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CAN CAPACITY CONSTRAINTS
EXPLAIN ASYMMETRIES OF THE
BUSINESS CYCLE?

MALTE KNÜPPEL
Deutsche Bundesbank

In this paper, we investigate the ability of a modified real business cycle (RBC) model to
reproduce asymmetries observed for macroeconomic variables over the business cycle. To
replicate the empirical skewness of major U.S. macroeconomic variables, we introduce a
capacity constraint into an otherwise prototypical RBC model. This constraint emerges
because of the assumption of kinked marginal costs of utilization, where the kink is
located at a utilization rate of 100%. We find that a model with a suitably calibrated cost
function reproduces the empirical coefficients of skewness remarkably well.
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1. INTRODUCTION

The notion that macroeconomic variables exhibit asymmetry over the business
cycle has a long history in economics. The existence of such asymmetries was
claimed early by Mitchell (1927, p. 290), who stated that “Business contractions
appear to be a briefer and more violent process than business expansions.” Keynes
(1936, p. 314), too, observed that “The substitution of a downward for an up-
ward tendency often takes place suddenly and violently, whereas there is, as a
rule, no such sharp turning-point when an upward is substituted for a downward
tendency.” Many results of empirical research point to the importance of asymme-
tries for macroeconomic variables, as, for instance, do those reported in Goodwin
(1993) for output measures and in Neftci (1984) for unemployment, although their
importance is not undisputed.1

To the best of our knowledge, relatively few attempts have been made to in-
vestigate dynamic stochastic general equilibrium models with respect to asymme-
tries and to compare the resulting asymmetries with those observed in the data.
Van Nieuwerburgh and Veldkamp (2006) study a real business cycle (henceforth
RBC) model where productivity follows a symmetric Markov-switching process
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whose state cannot be observed by economic agents. Owing to the additive nature
of the productivity shock in their model, the signal-extraction problem the agents
face is characterized by a procyclical signal-to-noise ratio, giving rise to several
types of asymmetry. Hansen and Prescott (2005) consider an RBC model where
there is an upper bound on the number of plants that can be operated. This upper
bound is due to a minimum labor requirement per plant and the existence of
immobile capital. This capital can be idle in recessions, so that capital’s income
share is procyclical. Both studies yield satisfactory results concerning the re-
production of the empirical asymmetries investigated. Valderrama (2007) tries to
replicate empirical nonlinearities, including asymmetries, using an estimated RBC
model with adjustment costs to investment, where the estimation procedure takes
nonlinearities into account. However, it turns out that the asymmetries generated
by the estimated model do not match those encountered in the data, because the
strong correlation of consumption and investment in the model does not allow the
reproduction of the distinct empirical asymmetries of these variables.

In this work, we investigate one reason for the existence of asymmetries that
is similar to that in Hansen and Prescott (2005), i.e., related to the utilization of
capital. We study how the assumption of an upper bound for capital services affects
the symmetry properties of the model’s variables. However, this upper bound does
not emerge from the existence of two types of capital, where the supply of one type
is bounded from above, as in Hansen and Prescott (2005). Instead, we investigate
an upper bound for capital utilization that is motivated by a kink in the marginal
costs of capital utilization. This kink relies on the assumption that the elasticity
of marginal cost with respect to utilization jumps to a higher level once capacity
utilization reaches 100%. In standard RBC models, such as those described in
King and Rebelo (1999), this elasticity is assumed to be constant, implying that no
upper bound for utilization exists. We introduce the kinked marginal cost function
into an otherwise prototypical RBC model with variable capacity utilization and
compare the asymmetries emerging from this model with the asymmetries found
in the data. We also study the impact of capacity constraints on second moments
by investigating the differences between standard deviations and cross correlations
in models with and without capacity constraints.

The paper is set up as follows. In Section 2, we conduct an investigation of
the asymmetries of a set of macroeconomic variables, where asymmetries are
measured by third standardized moments, i.e., skewness. We also report results
for second moments. In Section 3, we present and calibrate the model with capacity
constraints. In Section 4, we report simulation results for the model and compare
them with the empirical results. We also compare the simulation results with
the outcomes of models without capacity constraints. Moreover, we analyze the
capacity constraint’s impact on stochastic steady-state values, and we investigate
the reasons for differing magnitudes of skewness among the model’s variables.
Finally, we perform an extensive sensitivity analysis in order to study the effects
of changes in the utilization cost function and of the additional consideration of
investment adjustment costs as in Valderrama (2007). Section 5 concludes.
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2. STYLIZED FACTS

Asymmetry in our study will be measured by the coefficient of skewness, i.e., by
the standardized third moment.2 A symmetrically distributed variable always has
zero skewness. Thus, if nonzero skewness is present, the variable must have an
asymmetric distribution.

If a time series has negative skewness, then there are often fewer observations
below the mean than there are observations above the mean, and, on average,
those below the mean are larger in absolute value. In a stochastic process with
symmetric shocks, negative skewness can emerge if the effects of these shocks are
dampened when the realizations of the process lie above its mean, or if the effects
of these shocks are amplified when the realizations of the process lie below its
mean.

2.1. The Data

Our study is based on postwar U.S. macroeconomic per capita data. The macroe-
conomic variables investigated here are output, consumption, investment, labor,
capital, the real wage, labor productivity, and total factor productivity. The data
for each variable, except capital, cover the sample period from the first quarter of
1954, henceforth denoted 1954q1, through 2002q2 and are seasonally adjusted,
except for the population series. The series are taken from the National Income
and Product Accounts of the Bureau of Economic Analysis if not stated otherwise.

Consumption (henceforth denoted C) is measured as the sum of real personal
consumption expenditures for services and nondurable goods and real govern-
ment consumption. Investment (X) equals the sum of real private consumption of
durable goods, real gross private domestic investment, and real government invest-
ment. Output (Y ) is measured by real gross domestic product (GDP). Labor (H)

is the total number of man-hours in nonagricultural establishments. This series is
taken from the data set used in Ireland (2004). The real wage (W) is constructed as
the ratio of compensation of employees to the product of labor with the consumer
price index for all urban consumers. The consumer price index series comes from
the Federal Reserve Economic Data database. Data for the capital stock (KA) are
available on an annual basis only, and the sample considered ranges from 1954 to
2001.

All series mentioned, except for the real wage, are in per capita terms, which
are obtained by dividing the series by the civilian noninstitutional population.
Many studies, such as those by Ireland (2004) or King et al. (1988), make direct
use of the civilian noninstitutional population series provided by the Bureau of
Labor Statistics. This series, however, has been revised several times and contains
sharp jumps at the revision dates. For example, owing to revisions, the civilian
noninstitutional population increased by more than 0.5% in the first quarters of
1972 and 1990. Although the size of these jumps is small enough to pass unnoticed
for volatile series such as investment, they possess a considerable impact on more
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stable series such as capital and, to a smaller extent, consumption. Moreover, these
jumps might have negligible effects on second moments, but could affect third
moments to a greater extent.3 We therefore consider it necessary to smooth the
population series before we divide macroeconomic variables by it. To do this, we
apply the HP-filter and use the resulting trend as the population series.4

We consider two productivity series: labor productivity and total factor produc-
tivity. Labor productivity (LP) is defined as the ratio of GDP to labor. The measure
that we construct for total factor productivity (TFP) is based on three assumptions:
that output is produced by a Cobb–Douglas production function, that quarterly
changes in the capital stock are approximately zero, and that the utilization of the
capital stock is constant over time.5 By virtue of these assumptions, TFP can be
computed as

ln TFPt = ln Yt − α ln K̄t − (1 − α) ln Ht, (1)

where α is the elasticity of output with respect to capital, and the series ln K̄t is
simply a linear trend. For the calculation, α is set to 1/3, which is a value often
encountered in the literature.6

To induce stationarity and to isolate fluctuations associated with business cycle
frequencies, we apply the HP-filter, with the smoothing parameter set to 1,600,
to the logarithm of all variables except capital. For the annual capital series, we
use the common value of 100. All HP-filtered variables, multiplied by 100, are
displayed in Figure 1. The quarterly capital series (K) is constructed simply by
inserting the annual value for every quarter of that year.

2.2. Third and Second Moments

The skewness of each variable, as well as the standard deviation, the relative stan-
dard deviation with respect to GDP, the correlation with GDP, and the correlation
of consumption and investment, is presented in Table 1. No correlation is displayed
for capital, because we report results for the annual capital stock KA.

