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TOPOLOGICAL COMPLETENESS OF LOGICS ABOVE S4

GURAMBEZHANISHVILI, DAVID GABELAIA, AND JOEL LUCERO-BRYAN

Abstract. It is a celebrated result ofMcKinsey and Tarski [28] that S4 is the logic of the closure algebra
X+ over any dense-in-itself separable metrizable space. In particular, S4 is the logic of the closure algebra
over the reals R, the rationals Q, or the Cantor space C. By [5], each logic above S4 that has the finite
model property is the logic of a subalgebra of Q+, as well as the logic of a subalgebra of C+. This is no
longer true for R, and the main result of [5] states that each connected logic above S4 with the finite model
property is the logic of a subalgebra of the closure algebra R+.
In this paper we extend these results to all logics above S4. Namely, for a normal modal logic L, we

prove that the following conditions are equivalent: (i) L is above S4, (ii) L is the logic of a subalgebra of
Q+, (iii)L is the logic of a subalgebra of C+. We introduce the concept of a well-connected logic above S4
and prove that the following conditions are equivalent: (i)L is a well-connected logic, (ii)L is the logic of a
subalgebra of the closure algebra T+2 over the infinite binary tree, (iii) L is the logic of a subalgebra of the
closure algebra L+2 over the infinite binary tree with limits equipped with the Scott topology. Finally, we
prove that a logic L above S4 is connected iff L is the logic of a subalgebra of R+, and transfer our results
to the setting of intermediate logics.
Proving these general completeness results requires new tools.We introduce the countable general frame

property (CGFP) and prove that each normal modal logic has the CGFP.We introduce general topological
semantics for S4, which generalizes topological semantics the sameway general frame semantics generalizes
Kripke semantics. We prove that the categories of descriptive frames for S4 and descriptive spaces are
isomorphic. It follows that every logic above S4 is complete with respect to the corresponding class of
descriptive spaces. We provide several ways of realizing the infinite binary tree with limits, and prove that
when equipped with the Scott topology, it is an interior image of bothC andR. Finally, we introduce gluing
of general spaces and prove that the space obtained by appropriate gluing involving certain quotients of
L2 is an interior image of R.

§1. Introduction. Topological semantics for modal logic was developed by
McKinsey and Tarski in the 1930’s and 1940’s. They proved that if we interpret
modal diamond as topological closure, and hence modal box as topological inte-
rior, then S4 is the logic of the class of all topological spaces. Their celebrated
topological completeness result states that S4 is the logic of any dense-in-itself
separable metrizable space [28]. In particular, S4 is the logic of the real line R,
rational line Q, or Cantor space C. The McKinsey–Tarski completeness result was
further strengthened by Rasiowa and Sikorski [31] who showed that the separability
assumption can be dropped.
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In the 1950’s and 1960’s, Kripke semantics formodal logic was introduced [23,24]
and it started to play a dominant role in the studies of modal logic. In the 1970’s it
was realized that there exist Kripke incomplete logics [33]. To remedy this, general
Kripke semantics was developed, and it was shown that each normal modal logic
is complete with respect to the corresponding class of descriptive Kripke frames
(see, e.g., [20]).
Kripke frames for S4 can be viewed as special topological spaces, the so-called

Alexandroff spaces, in which each point has a least open neighborhood. So topolog-
ical semantics for S4 is stronger than Kripke semantics for S4, but as with Kripke
semantics, there are topologically incomplete logics above S4 [18]. It is only natural
to generalize topological semantics along the same lines as Kripke semantics.
For a topological spaceX , letX+ be the closure algebra associatedwithX ; that is,

X+ = (℘(X ), c), where℘(X ) is the powerset ofX and c is the closure operator ofX .
We define a general space to be a pair (X,P), where X is a topological space and P
is a subalgebra of the closure algebra X+; that is, P is a field of sets over X closed
under topological closure. As in general frame semantics, we introduce descriptive
general spaces and prove that the category of descriptive spaces is isomorphic to the
category of descriptive frames for S4. This yields completeness of each logic above
S4 with respect to the corresponding class of descriptive spaces.
Since descriptive spaces are in 1-1 correspondence with descriptive frames for

S4, it is natural to ask whether we gain much by developing general topological
semantics. One of the main goals of this paper is to demonstrate some substantial
gains. For a general space (X,P), we have that P is a subalgebra of the closure
algebra X+, thus general spaces over X correspond to subalgebras of X+. In [5]
it was shown that if X is taken to be Q or C, then every logic above S4 with the
finite model property (FMP) is the logic of some subalgebra of X+. In this paper,
we strengthen this result by showing that all logics above S4 can be captured this
way. Put differently, each logic above S4 is the logic of a general space over either
Q or C. Thus, such well-known spaces as Q or C determine entirely the lattice of
logics above S4 in that each such logic is the logic of a general space over Q or C.
We are not aware of similar natural examples of Kripke frames. In fact, one of

the most natural examples would be the infinite binary tree T2. We introduce the
concept of a well-connected logic above S4 and prove that a logic L above S4 is the
logic of a general frame over T2 iff L is well-connected, so T2 is capable of capturing
well-connected logics above S4.
We recall [5] that a logic L above S4 is connected if L is the logic of a connected

closure algebra. The main result of [5] establishes that each connected logic above
S4 with the FMP is the logic of a subalgebra of R+. Put differently, a connected
logic L above S4 with the FMP is the logic of a general space overR. We strengthen
this result by proving that a logic L above S4 is connected iff L is the logic of a
general space over R. This is equivalent to being the logic of a subalgebra of R+,
which solves [5, p. 306, Open Problem 2]. We conclude the paper by transferring
our results to the setting of intermediate logics.
We discuss briefly the methodology we developed to obtain our results. It is well

