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WELFARE EFFECTS OF PATENT
PROTECTION IN A
SEMI-ENDOGENOUS GROWTH
MODEL

TATSURO IWAISAKO
Osaka University

This paper examines how strengthening patent protection affects welfare in a nonscale
quality-ladder model, which was developed by Segerstrom [American Economic Review
88, 1290–1310] and generalized by Li [American Economic Review 93, 1009–1017]. In
the Segerstrom–Li model, patent protection creates no distortion in static allocation among
the production sectors. In order to examine the welfare effects of strengthening patent
protection adequately, we incorporate a competitive outside good into the Segerstrom–Li
model. In the general model, we derive the welfare-maximizing degree of patent
protection analytically by utilizing a linear approximation of the transition path. The result
shows that the welfare-maximizing degree of patent protection is weaker when the market
share of the outside good is positive than when it is zero. In other words, disregarding the
static distortion that patent protection creates leads to excessive patent protection.
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1. INTRODUCTION

Since the TRIPS (Trade-Related Aspects of Intellectual Property Rights) agree-
ment was signed in 1994, patent protection has been strengthened in many coun-
tries. However, strengthening patent protection has opposing welfare effects. On
the one hand, it promotes research and development (R&D) activity, and conse-
quently increases welfare. On the other hand, it also raises the price of the good
based on the technology protected by patents, and reduces welfare. Therefore,
one needs to examine whether strengthening patent protection actually improves
welfare and derive the welfare-maximizing level of patent protection. A number of
studies have already examined this using an endogenous growth framework [e.g.,
Iwaisako and Futagami (2003), Kwan and Lai (2003), Futagami and Iwaisako
(2007), Lin (2015)]. However, these studies all used growth models including
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a scale effect property, which is largely inconsistent with the existing empirical
evidence. Thus, in this paper, we reexamine the welfare effects of strengthen-
ing patent protection in a growth model without scale effects. In particular, we
employ the nonscale quality-ladder model developed by Segerstrom (1998) and
generalized by Li (2003), which has been commonly used in various analyses.1

However, we face two challenges in examining the welfare effects of strength-
ening patent protection in the Segerstrom–Li model. First, in reality, strengthening
patent protection promotes innovation by increasing the monopoly power of paten-
tees. This in turn creates static distortions to resource allocation. However, in the
Segerstrom–Li model, patent protection creates no distortion in the static allocation
among production sectors because the sectors are symmetric. Therefore, in order
to examine the welfare effects of patent protection appropriately, we add a good
that is not protected by patents and is supplied competitively. We refer to such a
good as an “outside good”. Note that competitive outside goods are ubiquitous
in a real economy, leisure being the standard example. Introducing the outside
good into the Segerstrom–Li model leads us to a generalized model where patent
protection creates a distortion in the static allocation between the production of the
differentiated goods and of the outside good and where a stronger patent protection
lowers the production volume of the differentiated goods below its optimal level.
Second, in most nonscale growth models, the convergence to a new steady state is
not instantaneous. Thus, one needs to take into account the adjustment dynamics to
properly assess the welfare effects of a policy change.2 In this paper, we use Judd’s
(1982) method as in Helpman (1993) to analytically examine how strengthening
patent protection affects welfare. In particular, we derive the welfare-maximizing
patent breadth.3 We find that, in the presence of an outside good, the welfare-
maximizing patent breadth is necessarily narrower than in its absence.

Most closely related to our work is O’Donoghue and Zweimüller (2004), who
examine the welfare-maximizing patent breadth in a quality ladder model with
a competitive outside good.4 In Appendix 3, they extend the analysis to a non-
scale version of their model but, for simplicity’s sake, remove the outside good.
Furthermore, they focus on the sole steady state. Other studies also examine the
welfare effects of patent protection in a nonscale growth model. Futagami and
Iwaisako (2007) examine in Section 5 the welfare effects of extending patent
length in a nonscale variety expansion model. However, they do not examine
the welfare effects during the transition. Lin and Shampine (2018) examine the
welfare effects of extending patent length along the transition path in a nonscale
variety expansion type growth model. However, they do this only numerically.
Therefore, the present paper is a significant contribution to the nonscale growth
model literature.5 In addition, unlike these earlier studies, we base our analysis on
a very well recognized nonscale quality-ladder model that has been applied to the
analysis of various issues.6

The remainder of the paper is structured as follows. Section 2 describes the
model and Section 3 derives the equilibrium path. Section 4 considers the effect
of stronger patent protection on welfare. Section 5 provides concluding remarks.
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2. THE MODEL

As stated in the introduction, we conduct a welfare analysis of strengthening patent
protection using a generalized version of the Segerstrom (1998) and Li (2003)
model, where patent protection creates static distortions. We employ basically the
same notation as Segerstrom (1998) and Li (2003), but add some new variables
and parameters.

2.1. Consumers and Workers

As in the Segerstrom–Li model, there is a continuum of differentiated goods, whose
qualities are improved by innovations. As detailed below, the firm that invents the
state-of-the-art quality of a differentiated good at a point of time produces the
good in each future period until the other firms invent the next quality.

The economy has L(t) consumers that inelastically supply one unit of labor at
each point of time. L(t) is growing at a constant rate, n, with L(0) = 1. Then, the
current population is given by L(t) = ent . The intertemporal utility is given by

U =
∫ ∞

0
e−(ρ−n)t log u(t)dt,

where ρ is a subjective discount rate and u(t) is the instantaneous utility at time t .
We introduce a competitive outside good sector where no innovation occurs.