Concerning the coefficients of skewness, we find that capital is the only variable
having positive skewness, with a value of about 0.1. The least skewed variables
are consumption and the real wage, with coefficients close to −0.1. GDP exhibits
a coefficient around −0.4, and both productivity measures have coefficients of
about −0.35. The most skewed variables are labor, with a coefficient close to
−0.5, and investment, with a coefficient of almost −0.7.

It is interesting to investigate whether the mentioned coefficients are signif-
icantly different from zero in order to evaluate the importance of asymmetries
for macroeconomic variables. In order to do this, we use two tests for symmetry
of serially correlated data. The first test was proposed by Gasser (1975) and
applied by Psaradakis and Sola (2003), among others. Gasser’s test assumes a
marginal normal distribution of the variable under study and is directly based on
the coefficient of skewness. The test statistic has a standard normal distribution
under the null of symmetry. The second test, by Bai and Ng (2005), is based

https://doi.org/10.1017/S1365100512000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100512000260


CAPACITY CONSTRAINTS AND ASYMMETRIC CYCLES 69

-5

-4

-3

-2

-1

0

1

2

3

4

55 60 65 70 75 80 85 90 95 00

Y

-2

-1

0

1

2

55 60 65 70 75 80 85 90 95 00

C

-20

-16

-12

-8

-4

0

4

8

12

55 60 65 70 75 80 85 90 95 00

X

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

55 60 65 70 75 80 85 90 95 00

K

-5

-4

-3

-2

-1

0

1

2

3

4

55 60 65 70 75 80 85 90 95 00

H

-3

-2

-1

0

1

2

3

55 60 65 70 75 80 85 90 95 00

W

-3

-2

-1

0

1

2

3

55 60 65 70 75 80 85 90 95 00

LP

-3

-2

-1

0

1

2

3

55 60 65 70 75 80 85 90 95 00

TFP

FIGURE 1. HP-filtered time series. Shaded areas denote recessions as dated by the NBER.

on the third and fifth moments of the variable under study and does not require
distributional assumptions, but requires the existence of higher-order moments.7

The test statistic has a χ2 distribution under the null of symmetry. Psaradakis and
Sola (2003) and Bai and Ng (2005) emphasize that the symmetry tests tend to have
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TABLE 1. Empirical third and second moments

Y C X KA H W LP TFP

Skewness −0.42 −0.11 −0.69 0.13 −0.49 −0.10 −0.35 −0.34
Gasser’s test

statistic −1.74 −0.43 −2.95 0.31 −1.93 −0.42 −1.66 −1.61
p-value .08 .67 .00 .76 .05 .67 .10 .11
Bai & Ng’s test

statistic 2.63 1.11 3.63 1.39 3.32 0.81 3.37 3.41
p-value .10 .29 .06 .24 .07 .37 .07 .06

Std. dev. 1.61 0.71 5.22 0.74 1.78 0.95 0.85 0.80
Rel. std. dev. 1.00 0.44 3.23 0.46 1.11 0.59 0.53 0.50
Corr. with Y 1.00 0.66 0.95 0.88 0.09 0.05 0.71
Corr. with X 0.53

Note: “Std. dev.” denotes “standard deviation”; “rel.” stands for “relative.”

low power.8 Thus, the tests often do not reject the null hypothesis of symmetry
when the null is incorrect.

The test results are displayed in Table 1. According to both tests, there are no
signs of significant asymmetry for capital, consumption, or the real wage. GDP is
significantly asymmetric at the 10% significance level according to Gasser’s test,
and the p-value of Bai and Ng’s test only slightly exceeds 10%. At the same level,
asymmetry of TFP is significant, according to Bai and Ng’s test, and not significant,
according to Gasser’s test, but the corresponding p-value exceeds 10% by only
a small amount. Symmetry of investment can be rejected at the 1% significance
level with Gasser’s test and at the 10% level with Bai and Ng’s test. For labor
and labor productivity, there is significant asymmetry at the 10% level with both
tests. Thus, the p-values of the tests broadly correspond to the magnitudes of the
coefficients of skewness, and variables with absolute values of skewness greater
than 0.3 are significantly asymmetric at least at the 10% level according to at least
one of the tests.

Concerning second moments, we find the well-known results concerning stan-
dard deviations and cross correlations. With respect to volatility, this means that
the relative standard deviations of consumption and capital are smallest, invest-
ment has the largest relative standard deviation, the volatility of labor is of a
magnitude similar to that of the volatility of GDP, and the real wage, LP, and TFP
are approximately half as volatile as GDP. The correlation of consumption and
investment attains a value of about 0.5, thus being smaller than the respective
correlations of both variables with output.

The values of the coefficients of skewness might depend to some degree on the
sample chosen. Although this is also true of second moments, this dependence can
be expected to be more pronounced for third moments, because the variance of
moment estimators increases with the order of the moment considered. As a kind of
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FIGURE 2. Skewness of variables in samples of 162 observations starting t − 1 quarters
after 1954:1.

robustness check, we vary the sample under study and determine the coefficients
of skewness for each sample. We begin with a sample starting in 1954q1 and
ending in 1994q2. Then we increase the start and the end of the sample by one
quarter. We do so until the resulting sample ends in 2002q2.9 This implies that
the 33 resulting samples are 32 quarters shorter than the original sample.10 The
results of these calculations are presented in Figure 2.

Obviously, most coefficients broadly equal their respective values reported in
Table 1 for all samples. Only the positive skewness of capital increases strongly for
certain samples, but this might be explained by the small number of distinct values
for this series.11 Therefore, the results concerning capital should be considered with
caution. The skewness of both productivity series is moderately more pronounced
in all short samples than in the full sample. Interestingly, the coefficients of
skewness of consumption and the real wage are very close to each other in each
sample.

Summing up, we have found evidence that macroeconomic variables exhibit
different magnitudes of skewness. Capital shows weak positive skewness, whereas
consumption and the real wage feature weak negative skewness. GDP, LP, TFP,
and labor all exhibit at least moderate negative skewness. Finally, investment is
strongly negatively skewed.

3. THE MODEL

In this section, we will consider a business cycle model with kinked marginal
utilization costs that give rise to a jump in the elasticity of these costs if utilization
exceeds a certain threshold. Except for the kinked cost function, the model is
a standard RBC model. We will present its setup and its calibration and briefly
mention computational details concerning its solution.
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3.1. Economic Environment

The economy under consideration is populated by many identical infinitely lived
households. Households are assumed to have separable logarithmic preferences
over consumption and leisure. We further assume that labor is indivisible and that
employment lotteries exist, as suggested by Hansen (1985) and Rogerson (1988).
By doing so, we imply that real wages and consumption exhibit the same cyclical
behavior. Here this modeling strategy is motivated by the similarity of skewness
of these variables found in the previous section.

Because of the assumptions made, the momentary utility function of the stand-in
representative household takes the form

U (c̃t , ht ) = ln c̃t − ωht , (2)

where c̃t denotes consumption and ht denotes the ratio of time worked to total
disposable time in period t . Thus, 1 − ht equals the share of leisure time in period
t .

The household ranks alternative streams of consumption and leisure according
to the criterion function

∞∑
t=s

βt−sEs [U (c̃t , ht )] with 1 > β > 0, (3)

where β is the discount rate, and the operator Es denotes the expectation condi-
tional on information available at time t = s.

The production function is defined by

ỹt = zt (ut k̃t )
α(νtht )

1−α with 0 < α < 1, (4)

where zt is a stationary random variable that permits temporary changes in TFP
(henceforth simply productivity), ỹt denotes output, k̃t is the stock of capital, ln(ν)

is the constant growth rate of labor-augmenting technical progress, and ut is the
utilization rate of capital. Obviously, without further restrictions, the household
would choose a utilization rate that was as high as possible. The standard method
of ruling out this possibility is the assumption of utilization costs, which are
commonly modeled as a convex increasing function of the utilization rate. Many
authors, such as King and Rebelo (1999), choose the depreciation rate to be
determined by this cost function, so that the depreciation rate increases with higher
utilization. An alternative approach is used by Christiano et al. (2001) and Smets
and Wouters (2003), who model utilization costs in terms of foregone output. We
decide to pursue the former approach here, so that the resource constraint of the
economy is given simply by

ỹt = c̃t + x̃t , (5)
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where x̃t is gross investment. The model is transformed to a stationary one by
writing it in terms of the stationary variables ct = c̃t /ν

t , yt = ỹt /ν
t , kt = k̃t /ν

t ,

and xt = x̃t /ν
t .

