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Abstract

The third harmonic generation of a self organized nonlinear laser Eigen mode of a two-dimensional plasma channel with
complete electron evacuation from the inner region is investigated. The nonlinearities arise through the ponderomotive
force and relativistic mass variations, while the ions are taken to be immobile. The second harmonic ponderomotive
force produces electron density oscillations that beat with the oscillatory velocity due to the laser Eigen mode to
create a nonlinear current, driving the third harmonic. As a0 increases up to the threshold value amin, at which
complete electron evacuation begins in the inner region, the third harmonic amplitude rises rapidly. Above the
threshold, as a0 increases, the width of the inner region where there is no third harmonic current, increases and third
harmonic amplitude rises less rapidly. The conversion efficiency is found to be in reasonable agreement with the
experimental results.

Keywords: Eigen mode; Electron density oscillations; Ponderomotive force; Sustained plasma channel; Third harmonic
generation

1. INTRODUCTION

Ultrahigh intensity laser plasma interaction has evolved sev-
eral novel concept and applications, such as, laser-driven
electron accelerators (Tajima & Dawson., 1979; Sprangle
et al., 1988; Modena et al., 1995; Ting et al., 1997), X-ray
lasers (Burnett & Enright, 1990), fast ignitor inertial confine-
ment fusion (Tabak et al., 1994), ion Coulomb explosion,
etc. These applications require long laser propagation dis-
tances, in excess of Rayleigh length. Various mechanisms
have been demonstrated for the guiding of intense laser
pulses in plasmas (Kumarappan et al., 2005; Geddes et al.,
2005; Malka et al., 1995; Nikitin et al., 1997; Sprangle
et al., 1992; Verma & Sharma, 2009a; 2009b; Singh &
Singh, 2011). A Laser of intensity 5 × 1015 W/cm2 has
been channeled up to 3 cm in a preformed plasma waveguide
structure created by the hydrodynamic expansion (Durfee &
Milchberg, 1993). Jackel et al. (1995) guided laser pulse of
intensity 1016 W/cm2 using glass capillary waveguides in
vacuum and Ehrlich et al. (1996) used long cylindrical
plasma channel formed by a slow capillary discharge.
More detailed analyses of self-focusing and channeling of

a short relativistic laser pulse has been done by various
groups (Sprangle et al., 1992; Bulanov et al., 1995; Mora
& Antonsen, 1996; Sarkisov et al., 1996; Borisov et al.,
1992).

Sun et al. (1987) and Borisov et al. (1992) have studied the
nonlinear propagation of intense ultrashort cylindrically sym-
metric laser beam in cold underdense plasma, allowing for
complete electron evacuation on the axis. Macchi et al.
(2007) studied the propagation of an intense laser pulse in
an underdense, inhomogeneous plasma on the time scale of
several picoseconds. They addressed the effects of the ion
dynamics following the charge-displacement self-channeling
of the laser pulse. Pathak and Tripathi (2006) have studied
nonlinear eigen mode of a plasma channel and examined
its stability to stimulated Raman Scattering. However, the
treatment is limited to intensities where electron hole is not
created on the axis.

In this paper, we examine the issue of harmonic excitation
of a self guided nonlinear laser eigen mode in a plasma,
where complete electron evacuation occurs on the axis.
Needless to mention, harmonic generation is one of the
most dominating nonlinear effects induced by linearly polar-
ized intense short pulse laser in a plasma. Third harmonic is
particularly important as observed in several experiments
(Lin et al., 2006; Kuo et al., 2007; Sunstov et al., 2010;
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Ganeev et al., 2010; Yang et al., 2003). Liu et al. (1993) have
used the pump-probe technique to observe third harmonic
generation in a preformed plasma. Nitikant and Sharma
(2004) examined the resonant second-harmonic generation
of a Gaussian laser short pulse undergoing periodic self-
focusing in a preformed plasma. Ganeev et al. (2010)
experimentally observed the third harmonic generation
of picosecond and femtosecond laser pulses in plasma
plumes. They showed that the technique can be used for gen-
eration of harmonics in the shorter wavelength range. Yang
et al. (2003) have obtained an efficiency conversion greater
than 0.1 percent of a strong third-harmonic emission from
a plasma channel that is formed by self-guided propagation
of femtosecond laser pulses in air. Similarly, Sunstov et al.
(2010) studied the third-harmonic generation in air by a fila-
mented femtosecond infrared laser pulse propagating through
a thin plasma channel. Verma and Sharma (2009a; 2009b)
have studied third harmonic generation by a finite spot size
laser in a tunnel ionizing gas with density rising in a stepwise
manner. Gupta et al. (2007) have investigated the generation
of plasma wave and third harmonic generation at ultra relati-
vistic laser power and obtained power of the third harmonic
generation. Garg and Tripathi (2010) have studied resonant
third harmonic generation in a semiconductor slab with den-
sity ripple of wave number q. Verma and Sharma (2011)
obtained the mode structure of right circularly polarized non-
linear laser Eigen mode in a self created plasma channel in
the presence of an axial magnetic field and Ghorbanalilu
(2012) studied second and third harmonics generation in a
strongly magnetized dense plasma.
Here we develop a two-dimensional slab model for non-