This allows us to examine how strengthening patent protection reduces welfare by
causing static distortions. We specify the per capita utility as follows7:

log u(t) = (1 − γ ) log D(t) + γ log d0(t), 0 ≤ γ ≤ 1 (1)

where d0(t) denotes the consumption of the outside good, D(t) represents the index
of differentiated goods, and 0 ≤ γ ≤ 1 is a parameter which, at the consumption
optimum, is also the expenditure share of the outside good. D(t) is given by the
following CES-type utility function:

D(t) =
⎧⎨
⎩
∫ 1

0

⎡
⎣∑

j

λjd(j, ω, t)

⎤
⎦α

dω

⎫⎬
⎭

1
α

, 0 ≤ α < 1, (2)

where d(j, ω, t) denotes the consumption of the good with the j th highest quality
in industry ω and λ(> 1) denotes the size of the quality improvement obtained
from one innovation. Thus, λj represents the quality after j times innovations. The
elasticity of substitution between any two goods is given by 1/(1 −α). The utility
reduces to that in the Segerstrom–Li model when γ = 0. A possible interpretation
is that the outside good represents all goods other than the differentiated goods,
with γ the share of all other goods.

Solving the maximization problem of the household, we now derive the demand
functions for the differentiated good in industry ω and the outside good. First, in
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each differentiated goods industry, the households consume only the good with
the lowest quality-adjusted price, which is provided by the firm having the highest
quality in equilibrium. Letting j (ω, t) denote the highest quality in industry ω,
the demand for the good with the highest quality in industry ω is given by

d(ω, t) = (λj (ω,t))ε p(ω, t)−(ε+1)∫ 1
0

[
(λj (ω′,t))ε p(ω′, t)−ε

]
dω′

(1 − γ )c(t), (3)

where p(ω, t) denotes the price of the good with the highest quality in industry
ω, c(t) denotes the per capita consumption, and where ε ≡ α/(1 − α). 1/(1 − α)

denotes the elasticity of substitution, and thus ε denotes the elasticity of substi-
tution minus one, and ε ≥ −1. Second, we take the wage rate as a numeraire,
that is, w(t) = 1. We assume that one unit of the outside good can be produced
using one unit of labor. Because the market for the good is perfectly competitive,
the price of the good must be equal to w(t) = 1. Therefore, the demand for the
outside good is given by

d0(t) = γ c(t). (4)

Using (3) and (4), we derive the Euler equation for dynamic maximization as
follows:

ċ(t)

c(t)
= r(t) − ρ. (5)

2.2. Product Markets

We now consider how strengthening patent protection affects the behavior of firms.
Generally, two policy instruments influence the degree of patent protection. One
is the patent length, which determines how long the patentee can produce and
sell the product exclusively. The other is the patent breadth, which determines the
scope of the products that the patentee can prevent other firms from producing
and selling.8 In the quality-ladder model, products of different qualities within the
same product line are perfect substitutes. Therefore, the patent breadth represents
the range of quality that the patent authority forbids other producers to produce.

In practice, the patent authority controls both patent length and patent breadth.
However, for simplicity, we assume that the patent length is fixed and infinite and
that the patent authority controls only the patent breadth.9 Following Li (2001),
we incorporate patent breadth as follows.10 When the state-of-the-art quality in
industry ω is given by λj(ω), firms other than the patentee of the state-of-the-art-
quality product cannot legally produce products with a higher quality than λj(ω)/β,
where β ∈ [1, λ].11 Then, β can be interpreted as representing the patent breadth.
In this setting, a higher β implies a broader patent breadth. The patent protection
is maximal when β = λ. When β = 1, patent protection is inexistent.

The pricing strategy of a firm depends on the patent breadth. The optimal price
level for the firm holding the patent for a state-of-the-art good is such that the
other firms cannot earn positive profits by entering the market for that good. More
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precisely, the patentee of the state-of-the-art good, the quality of which is λj ,
chooses a price such that the quality-adjusted price of the good is no higher than
the quality-adjusted price charged by the other producers. The other producers
can legally produce a product of quality of no more than λj/β. Therefore, when
the price chosen by the other producers is p′, the patentee can exclude them from
the market by charging a price p that satisfies p/λj ≤ p′/(λj/β). The lowest
price that the other producers can charge is given by their marginal cost, that is,
by w(t) = 1. Thus, the limit price of the patentee is given by

p(ω, t) = β(≤ λ).

When λ > 1/α, the patentee charges a price equal to 1/α even if β = λ. For
simplicity, we limit the range of λ to 1 < λ < 1/α. Then, the patentee charges a
price equal to β (≤ λ), which is determined by the patent breadth.

Substituting this into the demand function for the good in industry ω, (3), yields

d(ω, t) = 1

β

(λj(ω,t))ε

Q(t)
(1 − γ )c(t).

Therefore, the profit earned by the patentee in industry ω is given by

π(ω, t) = β − 1

β

(λj(ω,t))ε

Q(t)
(1 − γ )c(t)L(t), (6)

where

Q(t) ≡
∫ 1

0

(
λj(ω′,t)

)ε

dω′

is the average quality level across all industries.

2.3. R&D Races

Next, we consider the behavior of R&D firms. By devoting �i units of labor to
R&D activities in industry ω, the R&D firms will invent the next highest quality,
the (j (ω, t) + 1)-th quality, with instantaneous probability

I (t)i = Ã(ω, t)

X(ω, t)
�i where Ã(ω, t) = AQ(t)φ

λε[j (ω,t)+1]
, (7)

where X(ω, t) is the R&D difficulty index in industry ω. The index X(ω, t)

evolves according to
∂X(ω, t)/(∂t)

X(ω, t)
= μI (ω, t),

where I (ω, t) denotes the aggregate R&D investment in industry ω. Thus, the
difficulty increases with the investment in R&D. This makes sustainable growth
without population growth impossible and plays a key role in eliminating scale
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effects. Moreover, equation (7) implies that R&D generates other positive and neg-
ative externalities. First, λε[j (ω,t)+1] in (7) represents a negative spillover. λj(ω,t)+1

is the quality that is obtained by the next innovation in industry ω. Therefore, (7)
shows that the higher the quality in an industry, the lower the probability of a
successful innovation. This is a negative intraindustry spillover, and ε represents
the strength of the spillover. Second, Q(t)φ in (7) represents a positive interindustry
spillover, and φ represents the strength of the spillover. The higher the average
quality Q(t), the higher the probability of a successful innovation.