The capital stock evolves according to

νkt+1 = {1 − [δ + g (ut )]} kt + xt , (6)

where δ+g(ut ) is the depreciation rate of capital. Thus, g(ut ) is the stochastic part
of the depreciation rate, and the function g(ut )kt denotes the costs of utilization.
These costs are assumed to be convex and increasing in ut .

Concerning the exogenous process for zt , we consider the first-order autore-
gressive process

ln zt = (1 − ρ) ln z̄ + ρ ln zt−1 + εt εt ∼ i.i.d. N (0, σ 2), (7)

where z̄ is constant and greater than zero, and εt is Gaussian white noise.
The share of time spent working cannot exceed total time, so the household

fulfills the time-endowment constraint ht ≤ 1. In addition, none of the variables
mentioned can become negative except for investment, and the transversality
condition given by

lim
t→∞ βt 1

ct

kt+1 = 0

must be fulfilled.
Maximizing the criterion function subject to the constraints presented leads to

the first-order conditions

ω = 1

ct

(1 − α)
yt

ht

,

1

ct

= β

ν
Et

(
1

ct+1

{
α

yt+1

kt+1
+ 1 − [δ + g (ut+1)]

})
,

and
∂g (ut )

∂ut

kt = α
yt

ut

. (8)

The last condition states that the marginal costs of utilization must equal the
marginal returns.

3.2. The Nonstochastic Steady State

The nonstochastic steady state of the economy is given by the values that the
variables adopt if the logarithm of productivity equals its unconditional mean ln z̄

for all t with certainty. For utilization and its cost, we impose the nonstochastic
steady-state values

ū = 1

and
g (ū) = 0,
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thereby implying that the nonstochastic steady state of the model is identical to the
nonstochastic steady state of an equivalent model with constant capital utilization.

3.3. Capacity Constraints and the Function of Utilization Costs

For an investigation of this economy, additional assumptions about the cost func-
tion g(ut )kt are necessary. If the model is log-linearized in order to solve it, one
does not have to specify a functional form for g(ut ), but only needs to determine
the elasticity of marginal costs with respect to utilization, given by

η =
ut

∂2 [g (ut ) kt ]

∂u2
t

∣∣∣∣
ut=ū

∂ [g (ut ) kt ]

∂ut

∣∣∣∣
ut=ū

.

However, because we aim at a numerical solution, we have to rely on a specific
functional form of g(ut ), which we choose to be

g (ut ) = α
ȳ

k̄

1

1 + η

(
u

1+η
t − 1

)
with η > 0,

where η must be positive to guarantee convexity of g(ut ). Note that this function
fulfills the requirement on g(ut ) with respect to its value at the nonstochastic
steady state. In addition, at the nonstochastic steady state with ū = 1, the first
derivative of g(ut ) is always equal to α ȳ

k̄
, independent of the value of η. Therefore,

we have that the first-order condition with respect to utilization, (8), which here
becomes

α
ȳ

k̄
u

η
t kt = α

yt

ut

, (9)

is satisfied for all possible values of η in the nonstochastic steady state.
The first-order condition (9) implies that when η goes to infinity, the marginal

costs of utilization also go to infinity if ut exceeds one, and are zero if ut is lower
than one. Thus, in this case, the household always sets ut equal to one and the
model is identical to a model with fixed utilization. If, in contrast, η is close to
zero, marginal costs hardly vary with utilization, and ut exhibits high volatility.

The assumption of a constant elasticity of marginal costs with respect to uti-
lization implies that the utilization rate can become infinitely large, so that even
in the short run, there is no upper bound on the supply of capital services. Thus, if
a positive shock to productivity occurs in a certain period, utilization can always
increase, independent of the size of the shock and the size of the capital stock. This
assumption seems problematic, because there are physical limits to many kinds
of capital services that cannot be exceeded. For example, machines employed in
production cannot be used for more than 24 hours per day. Upper bounds on the
services they can provide are obviously present. The same is true of most other
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FIGURE 3. Costs of utilization (left panel) and marginal costs of utilization (right panel)
with η2 = 0.39 and η1 = 1,000 (solid lines), and with η1 = η2 = 0.39 (dotted lines).

kinds of capital, such as land for agricultural production, where the amount of
crop per unit of land cannot be increased to infinity.

These reasons lead us to impose a nonconstant elasticity of marginal costs
with respect to utilization. We assume that there are two possible values for this
elasticity, and that they differ depending on the magnitude of the utilization rate
with respect to its nonstochastic steady-state value. That is, we assume that g(ut ) is
described by the function

g (ut ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α ȳ

k̄

1

1 + η1

(
u

1+η1
t − 1

)
if ut > 1

α
ȳ

k̄

1

1 + η2

(
u

1+η2
t − 1

)
if ut ≤ 1.

(10)

This function is related to the capacity constraint mentioned earlier by the value
of η1. If η1 goes to infinity, ut will never exceed one. Because, as stated earlier,
the first derivative of g(ut ) at the steady state is independent of η, the function
described by (10) is differentiable for all ut .12 In order to illustrate the possible
behavior of the costs of utilization, we plot two functions g(ut ) and two functions
∂g(ut )/∂ut in Figure 3. When kt equals 1, these functions correspond to the
costs and marginal costs of utilization, respectively. In each panel, one function is
characterized by a large increase in the elasticity with respect to utilization if the
utilization rate exceeds 100%, while the elasticity used for the other function is
constant.13

It should be noted that capacity constraints could also emerge for other reasons
than those mentioned.14 Moreover, although a relation between utilization and
depreciation is often assumed, the functional form of this relation given earlier is
only one among many potential candidates.15 Unfortunately, concerning the func-
tional form, there appears to be no empirical guidance in the literature. Therefore,
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TABLE 2. Calibrated parameters and nonstochastic steady-state values

α β δ ν ω η1 η2 ρ σ h̄

0.333 0.988 0.015 1.004 4.181 1000 0.39 0.985 0.00354 0.2

the only possibility for judging whether the assumptions made here with regard to
utilization costs are not unreasonable is a comparison of the model’s implications
with the empirical data. However, even if satisfactory results are obtained using
the functional form given by (10), this does, of course, not rule out the possibility
that other functional forms could generate similar outcomes. In the sensitivity
analysis conducted in Section 4.3, the function (10) will be modified in order to
gain further insights.

3.4. Calibration

Several parameters are calibrated according to the values reported in King and
Rebelo (1999). These include the share of capital income, α, which is set to 1/3,
the growth rate of the economy, ln(ν), which is set to 0.004, the share of time
devoted to work in the nonstochastic steady state, h̄, which is set to 20%, and
the discount factor, β, which is determined by β = ν/(1 + r), where r is the
average quarterly real interest rate, r = 0.065/4. The quarterly depreciation rate
in the nonstochastic steady state δ is set to 0.015, which is in line with the result
reported in Stokey and Rebelo (1995). As mentioned in Section 3.3, utilization in
the nonstochastic steady state ū is set to 1. With these values, the capital-to-output
ratio in the nonstochastic steady state equals 10.67,16 and the consumption-to-
output ratio attains a value of 0.80. Finally, because the value of z̄ affects neither
the dynamics of the model nor the great ratios (c̄/ȳ, k̄/ȳ, x̄/ȳ), but only the scale
of the economy, we normalize it to 1.

The choice of the parameter values of the process for productivity (7) depends on
the costs of utilization. We decide to set the persistence parameter ρ equal to 0.985.
This choice is based on Table 5 in King and Rebelo (1999), according to which
a value of 0.978 corresponds to the case of constant capacity utilization, and a
value of 0.989 corresponds to an almost costless variation of capacity utilization.
So we have chosen an intermediate value for ρ that appears appropriate in the
case of moderate marginal costs with respect to utilization. For η1, we choose a
value of 1,000, because this value turns out to be large enough to be considered
equivalent to a constraint that sets an upper limit to utilization. The values of η2

and σ are then determined by the requirement that the model should replicate
the standard deviation and skewness of output as measured by GDP. We find
that a value of η2 equal to 0.39 and a value of σ equal to 0.00354 fulfill these
requirements.