known (see, e.g., [13]) that many modal logics have neither the FMP nor the count-
able frame property (CFP).We introduce a weaker concept of the countable general
frame property (CGFP) and prove that each normal modal logic has the CGFP.
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This together with the fact from [8] that countable rooted S4-frames are inte-
rior images of Q yields that a normal modal logic L is a logic above S4 iff it is
the logic of a general space over Q, which is equivalent to being the logic of a
subalgebra of Q+.
Every countable rooted S4-frame is also a p-morphic image of T2. However, in
the case of T2, only a weaker result holds. Namely, a normal modal logic L is a
logic above S4 iff it is the logic of a subalgebra of a homomorphic image of T+2 .
Homomorphic images can be dropped from the theorem only for well-connected
logics above S4. In this case we obtain that a logic L above S4 is well-connected
iff it is the logic of a subalgebra of T+2 , which is equivalent to being the logic of a
general frame over T2.
Since T2 is not an interior image ofC, in order to obtain our completeness results
for general spaces over C, we work with the infinite binary tree with limits L2.
This uncountable tree has been an object of recent interest [22, 26]. In particular,
Kremer [22] proved that if we equip L2 with the Scott topology, and denote the
result by L2, then T+2 is isomorphic to a subalgebra of L

+
2 as well as L2 is an interior

image of any complete dense-in-itself metric space. In particular, L2 is an interior
image of C. Utilizing Kremer’s theorem and the CGFP yields that a logic L above
S4 is well-connected iff it is the logic of a general space over L2, which is equivalent
to being the logic of a subalgebra of L+2 . Since L2 is an interior image of C and the
one-point compactification of the countable sum of homeomorphic copies of C is
homeomorphic to C, we further obtain that a normal modal logic L is a logic above
S4 iff it is the logic of a general space over C, which is equivalent to being the logic
of a subalgebra of C+.
ForR, only a weaker result holds. Namely, a normalmodal logicL is a logic above
S4 iff it is the logic of a subalgebra of a homomorphic image of R+. Homomorphic
images can be dropped from the theorem only for connected logics above S4. In this
case we obtain that a logic L above S4 is connected iff it is the logic of a subalgebra
ofR+, which is equivalent to being the logic of a general space overR. To prove this
result we again use the CGFP, Kremer’s result thatT+2 embeds into L

+
2 , the fact that

certain quotients of L2 are interior images of R, and a generalization of the gluing
technique developed in [5].
The paper is organized as follows. In Section 2 we provide all the necessary
preliminaries. In Section 3 we introduce general topological semantics, and show
that the category of descriptive spaces is isomorphic to the category of descriptive
frames for S4. In Section 4 we introduce the CGFP, and prove that each normal
modal logic has the CGFP. This paves the way for our first general completeness
result: a normal modal logic L is a logic above S4 iff it is the logic of a general space
over Q, which is equivalent to being the logic of a subalgebra of Q+. In Section 5
we prove our second general completeness result: a normal modal logic L is a logic
above S4 iff it is the logic of a subalgebra of a homomorphic image of T+2 . We also
introduce well-connected logics above S4 and prove that a logic above S4 is well-
connected iff it is the logic of a general frame over T2, which is equivalent to being
the logic of a subalgebra of T+2 . In Section 6 we give several characterizations of L2
and prove our third general completeness result: a normal modal logic L is a logic
above S4 iff it is the logic of a subalgebra of a homomorphic image of L+2 . We also
show that a logic above S4 is well-connected iff it is the logic of a general space
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over L2, which is equivalent to being the logic of a subalgebra of L+2 . In Section 7
we prove our fourth general completeness result: a normal modal logic L is a logic
above S4 iff it is the logic of a general space over C, which is equivalent to being the
logic of a subalgebra of C+. This requires Kremer’s result [22] that L2 is an interior
image of C. We give another proof of this result. In Section 8 we prove our fifth
general completeness result: a normal modal logic L is a logic above S4 iff it is the
logic of a subalgebra of a homomorphic image of R+. This requires that L2 is an
interior image of R, a result first proved in [26] and [22]. We give an alternate proof
of this result. In Section 9 we generalize the gluing technique of [5] and prove the
main result of the paper: a logicL above S4 is connected iff it is the logic of a general
space over R, which is equivalent to being the logic of a subalgebra of R+. This
solves [5, p. 306, Open Problem 2]. Finally, in Section 10 we transfer our results to
the setting of intermediate logics.

§2. Preliminaries. In this section we recall some of the basic definitions and facts,
and fix the notation. Some familiarity with modal logic and its Kripke semantics is
assumed; see, e.g., [13] or [11].
Modal formulas are built recursively from the countable set of propositional

letters Prop = {p1, p2, . . . } with the help of usual Boolean connectives ∧,∨,¬,
→,↔, the constants �,⊥, and the unary modal operators ♦,�. We denote the
set of all modal formulas by Form. A set of modal formulas L ⊆ Form is called a
normal modal logic if it contains all tautologies, the formulas♦(p∨q)↔ (♦p∨♦q),
�p ↔ ¬♦¬p, ♦⊥ ↔ ⊥, and is closed under Modus Ponens ϕ, ϕ→�� , Substitution
ϕ(p1,...,pn)
ϕ(�1,...,�n)

, and Necessitation ϕ
�ϕ . The least normal modal logic is denoted by K.