Letting v(ω, t) denote the value of the patent of the state-of-the-art quality in
industry ω, the profit of a R&D firm is given by v(ω, t)[Ã(ω, t)/X(ω, t)]�i − �i

under the R&D technology detailed above. For a finite size of R&D activities in
equilibrium, we have

v(ω, t)
Ã(ω, t)

X(ω, t)
= 1. (8)

Next, consider the no-arbitrage condition. The holders of a patent earns divi-
dends equal to π(ω, t)dt and capital gains equal to ∂v(ω, t)/(∂t)dt over a time
interval of length dt . Moreover, during this time interval, the firm producing the
state-of-the-art product is exposed to the risk of being leapfrogged by another
firm with probability I (ω, t)dt, where I (ω, t) is the innovation rate. Thus, the
shareholders make a capital loss of v(ω, t) with probability I (ω, t)dt . Therefore,
we obtain the following no-arbitrage condition between the stock of the patentee
of a state-of-the-art product and a riskless asset:

r(t)v(ω, t) = π(ω, t) + ∂v(ω, t)

∂t
− I (ω, t)v(ω, t).

Substituting (6) and (8) into this no-arbitrage condition yields

r(t) + I (ω, t) = π(ω, t)

v(ω, t)
+ ∂v(ω, t)/(∂t)

v(ω, t)

= β − 1

β

A(1 − γ )c(t)L(t)

X(ω, t)Q(t)1−φ
+ μI (ω, t) − φ

Q̇(t)

Q(t)
. (9)

Suppose that the R&D difficulty indices are symmetric in all industries, that is, that
X(ω, 0) = X0. Then, (9) guarantees the existence of the symmetric equilibrium
path, where I (ω, t) = I (t) and X(ω, t) = X(t) ∀ t = [0,∞]. We focus our
analysis on the symmetric equilibrium path.

2.4. The Labor Market and the Dynamics of Q(t)

First, the total labor demand for R&D is given by
∫ 1

0 LI (ω)dω, where LI (ω) de-
notes the aggregate volume of labor engaged in R&D activities. At the symmetric
equilibrium, the probability of success in innovation is symmetric across indus-
tries. We thus obtain LI (ω) = X(t)I (t)λε[j (ω,t)+1]

AQ(t)φ
. Therefore, the total labor demand
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for R&D is X(t)I (t)λεQ(t)1−φ

A
. Second, the total labor demand for the production of

differentiated goods is given by
∫ 1

0 d(ω, t)L(t)dω = (1−γ )c(t)L(t)

β
and the labor

demand for production of the outside good is given by d0(t)L(t) = γ c(t)L(t).
Hence, the labor market-clearing condition is

1 =
[
(1 − γ )

1

β
+ γ

]
c(t) + X(t)I (t)λεQ(t)1−φ

AL(t)
. (10)

This equation shows that an increase in β reduces the labor demand for the pro-
duction of differentiated goods and consequently distorts the resource allocation
between the differentiated goods and the outside good. As shown later, this implies
that a stronger patent protection (a higher β) reduces welfare.

Next, we consider the dynamics of the average quality across industries. We
derive the increase of Q(t) in an infinitesimal time interval dt . In each industry,
innovation occurs with probability I (t)dt . However, by the law of large numbers,
the measure of industries that successfully invent a higher quality good is I (t)dt

with certainty. Therefore, the increase of Q(t) in time interval dt is given by
Q̇(t)dt = [λεQ(t) − Q(t)](I (t)dt). Thus,

Q̇(t)

Q(t)
= (λε − 1) I (t). (11)

3. BALANCED GROWTH EQUILIBRIUM

To describe the equilibrium path, we define z(t) ≡ AL(t)/(X(t)Q(t)1−φ) and
y(t) ≡ AL(t)c(t)/(X(t)Q(t)1−φ). These two variables are constant on the bal-
anced growth path (BGP). From (7), AQ(t)φ/(X(t)Q(t)) represents the R&D
productivity. Thus, we can roughly interpret z(t), which is the product of the
R&D productivity and the labor population, as “R&D productivity.” From the
labor market equilibrium condition, (10), the consumption expenditure, c(t)L(t)

is proportional to the labor devoted to production [(1−γ )(1/β)+γ ]c(t)L(t). Since
y(t) is the product of c(t)L(t) with the R&D productivity AQ(t)φ/(X(t)Q(t)),
we can roughly interpret y(t) as “production labor” (per unit of R&D cost). Note
that z(t) is a state variable, whereas y(t) is a jump variable. Rewriting the labor
market equilibrium condition, (10), using z(t) and y(t), we obtain the equilibrium
R&D intensity

I (t) = λ−ε

{
z(t) −

[
(1 − γ )

1

β
+ γ

]
y(t)

}
. (12)

This equation shows that higher R&D productivity z(t) and smaller production
labor per unit of R&D cost y(t) increase the equilibrium R&D intensity. Substi-
tuting (11) into the no-arbitrage condition, (9), and rewriting this using z(t) and
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y(t), we obtain the equilibrium interest rate

r(t) = β − 1

β
(1 − γ )y(t) + (μ − 1)I (t) − φ

Q̇(t)

Q(t)
.

Using this equation, (5), and (12), the market equilibrium path is characterized by
the dynamic system:

ż(t)

z(t)
= n − [

μ + (1 − φ)(λε − 1)
]
λ−ε

{
z(t) −

[
(1 − γ )

1

β
+ γ

]
y(t)

}
, (13)

ẏ(t)

y(t)
= y(t) − z(t) − (ρ − n). (14)

The other endogenous variables are determined by z(t) and y(t). On the BGP, z(t)
is constant. From (13), we obtain

I = n/
[
μ + (1 − φ)(λε − 1)

]
. (15)

Further, from (13) and (14), z(t) and y(t) satisfy on the BGP

z =
λεI +

[
(1 − γ ) 1

β
+ γ

]
(ρ − n)

(1 − γ )(1 − 1
β
)

and y = λεI + (ρ − n)

(1 − γ )(1 − 1
β
)
. (16)

Here and in the following, terms without the time index “(t)” are used to represent
values on the BGP.