linear eigen mode of a ponderomotive force driven plasma
channel, with perfect electron hole on the axis and study
third harmonic generation of the eigen mode. The relativistic
mass increase is self consistently incorporated while ions are
taken to be immobile. In the axial region, the laser pondero-
motive force exceeds ion space charge force on electrons,
hence complete electron evacuation up to a width is obtained.
Beyond this width, the ponderomotive force is balanced by
space charge force. The relativistic mass nonlinearity adds
to non-uniformity of the channel. The second harmonic
component of ponderomotive force induces longitudinal
oscillatory velocity on electrons and gives rise to second har-
monic electron density perturbation. The latter couples with
oscillatory velocity due to the laser to produce a nonlinear
third harmonic current giving third harmonic radiation.
In Section 2, we study the mode structure of two-

dimensional laser eigen mode in the self created plasma
channel. In Section 3, we study the third harmonic generation
of the self consistent laser eigen mode and estimate its effi-
ciency. The results are discussed in Section 4.

2. NONLINEAR LASER EIGEN MODE

Consider a singly ionized cold collionless plasma of uniform
electron density n0

0. A two-dimensional intense short pulse

laser propagates through it along ẑ with fast phase variation
as,

E = ŷAT (x)e
−i(ωt−kzz). (1)

The duration of the pulse is larger than the electron plasma
period but much shorter than the ion plasma period, so that
the ions remain immobile. We look for a suitable profile of
AT (x) that would propagate without convergence or diver-
gence and allow AT to acquire relativistically large values.
The laser imparts oscillatory velocity to electrons, �v =
eE/miωγ, where γ =

����������
1+ a2/2

√
, a = e|AT |/mωc, − e and

m are the electronic charge and rest mass, and c is the
speed of light in vacuum. The laser exerts a ponderomotive
force on electrons,

Fp = e∇fp, (2)

where fp = −(mc2/e)(
����������
1+ a2/2

√
− 1). For an eigen mode,

field amplitude does not change with z, hence the pondero-
motive force has only x− component. It pushes the electrons
outward (to higher values of |x|) producing a space charge
field Es=−∇fs. The radial movement of electrons takes
place as long as �Fp > e�Es. On the time scale of a plasma
period ω−1

p , a quasi-steady state is reached when Fp= eEs,
or fs=−fp. From the Poisson’s equation,

∇2fs = 4πe(ne − n00), (3)

one may write, using fs=−fp, the modified electron
density

ne = n00 −
1
4πe

∇2fp, (4)

where n00 is the ion density (equal to unperturbed electron
density). Since, ne cannot be negative, Eq. (4) is valid only
as long as

n00 >
1
4πe

∇2fp. (5)

Thus, the electron density in the channel can be written as,

ne =
0 for x< r0p
n00 − 1

4πe∇
2fp for x> r0p

{
, (6)

where r0p is the value of x at which

∂2

∂x2

��������������
1+ |Ey|2e2

2m2ω2c2

√ ∣∣∣∣∣∣
x= r0p

= −ω2
p/c

2, (7)

where ωp =
�����������
4πn00e

2/m
√

= kpc. One may note that the elec-
tron density increases from zero at |x|= r0p to higher values
as |x| increases.