Among themany normal extensions ofK, our primary interest is inS4 and its normal
extensions. The logic S4 is axiomatized by adding the following formulas to K:

♦♦p → ♦p p → ♦p.
We will refer to normal extensions of S4 as logics above S4.
The algebraic semantics for modal logic is provided by modal algebras. A modal

algebra is a structure A = (A,♦), where A is a Boolean algebra and ♦ : A → A is
a unary function satisfying ♦(a ∨ b) = ♦a ∨ ♦b and ♦0 = 0. The unary function
� : A→ A is defined as�a = ¬♦¬a. It is quite obvious howmodal formulas can be
seen as polynomials over a modal algebra (see, e.g., [11, Chapter 5.2] wherein poly-
nomials are referred to as terms). We will say that a modal formula ϕ(p1, . . . , pn) is
universally true (or valid) in a modal algebra A if ϕ(a1, . . . , an) = 1 for any tuple of
elements a1, . . . , an ∈ A (in other words, when the polynomial ϕ always evaluates to
1 inA). In such a case, wemaywriteA |= ϕ.Wemay also view an equationϕ = � in
the signature of modal algebras as the corresponding modal formula ϕ ↔ �. Then
the equation holds in amodal algebraA iff the correspondingmodal formula is valid
in A. This yields a standard fact in (algebraic) modal logic that normal modal logics
correspond to equational classes of modal algebras, i.e. classes of modal algebras
defined by equations (see, e.g., [13, Chapter 7.6] and/or [11, Chapter 5.2]). By the
celebrated Birkhoff theorem (see, e.g., [12, Theorem 11.9]), equational classes cor-
respond to varieties, i.e., classes of algebras closed under homomorphic images,
subalgebras, and products. For a normal modal logic L, we denote by V(L) the
corresponding variety of modal algebras: V(L) = {A : A |= L}. Conversely, for a
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class K of modal algebras, we denote by Log(K) the modal logic corresponding to
this class: Log(K) = {ϕ : K |= ϕ}. The adequacy of algebraic semantics for modal
logic can then be expressed as the equality L = Log(V(L)).
Of particular importance for us are modal algebras corresponding to S4. These
are known as closure algebras (or interior algebras or topological Boolean algebras
or S4-algebras). A modal algebra A = (A,♦) is a closure algebra if a ≤ ♦a and
♦♦a ≤ ♦a for each a ∈ A.
Natural examples of modal algebras are provided by Kripke frames. A Kripke
frame is a pair F = (W,R), whereW is a (nonempty) set and R is a binary relation
onW . The binary relationR gives rise to the modal operator acting on the Boolean
algebra ℘(W ): for U ⊆ W , set R−1(U ) = {w ∈ W : w R v for some v ∈ U}.
We denote the modal algebra (℘(W ), R−1) arising from F by F+. This enables one
to interpret modal formulas in Kripke frames. Namely, to compute the meaning
of a modal formula ϕ(p1, . . . , pn) in a Kripke frame F, when the meaning of
the propositional letters is specified by assigning a subset Ui to the letter pi , we
simply compute the corresponding element ϕ(U1, . . . , Un) in the modal algebra F+.
A mapping � : Prop → ℘(W ) is called a valuation and the tuple M = (F, �)
is called a Kripke model. A valuation � extends naturally to Form, specifically
�(ϕ(p1, . . . , pn)) is the element ϕ(�(p1), . . . , �(pn)) in F+. The notion of validity
in a frame is defined as dictated by the corresponding notion for algebras. Given a
normal modal logic L, we say that a frame F is a frame for L if all theorems ofL are
valid in F (notation: F |= L). It is easy to check that F+ is a closure algebra exactly
when R is a quasi-order; that is, when R is reflexive and transitive.
A normal modal logic L is complete with respect to Kripke semantics if
L = Log(K) for some class K of Kripke frames. It is well known that there exist
modal logics (including logics aboveS4) that are not completewith respect toKripke
semantics (see, e.g., [13, Chapter 6]). Algebraically this means that some varieties
of modal algebras are not generated by their members of the form F+. To overcome
this shortcoming, it is customary to augment Kripke frames with additional struc-
ture by specifying a subalgebra P of F+. This brings us to the notion of a general
frame. We recall that a general frame is a tuple F = (W,R,P) consisting of a Kripke
frame (W,R) and a set of possible values P ⊆ ℘(W ) which forms a subalgebra of
(W,R)+. In particular, a Kripke frame (W,R) is also viewed as the general frame
(W,R,℘(W )), and so we use the same notation F,G,H, . . . for both Kripke frames
and general frames. Valuations in general frames take values in themodal algebraP
of possible values, so for a general frame F and a modal formula ϕ, we have F |= ϕ
iff P |= ϕ. We say that F is a general frame for a normal modal logic L if F |= L.
If L is exactly the set of formulas valid in F, we write L = Log(F). It is well known
that general frames provide a fully adequate semantics for modal logic (see, e.g.,
[13, Chapter 8]). Namely, for every normal modal logic L, there is a general frame
F such that L = Log(F).
The gist of this theorem becomes evident once we extend the celebrated Stone
duality to modal algebras. Let A = (A,♦) be a modal algebra and let X be the
Stone space of A (i.e., X is the set of ultrafilters of A topologized by the basis
A∗ = {a∗ : a ∈ A}, where a∗ = {x ∈ X : a ∈ x}). Define R on X by

x R y iff (∀a ∈ A)(a ∈ y ⇒ ♦a ∈ x).
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Then (X,R,A∗) is a general frame. It is a special kind of general frame, called
descriptive.
For a set X , we recall that a field of sets over X is a Boolean subalgebra P of the

powerset ℘(X ). A field of sets P is reduced provided x = y implies there is A ∈ P
with x ∈ A and y /∈ A and perfect provided for each family F ⊆ P with the finite
intersection property,

⋂F = ∅ (see, e.g., [32]).

Definition 2.1. (see, e.g., [13]). Let F = (W,R,P) be a general frame.
1. We call F differentiated if P is reduced.
2. We call F compact if P is perfect.
3. We call F tight if w R� v implies there is A ∈ P with v ∈ A and w /∈ R−1(A).
4. We call F descriptive if F is differentiated, compact, and tight.