Using comparative statics, we derive the long-run effects on I (t), z(t), and
y(t) of an increase of β. From (15), the innovation rate is independent of β, and
thus strengthening patent protection does not affect the long-run innovation rate.
Differentiating y with respect to β yields

yβ

(
≡ ∂y

∂β

)
= − y(

1 − 1
β

)
β2

< 0. (17)

From (14), z = y − (ρ − n) on the BGP. Therefore,

zβ

(
≡ ∂z

∂β

)
= yβ < 0. (18)

Because z(t) is a state variable, the model exhibits transitional dynamics that
must be taken into consideration when evaluating a policy. To do so, we derive the
linearized system of z(t) and y(t) in the neighborhood of the BGP and compute
the transition path of I (t) and c(t). The linearized system of (13) and (14) is given
by (

ż(t)

ẏ(t)

)
=

⎛
⎝− n

λεI
z

[
(1 − γ )

1

β
+ γ

]
n

λεI
z

−y y

⎞
⎠(

z(t) − z

y(t) − y

)
. (19)
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Let J denote the Jacobian matrix of the dynamic system on the right-hand side
(RHS) of (19). The determinant of J is negative, det J = −(1−γ )(1− 1

β
) n

λεI
zy <

0. Therefore, one characteristic root is negative and the other is positive, and thus
the BGP is a saddle point. Because y(t) is a jump variable, whereas z(t) is a state
variable, the market equilibrium path is uniquely determined. Moreover, one can
show that the negative root of the characteristic equation is smaller than −n.12 Let
ν denote the negative characteristic root and h = [1,�]T denote the associated
characteristic vector. Solving Jh = νh for � yields

� =
[
(1 − γ )

1

β
+ γ

]−1 [
1 − λεI

z

(−ν)

n

]
. (20)

Using the characteristic root and vector, one obtains for the market equilibrium
path z(t) = z + [z(0) − z] eνt and y(t) = y + [z(0) − z] �eνt . Differentiating
these expressions with respect to β, the responses of z(t) and y(t) to a marginal
increase in β are obtained as

∂z(t)

∂β
= zβ

(
1 − eνt

)
,

∂y(t)

∂β
= yβ − zβ�eνt .

Next, let’s derive the effects of a change in β on the path of I (t). Suppose that
the economy is on the BGP until patent protection is changed at time 0. Using
(12), one obtains

∂I (t)

∂β
= λ−ε

[
∂z(t)

∂β
−

(
1 − γ

β
+ γ

)
∂y(t)

∂β
+ 1 − γ

β2
y

]
.

Substituting (17), (18), and (20) into this equation leads to

∂I (t)

∂β
= I

−zβ

z

(−ν)

n
eνt > 0. (21)

This shows that an increase in β enhances innovation in the short run, although this
effect disappears in the long run because ν < 0. Summarizing we have following:

PROPOSITION 1. A strengthening of patent protection (an increase in patent
breadth β) enhances innovation initially. The size of the enhancement is given by
(21). In the long run, this enhancement disappears.

Because of the initial decrease in production labor, the innovation I (t) initially
jumps to a higher level as shown in Figure 1. Then, the increase in the innovation
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0 t

I(t)

I

FIGURE 1. Phase diagram and the transition after an increase in β.

raises the difficulty of R&D X(t). Thus, I (t) returns over time to the original
steady-state level.

4. WELFARE ANALYSIS

We now examine analytically how a marginal increase in patent breadth, starting
from the BGP, affects welfare.

First, the per capita utility from the consumption of differentiated goods can be
expressed as

D(t) = 1

β
Q(t)

1
ε (1 − γ )c(t).

Substituting this into (1), the instantaneous per capita utility can be written as

log u(t) = log c(t) − (1 − γ ) log β + (1 − γ )
1

ε
log Q(t) + log

[
(1 − γ )1−γ γ γ

]
.

Solving the differential equation for Q(t), (11), we have

log Q(t) = (λε − 1)

∫ t

0
I (s)ds + log Q(0),

which means that the average quality across industry represents the accumulation
of past innovation successes. These equations imply that the utility depends on
the total consumption, c(t), on the prices of differentiated goods as a function
of the patent breadth, β, and on the accumulated volume of past innovations,∫ t

0 I (s)ds. Therefore, the effect on the instantaneous utility of a strengthening of
patent protection consists of three parts:

∂ log u(t)

∂β
= ∂ log c(t)

∂β
− (1 − γ )

1

β
+ (1 − γ )

λε − 1

ε

∂

∂β

(∫ t

0
I (τ )dτ

)
.
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The welfare of a household is U = ∫ ∞
0 e−(ρ−n)t log u(t)dt . Thus, the effect of a

marginal increase in patent breadth on welfare is given by

∂U

∂β
=

∫ ∞

0
e−(ρ−n)t ∂ log u(t)

∂β
dt =

∫ ∞

0
e−(ρ−n)t ∂ log c(t)

∂β
dt︸ ︷︷ ︸

consumption expenditure effect
(+)

+ − 1

ρ − n
(1 − γ )

1

β︸ ︷︷ ︸
competition-reducing effect

(–)

+ (1 − γ )
λε − 1

ε

∫ ∞

0
e−(ρ−n)t ∂

∂β

(∫ t

0
I (τ )dτ

)
dt︸ ︷︷ ︸

innovation-enhancing effect
(+)

. (22)

A strengthening of patent protection affects welfare through the following three
channels. First, it enhances innovation in the short run, as shown in Proposition 1,
and raises welfare. This is the innovation-enhancing effect, captured by the third
term on the RHS of (22). Second, it allows the patentee to charge a higher price
and thus reduces welfare. This is the competition-reducing effect, captured by the
second term on the RHS of (22). Finally, it affects the production volume through
enhancing innovation and thus affects the consumption expenditure c(t). This is
the consumption expenditure effect, captured by the first term on the RHS of (22).