Table 2 summarizes the calibrated parameter and steady-state values.
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3.5. Solution

Because the model under study can be expected to exhibit pronounced asymmetries
as a result of the constraint on capacity utilization, a solution by log-linearization
would not be appropriate. In fact, any solution method imposing a smooth func-
tional form on the decision rules of the household could be problematic, because
the decision rules can be expected to be kinked at the point where the capacity
constraint starts to bind. Therefore, we solve the model by value-function iteration,
as was also done by Hansen and Prescott (2005).

This approach requires kt and zt to be discrete-valued variables. In the setting
of the maximization problem here, both variables are continuous. This problem is
addressed by the common approach of transforming kt and zt into discrete-valued
variables, i.e., by choosing grids that these variables lie on. The choice of the
number of grid points for kt and zt is subject to the trade-off between accuracy and
computing time. Although the choice of the number of grid points for kt is to some
extent arbitrary, the range of this grid must be chosen in such a way that it contains
the complete ergodic set, i.e., the set that kt does not leave once it has entered it.
For such a set to exist, zt has to be bounded. Concerning the AR(1)-process for zt ,
Tauchen (1986) proposes a discrete-valued approximation by an m-state Markov
chain, which evidently leads to boundedness of zt . Following Hansen and Prescott
(2005), we set m to 15 and choose the values attained by the Markov chain in such
a way that they cover b = ±2 standard deviations of the process for productivity
from ln(z̄). The grid for kt consists of 1,200 evenly spaced grid points. The values
ln zt can adopt, the corresponding states, and the transition matrix of the Markov
chain are given in the Appendix.

4. RESULTS

4.1. Summary Statistics

To find the moments implied by the model economy, we ran 50,000 simulations,
each one yielding 2,194 observations. We disregard the first 2,000 observations,
so that 194 observations remain. For every variable except the depreciation rate,
utilization, and utilization costs, we take logarithms and apply the HP-filter. In
addition to the variables contained in the model, we also report results for TFP
measured as if utilization and capital were constant and as if utilization were equal
to one, thus as

tfpt = yt

k̄αh1−α
t

.

This variable corresponds to the empirical measure of total factor productivity
given by (1). Henceforth, in the context of the model economy, we will refer to
tfpt as total factor productivity.17 The variable labor productivity is constructed as
lpt = yt/ht . This definition corresponds to the definition used for the calculation
of empirical labor productivity. The quantity 2/3 · lpt , of course, simply equals
the real wage wt . Concerning capital, we construct an annual variable kat with
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TABLE 3. Third and second moments

y c x ka h w lp tfp

Skewness
Model −0.42 −0.12 −0.68 0.07 −0.50 −0.12 −0.12 −0.31
Data −0.42 −0.11 −0.69 0.13 −0.49 −0.10 −0.35 −0.34

Std. dev.
Model 1.61 0.42 6.95 0.70 1.25 0.42 0.42 0.80
Data 1.61 0.71 5.22 0.74 1.78 0.95 0.85 0.80

Rel. std. dev.
Model 1.00 0.26 4.31 0.43 0.77 0.26 0.26 0.49
Data 1.00 0.44 3.23 0.46 1.11 0.59 0.53 0.50

Corr. with y

Model 1.00 0.90 0.98 0.98 0.90 0.90 0.98
Data 1.00 0.66 0.95 0.88 0.09 0.05 0.71

Corr. with x

Model 0.84
Data 0.53

Note: “Std. dev.” denotes “standard deviation”; “rel.” stands for “relative.”

t = 4, 8, . . . by considering only every fourth value of the quarterly capital series
kt in order to make the results from the model comparable to the empirical results.
The annual capital series is calculated prior to the application of the HP-filter.

Coefficients of skewness, standard deviations, relative standard deviations, and
correlations generated by the model economy are displayed in Table 3. For conve-
nience, we again show the respective values found in the empirical data. Standard
deviations are multiplied by 100.

Concerning the coefficients of skewness, the results of the model correspond re-
markably well to the empirical results for most variables. The differences between
the coefficients of skewness from the model and those from the empirical data do
not exceed 0.03 for the variables consumption, investment, real wage, labor, and
TFP. Moreover, it turns out that capital is the only positively skewed variable in
the model, attaining a coefficient of skewness only 0.06 smaller than its empirical
counterpart. The skewness of LP in the model is considerably less pronounced
than that in the data. The skewness of output in the model matches the empirical
skewness by construction, i.e., because of the choice of η2.

Concerning second moments, many variables from the model are less volatile
than their empirical counterparts, above all consumption, and the associated vari-
ables real wage and LP. In contrast to this, the empirical standard deviations of
investment, capital, and TFP are fairly well reproduced by the model. The strongest
deviations of simulated cross correlations from their empirical counterparts are
observed for the real wage and LP. The correlation of consumption and investment
equals 0.84, thereby exceeding its empirical counterpart by about 0.3. In light
of the results reported in Valderrama (2007), it is noteworthy that the model
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TABLE 4. Second and third moments of all models

y c, w, lp x ka h tfp u g(u) k z

Skewness
Cap. constr. −0.42 −0.12 −0.68 0.07 −0.50 −0.31 −1.22 −1.21 0.04 0.00
Const. util. −0.01 0.01 −0.18 −0.01 −0.02 0.00 −0.02 0.05 −0.01 0.00
Sym. util. −0.01 0.00 −0.21 −0.01 −0.02 −0.01 0.03 0.05 −0.01 0.00

Std. dev.
Cap. constr. 1.61 0.42 6.95 0.70 1.25 0.80 1.95 0.06 0.30 0.49
Const. util. 1.61 0.55 6.12 0.92 1.13 0.88 0.00 0.00 0.40 0.87
Sym. util. 1.61 0.41 6.59 0.69 1.24 0.80 2.64 0.08 0.30 0.41

Rel. std. dev.
Cap. constr. 1.00 0.26 4.31 0.43 0.77 0.49 1.21 0.04 0.19 0.31
Const. util. 1.00 0.34 3.80 0.57 0.70 0.55 0.00 0.00 0.25 0.54
Sym. util. 1.00 0.25 4.09 0.43 0.77 0.50 1.64 0.05 0.18 0.26

Corr. with y
Cap. constr. 1.00 0.90 0.98 0.98 0.98 0.61 0.61 −0.04 0.93
Const. util. 1.00 0.91 0.98 0.98 0.98 0.62 0.62 0.05 0.99
Sym. util. 1.00 0.93 0.99 0.99 0.99 0.56 0.56 −0.06 0.98

Corr. with x
Cap. constr. 0.84
Const. util. 0.85
Sym. util. 0.89

Note: “Std. dev.” denotes standard deviation, “rel.” stands for relative, “cap. constr.” stands for the model with
capacity constraint, “const. util.” for the model with constant utilization, and “sym. util.” for the model with
symmetric utilization.

reproduces the different magnitudes of the empirical skewness of consumption
and investment, although it overstates the correlation of these variables.

To investigate to what extent the coefficients of skewness of the model are caused
by the capacity constraint, we simulate two models without such a constraint. In
one model, we set η2 to 1,000, so that utilization becomes virtually constant.
The parameter ρ is set to 0.98 and the parameter σ to 0.00634.18 All remaining
parameters are unchanged. We will refer to this model as the model with constant
utilization. In the other model, we set η1 to 0.39, so that utilization can be varied,
but the marginal costs of utilization are not kinked at ut = 1, which means that
utilization can be expected to be approximately symmetric. In this model, the
parameter ρ is set to 0.988 and the parameter σ to 0.00292.19 This model will
be referred to as the model with symmetric utilization. Results of the simulations
with these two models and with the model with capacity constraint are presented
in Table 4. Obviously, in the models without capacity constraint, the skewness of
all variables except for investment is close to zero. The skewness of investment
equals about −0.18 in the model with constant utilization and about −0.21 in the
model with symmetric utilization. To the best of our knowledge, the skewness of
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investment in prototypical RBC models has not been documented in the literature
yet and seems at least noteworthy.