It is well known that descriptive frames provide a full duality for modal algebras
much as in the case of Stone spaces and Boolean algebras. In fact, if we generate the
topology �P onW by lettingP be a basis for the topology, then (W, �P ) is Hausdorff
iff (W,R,P) is differentiated, and (W, �P ) is compact iff (W,R,P) is compact. Con-
sequently, (W, �P ) is the Stone space of P precisely when (W,R,P) is differentiated
and compact. Thus, a descriptive frame (W,R,P) can be viewed as the Stone space
of P equipped with a binary relation R such that P is closed under R−1 and the
condition of tightness is satisfied. Since P is a basis for �P , being tight is equivalent
to the R-image R(w) = {v ∈ W :w R v} of each w ∈ W being closed in �P .
Consequently, descriptive frames can equivalently be viewed as pairs (W,R) such
thatW is a Stone space, R(w) is closed for each w ∈W , and R−1(A) is clopen for
each clopen A ofW .
Given general frames F = (W,R,P) and G = (V,S,Q), a map f : W → V is

called a p-morphism if (a)wRw ′ implies f(w)S f(w ′); (b) f(w)S v implies there
exists w ′ with wRw ′ and f(w ′) = v; and (c) A ∈ Q implies f−1(A) ∈ P . It is well
known that conditions (a) and (b) are equivalent to the condition f−1 (S−1(v)) =
R−1 (f−1(v)

)
for each v ∈ V . It is also well known thatf is a p-morphism between

descriptive frames iff f−1 : Q → P is a modal algebra homomorphism. In fact, the
category ofmodal algebras andmodal algebra homomorphisms is dually equivalent
to the category of descriptive frames and p-morphisms (see, e.g. [13, Chapter 8]).
Part of this duality survives when we switch to a broader class of general frames.

Namely, p-morphic images, generated subframes, and disjoint unions give rise
to subalgebras, homomorphic images, and products, respectively. Given general
frames F = (W,R,P) and G = (V,S,Q), we say that G is a p-morphic image of F
if there is an onto p-morphism f : W → V . If f is 1-1, then we call the f-image
of F a generated subframe ofG. Generated subframes ofG are characterized by the
property that when they contain a world v, then they contain S(v). If f :W → V
is a p-morphism, thenf−1 : Q → P is a modal algebra homomorphism.Moreover,
if f is onto, then f−1 is 1-1 and if f is 1-1, then f−1 is onto. Thus, if G is a
p-morphic image of F, then Q is isomorphic to a subalgebra of P , and if G is a
generated subframe of F, then Q is a homomorphic image of P . Lastly, suppose
Fi = (Wi,Ri ,Pi) are general frames indexed by some set I . For convenience, we
assume that theWi are pairwise disjoint (otherwise we can always work with dis-
joint copies of the Wi). The disjoint union F = (W,R,P) of the Fi is defined by
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settingW =
⋃
i∈I Wi , R =

⋃
i∈I Ri , and A ∈ P iff A ∩Wi ∈ Pi . Then the modal

algebra P is isomorphic to the product of the modal algebras Pi . We will utilize
these well-known facts throughout the paper.

§3. General topological semantics. As we pointed out in Section 1, topological
semantics predates Kripke semantics. Moreover, Kripke semantics for S4 is sub-
sumed in topological semantics. To see this, let F = (W,R) be an S4-frame; that is,
F is a Kripke frame and R is reflexive and transitive. We call an underlying set of a
generated subframeG of F anR-upset. SoV ⊆W is anR-upset if w ∈ V andwRv
imply v ∈ V . The R-upsets form a topology �R onW , in which each point w has
a least open neighborhood R(w). This topology is called an Alexandroff topology,
and can equivalently be described as a topology in which the intersection of any
family of opens is again open. Thus, S4-frames correspond to Alexandroff spaces.
Consequently, each logic above S4 that is Kripke complete is also topologically
complete. But as with Kripke semantics, topological semantics is not fully adequate
since there exist logics above S4 that are topologically incomplete [18].
As we saw in Section 2, Kripke incompleteness is remedied by introducing gen-
eral Kripke semantics, and proving that each normal modal logic is complete with
respect to this more general semantics. In this section we do the same with topolog-
ical semantics. Namely, we introduce general topological spaces, their subclass of
descriptive spaces, and prove that the category of descriptive spaces is isomorphic
to the category of descriptive frames for S4. This yields that general spaces provide
a fully adequate semantics for logics above S4.
For a topological space X , we recall that X+ is the closure algebra (℘(X ), c),

where c is the closure operator of X .

Definition 3.1. We call a pair X = (X,P) a general topological space or simply
a general space if X is a topological space and P is a subalgebra of the closure
algebra X+.

In other words, X = (X,P) is a general space if X is a topological space and P is
a field of sets over X that is closed under topological closure. In particular, we may
view each topological space X as the general space (X,X+). The definition of a
general space is clearly analogous to the definition of a general frame. We continue
this analogy in the next definition. In the remainder of the paper, when we need
to emphasize or specify a certain topology � on X , we will write (X, �) as well as
(X, �,P).
Definition 3.2. Let X = (X, �,P) be a general space.
1. We call X differentiated if P is reduced.
2. We call X compact if P is perfect.
3. Let P� = P ∩ �. We call X tight if P� is a basis for �.
4. We call X descriptive if X is differentiated, compact, and tight.

Remark 3.3. Since X ∈ P� and P� is closed under finite intersections, P� is a
basis for some topology, and Definition 3.2(3) says that this topology is �.

Remark 3.4. To motivate Definition 3.2(3), let F = (W,R,P) be a general
S4-frame. There are two natural topologies associated with F, the Alexandroff
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topology �R ofR-upsets and the Stone topology �P generated byP . Let � = �R∩�P .
Thus, the topology � consists of �P -open R-upsets. Let PR = {A ∈ P : A is an
R-upset}. Although P is a basis for �P , in general PR may not be a basis for �.
However, for compact F, we show that PR is a basis for � whenever F is tight. Let
x ∈ U ∈ �. As U is an R-upset, x R� y for each y /∈ U . Since F is tight, there are
Uy ∈ P such thaty ∈ Uy andx /∈ R−1(Uy). Therefore,−U∩⋂{−Uy : xR�y} = ∅,
where we use − to denote set-theoretic complement. As −U is closed in (W, �) and
� ⊆ �P , we have that −U is also closed in (W, �P ). Since F is compact, (W, �P ) is
compact, so there are y1, . . . , yn such that−U ∩−Uy1∩· · ·∩−Uyn = ∅. SinceUyi ⊆
R−1(Uyi ),wehave−R−1(Uyi ) ⊆ −Uyi , so−U∩−R−1(Uy1 )∩· · ·∩−R−1(Uyn ) = ∅.
This implies x ∈ −R−1(Uy1 ) ∩ · · · ∩ −R−1(Uyn ) ⊆ U . Because −R−1(Uy1 ) ∩
· · · ∩ −R−1(Uyn ) ∈ PR, we conclude that PR is a basis for �. This motivates
Definition 3.2(3).