K.K.M. Kumar & V.K. Tripathi164

https://doi.org/10.1017/S0263034612000985 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034612000985


For x< r0p (for a symmetric mode), the laser field Ey may
be written as,

Ey = A0cos(αx)e
−i(ωt−kzz), (8)

where A0 is the amplitude of the laser at x= 0 and
α = ��������������(ω2/c2) − k2z

√
. For x> r0p, Ey is governed by the

wave equation

∂2

∂x2
Ey + ω2

c2
1− ω2

p

ω2

ne
γn00

( )
− k2z

[ ]
Ey = 0. (9)

The term ω2
p(ne/γn00) in the wave equation arises due to the

contribution of current density, �J = −nee�v driven by the
laser pulse and �v(= ŷeEy/miωγ) is the oscillatory velocity
imparted by the laser.
Using Ey from Eq. (1) in Eq. (9), writing AT= A eif with A

and f real, and separating out the real and imaginary parts of
Eq. (9), we obtain

d

dx
A2 df

dx

( )
= 0 ⇒ A2 df

dx
= constant = C1,

d2A

dx2
− C2

1

A3
+ ω2

c2
1− ω2

p

ω2

ne
γn00

( )
− k2z

[ ]
A = 0. (10)

One may multiply Eq. (10) by e/mωc and write it for normal-
ized amplitude a= eA/mωc as,

d2a

dx2
− C2

1

a3
+ ω2

c2
1− ω2

p

ω2

ne
γn0

( )
− k2z

[ ]
a = 0. (11)

Using the value of ne/n0
0 from Eq. (4),

ne
n00

= 1+ c2

2ω2
p

a����������
1+ a2/2

√ d2a

dx2
+ 1

(1+ a2/2)3/2
da

dx

( )2
( )

, (12)

Eq. (11) can be written as

d2a

dx2
− C2

1

a3
(1+ a2/2)− a

2(1+ a2/2)
da

dx

( )2

+ ω2

c2
1− ω2

p

ω2
����������
1+ a2/2

√
( )

− k2z c
2

ω2

[ ]
(1+ a2/2)a = 0.

(13)

As x→∞, the nonlinear terms vanish and a→ 0. The
equation will remain well behaved only when C1= 0. At
x= r0p, ne/n0

0= 0, Eq. (12) gives

d2a

dx2
= − 2

����������
1+ a2/2

√
a

ω2
p

c2
+ 1

2(1+ a2/2)3/2
da

dx

( )2
[ ]

, (14)

while from Eq. (11), on putting ne/n0
0= 0, and C1= 0, we

get

d2a

dx2
= ω2

c2
− k2z

( )
a. (15)

Comparing Eq. (14) and (15), we obtain,

1

2(1+ a2/2)3/2
da

dx

( )2

= ω2

c2
− k2z

( )
a2

2
����������
1+ a2/2

√ − ω2
p

c2
. (16)

We want a and da/dx to be continuous at x= r0p, hence

a = a0cos(αr0p),

da

dx
= −a0αsin(αr0p).

(17)

Using these in Eq. (16) we get an equation governing r0p,

a20α
2sin2(αr0p)

2(1+ (a20/2)(cosαr0p)
2)3/2

= (ω2/c2 − k2z )a
2
0cos

2αr0p

2
�����������������������
1+ (a20/2)(cos

2αr0p)
√ − ω2

p

c2
,

(18)

One must choose kz< ω/c, ωp to be small and a0 such that
the right hand side is +ve. Eq. (18) can be written as,

α2c2

ω2
= 2ω2

p

ω2

�����������������������
1+ (a20/2)cos

2(αr0p)
√

a20cos
2(αr0p)

+ (α2c2/ω2)tan2(αr0p)

1+ (a20/2)(cos
2(αr0p)

.

(19)

To obtain r0p and α explicitly for a given ωp/ω, we proceed
as follows. At some large value of x we chose a small value
of a. Now pick a value of ckz/ω and take da/dx=−α′a,
where α′ = (k2z + (ω2

p/c
2) − (ω2/c2))1/2. Solve Eq. (13)

backward to smaller x, up to a point where ne= 0, i.e.,
Eq. (16) is satisfied. Call this point x= r0p. At this point,
the continuity conditions (17) demand, (1/a)(da/dx)=
−αtan(αr0p). If this condition is not met, we try a different
value of ckz/ω and repeat the same procedure until this con-
dition is satisfied. Once we get a suitable ckz/ω and have r0p,
α, Eq. (19) gives the value of a0.

