦ E3( n1 ⋅ ⋅ ⋅ nk
c1 ⋅ ⋅ ⋅ ck ; x) corresponds via iso∗ to the linear span of the iterated integrals

starting at iso(0) of the elements of Span
C
(dz, Ta gn ⋅ dz, a ∈ S̃). By Lemma 3.16(b),

this linear span coincides with that of the regularized iterated integrals starting at
pr−1(0) of the elements of Span

C
(dz, Ta gn ⋅ dz, a ∈ S̃), which is the linear span of

z ↦ Γ̃( n1 ⋅ ⋅ ⋅ nk
a1 ⋅ ⋅ ⋅ ak ; z) for variable (k, (n1 , a1), . . . , (nk , ak)). ∎

The authors of [BDDT] define in Equation (3.23) a multivalued function Z3 on
Ealg/{∞}, closely related to a classical elliptic integral, and prove that iso∗(Z3) = 4g1
(see [BDDT], Equation (5.11)).

Proposition 5.5 The subalgebra

A3(S0) ∶= O(Ealg/Salg)[Z3][E3( n1 ⋅ ⋅ ⋅ nk
c1 ⋅ ⋅ ⋅ ck ;−)∣k, (n1 , c1), . . . , (nk , ck)]

of the algebra of holomorphic multivalued functions on Ealg/Salg is stable in the sense of
Definition 2.1.

Proof Since iso∗(Z3) = 4g1, it follows that the image by iso∗ of this algebra is equal
to G (see Definition 4.1). The result then follows from Proposition 4.19. ∎

Let us emphasize the dependence of Salg in the finite subset S0 such that
{∞} ⊂ S0 ⊂ P1

C
by denoting it Salg(S0). Fix: (a) for each finite subset subset S0

such that {∞} ⊂ S0 ⊂ P1
C

, a universal cover ̃Ealg/Salg(S0) → Ealg/Salg(S0); (b) for

6The range of values Z × P1
C

for the pairs (ni , ci) announced in [BDDT], (3.16) should in fact be
restricted by the condition that ni ≥ 0 whenever ci ∈ {a1 , a2 , a3 ,∞}, as one can derive from (3.31) and
the discussion following it.
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each pair of finite sets S0 , S′0 with {∞} ⊂ S0 ⊂ S′0 ⊂ P1
C

, a holomorphic map pS0 ,S′0 ∶
̃Ealg/Salg(S′0) → ̃Ealg/Salg(S0) such that

̃Ealg/Salg(S′0)
pS0 ,S′0 ��

��

̃Ealg/Salg(S0)

��
Ealg/Salg(S′0) �� Ealg/Salg(S0)

commutes, such that for any triple of finite sets S0 , S′0 , S′′0 with {∞} ⊂ S0 ⊂ S′0 ⊂ S′′0 ⊂
P1
C

, one has pS0 ,S′′0 = pS0 ,S′0 ○ pS′0 ,S′′0 . One can then form the inductive limit algebra
lim →S0

Ohol( ̃Ealg/Salg(S0)); it contains the algebra lim →S0
O(Ealg/Salg(S0)), which is the

field C(Ealg) of rational functions on Ealg.
Recall that the space of regular differentials on Ealg is linearly spanned by (TdX −

XdT)/(Y T).

Proposition 5.6 (a) For each pair of finite sets S0 , S′0 with {∞} ⊂ S0 ⊂ S′0 ⊂ P1
C

,
the algebra inclusion p∗S0 ,S′0

∶ Ohol( ̃Ealg/Salg(S0)) → Ohol( ̃Ealg/Salg(S′0)) is such that
p∗S0 ,S′0

(A3(S0)) ⊂ A3(S′0). Set A3 ∶= lim →S0
A3(S0).

(b) Let denote the endomorphism int(Td X−XdT)/(Y T) of Ohol( ̃Ealg/Salg(S0)) (see
§2.1) as intS0 . Then for each pair of finite sets S0 , S′0 with {∞} ⊂ S0 ⊂ S′0 ⊂ P1

C
, one

has intS0 ○ p∗S0 ,S′0
= p∗S0 ,S′0

○ intS′0 ; let lim →S0
intS0 be the corresponding endomorphism of

lim →S0
Ohol( ̃Ealg/Salg(S0)).

(c) A3 is stable under lim →S0
intS0 .

Proof (a) and (b) are straightforward, and (c) follows from Proposition 5.5. ∎

Note that Proposition 5.6(c) recovers the result from [BDDT], stated in 3 and
proved in §6.
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