Hence, for the model with capacity constraint, we can conclude that it is indeed
only the capacity constraint that causes the skewness of all variables except invest-
ment and that strongly amplifies the negative skewness of investment. The most
pronounced negative skewness of the model with capacity constraint is observed
for the variables utilization and depreciation rate,20 with coefficients of about −1.2.
This result is not surprising, because, in contrast to the other variables, these two
variables virtually cannot exceed their nonstochastic steady-state values.

Second moments are hardly affected by the introduction of a capacity constraint.
Rather, they depend on the possibility of varying capital utilization. Therefore, one
often finds noticeable differences between the model with constant utilization and
models with varying utilization, whereas, in many cases, the model with capacity
constraint produces results that are similar to those for the model with symmetric
utilization. For most variables, the correlations with output are rather similar across
models. The correlation of consumption and investment also reaches similar values
for the models with capacity constraint and with constant utilization, whereas the
correlation is slightly greater in the model with symmetric utilization.

An interesting feature of the economy with capacity constraint is given by its
behavior in the stochastic steady state. In contrast to the nonstochastic steady state,
the stochastic steady state is characterized by uncertainty about future values of
productivity. That is, the model attains its stochastic steady state when productivity
is always at its steady-state level, but the household believes that productivity is
uncertain and evolves according to (7). Owing to uncertainty about future income,
precautionary saving in our models leads to a value of the capital stock that is
higher than its nonstochastic steady-state value. This increase is unrelated to the
existence of a capacity constraint. However, owing to the capacity constraint, the
stochastic steady-state value of capital increases further. This effect occurs because
the household loses the possibility of adjusting its production to new levels via
the variation of utilization as soon the capacity constraint is reached. Therefore,
the household seeks to prevent the constraint from binding, and it does so by
accumulating a larger capital stock. To assess the quantitative importance of the
additional capital accumulation, we report the stochastic steady-state values and
the mean values over all simulations for all models, as well as the nonstochastic
steady-state values of the models’ variables, in Table 5.

The values in the nonstochastic steady state are identical for all models. The
values in the stochastic steady state can be regarded as a kind of median, because,
in 50% of all cases, productivity is higher than its stochastic steady-state value.21

As a consequence, the other variables can be expected to lie above or below their
stochastic steady-state values in about 50% of all cases.

In the models without capacity constraint, the nonstochastic steady-state values
of all variables are very close to their counterparts in the stochastic steady state.
The increase in the capital stock due to precautionary saving is below 0.05% in
both cases. The existence of a capacity constraint, however, causes an increase
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TABLE 5. Stochastic steady-state and mean values

Deviations from nsss in %

Cap. constr. Const. util. Sym. util.

nsss level sss Mean sss Mean sss Mean

y 0.65 0.1 −0.2 0.0 0.1 0.0 0.1
c 0.52 0.2 0.1 0.0 0.1 0.0 0.1
x 0.13 −0.1 −1.3 0.0 0.2 0.0 0.0
k 6.97 1.5 1.6 0.0 0.2 0.0 0.3
h 0.20 −0.1 −0.3 0.0 0.0 0.0 0.0
w, 2/3lp 2.18 0.2 0.1 0.0 0.1 0.0 0.1
tfp 1.00 0.2 0.0 0.0 0.1 0.0 0.1
u 1.00 −1.0 −1.7 0.0 0.0 0.0 −0.1
100(δ + g(u)) 1.50 −2.0 −3.6 0.0 0.0 −0.1 −0.1

Note: “Cap. constr.” stands for the model with capacity constraint, “const. util.” for the model with constant utilization,
and “sym. util.” for the model with symmetric utilization. “nsss” denotes the nonstochastic steady state and “sss” the
stochastic steady state.

in the capital stock of 1.5%. Thus, the additional capital accumulation due to the
capacity constraint is much greater than the additional capital accumulation due
to the existence of uncertainty.

In contrast to the stochastic steady-state values, the means of the capital stock
in the models without capacity constraint moderately exceed the nonstochastic
steady-state value, namely by 0.2 to 0.3%. Given that stochastic steady-state
values can be thought of as median values and given that the skewness of capital
is close to zero, according to the results in Table 4, this result might appear
puzzling at first sight. However, the reason is simply that, in Table 5, we consider
levels, although in Table 4 we consider log-levels of all variables except for the
depreciation rate and utilization. Because the logarithm is a concave function,
variables in levels tend to have higher values of skewness than variables in log-
levels. Yet the effect of the log function on skewness appears to be rather small
for the variables considered here. In the model with capacity constraint, the mean
values of all variables that exhibit negative skewness according to the results in
Table 4 are lower than their respective values in the stochastic steady state.

Apart from capital, strong deviations of the stochastic steady state from the
nonstochastic steady state in the model with capacity constraint are found only
for utilization and, consequently, for the depreciation rate. To prevent the capacity
constraint from binding too often, in the stochastic steady state the household
chooses a utilization rate that is 1% lower than in the nonstochastic steady state,
leading to a decrease in the depreciation rate by 2%. On average, utilization is
1.7% lower and the depreciation rate is 3.6% lower than in the nonstochastic
steady state, so that the average depreciation rate equals about 1.45% instead of
1.5%.
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FIGURE 4. Decision rules.

4.2. Reasons for Skewness

Further insight into the behavior of the variables in the model with capacity
constraints can be gained by investigating the corresponding decision rules. These
rules are displayed in Figure 4. We present decision rules for all endogenous vari-
ables given the capital stock in period t and a level of productivity corresponding
to productivity in the states 1, 5, 8, 11, and 15 of the underlying Markov chain.22

As can be seen for all variables except capital, the decision rules are kinked. These
kinks are located at those values of the state variables kt and st where the kink in
the marginal utilization costs occurs. For capital, kinks exist as well, but they are
not visible because the slopes of the decision rules change only marginally and
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FIGURE 5. Differences between decision rules for ln(kt+1).

because the decision rules for different states are very close to each other. Yet the
kinks become visible looking at the differences between the decision rules for the
five states mentioned and the decision rule for state 8, as displayed in Figure 5.

Looking at the kinked decision rules, it becomes rather obvious that they give
rise to asymmetric behavior of the simulated variables. Suppose that the log
of the capital stock equals ln(ǩt ) = 1.95, which is a value slightly below the
nonstochastic steady state, and that state 8 of the Markov chain is present, i.e.,
productivity is at its steady-state value of 1, so that the economy is close to a
kink in the decision rules. If, in the next period, productivity increases because,
say, state 5 occurs, any control variable q grows by approximately ln(qt+1|st+1 =
5, ǩt )−ln(qt |st = 8, ǩt ), because the capital stock changes only by a small amount;
i.e., ln kt+1 ≈ ln ǩt . In an analogous manner, if productivity decreases in the next
period because state 11 occurs, q falls by approximately ln(qt+1|st+1 = 11, ǩt ) −
ln(qt |st = 8, ǩt ). Both possible changes of productivity have the same probability,
and both possible new values of log productivity have the same distance from zero,
which means that the shocks under consideration are symmetric. The reaction of
the control variables, however, is asymmetric, because the value of ln(qt+1|st+1 =
5, ǩt ) − ln(qt |st = 8, ǩt ) exceeds the absolute value of ln(qt+1|st+1 = 11, ǩt ) −
ln(qt |st = 8, ǩt ), as can be seen in the decision rules. Thus, E[qt+1|st = 8, ǩt ]
is skewed to the left. Similar reasoning applies for almost all values of the set
(kt , st ). Exceptions are given by very small and large values of kt , where the
utilization constraint either always or never binds, independent of the value of
st .23 It is also obvious that some variables, such as investment and utilization, are
more skewed than others, such as consumption and TFP. The ratio of, for example,
ln(qt+1|st+1 = 11, ǩt ) − ln(qt |st = 8, ǩt ) to the absolute value of ln(qt+1|st+1 =
5, ǩt ) − ln(qt |st = 8, ǩt ) is much higher for investment and utilization than for
consumption and TFP.