Let (X, �) be a topological space. For x ∈ X we denote the closure of {x} by
c(x). Let R� be the specialization order of (X, �). We recall that x R� y iff x ∈ c(y),
and that R� is reflexive and transitive, so (X,R�) is an S4-frame.

Lemma 3.5. Let X = (X, �,P) be a compact tight general space. Then R�(x) =⋂{A ∈ P� : x ∈ A}. Moreover, for each A ∈ P we have c(A) = R−1
� (A). Conse-

quently, FX = (X,R�,P) is a compact tight general S4-frame. In particular, if X is a
descriptive space, then FX is a descriptive S4-frame.

Proof. For A ∈ P� it is obvious that x ∈ A implies R�(x) ⊆ A, so R�(x) ⊆⋂{A ∈ P� : x ∈ A}. If y /∈ R�(x), then x /∈ c(y). Since X is tight, there exists
A ∈ P� such that x ∈ A and y /∈ A. Thus, R�(x) =

⋂{A ∈ P� : x ∈ A}. Next,
if x ∈ R−1

� (A), then there is y ∈ A with x R� y, so x ∈ c(y) ⊆ c(A), and so
R−1
� (A) ⊆ c(A) for each A ⊆ X . Conversely, if A ∈ P and x /∈ R−1

� (A), then
R�(x) ∩ A = ∅. Therefore,

⋂{U ∈ P� : x ∈ U} ∩ A = ∅. Thus, by compactness,
there areU1, . . . , Un ∈ P� such that x ∈ U1∩· · ·∩Un andU1∩· · ·∩Un∩A = ∅. Let
U = U1 ∩ · · · ∩Un . Then U is an open neighborhood of x missing A, so x /∈ c(A).
This yields that c(A) = R−1

� (A) for each A ∈ P . Consequently, FX is a compact
general S4-frame. To see that it is tight, let x R�� y. Then there is A ∈ P� such that
x ∈ A and y /∈ A. Let B = −A. Clearly c(B) = B. Therefore, since B ∈ P , we have
R−1
� (B) = B. Thus, there is B ∈ P with y ∈ B and x /∈ R−1

� (B), and hence FX is
tight. In particular, if X is a descriptive space, then FX is a descriptive S4-frame. �
For a general S4-frame F = (X,R,P), let PR = {A ∈ P : A is an R-upset}, and

let �P ,R be the topology generated by the basis PR. That PR forms a basis is clear
because X ∈ PR and PR is closed under finite intersections. We let cP ,R denote the
closure operator in (X, �P ,R).

Lemma 3.6. Let F = (X,R,P) be a compact tight general S4-frame. Then xRy iff
x ∈ cP ,R(y). Moreover, for each A ∈ P we have R−1(A) = cP ,R(A). Consequently,
XF = (X, �P ,R,P) is a compact tight general space. In particular, if F is a descriptive
S4-frame, then XF is a descriptive space.

Proof. We first show that R(x) =
⋂{A ∈ PR : x ∈ A} for each x ∈ X . The ⊆

direction is clear since eachA ∈ PR is anR-upset. For the⊇ direction, if y ∈ R(x),
then as F is tight, there is B ∈ P such that y ∈ B and x ∈ R−1(B). Let A =
−R−1(B). Then A ∈ PR and x ∈ A. Also, since B ⊆ R−1(B), we have A ⊆ −B,
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so y /∈ A. Therefore, y ∈ ⋂{A ∈ PR : x ∈ A}. Thus, R(x) = ⋂{A ∈ PR : x ∈ A}.
This implies that xRy iff x ∈ cP ,R(y). Let x /∈ cP ,R(A). Then there is U ∈ PR such
that x ∈ U and U ∩ A = ∅. As R(x) ⊆ U , we have R(x) ∩ A = ∅, which means
that x /∈ R−1(A). Thus, R−1(A) ⊆ cP ,R(A) for each A ⊆ X . Conversely, if A ∈ P
and x /∈ R−1(A), then R(x)∩A = ∅. Since R(x) =

⋂{U ∈ PR : x ∈ U}, we have⋂{U ∈ PR : x ∈ U} ∩ A = ∅. By compactness, there exist U1, . . . , Un ∈ PR such
thatx ∈ U1∩· · ·∩Un andU1∩· · ·∩Un∩A = ∅. LetU = U1∩· · ·∩Un . ThenU ∈ PR,
x ∈ U , andU ∩A = ∅. Thus, there is an open �P ,R-neighborhood of x missing A,
so x /∈ cP ,R(A). This proves thatR−1(A) = cP ,R(A) for eachA ∈ P . Consequently,
XF is a compact general space, and it is tight because P�P ,R = P ∩ �P ,R = PR.
In particular, if F is a descriptive S4-frame, then XF is a descriptive space. �
Lemma 3.7.
1. If X = (X, �,P) is a compact tight general space, then � = �P ,R� .
2. If F = (X,R,P) is a compact tight general S4-frame, then R = R�P ,R .
Proof.

(1) It follows from Lemma 3.5 that P� = PR� because c(A) = R−1
� (A) for

A ∈ P . Since P� is a basis for � and PR� is a basis for �P ,R� , we obtain that
� = �P ,R� .