We have plotted the hole half width of the electron (equiv-
alent to hole radius) r0pωp/c with a0 in Figure 1 and ckz/ω
with a0 in Figure 2. The hole radius increases rapidly with
a0 in the range of a0→ 1–4 with a strong dependence on
ωp/ω and tends to saturate for larger values of a0. With in-
crease in ωp/ω, the electron density on the shoulders of the
channel increases resulting in considerable reduction in chan-
nel radius. From Figure 1 one may note that beyond a certain
value of a0(= amin) the electrons are completely removed
from the axis forming an electron hole. The value amin
increases with increase in ω/ωp and electron evacuation
does not occur for amin< 1. With increase in laser amplitude,
as the hole size increases, there is corresponding reduction in
the phase velocity of the eigen mode (see Fig. 2). This is be-
cause the effective refractive index increases with increase in
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laser amplitude a0. The dispersion relation is plotted in
Figure 3 for a0= 2(dot), 3(solid). One may note that the
eigen frequency shows a monotonous increase with wave
vector of the mode with a strong dependence on a0. For ω/
ωp= 1.2, kzc/ωp= 0.525 and a0= 2, the phase velocity of
the eigen mode turns out to be ω/kzc= 2.25 and the value

of ω/kzc decreases with a0 as mentioned earlier. Figure 4
shows the mode structure, |a/a0|

2 versus normalized distance
kpx, for a0= 3, ω/ωp= 1.2, kzc/ωp= 0.9 and kpr0p= 1. The
eigen mode field varies cosinudally inside the channel
(shown by solid line) and starts decaying from channel
boundary (shown by dashed line) at kpx= kpr0p= 1. The
mode intensity |a/a0|

2 falls off to half of its axial value at
kpr0p= 1. The intensity decreases more rapidly inside the
electron hole and near the channel boundary. Outside the
channel, it decreases slowly. The value of |a|2 reduces to
1/10 of its axial value at kpx= 1.5.
The power contained in the eigen mode per unit y width is,

P = m2c4ω2e0
2e2

∫
∞
0 |a|2dx. (20)

where |a|2 is the laser eigen mode intensity obtained by sol-
ving Eq. (13) as mentioned earlier. Multiplying both sides
of Eq. (20) by c/ωp, one obtains the normalized power,

Pc/ωp

P0
= ∫

∞
0 |a|2dx =∫

r0p
0 |a|2dx+ ∫

∞
r0p

|a|2dx. (21)

where P0 = (ω2/ω2
p)(m2c5e0/2e2) = 3.47 ω/ωp

( )2 × 109W
and x→ xωp/c. Figure 5 shows the variation of normalized
power (Pc/ωp)/P0 with a0. The normalized power
(Pc/ωp)/P0 varies almost linearly with a0. For a0= 1.5,
ωp/ω= 0.83, the power turns out to be Pc/ωp =
1.6 ω/ωp

( )2 × 1010W . Hence for a0= 1.5, the power
obtained is slightly less than the critical power

(Pc = 1.78 ω/ωp

( )2 × 1010W) needed for the formation of
electron hole. Thus for the electrons to be completely re-
moved from the axis, a0 must be kept higher for the same
value of ωp/ω such that the condition P/Pcr≥ 1 is achieved.
Increasing the value of a0 from 2 to 5 the normalized power
(Pc/ωp)/P0 increases by a factor of 2. How ever with in-
crease in ωp/ω, (Pc/ωp)/P0 decreases, so as r0p. For a0=
5, ωp/ω= 0.83 and r0p= 1.38c/ωp, the normalized power
(Pc/ωp)/P0 turns out to be 9.0058, which is very close to

Fig. 2. Variation of kzc/ω (inverse of phase velocity of eigen mode) with a0
for ω/ωp= 1.2.

Fig. 1. Variation of normalized channel radius r0pωp/c with laser amplitude
a0 for ωp/ω= 0.86 (dot) and 0.83 (solid).

Fig. 3. Variation of ω/ωp with kzc/ωp for a0= 2 (dot) and 3 (dash).