The decision rules also give an intuition for why cross correlations are hardly
affected by the introduction of the capacity constraint. First, note that the cross
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TABLE 6. Skewness with modified utility functions

Utility y c x ka h w, lp tfp u g(u) k

Original −0.42 −0.12 −0.68 0.07 −0.50 −0.12 −0.31 −1.22 −1.21 0.04
 = 1 −0.42 −0.12 −0.68 0.07 −0.50 −0.12 −0.31 −1.21 −1.20 0.04
 = 0 −0.43 −0.14 −0.69 0.06 −0.52 −0.11 −0.32 −1.21 −1.20 0.04
 = −1 −0.44 −0.16 −0.71 0.05 −0.53 −0.10 −0.32 −1.20 −1.19 0.03

correlations of the models with constant and with symmetric utilization are very
similar. Second, note that, in the economy with capacity constraint, the decision
rules are all kinked in the same region of the set (kt , st ), i.e., in the region where
the economy is on the verge of changing from one regime to the other regime. One
regime here is characterized by constant utilization, the other regime by variable
utilization. Because cross correlations are similar in both regimes, and because
all variables undergo a possible regime switch simultaneously, the resulting cross
correlations are approximately equal to their averages over both regimes.

According to the results in Table 3, some variables are more skewed than
others. Based on Figure 4, it is straightforward to give an explanation of why,
for example, the depreciation rate (i.e., the utilization costs) and utilization are
strongly negatively skewed. They are virtually bounded above, in contrast to the
other variables of the model. However, it is not self-evident why, for example,
output exhibits stronger skewness than consumption or why capital has positive
skewness.

One possible reason that consumption is less skewed than most other variables
could be given by the preferences of the household. Because its utility is logarith-
mic in consumption, its expected utility from consumption can be approximated
by

E [ln ct ] ≈ ln c̄ + E [ct − c̄]

c̄
− E

[
(ct − c̄)2

]
2c̄2

+ E
[
(ct − c̄)3

]
3c̄3

.

As this approximation shows, the household has a preference for positively skewed
consumption, because E[ln ct ] is increasing in E[(ct − c̄)3].

To investigate whether preferences can explain why consumption is less neg-
atively skewed than most other variables, we simulate the model with capacity
constraint using a modified momentary utility function. Instead of (2), we employ
the approximation

U (ct , ht ) = ln c̄ + (ct − c̄)

c̄
− (ct − c̄)2

2c̄2
+ 

(ct − c̄)3

3c̄3
− (ct − c̄)4

4c̄4
− ωht .

For the parameter , we consider the values 1, 0, and −1. The value of 1 is used
to check the validity of the approximation. The coefficients of skewness emerging
from these utility functions are presented in Table 6. We also show the coefficients
of skewness obtained with the original utility function (2).
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The approximation with  = 1 appears to be sufficiently exact. Differences
with respect to the results with the original utility function are hardly observable.
When the value of is  lowered to zero, i.e., when the household is indifferent to
skewness of consumption instead of preferring positive skewness, the skewness of
consumption indeed attains a lower value. However, the decrease is fairly small.
Instead of −0.12, the coefficient equals −0.14. When  is set to −1, so that the
household has preferences for negatively skewed consumption, the coefficient of
skewness decreases to −0.16. Thus, it can be concluded that preferences play, at
best, a minor role in the explanation of the skewness of consumption. Moreover,
they cannot explain differences among the magnitudes of skewness of different
variables. When  is set to values lower than 1, not only the skewness of con-
sumption, but also the skewness of output, investment, capital, and TFP, become
marginally smaller.

So, although the different magnitudes of skewness are obvious from looking at
the decision rules, we cannot offer satisfactory economic explanations for these
differences yet. The strong skewness of utilization and utilization costs due to
their quasi-boundedness may be regarded as the only exception. The topic of
possible reasons for the differing magnitudes of skewness is again addressed, but
not completely resolved, in the following sensitivity analysis. It therefore remains
to be scrutinized in future research.

4.3. Sensitivity Analysis

In the following, we will investigate how the reproduction of empirical third
moments by the model depends on certain modeling decisions or parameter values.
We focus on the function chosen for the utilization costs and on the additional
consideration of investment adjustment costs.24

Concerning the utilization cost function, we relax the capacity constraint and
set η1 to values ranging from 1 to 10, so that exceeding a utilization rate of 100%
becomes less costly. Moreover, the threshold of the utilization cost function (10)

is modified so that the elasticity of marginal costs with respect to utilization is
higher if ut > τ , where τ can now deviate from the nonstochastic steady-state
value τ = ū = 1 considered previously. We choose the values τ = 1.01 and
τ = 0.99, which correspond to deviations from τ = 1 of about half a standard
deviation of ut in the original model. Finally, we also allow for the presence
of symmetric investment adjustment costs, following the specification used by
Valderrama (2007), so that the new budget constraint is given by

yt = ct + xt + φ

2
kt

(
x̄

k̄
− xt

kt

)2

.

Thus, adjustment costs increase with deviations of the investment–capital ratio
from its value in the nonstochastic steady state.
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TABLE 7. Sensitivity analysis of skewness with respect to parameters of
adjustment- and utilization-cost functions

y c, w, lp x ka h tfp u g(u) k z

Capacity constraint
Original −0.42 −0.12 −0.68 0.07 −0.50 −0.31 −1.22 −1.21 0.04 0.00
η1 = 10 −0.40 −0.11 −0.66 0.07 −0.48 −0.29 −1.17 −1.16 0.04 0.00
η1 = 4 −0.36 −0.10 −0.63 0.06 −0.45 −0.26 −1.07 −1.05 0.04 0.00
η1 = 2 −0.31 −0.08 −0.59 0.06 −0.39 −0.22 −0.89 −0.87 0.04 0.00
η1 = 1 −0.22 −0.05 −0.49 0.03 −0.28 −0.15 −0.56 −0.53 0.02 0.00

τ = 1.01 −0.26 0.09 −0.47 0.07 −0.34 −0.14 −1.28 −1.26 0.04 0.00
τ = 0.99 −1.26 −0.72 −1.58 0.07 −1.34 −1.09 −2.73 −2.72 0.04 0.00

τ = 0.99, −0.42 −0.13 −0.68 0.06 −0.50 −0.31 −1.31 −1.29 0.04 0.00
η1 = 4

φ = 3 −0.23 −0.18 −0.33 0.00 −0.27 −0.20 −1.11 −1.10 0.00 0.00
φ = 10 −0.16 −0.16 −0.20 −0.02 −0.16 −0.16 −1.13 −1.12 −0.01 0.00

Constant utilization
Original −0.01 0.01 −0.17 0.00 −0.02 0.00 −0.02 0.05 0.00 0.00
φ = 3 −0.01 0.01 −0.12 0.00 −0.03 0.00 −0.02 0.05 0.00 0.00
φ = 10 0.00 0.01 −0.07 0.00 −0.02 0.00 −0.01 0.05 0.00 0.00

Symmetric utilization
Original −0.01 0.01 −0.21 −0.01 −0.02 0.00 0.03 0.05 −0.01 0.00
φ = 3 −0.01 0.00 −0.10 0.00 −0.03 0.00 0.02 0.03 0.00 0.00
φ = 10 0.00 0.00 −0.05 0.00 −0.02 0.00 0.02 0.03 0.00 0.00

Note: The original parameterization refers to η1 =1,000, τ = 1, φ = 0 in the case of the model with capacity
constraints, and to φ = 0 in the models with constant and symmetric utilization, respectively.

The results of the sensitivity analyses can be found in Tables 7 and 8. As
expected, the asymmetries of all variables decrease if η1 decreases. With a value
of η1 = 10, however, the coefficients of skewness are almost identical to those
obtained with η1 =1,000. This result illustrates that it is not necessary to im-
pose an upper bound for utilization, but it is enough to render high utilization
sufficiently costly, to replicate the empirical skewness coefficients. If η1 equals 1,
most skewness coefficients attain about half of the magnitudes observed with the
original model. So there is still a considerable amount of asymmetry generated by
a relatively moderate kink in the marginal costs of utilization.