Let’s evaluate these different effects. First, derive the magnitude of the
innovation-enhancing effect from (21) as follows:

(1 − γ )
λε − 1

ε

∫ ∞

0
e−(ρ−n)t ∂

∂β

(∫ t

0
I (τ )dτ

)
dt

= (1 − γ )
λε − 1

ε

1

(ρ − n)(ρ − n − ν)
I (

−ν

n
)
−zβ

z
> 0. (23)

An increase in β enhances innovation in the short run. Thus, the innovation-
enhancing effect is positive.

Second, we can evaluate the consumption expenditure effect as13:∫ ∞

0
e−(ρ−n)t ∂ log c(t)

∂β
dt

= −yβ

y

{
1

ρ − n

(
y

z
− 1

)
− 1

ρ − n − ν

(
1 − γ

β
+ γ

)−1
λεI

z

−(ν + n)

n

}
.

(24)
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From (16), y/z > 1 and ν + n < 0. Therefore, the consumer expenditure
effect is ambiguous. However, a numerical analysis shows that it is usually
positive.

As shown in Appendix E on https://sites.google.com/site/tatsuroiwaisako/, one
can decompose the welfare effect into a term that depends on γ , F(β, γ ), and a
term that is independent of γ , G(β),

∂U

∂β
= −yβ

y

1

(ρ − n)(ρ − n − ν)

(−ν

n

)(
1 − γ

β
+ γ

)−1

× λεI

z
[F(β, γ ) + G(β)] , (25)

where

F(β, γ ) = −
(

ρ − n − ν

−ν

)
n

(
1 − γ

β
+ γ

)
z

λεI

×
{

[(1 − γ )β + γ ] −
(

1 − γ

β
+ γ

)−1
}

+ 1 − λ−ε

ε
(λεI + ρ − n)γ,

G(β) = 1 − λ−ε

ε
(λεI + ρ − n)

1

β − 1
− ρ.

We now show that F(β, γ ) is a decreasing function of β. Using (16), one can
rewrite F(β, γ ) as

F(β, γ ) = −
(

ρ − n − ν

−ν

)
n

(
1−γ

β
+ γ

)
(1 − γ )(1 − 1

β
)

[
1 +

(
1 − γ

β
+ γ

)
ρ − n

λεI

]

× γ (1 − γ )(β − 1)2

β
(

1−γ

β
+ γ

) + 1 − λ−ε

ε
(λεI + ρ − n)γ,

= −
(

ρ − n − ν

−ν

)
n

[
β + ((1 − γ ) + γβ)

ρ − n

λεI

]

× γ (β − 1)

β
+ 1 − λ−ε

ε
(λεI + ρ − n)γ.

Because (−ν) is a decreasing function of β, see Appendix F of the unpublished
appendices, it can be shown that ∂F (β, γ )/(∂β) < 0. Moreover, because G(β) is
a decreasing function of β, F(β, γ ) + G(β) is a decreasing function of β. Also,
limβ↘1 G(β) = +∞ and thus limβ↘1[F(β, γ ) + G(β)] = +∞. From (25), one
obtains limβ↘1 ∂U/(∂β) > 0. Therefore, if ∂U/(∂β)|β=λ < 0, a unique level β∗

satisfies ∂U/(∂β) = 0 in (1, λ) and ∂U/(∂β) < 0(> 0), if and only if β is larger
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β1 β∗

F (β, γ) + G(β)

G(β)

β∗
0 λ

F (β∗
0 , γ)

0

FIGURE 2. The welfare-maximizing patent breadth.

(smaller) than β∗, as in Figure 2. The results are summarized in the following
proposition.

PROPOSITION 2. If ∂U/(∂β)|β=λ < 0, a unique level of patent breadth β∗ ∈
(1, λ) satisfies ∂U/(∂β) = 0. An increase in patent breadth β raises welfare if the
initial patent breadth is narrower than β∗, and lowers it otherwise.

We refer to β∗ as the welfare-maximizing patent breadth.
Before examining the welfare-maximizing patent breadth in the case with an

outside good, let us consider the simpler case without an outside good (i.e., the
Segerstrom–Li case). In that case, γ = 0 and F(β, γ ) = 0. From (25), the
welfare-maximizing is given the unique value β∗

0 of β such that G(β∗
0 ) = 0. We

have

(β∗
0 − 1)ρ = 1 − λ−ε

ε
(λεI + ρ − n). (26)

Interestingly, one can show that β∗ < β∗
0 , see Appendix A. That is, the presence

of an outside good reduces the welfare-maximizing patent breadth.
Let now assume that β∗

0 < λ. Using (26), one recognizes that β∗
0 < λ is

equivalent to

(λ − 1)ρ >
1 − λ−ε

ε
(λεI + ρ − n).

This last inequality also guarantees that β∗ < λ since β∗ < β∗
0 . We thus have the

following:

PROPOSITION 3. Suppose that (λ − 1)ρ > 1−λ−ε

ε
(λεI + ρ − n). Then,

β∗ ∈ (1, λ), that is, the welfare-maximizing patent breadth is interior. The pres-
ence of an outside good (γ > 0) always reduces the welfare-maximizing patent
breadth β∗.
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TABLE 1. Parameter values for
our calculations

ρ λ n ε φ

0.07 1.4 0.01 0.1 0.1

To intuitively understand this result, consider how the presence of the outside
good affects the positive and negative welfare effects of a broadening of the patent
breadth. First, a positive share of the outside good, which means a lower share for
the innovative goods, weakens the negative welfare effect of an increased patent
protection through the competition-reducing effect, (22). The positive share of
the outside good also weakens the positive welfare effect through innovation-
enhancing, (22). One cannot sign the impact on the positive welfare effect through
consumption expenditure, (22). However, the presence of the outside good nec-
essarily reduces the welfare-maximizing patent breadth. From this, we can infer
that the weakening of the positive welfare effects overwhelm the reduction of the
negative effects.