Fig. 4. Variation of |a/a0|
2 with kpx for a0= 2, ω/ωp= 1.2, kzc/ωp= 0.9,

and kpr0p= 1.

K.K.M. Kumar & V.K. Tripathi166

https://doi.org/10.1017/S0263034612000985 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034612000985


the value obtained by Sun et al. 1987. Hence, the power con-
tained in the eigen mode for a0= 5 is Pc/ωp =
3.948 ω/ωp

( )2 × 1010W , exceeding the critical power Pcr by
a factor of 2.

3. THIRD HARMONIC GENERATION

The laser eigen mode (Ey) propagating through the plasma
channel with density profile given by Eq. (6) exerts a
second harmonic ponderomotive force on electrons,

F2ω = −(1/2)ev
→
×B = −ẑ

e2kzE2
y

2miω2γ
. (22)

Using this in the equations of motion and continuity one ob-
tains the oscillatory velocity �v2ω and density n2ω.

�v2ω = − F2ω

mi2ωγ
= −ẑ

e2kzE2
y

4m2ω3γ2
, (23)

n2ω = nekzvz
ω

= − nee2k2z E
2
y

4m2ω4γ2
. (24)

The density perturbation n2ω couples with oscillatory velo-
city �v to produce nonlinear current density at the third harmo-
nic frequency (3ω),

JNL = −(1/2)n2ωev
→ = −ŷ

ω2
p(ne/n

0
0)k

2
z c

2

8iω4γ2
a2ωe0Ey, (25)

where a= e|Ey|/mωc. The nonlinear third harmonic current
density produces third harmonic electric field E3ω. This
field produces self consistent current density JL3ω,

JL3ω = i
n00e

2E3ω

3mωγ
. (26)

The wave equation governing E3ω can be deduced from

Maxwell’s equations,

∇ × E3ω = 3iωB3ω, (27)

∇ × B3ω = −3iωμ0(J
NL + JL3ω)− i

3ω
c2

E3ω. (28)

Since JNL is parallel to ŷ (cf. Eq. (25)), E3ω is also parallel to
ŷ. Defining a3ω= e E3ωy/mωc and taking fast t,z variation as
ez
−i(3ωt−k3zz), we obtain from Eqs. (25)–(28),

d2a3ω
dx2

+ 2ik3z
∂a3ω
∂z

+ 9ω2

c2
− ω2

p(ne/n
0
0)

c2γ
− k23z

( )
×

a3ω = 3
8
a3(kzc/ω)

2
ω2
p(ne/n

0
0)

γ2c2
.

(29)

One may note that the nonlinear third harmonic source cur-
rent density is finite only in the outer region |x|> r0p. It ex-
cites a number of eigen modes in the channel at the third
harmonic. We consider the excitation of the fundamental
mode of the third harmonic that has the mode structure simi-
lar to that of the pump laser,

a3ω = eE3ωy/mωc = A3ω(z)F(x)e
−i(3ωt−k3zz), (30)

F(x) = a0cos(αx) for 0< |x|< r0p
a(x) for |x|> r0p

.

{
(31)

where k3z =
���������
9ω2

c2 − α2
√

.

Substituting Eq. (30) in (29), multiplying the resulting
equation by F(x)

∗
dx and integrating from−∞ to∞, we obtain,

∂A3ω

∂z
− iβA3ω = 3

16ik3z

kzc

ω

( )2ω2
p

c2
Ge−i(3kz−k3z)z, (32)

where β = 1
2k3z

8ω2

c2 + k2z − k23z

[ ]
, G = ∫

∞
−∞a3(x)((ne/n00)/γ

2)F(x)∗dx
∫
∞
−∞|F(x)|2dx .