For most variables, the results obtained with η1 = 1 are comparable in magni-
tude to those obtained with the kink being located at τ = 1.01 and η1 =1,000.
The major differences are given by the facts that, in the latter case, the utilization
rate is more strongly skewed and consumption is weakly positively skewed. If the
kink is located at τ = 0.99, the model generates pronounced asymmetries for all
variables except the capital stock. For example, the skewness of output roughly
triples compared to that in the original model.25
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TABLE 8. Sensitivity analysis of second moments with respect to parameters of
of adjustment- and utilization-cost functions

y c, w, lp x ka h tfp u g(u) k z rcx

Capacity constraint
Original 1.61 0.42 6.95 0.70 1.25 0.80 1.95 0.06 0.30 0.49 0.84
η1 = 10 1.63 0.42 6.99 0.71 1.26 0.80 1.99 0.06 0.31 0.49 0.85
η1 = 4 1.65 0.42 7.07 0.72 1.27 0.82 2.06 0.06 0.31 0.49 0.85
η1 = 2 1.68 0.43 7.18 0.73 1.30 0.83 2.19 0.07 0.32 0.49 0.86
η1 = 1 1.76 0.44 7.49 0.77 1.36 0.87 2.46 0.08 0.33 0.49 0.87

τ = 1.01 2.28 0.62 9.40 0.70 1.72 1.15 2.10 0.06 0.31 0.49 0.88
τ = 0.99 1.64 0.44 6.96 0.70 1.26 0.82 1.53 0.05 0.31 0.49 0.80

τ = 0.99, 1.71 0.44 7.36 0.72 1.33 0.84 2.03 0.06 0.31 0.49 0.84
η1 = 4

φ = 3 1.04 0.50 3.32 0.38 0.56 0.68 1.38 0.04 0.15 0.49 0.96
φ = 10 0.79 0.54 1.81 0.20 0.25 0.62 1.07 0.03 0.08 0.49 0.98

Constant utilization
Original 1.61 0.55 6.12 0.92 1.13 0.88 0.00 0.00 0.40 0.87 0.85
φ = 3 1.34 0.64 4.21 0.67 0.73 0.87 0.00 0.00 0.28 0.87 0.94
φ = 10 1.11 0.75 2.58 0.43 0.37 0.87 0.00 0.00 0.17 0.87 0.97

Symmetric utilization
Original 1.61 0.41 6.60 0.69 1.24 0.80 2.65 0.08 0.30 0.41 0.89
φ = 3 0.98 0.48 2.99 0.31 0.51 0.65 1.86 0.06 0.12 0.41 0.97
φ = 10 0.74 0.52 1.65 0.14 0.23 0.59 1.49 0.05 0.05 0.42 0.98

Note: The original parameterization refers to η1 =1,000, τ = 1, φ = 0 in the case of the model with capacity
constraints, and to φ = 0 in the models with constant and symmetric utilization, respectively. rcx denotes the
correlation of consumption and investment.

The foregoing results actually suggest that there might be other combinations
of τ and η1 giving rise to results similar to those obtained with the original model.
Indeed, choosing τ = 0.99 and η1 = 4 yields asymmetries comparable to those
with τ = 1 and η1 =1,000. So a utilization rate that is virtually bounded at
its nonstochastic steady-state value of 1 and a less pronounced kink at a lower
utilization rate are both specifications yielding results that are in line with empirical
asymmetries. Therefore, one should not overemphasize the importance of the
functional form and parameterization of the utilization costs in the original model.
Rather, the more general conclusion to be drawn from the sensitivity analyses is that
an appropriately calibrated increasing elasticity of the marginal utilization costs
is a good candidate for the explanation of business cycle asymmetries. However,
because the underlying idea of an upper limit to capital services is relatively easy
to motivate and to understand, and because various types and effects of capacity
constraints have been studied in the economic literature, this calibration might be
considered the most interesting and important one.
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Concerning the investment adjustment costs, it turns out that their presence
does not cause additional asymmetries per se, as indicated by the results obtained
with constant and with symmetric utilization. Rather, the adjustment costs lower
the asymmetries observed for investment. This result is likely to be due to the
decrease in the volatility of investment. Because we are actually considering the
(HP-filtered) logarithm of investment, strongly negative values are less probable
if the volatility is small.26

If investment adjustment costs are introduced into the model with capacity
constraint, this also leads to a decrease in volatility and, therefore, in the asymmetry
of investment. Although the asymmetry of utilization and utilization costs is
hardly affected, the asymmetry of most other variables considered also decreases
considerably. Since the volatility of these variables also decreases, and utilization
and utilization costs are the only variables considered that are not subject to the
logarithmic transformation, the reason for the decrease in the asymmetries of
the other variables is presumably the same as described earlier for investment.
Consumption, however, becomes moderately more skewed and volatile than in the
original model. This result is caused by the strong correlation of investment and
consumption in the presence of adjustment costs. For example, with φ = 10, this
correlation attains a value of 0.98. If two variables are almost perfectly correlated,
their skewness, obviously, also has to be very similar. The reason for the higher
correlation can be understood when the dynamics close to the kink of utilization
costs is considered. Whereas in the absence of adjustment costs, investment can
easily be adapted to smooth consumption, a greater burden of adjustment falls
on consumption if φ is large. To be more precise, with φ = 0 and a utilization
rate close to 100%, a positive productivity shock can be absorbed by strongly and
immediately increasing investment, and by increasing consumption smoothly by
smaller amounts in the current and subsequent periods. A negative productivity
shock of the same size can be absorbed by a decrease of investment larger in size
than the increase considered previously. Of course, the larger size is caused by
the comparatively stronger drop in output due to the asymmetric utilization costs.
Such reactions of investment become more costly if φ is larger than zero. Thus,
consumption then has to react more strongly to the productivity shocks and the
corresponding output changes on impact, leading to a stronger synchronization
of consumption and investment dynamics, and, consequently, to more skewed
and volatile consumption. Because the empirical asymmetries of consumption
and investment are rather distinct, the presence of investment adjustment costs
as considered by Valderrama (2007) thus tends to hamper the model’s ability to
reproduce these asymmetries.

5. CONCLUSION

In this work, we have analyzed the consequences of the existence of capacity
constraints for the asymmetries emerging from an otherwise prototypical RBC
model. The capacity constraint originates from the assumption of an upper bound
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on the utilization of capital, caused by kinked marginal utilization costs. We have
compared the asymmetries caused by a model with such a constraint to the asym-
metries present in the data, and we have found that the model is able to replicate the
asymmetries of most variables, i.e., of output, consumption, investment, capital,
labor, the real wage, and (measured) TFP very well. Only the skewness of LP is
more pronounced in the data than in the model.

To verify that it is the capacity constraint that causes the model’s asymmetries,
we have simulated two alternative models without constraint and found that only
investment exhibits noteworthy skewness. Comparing the model with capacity
constraint with the alternative models, we find that the existence of the capacity
constraint leads to increased capital accumulation and lower utilization. Compar-
ing the models with each other, we also note that the introduction of a capacity
constraint has negligible effects on standard deviations and cross correlations.

The differing magnitudes of skewness of the model’s variables can be inferred
from the corresponding decision rules, but it is difficult to find explanations for
these differences. Only the reason for the strong negative skewness of utilization
and utilization costs is obvious. The other differences in magnitudes of skewness
remain largely unexplained. Interestingly, the weak skewness of consumption is
found to be basically unrelated to the preference for positively skewed consump-
tion implied by the utility function.

Although capacity constraints for capital services can be motivated easily and
are studied frequently in the economic literature, it should be noted that other
utilization cost functions that also imply an increasing elasticity of marginal costs
with respect to utilization could reproduce empirical business cycle asymmetries
sufficiently well, too. The presence of investment adjustment costs as considered
by Valderrama (2007), however, tends to hamper the model’s ability to reproduce
empirical asymmetries, because these costs lead to a strong synchronization of
consumption and investment dynamics, whereas the empirical asymmetries of
these variables differ considerably.

Future research could address the question of the reasons for the differing
magnitudes of skewness in greater depth. In view of the results in Canova (1998),
it would, of course, also be interesting to investigate whether the skewness found
in the data and that produced by the model still coincide well if other detrending
procedures are used.

NOTES

1. See, for example, DeLong and Summers (1986) or Bai and Ng (2005).
2. It is understood that there are several other types of asymmetry that can be of interest, including

steepness and sharpness as considered, for instance, by Clements and Krolzig (2003). The type of
asymmetry that is associated with skewness is sometimes labeled deepness in the literature, a term
coined by Sichel (1993).

3. When we speak of third moments, we always refer to third standardized moments, i.e., skewness.
4. We set the smoothing parameter to the standard value of 14,400 for the monthly population

series. Then we construct quarterly values by taking averages of the resulting trend.
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5. In making the second assumption, we follow Cooley and Prescott (1995). The assumption of
constant utilization is not in line with the model presented later on. However, the aim here is not to
measure true TFP, but to use a simple empirical measure of TFP. This measure can then be compared
with a model-based measure that is constructed in the same way.