(2) By definition, x R�P ,R y iff x ∈ cP ,R(y), and by Lemma 3.6, x ∈ cP ,R(y) iff
xRy. Thus, R = R�P ,R . �

Let DS denote the category whose objects are descriptive spaces and whose
morphisms are maps f : X → Y between descriptive spaces X = (X, �,P) and
Y = (Y, �,Q) such that A ∈ Q implies f−1(A) ∈ P and f−1c(y) = cf−1(y)
for each y ∈ Y . We also let DF denote the category whose objects are descriptive
S4-frames and whose morphisms are p-morphisms between them.
Theorem 3.8. DS is isomorphic to DF.
Proof. Define a functor F : DS → DF as follows. For a descriptive space X,
let F (X) = FX. For a DS-morphism f : X → Y , let F (f) = f. By Lemma 3.5,
F (X) ∈ DF. Moreover, sinceR−1

� (x) = c(x), it follows that F (f) is a p-morphism.
Thus, F is well-defined.
Define a functor G : DF → DS as follows. For a descriptive S4-frame F, let
G(F) = XF. For a p-morphism f : X → Y , let G(f) = f. By Lemma 3.6,
G(F) ∈ DS. Lemma 3.6 also implies that cP ,R(x) = R−1(x), and hence it follows
that G(f) is a DS-morphism. Thus, G is well-defined.
Now apply Lemma 3.7 to conclude the proof. �
Remark 3.9. Theorem 3.8 holds true in a more general setting, between the
categories of compact tight general spaces and compact tight general S4-frames.
However, we will not need it in such generality.

Since each logic above S4 is complete with respect to the corresponding class of
descriptive S4-frames, as an immediate consequence of Theorem 3.8, we obtain:
Corollary3.10. Each logic aboveS4 is complete with respect to the corresponding
class of descriptive spaces.
Since the category CA of closure algebras is dually equivalent to DF, another
immediate consequence of Theorem 3.8 is the following:
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Corollary 3.11. DS is dually equivalent to CA.

Remark 3.12. As we already pointed out, by Stone duality, having a reduced
and perfect field of sets amounts to having a Stone space. Therefore, having a
descriptive frame amounts to having a Stone space with a binary relation that
satisfies the following two conditions: R(x) is closed for each x ∈ X and R−1(U )
is clopen for each clopen U of X .
Descriptive spaces can also be treated similarly.Namely, if (X, �,P) is a descriptive

space, then announcing P as a basis yields a Stone topology on X , which we
denote by �S . Thus, we arrive at the bitopological space (X, �S, �), where (X, �S) is a
Stone space. Moreover, since (X, �,P) is tight, P� is a basis for �, so � ⊆ �S . As P is
the clopens of (X, �S ), each member of P is compact in (X, �S), hence compact in
the weaker topology (X, �). Consequently, the members of P� are compact open
in (X, �). Conversely, if U is compact open in (X, �), then since P� is a basis for �
that is closed under finite unions, it follows easily that U ∈ P�. Thus, P� is exactly
the compact open subsets of (X, �), and so the compact opens of (X, �) are closed
under finite intersections and form a basis for �. AsP� ⊆ P , we see that the compact
opens of (X, �) are clopens in (X, �S). Finally,U clopen in (X, �S ) implies that c(U )
is clopen in (X, �S ).
These considerations yield an equivalent description of descriptive spaces as

bitopological spaces (X, �S , �) such that (X, �S ) is a Stone space, � ⊆ �S , the compact
opens of (X, �) are closed under finite intersections and form a basis for �, the
compact opens of (X, �) are clopens in (X, �S), andU clopen in (X, �S ) implies that
c(U ) is clopen in (X, �S). Thus, our notion of a descriptive space corresponds to
the bitopological spaces defined in [9, Definition 3.7], Theorem 3.8 corresponds to
[9, Theorem 3.8(2)], and Corollary 3.11 to [9, Corollary 3.9(1)]. In fact, for a
descriptive space (X, �,P), the closure algebraX+ is the topo-canonical completion
of the closure algebra P [9].
We recall that the basic truth-preserving operations for general frames are the

operations of taking generated subframes, p-morphic images, and disjoint unions
(see, e.g., [13, Chapter 8.5]). We conclude this section by discussing analogous oper-
ations for general spaces. Recall (see, e.g., [2,17]) that for topological spaces interior
maps are analogues of p-morphisms, where a map f : X → Y between topological
spaces is an interior map if it is continuous (inverse images of opens are open) and
open (direct images of opens are open). It is well known thatf : X → Y is an inte-
rior map iff f−1 : Y+ → X+ is a homomorphism of closure algebras. Moreover,
if f is onto, then f−1 is 1-1 and if f is 1-1, then f−1 is onto. It follows that for
topological spaces, open subspaces correspond to generated subframes and interior
images correspond to p-morphic images. In addition, topological sums correspond
to disjoint unions.
Definition 3.13.

1. Let X = (X,P) andY = (Y,Q) be general spaces.
(a) We say that a map f : X → Y is an interior map between X and Y if
f : X → Y is an interior map and A ∈ Q implies f−1(A) ∈ P .

(b) We call Y an open subspace of X if Y is an open subspace of X and the
inclusion map Y → X is an interior map between the general spaces Y
and X.
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(c) We say that Y is an interior image of X if there is an onto interior map
between the general spaces X andY.

(d) We call X andY homeomorphic if there is a homeomorphism f : X → Y
such that f−1 : Q → P is an isomorphism.

2. LetXi = (Xi ,Pi) be general spaces indexed by some set I , and for convenience,
we assume that the Xi are pairwise disjoint. Let X be the topological sum of
the Xi . Define P ⊆ ℘(X ) by A ∈ P iff A∩Xi ∈ Pi . Then it is straightforward
to see that X = (X,P) is a general space, which we call the sum of the general
spaces Xi = (Xi ,Pi).

Observe that an interior map f between descriptive spaces is a DS-map because
it satisfies f−1c(y) = cf−1(y). Also, given general spaces X = (X,P) and Y =
(Y,Q), if Y is an interior image of X, then Q is isomorphic to a subalgebra of P ,
and if Y is an open subspace of X, then Q is a homomorphic image of P . It is also
clear that if a general space X = (X,P) is the sum of a family of general spaces
Xi = (Xi ,Pi), i ∈ I , then P is isomorphic to the product

∏
i∈I Pi .