Proposition 3 analytically shows that the presence of an outside good reduces
the welfare-maximizing patent breadth. However, we cannot analytically examine
whether an increase in the share of the outside good necessarily reduces the
welfare-maximizing patent breadth. Thus, we examine it using a numerical ex-
ample using the plausible parameter values in Table 1. Mehra and Prescott (2003)
estimated the average real return on the stock market for the past century at 0.07.

At the steady state, ρ is equal to the interest rate r . Thus, we set ρ = 0.07. We
set n to 0.01 to match the world population growth rate. Basu (1996) estimated
that the mark-up belongs in the interval [1.1,1.4], we choose λ = 1.4. Further, we
set ε = 0.1. Consequently, the elasticity of substitution among industries, ε + 1,

is 1.1. Finally, we set the R&D spillover parameters. The positive interindustry
spillover has only a small impact and thus we set φ = 0.1. We use the following
three different values for the R&D difficulty parameter: μ = 1.0, 1.5, and 1.9.

This numerical example shows that a larger share of the outside good decreases
the welfare-maximizing patent breadth, at least when γ is small. When μ is high,
an increase in the share of the outside good decreases the welfare-maximizing
patent breadth, even if γ is quite large, as in the right panel of Figure 3.14

Finally let examine how the presence of the outside good changes the effects of
the other parameters on the welfare-maximizing patent breadth. Assume first that
there is no outside good, that is equivalently, that γ = 0. Rewriting (26) and using
(15), we obtain

β∗
0 = 1 − λ−ε

ε

[
φ(λε − 1) + 1 − μ

(1 − φ)(λε − 1) + μ

n

ρ
+ 1

]
+ 1.

Differentiating the RHS of the equation with respect to each parameter, we find
that
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FIGURE 3. Relation between β∗/β∗
0 and γ . In each panel, the solid line shows the value of β∗ and the dotted line the value of β∗

0 .
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• λ ↑ and/or φ ↑ and/or μ ↓ =⇒ β∗
0 ↑.

• n ↑ and/or ρ ↓ =⇒ β∗
0 ↑ (↓), if μ < (>)1 + φ(λε − 1).

Let’s now assume that there is an outside good (γ > 0), the effects are far
more complicated and we must rely on numerical examples to get a grasp of the
situation. Appendix B shows the numerical results. They show that the signs of the
effects on the welfare-maximizing patent breadth are not affected by the presence
of an outside good.

5. CONCLUSION

To evaluate the welfare effect of strengthening patent protection adequately, we
generalized the Segerstrom–Li model by introducing an outside good that is sup-
plied competitively. In the generalized model, patent protection creates static
distortions. We showed that the presence of the outside good necessarily reduces
the welfare-maximizing patent breadth. In other words, ignoring outside goods
leads to an excessive protection of patents. This is an important finding since, with
the exception of O’Donoghue and Zweimüller (2004), most related studies based
on nonscale quality-ladder models have overlooked the static distortion effect
arising from patent protection.

Furthermore, this paper makes a contribution in terms of welfare analyses in
a nonscale growth model. In typical nonscale growth models, a policy change
induces a transition to a new steady state that must be accounted for in order to
properly evaluate the welfare impacts.15 However, most of the existing studies
based on nonscale growth models concentrate on the steady state and neglect the
transition. This paper demonstrates how the linear approximation of the transition
path suggested in Judd (1982) can be used for an analytical investigation of welfare
impacts in nonscale growth models.

NOTES

1. The model is a semi-endogenous growth model, in the sense that the innovation rate is endoge-
nous although the long-run growth rate does not depend on preference parameters, such as a subjective
discount rate.

2. The exceptions are Peretto (2007, 2011), which analytically examine the cumulated welfare
change in a nonscale growth model with simple transition paths.

3. In the Segerstrom–Li model, where there is no outside good, one can derive the welfare-
maximizing patent breadth by controlling the patent breadth in such a way that the market equilibrium
path coincides with the socially optimal path. However, in the generalized model with an outside good,
this is impossible and one must use Judd’s method.

4. In their model, they use the term “noninnovative good” instead of “outside good.”
5. Kwan and Lai (2003) and Cysne and Turchick (2012) examined the welfare effects of strength-

ening intellectual property rights (IPR) protection analytically in a growth model with transitions.
However, their model is a simple AK model based on Rivera-Batiz and Romer (1991) and therefore
exhibits a scale effect.

6. Among others, Sener (2001) uses this model to investigate the impact of trade liberalization on
wage inequality in the presence of Schumpeterian unemployment. Dinopoulos and Segerstrom (1999)

WELFARE EFFECTS OF PATENT PROTECTION 723

https://doi.org/10.1017/S1365100518000147 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100518000147


incorporate an endogenous supply of skills into the Segerstrom (1998) model and examine the effects
of trade liberalization. Cozzi and Impullitti (2010) extend Dinopoulos and Segerstrom’s (1999) to a
model with heterogeneous industries and examine how the shift in the composition of public demand
toward high-tech goods affects R&D, the relative wages of skilled labor, and the supply of skills. Using
Dinopoulos and Segerstrom (1999), Impullitti (2010) examines numerically how foreign competition
affects the optimal R&D subsidy in the United States. Moreover, Dinopoulos and Segerstrom (2007,
2010), Parello (2008), and Iwaisako et al. (2011) extend the model to a North–South framework and
examine the effects of strengthening IPR protection in the South.

7. Assuming Cobb–Douglas utility, the production of the outside good and that of the patented
goods are both necessarily positive, as shown later in (3) and (4). That is, the economy does not
specialize in either good.

8. Other patent instruments include intellectual appropriability and the division rule governing
profits between basic and applied researchers. Cozzi and Spinesi (2006), Chu et al. (2012), Chu and
Furukawa (2011, 2013), Chu and Pan (2013), and Cozzi and Galli (2013) have examined their effects.