6. A brief survey of the different possibilities of calculating α may be found in Christiano (1988).
The value 1/3 is employed by King and Rebelo (1999), among others.

7. For the test, we use the Bartlett kernel as discussed by Newey and West (1987) and no prewhiten-
ing.

8. Bai and Ng (2005) stress that low power occurs in small samples with strong serial correlation.
Psaradakis and Sola (2003) state that low power is observed with detrended data.

9. For the quarterly capital series, the last three samples considered all end in 2001q4.
10. The length of 32 quarters was chosen because, according to Burns and Mitchell (1946), this

value corresponds to the maximum length of one business cycle. We can therefore be confident that
we have excluded at least one cycle for the first and the last sample.

11. The capital series has only 48 distinct values.
12. The conditions for the maximization by value-function iteration that will be employed to solve

the model do not require differentiability of the constraints. We could therefore also have directly
constrained ut to be less than or equal to one. However, we prefer the specification presented here,
because it is more flexible and nests the case of ut never being larger than one if η1 approaches infinity.
Moreover, we can consider a lower value of η1 in the sensitivity analysis.

13. The parameter values and the value for the ratio ȳ/k̄ chosen here correspond to those used later.
14. For example, in Gilchrist and Williams (2000), capacity constraints are the result of a putty-clay

technology.
15. Concerning the assumption of varying utilization rates and depreciation rates, see, for example,

Taubman and Wilkinson (1970).
16. This translates into a ratio of about 2.67 for annual values.
17. Remember that zt is simply labeled productivity.
18. As mentioned previously, a value for ρ close to 0.98 is suggested in King and Rebelo (1999) for

an economy with constant utilization. The value for σ was chosen to replicate the standard deviation
of GDP.

19. Again, a value for ρ equal to about 0.988 is suggested in King and Rebelo (1999) for an economy
with highly variable utilization, and the value for σ was chosen to replicate the standard deviation of
GDP.

20. The depreciation rate is given by δ + g(ut ). Because δ is constant, the central moments of the
depreciation rate such as skewness, standard deviation, and cross correlation are identical to the central
moments of g(ut ).

21. For productivity, the stochastic steady state is identical to the nonstochastic steady state.
22. The respective values of productivity are reported in the Appendix.
23. Of course, the reasoning presented cannot be applied to the decision rules with st = 1 and

st = 15, either.
24. Variations of the other model parameters, as well as of parameters related to the numerical

solution method, hardly affect the asymmetries produced by the model. The corresponding simulation
results are available upon request.

25. Although the changes with respect to skewness might seem large with respect to the apparently
small changes in τ , one should bear in mind that the standard deviations of ut , depending on the
calibration considered, only range from 0.015 to 0.021, so that the changes with respect to τ are
actually large as well.

26. This supposition is supported by the results of simulations with a higher value of σ not reported
here. In that case, the volatility and the asymmetry of investment both increase. Such a relation between
the variance and the skewness of a random variable being subject to a monotonic concave transformation
can be illustrated using the lognormal distribution. Suppose that the variable N has a normal distribution
with variance σ 2, so that eN is lognormally distributed. Then −eN , a monotonic concave transformation
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of N , has a negative skewness equal to −(eσ 2 +2)
√

eσ 2 − 1, which is decreasing in the variance σ 2. Of
course, the variance of −eN is increasing in σ 2. The logarithm is a monotonic concave transformation
as well, and the statistical relations described here are likely to be the reason that the skewness of the
logarithm of investment is less pronounced when investment becomes less volatile.

REFERENCES

Bai, J. and S. Ng (2005) Tests of skewness, kurtosis, and normality for time series data. Journal of
Business and Economic Statistics 23(1), 49–60.

Burns, A.M. and W.C. Mitchell (1946) Measuring Business Cycles. New York: National Bureau of
Economic Research.

Canova, F. (1998) Detrending and business cycle facts. Journal of Monetary Economics 41, 475–512.
Christiano, L.J. (1988) Why does inventory investment fluctuate so much? Journal of Monetary

Economics Volume 21, 247–280.
Christiano, L., M. Eichenbaum, and C. Evans (2001) Nominal rigidities and the dynamic effects of a

shock to monetary policy. Unpublished manuscript.
Clements, M.P. and H.-M. Krolzig (2003) Business cycle asymmetries: Characterisation and testing

based on Markov-switching autoregressions. Journal of Business and Economic Statistics 21, 196
– 211.

Cooley, T.F. and E.C. Prescott (1995) Economic growth and business cycles. In T.F. Cooley (ed.),
Frontiers of Business Cycle Research, chap. 1, pp. 1–38. Princeton, NJ: Princeton University Press.

DeLong, J.B. and L.H. Summers (1986) Are business cycles symmetrical? In R.J. Gordon (ed.), The
American Business Cycle: Continuity and Change, pp. 166–178. University of Chicago Press for
the National Bureau of Economic Research.

Gasser, T. (1975) Goodness-of-fit-tests for correlated data. Biometrika 62(3), 563–570.
Gilchrist, S. and J.C. Williams (2000) Putty-clay and investment: A business cycle analysis. Journal

of Political Economy 108(5), 928–960.
Goodwin, T.H. (1993) Business-cycle analysis with a Markov-switching model. Journal of Business

and Economic Statistics 11(3), 331–339.
Hansen, G.D. (1985) Indivisible labor and the business cycle. Journal of Monetary Economics 16, 309–

327.
Hansen, G.D. and E.C. Prescott (2005) Capacity constraints, asymmetries, and the business cycle.

Review of Economic Dynamics 8(4), 850–865.
Ireland, P.N. (2004) A method for taking models to the data. Journal of Economic Dynamics and

Control 28, 1205–1226.
Keynes, J.M. (1936) The General Theory of Employment, Interest and Money. Macmillan.
King, R.G., C.I. Plosser, and S.T. Rebelo (1988) Production, growth and business cycles: I. The basic

neoclassical model. Journal of Monetary Economics 21(2/3), 195–232.
King, R.G. and S.T. Rebelo (1999) Resuscitating real business cycles. In J.B. Taylor and M. Woodford

(eds.), Handbook of Macroeconomics, vol. 1B, chap. 14. Amsterdam: North-Holland.
Mitchell, W.C. (1927) Business Cycles: The Problem and Its Setting. New York: National Bureau of

Economic Research.
Neftci, S.N. (1984) Are economic time series asymmetric over the business cycle? Journal of Political

Economy 92(2), 307–328.
Newey, W.K. and K.D. West (1987) A simple, positive semi-definite, heteroskedasticity and autocor-

relation consistent covariance matrix. Econometrica 55(3), 703–708.
Psaradakis, Z. and M. Sola (2003) On detrending and cyclical asymmetry. Journal of Applied Econo-

metrics 18(3), 271–289.
Rogerson, R. (1988) Indivisible labor, lotteries and equilibrium. Journal of Monetary Economics

21(1), 3–16.
Sichel, D.E. (1993) Business cycle asymmetry: A deeper look. Economic Inquiry 31, 224–236.

https://doi.org/10.1017/S1365100512000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100512000260


92 MALTE KNÜPPEL
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APPENDIX: PARAMETERS OF DISCRETE PROCESS
FOR PRODUCTIVITY

The values ln zt can attain are given by

100 ln zt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4.103 if st = 1
3.517 if st = 2
2.931 if st = 3
2.345 if st = 4
1.758 if st = 5
1.172 if st = 6
0.586 if st = 7
0.000 if st = 8

, 100 ln zt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.586 if st = 9
−1.172 if st = 10
−1.758 if st = 11
−2.345 if st = 12
−2.931 if st = 13
−3.517 if st = 14
−4.103 if st = 15

,

with st being the state of the Markov chain with transition matrix P given by

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.74 .16 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.25 .59 .17 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.01 .24 .59 .17 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .01 .23 .59 .18 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .01 .22 .59 .18 .01 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .01 .22 .59 .19 .01 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .01 .21 .59 .20 .01 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .01 .20 .59 .20 .01 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .01 .20 .59 .21 .01 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .01 .19 .59 .22 .01 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .01 .18 .59 .22 .01 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .18 .59 .23 .01 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .17 .59 .24 .01

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .17 .59 .25

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .16 .74

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Element Pi,j of this matrix contains the transition probability Pr (st+1 = j |st = i ).
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