The definitions of a valuation in a general space X, of X |= L, and of Log(X)
are the same as in the case of general frames. So if a general space Y is an interior
image of a general space X, then Log(X) ⊆ Log(Y). Similarly, if Y is an open
subspace of X, then Log(X) ⊆ Log(Y). Finally, if X is the sum of the Xi , then
Log(X) =

⋂
i∈I Log(Xi).

§4. Countable general frame property and completeness for general spaces over Q.
By Theorem 3.8, descriptive spaces are the same as descriptive S4-frames, but as we
will see in what follows, it is the perspective of general spaces (rather than general
S4-frames) that allows us to obtain some strong general completeness results for
logics above S4. In this section we introduce one of our key tools for yielding
these general completeness results, the countable general frame property. We then
consider the rational line Q, and prove our first general completeness result: a
normalmodal logic is a logic above S4 iff it is the logic of some general space overQ,
which is equivalent to being the logic of some subalgebra of Q+.
Let L be a normal modal logic. We recall that L has the finite model property
(FMP) if each nontheorem of L is refuted on a finite frame for L. This property
has proved to be extremely useful in modal logic. The existence of sufficiently many
finite models makes the study of a particular modal system easier. Unfortunately,
a large number of modal logics do not have this property. This can be a major
obstacle for investigating a particular modal system, as well as for proving gen-
eral theorems encompassing all modal logics. A natural weakening of FMP is
the countable frame property (CFP): each nontheorem is refuted on a count-
able frame for the logic. But there are modal logics that do not have CFP
either (see, e.g., [13, Chapter 6]). We weaken further CFP to the countable gen-
eral frame property (CGFP) and show that all normal modal logics possess
the CGFP.

Definition 4.1. We call a general frame F = (W,R,P) countable provided W
is countable. Let L be a normal modal logic. We say that L has the countable
general frame property (CGFP) provided for each nontheorem ϕ of L there exists a
countable general frame F for L refuting ϕ.
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Theorem 4.2. Each normal modal logic L has the CGFP.
Proof. Suppose ϕ /∈ L. Then there is a general frame F = (W,R,P) for L

refuting ϕ. Therefore, there is a valuation � on F and w ∈ W such that w ∈ �(ϕ).
We next select a countable subframeG of F that refutes ϕ. Our selection procedure
is basically the same as the one found in [13, Theorem 6.29], where the Löwenheim–
Skolem Theorem for modal logic is proved. Set V0 = {w}. Suppose Vn is defined.
For each � ∈ Form and v ∈ Vn with v ∈ �(♦�), there is uv,♦� ∈ R(v) with
uv,♦� ∈ �(�). We select one such uv,♦� and let Vn+1 be the set of the selected uv,♦�.
Finally, set V =

⋃
n∈� Vn. Clearly V is countable. Let S be the restriction of R to

V and 	 be the restriction of � to V . An easy induction on the complexity of modal
formulas gives that for each � ∈ Form and v ∈ V ,

v ∈ �(�) iff v ∈ 	(�).
Therefore,N = (V,S, 	) is a countable submodel ofM = (W,R, �) such thatN is a

model forL andN refutes ϕ. In fact, ϕ is refuted atw. SetQ = {	(�) : � ∈ Form}
and G = (V,S,Q). Then G is a countable general frame, and as N refutes ϕ,
so does G. It remains to show that G is a frame for L. Let 
 be an arbitrary
valuation on G. It is sufficient to show that each theorem �(p1, . . . , pn) of L is
true in (G, 
). Since each 
(pi) ∈ Q, there is �i ∈ Form such that 
(pi) = 	(�i).
As �(p1, . . . , pn) ∈ L, we have �(�1, . . . , �n) ∈ L. Because N is a model for L,
it follows that �(�1, . . . , �n) is true in N. Therefore, �(p1, . . . , pn) is true in (G, 
).
Thus, G is a frame for L, and so L has the CGFP. �
Remark 4.3. In the proof of Theorem 4.2, if we start the selection procedure by

adding to V0 a fixed countable subset U ofW , then the resulting countable general
frame G will contain U . The details are provided in Theorem 9.3(1).

Remark 4.4. If we start the proof of Theorem 4.2 with a general frame F such
that L = Log(F), then it is possible to perform the selection procedure in such a
way that we obtain a countable general frame G with L = Log(G). The details are
provided in Theorem 9.3(2).

Remark 4.5. Since descriptive frames provide adequate semantics, onemaywish
to introduce the countable descriptive frame property (CDFP), which could be stated
as follows: A normal modal logic L has the CDFP provided every nontheorem of
L is refuted on a countable descriptive frame for L. We leave it as an open problem
whether every normal modal logic has the CDFP.
We now turn our attention toQ. This is our first example of how we can use the

CGFP to obtain some general completeness results about logics above S4. In fact,
we prove that a normal modal logic L is a logic above S4 iff L is the logic of a
general space over Q, which is equivalent to being the logic of a subalgebra of the
closure algebra Q+. This is achieved by combining the CGFP with known results
concerning interior images ofQ.
Lemma 4.6. Let X and Y be topological spaces and let f : X → Y be an onto

interior map. For a general space Y = (Y,P) over Y , set Q = {f−1(A) : A ∈ P}.
Then X = (X,Q) is a general space over X such that Log(X) = Log(Y).
Proof. Since f : X → Y is an onto interior map, f−1 : Y+ → X+ is a

closure algebra embedding, so the restriction of f−1 to P is a closure algebra
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isomorphism from P ontoQ. Thus, X = (X,Q) is a general space over X such that
Log(X) = Log(Y). �

Remark 4.7. We will frequently use a special case of the lemma, when Y is the
Alexandroff space of an S4-frame.