9. Judd (1985), Iwaisako and Futagami (2003), Futagami and Iwaisako (2007), Lin (2015), and
Zeng et al. (2014) examine how patent length affects social welfare. As shown by Futagami and
Iwaisako (2007), under the assumption of finite patent length the equilibrium paths are complicated
even if the production function is AK . To avoid this difficulty, other studies have incorporated a
time-invariant probability of imitation into their models, interpreting a decrease in probability as
strengthening patent protection. See Grinols and Lin (2006), Furukawa (2007), Horii and Iwaisako
(2007), and Palokangas (2011).

10. Spinesi (2011) also analyzed the effect of patent breadth on innovation in a quality-ladder model.
11. In this paper, we implicitly assume that the product with the quality level that lies between the

state-of-the-art quality and the second-highest quality can be produced and consumed.
12. Proof: see Appendix C of unpublished appendices on https://sites.google.com/site/

tatsuroiwaisako/
13. For the derivation, see Appendix D of the unpublished appendices on https://sites.google.

com/site/tatsuroiwaisako/.
14. For the other values of μ, a larger share of the outside good decreases the welfare-

maximizing patent breadth when γ is smaller than a certain value. See Appendix G on
https://sites.google.com/site/tatsuroiwaisako/.

15. In the Segerstrom (1998) model, the speed of convergence is low and the economy is in transition
for a long time, as Steger (2003) demonstrated using an empirically plausible baseline set of parameters.
Thus, the welfare change associated with the transition is quite important and needs to be examined
analytically.

REFERENCES

Basu, Susanto (1996) Procyclical productivity: Increasing returns or cyclical utilization. Quarterly
Journal of Economics 111, 709–751.

Chu, Angus, Guido Cozzi, and Silvia Galli (2012) Does intellectual monopoly stimulate or stifle
innovation? European Economic Review 56(4), 727–746.

Chu, Angus and Yuichi Furukawa (2011) On the optimal mix of patent instruments. Journal of
Economic Dynamics and Control 35, 1964–1975.

Chu, Angus and Yuichi Furukawa (2013) Patentability and knowledge spillovers of basic R&D.
Southern Economic Journal 79, 928–945.

Chu, Angus and Shiyuan Pan (2013) The escape-infringement effect of blocking patents on innovation
and economic growth, Macroeconomic Dynamics 17(04), 955–969.

Cozzi, Guido and Silvia Galli (2014) Sequential R&D and blocking patents in the dynamics of growth,
Journal of Economic Growth 19(2), 183–219.

Cozzi, Guido and Giammario Impullitti (2010) Government spending composition, technical change,
and wage inequality. Journal of the European Economic Association 8(6), 1325–1358.

TATSURO IWAISAKO724

https://doi.org/10.1017/S1365100518000147 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100518000147


Cozzi, Guido and Luca Spinesi (2006) Intellectual appropriability, product differentiation, and growth.
Macroeconomic Dynamics 10(01), 39–55.

Cysne, Rubens P. and David Turchick (2012) Intellectual property rights protection and endogenous
economic growth revisited. Journal of Economic Dynamics and Control 36(6), 851–861.

Dinopoulos, Elias and Paul S. Segerstrom (1999) A Schumpeterian model of protection and relative
wages. American Economic Review 89, 450–472.

Dinopoulos, Elias and Paul S. Segerstrom (2007) North–South Trade and Economic Growth. CEPR
discussion papers no. 5887.

Dinopoulos, Elias and Paul S. Segerstrom (2010) Intellectual property rights, multinational firms and
economic growth. Journal of Development Economics 92, 13–27.

Furukawa, Yuichi (2007) The protection of intellectual property rights and endogenous growth: Is
stronger always better? Journal of Economic Dynamics and Control 31, 3644–3670.

Futagami, Koichi and Tatsuro Iwaisako (2007) Dynamic analysis of patent policy in an endogenous
growth model. Journal of Economic Theory 132, 306–334.

Grinols, Earl and Hwan C. Lin (2006) Global patent protection: Channels of north and south welfare
gain. Journal of Economic Dynamics and Control 30, 205–227.

Helpman, Elhanan (1993) Innovation, imitation, and intellectual property rights. Econometrica 61,
1247–1280.

Horii, Ryo and Tatsuro Iwaisako (2007) Economic growth with imperfect protection of intellectual
property rights. Journal of Economics (Zeitschrift für Nationalökonomie) 90, 45–85.

Impullitti, Giammario (2010) International competition and U.S. R&D subsidies: A quantitative wel-
fare analysis. International Economic Review 51(4), 1127–1158.

Iwaisako, Tatsuro and Koichi Futagami (2003) Patent policy in an endogenous growth model. Journal
of Economics (Zeitschrift für Nationalökonomie) 78, 239–258.

Iwaisako, Tatsuro, Hitoshi Tanaka, and Koichi Futagami (2011) A welfare analysis of global patent
protection in a model with endogenous innovation and foreign direct investment. European Economic
Review 55, 1137–1151.

Judd, Kenneth L. (1982) An alternative to steady-state comparisons in perfect foresight models.
Economics Letters 10, 55–59.

Judd, Kenneth L. (1985) On the performance of patents. Econometrica 53, 567–585.
Kwan, Yum K. and Edwin L.-C. Lai (2003) Intellectual property rights protection and endogenous

economic growth. Journal of Economic Dynamics and Control 27, 853–873.
Li, Chol-Won (2001) On the policy implications of endogenous technological progress. Economic

Journal 111, 164–179.
Li, Chol-Won (2003) Endogenous growth without scale effects: Comment. American Economic Review

93, 1009–1017.
Lin, Hwan C. (2015) Creative destruction and optimal patent life in a variety-expansion growth model.

Southern Economic Journal 81(3), 803–828.
Lin, Hwan and L. F. Shampine (2018) R&D-based calibrated growth models with finite-length patents:

A novel relaxation algorithm for solving an autonomous FDE system of mixed type. Computational
Economics 51(1), 123–158.