Effectively the integral in the numerator of G is the sum of
two integrals one with limits −∞ to −r0p and then from r0p
to ∞ as there are no electrons (ne= 0) in the inner region.
One may solve Eq. (32) on taking ∂/∂z=−iδ, δ= (3kz−
k3z). Hence,

A3ω(z)

= 3(kzc/ω)2Ge−i(β+3kz−k3z)z

16[8(ω/ωp)2 + (kzc/ωp)2 − 3(k3zc/ωp)2 + (6k3zc/ωp)(kzc/ωp)]
,

(33)

a3ω
a0

∣∣∣∣
∣∣∣∣2= 3(kzc/ω)2G

16[8(ω/ωp)
2 + (kzc/ωp)

2

− 3(k3zc/ωp)
2 + (6k3zc/ωp)(kzc/ωp)]

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

2

. (34)

In the fundamental mode, the amplitude of the third harmonic
is maximum at the channel axis. The efficiency of the third har-
monic shows a strong relationship with laser amplitude a0 and

Fig. 5. Variation of the normalized power (Pc/ωp)/P0 with a0 for ω/ωp=
1.2 and kzc/ωp= 0.9.
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frequency ω. Figure 6 shows the variation of axial amplitude of
the third harmonic with normalized laser frequency ω/ωp for
a0= 3. With increase in normalized laser frequency ω/ωp

the fundamental and third harmonic wave vectors kzc/ωp,
k3zc/ωp(≈ 3ω/ωp) and inverse of the phase velocity kzc/ω in-
creases. Hence the denominator in Eq. (34) decreases steadily,
whereas the numerator monotonously increases with ω/ωp.
The third harmonic efficiency |a3 ω/a0|

2 at constant a0 shows
a gradual increase in the range of ω/ω→ 1.1–1.3 and increases
bit faster beyond ω/ωp= 1.3. Beyond ω/ωp= 1.3 the denomi-
nator in Eq. (34) attains a fairly constant value.
From Figure 7 one may note that the efficiency gradually in-

creases with the laser amplitude a0 for ω/ωp= 1.2. However
with the increase in a0, the cavitation radius r0p increases and
increasing r0p adversely effects the growth of third harmonic ef-
ficiency |a3ω/a0|

2. But the laser intensity amplitude a20 is predo-
minant both inside and outside the channel. Hence with
increase in the laser amplitude a0 the lowering of third harmo-
nic efficiency due to increasing r0p can be compensated. How-
ever beyond a0= 3, the channel radius r0p tends to saturate and
the third harmonic efficiency grows with a0.

To validate the efficacy of our analytical calculation we
compare our results with the experimental results obtained
by Kuo et al. (2007). Kuo et al. (2007) have experimentally
demonstrated the enhancement of relativistic third-harmonic
generation in both uniform and rippled density plasma wave-
guide using linearly polarized laser beam of amplitude a0=
1. For the axially uniform channel case, they have obtained
an efficiency of 1.1 × 10−8 at plasma density n00= 4.8 ×
1018 cm−3. For a comparison, we may calculate the conversion
efficiency from Eq. (31) for the parameters: ωp/ω0.05 (corre-
sponding to n0

0= 4.8 × 1018 cm−3 at 1μm laser wavelength)
and a0= 1.5. The conversion efficiency |a3ω/a0|

2 of third har-
monic for the aforementioned parameters turns out to be
1.95 × 10−8, which are within a factor of 2 from Kuo et al.
(2007). However the efficiency of the third harmonic can be
improved by increasing the laser frequency or by increasing
the laser amplitude a0 as shown in Figures 6 and 7.

4. CONCLUSIONS

A self consistent non-paraxial formalism of laser guiding in a
self created channel with a perfect hole in the interior, devel-
oped here reveals that inside the hole, in two dimensions, the
laser field is sinusoidal in x while its amplitude falls off with
x beyond x= r0p. The radius of the hole r0p increases with
normalized laser amplitude and tends to saturate for large
values of a0. The frequency of the eigenmode ω increases
with wave vector kz with a strong dependence on laser ampli-
tude a0. The power contained in the laser eigen mode is
found to vary almost linearly with a0
The laser eigen mode produces linearly polarized third

harmonic outside and inside the electron cavity. The conver-
sion efficiency of the laser eigen mode into the fundamental
radial eigen mode of the third harmonic |a3 ω/a0|

2 shows a
gradual increases as ω/ωp increases from 1.1 to 1.3 and shar-
ply increases beyond ω/ωp= 1.3. The third harmonic con-
version efficiency increases with a0 more than linearly. For
the parameters of the experiment by (Kuo et al., 2007) the con-
version efficiency in a unrippled plasma calculated by our
model is in reasonable agreement with the experimental result.
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