Mehra, Rajnish and Esward C. Prescott (2003) The equity premium in retrospect. In G. M. Constan-
tinides, M. Harris, and R. M. Stulz (eds.), Handbook of the Economics of Finance, pp. 889–938.
Amsterdam, NH: Elsevier.

O’Donoghue, Ted and Josef Zweimüller (2004) Patents in a model of endogenous growth. Journal of
Economic Growth 9, 81–123.

Parello, Carmelo P. (2008) A north–south model of intellectual property rights protection and skill
accumulation. Journal of Development Economics 85, 253–281.

Palokangas, Tapio (2011) Optimal patent length and breadth in an economy with creative destruction
and non-diversifiable risk. Journal of Economics (Zeitschrift für Nationalökonomie) 102, 1–27.

Peretto, Pietro F. (2007) Corporate taxes, growth and welfare in a Schumpeterian economy. Journal of
Economic Theory 137(1), 353–382.

WELFARE EFFECTS OF PATENT PROTECTION 725

https://doi.org/10.1017/S1365100518000147 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100518000147


Peretto, Pietro F. (2011) The growth and welfare effects of deficit–financed dividend tax cuts. Journal
of Money, Credit and Banking 43(5), 835–869.

Rivera-Batiz, Luis and Paul M. Romer (1991) Economic integration and endogenous growth. Quarterly
Journal of Economics 106, 531–555.

Segerstrom, Paul S. (1998) Endogenous growth without scale effects. American Economic Review 88,
1290–1310.

Sener, Fuat (2001) Schumpeterian unemployment, trade and wages. Journal of International Eco-
nomics 54, 119–148.

Spinesi, Luca (2011) Probabilistic heterogeneous patent protection and innovation incentives. B.E.
Journal of Economic Analysis and Policy (Contributions) 11(1), 1–44.

Steger, Thomas M. (2003) The Segerstrom model: Stability, speed of convergence and policy impli-
cations. Economics Bulletin 15, 1–8.

Zeng, Jinli, Jie Zhang, and Michael K. Fung (2014) Patents and price regulation in an R&D growth
model. Macroeconomic Dynamics 18, 1–22.

APPENDIX A: THE PROOF OF PROPOSITION 3

In this appendix, we prove Proposition 3.
We show that F(β∗

0 , γ ) < 0. Using (26), we can rewrite F(β∗
0 , γ ) as follows:

F(β∗
0 , γ ) = γ (β∗

0 − 1)H(β∗
0 , γ ),

where

H(β∗
0 , γ ) = −

(
ρ − n − ν

−ν

)
n

[
1 +

(
1 − γ

β∗
0

+ γ

)
ρ − n

λεI

]
+ ρ. (27)

Rewriting the RHS of (27) yields

H(β∗
0 , γ ) = (ρ − n)

n

ν

[
1 +

(
1 − γ

β∗
0

+ γ

)
ρ − n

λεI

]
− n

[
1 +

(
1 − γ

β∗
0

+ γ

)
ρ − n

λεI

]
+ ρ

= (ρ − n)

{[
1 +

(
1 − γ

β∗
0

+ γ

)
ρ − n

λεI

]
n

ν
+

[
1 −

(
1 − γ

β∗
0

+ γ

)
n

λεI

]}
.

Furthermore, using z, we rewrite this as

H(β∗
0 , γ ) = (ρ − n)

{
(1 − γ )

(
1 − 1

β∗
0

)
zn

λεIν
+

[
1 −

(
1 − γ

β∗
0

+ γ

)
n

λεI

]}
.

We let f (ν) denote the characteristic function of the Jacobian matrix of the linearized
system, J , that is, f (ν) ≡ ν2 − trJν + det J = 0. Rewriting yields ν − trJ = − det J 1

ν
.

Expressing trJ and det J by making use of z and y and substituting them into this equation,
we obtain

ν

y
+ n

λεI

z

y
− 1 = (1 − γ )

(
1 − 1

β∗
0

)
zn

λεIν
.
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Substituting this into H(β∗
0 , γ ) and rewriting it, we obtain

H(β∗
0 , γ ) = (ρ − n)

{
ν

y
+

[
z

y
−

(
1 − γ

β∗
0

+ γ

)]
n

λεI

}
= (ρ − n)

1

y
(ν + n) ,

where we use [z − ( 1−γ

β∗
0

+ γ )y] = λεI from (12). Furthermore, using ν < −n, we show

that H(β∗
0 , γ ) < 0.

Hence, we obtain F(β∗
0 , γ )+G(β∗

0 ) = F(β∗
0 , γ ) < 0. As shown above, F(β, γ )+G(β)

is a decreasing function of β, and thus we can show that β∗ < β∗
0 .

We focus our analysis on the case where the welfare-maximizing patent breadth is
interior, that is, β∗ < λ. For this purpose, we assume β∗

0 < λ. From (26), we rewrite the
condition as follows:

(λ − 1)ρ >
1 − λ−ε

ε
(λεI + ρ − n).

This guarantees that β∗ < λ because β∗
0 < λ.

APPENDIX B: THE EFFECTS OF THE PARAMETERS
ON THE WELFARE-MAXIMIZING PATENT

BREADTH (NUMERICAL EXAMPLES)

In this appendix, by using numerical examples, we examine the relations between the
welfare-maximizing patent breadth and industry spillovers, the quality increment, the pop-
ulation growth rate, and the discount rate.

Basically, we set the values of the parameters to those in the numerical example in
Section 4. From Figure 4, we can see that the signs of the effects of φ, λ, n, ρ, and μ on
the welfare-maximizing patent breadth in the presence of an outside good are the same as
those in the no-outside good case γ = 0.
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FIGURE 4. Relation between β∗/β∗
0 and φ, λ, n, ρ, μ. In each panels, the dotted, broken, and

solid lines show the value of β∗
0 , the value of β∗ when γ = 0.3 and γ = 0.6, respectively.
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