Let F = (W,R) be an S4-frame. We recall that F is rooted if there is w ∈ W
such that W = R(w), and that such a w is called a root of F. A general frame
F = (W,R,P) is rooted iff (W,R) is rooted. We next show that the S4-version of
the Main Lemma in [8, Lemma 3.1] gives that each countable rooted S4-frame
is an interior image of Q. The lemma is well known in the finite case (see, e.g.,
[3, Section 2]).

Lemma 4.8. Each countable rooted S4-frame is an interior image ofQ.

Proof. (Sketch) Let F = (W,R) be a countable rooted S4-frame. We briefly
describe the recursive construction from [8]. Since F is reflexive, the construction
yields a homeomorphic copy X of Q (rather than of a subspace of Q, as happens
in [8]) and an onto interior map f : X →W .
Let l be a (horizontal) line in the plane and let P be the open lower half plane
below l . For each p ∈ P, consider �p the right isosceles triangle in P ∪ l such
that the vertex at the right angle is p and the hypotenuse lies along l . Viewing the
hypotenuse as a closed interval in l gives a bijective correspondence between P and
the closed (nontrivial) intervals in l .
We start our construction with any fixed p0 ∈ P together with its corresponding
triangle �p0 . Project p0 orthogonally to the point l(p0) in l . Using successive
triangles we now build two sequences (in l) converging to l(p0) (one increasing and
one decreasing). This step is then repeated for points occurring in these sequences.
Figure 1 demonstrates this recursive step for the point p and�p. Since the recursive
step is symmetric we only describe the process moving from the right side of the
figure towards the center. Place a triangle, say�0, whose hypotenuse is one fourth
the length of the hypotenuse of �p so that the right most vertices of �0 and �p
coincide. For each triangle �n, place another triangle �n+1 whose hypotenuse is
half the length of the hypotenuse of �n so that left most vertex of �n and the
right most vertex of �n+1 coincide. Now orthogonally project the vertex of each
�n into l to obtain sequences converging to l(p). Since F is reflexive, this recursive
process does not terminate (unlike the setting of [8]). Let X be the set of points
in l that are projections of vertices. Induce an ordering of X by restricting the
ordering of l (which one may now wish to view as R). Since F is reflexive, X is a
countable dense linear ordering without endpoints. By Cantor’s theorem (see, e.g.,
[25, p. 217, Theorem 2]), X is order-isomorphic to Q, and hence when equipped
with the interval topology, X is homeomorphic toQ.
We now definef : X →W . Setf(l(p0)) to be a root of F. Assumef(l(p)) = w.
Let �w : � → R(w) be a sequence such that (�w)−1(v) is infinite for each v ∈ R(w).
Thenfmaps the points occurring in the two sequences (constructed in the preceding
paragraph that converge to l(p)) according to the labeling at the top of Figure 1.
It follows from [8, Lemma 3.1] that f : X → W is an onto interior map. Since X
andQ are homeomorphic, we conclude that F is an interior image ofQ. �
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Figure 1. Defining X and f : X → F.

Lemma 4.9. Let L be a logic above S4. If ϕ /∈ L, then there is a general space over
Q validating L and refuting ϕ.

Proof. It follows from the proof of Theorem 4.2 that there is a countable rooted
general frame F = (W,R,P) for L that refutes ϕ. Lemma 4.8 gives an onto interior
map f : Q → W . Set S = {f−1(A) : A ∈ P}. By Lemma 4.6, (Q,S) is a general
space for L that refutes ϕ. �
We are ready to prove our first general completeness result for logics above S4.

For a closure algebra A, let S(A) be the collection of all subalgebras of A.

Theorem 4.10. Let L be a normal modal logic. The following are equivalent.

1. L is a logic above S4.
2. There is a general space overQ whose logic is L.
3. There is A ∈ S(Q+) such that L = Log(A).
Proof. (1)⇒(2): Let {ϕn : n ∈ �} be an enumeration of the nontheorems of L.

By Lemma 4.9, for each n ∈ �, there is a general space over Q validating L and
refuting ϕn. Let Xn = (Xn,Pn) be a copy of this general space, and without loss of
generality we assume that Xn ∩ Xm = ∅ whenever n = m. Let X = (X,P) be the
sum of the Xn. Then X is a general space. As sums preserve validity, X validates L.
Because ϕn is refuted in Xn, it is clear that ϕn is refuted in the sum X. Therefore,
L = Log(X). Since the countable sum ofQ is homeomorphic toQ, we have that X
is homeomorphic toQ. Thus, up to homeomorphism, X is a general space over Q.
Consequently, L is the logic of a general space overQ.
(2)⇒(3): If L = Log(Q,P), then L = Log(P) and P is a subalgebra ofQ+.
(3)⇒(1): This is clear since a subalgebra ofQ+ is a closure algebra and the logic

of a closure algebra is a logic above S4. �
A key ingredient in the proof of Theorem 4.10 is the interior mapping provided

by Lemma 4.8. An alternative proof, sketched in Section 5, can be realized by an
interior map which factors through the infinite binary tree. With this in mind, we
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ask whether Theorem 4.10 holds for the infinite binary tree. Section 5 is dedicated
to answering this question.

§5. Well-connected logics and completeness for general frames over T2. For each
nonzero α ∈ � + 1, we view the infinite α-ary tree Tα as the set of finite α-valued
sequences, including the empty sequence. Thus, if ↓n = {m ∈ � : m ≤ n}, then

Tα = {a : S → α : S = ∅ or S = ↓n for some n ∈ �} .
We also consider the infinite α-ary tree with limits Lα by setting

Lα = {a : S → α : S = ∅, S = ↓n for some n ∈ �, or S = �} .
That is, Lα = Tα ∪ {a : � → α}. Define a partial order on Lα by

a ≤ b iff dom(a) ⊆ dom(b) and a(n) = b(n) for all n ∈ dom(a).
Since Tα ⊆ Lα , we also use ≤ to denote the restriction of this order to Tα . We let
Tα = (Tα,≤) and Lα = (Lα,≤). We call Tα the infinite α-ary tree, and we call Lα
the infinite α-ary tree with limits.

Remark 5.1.

1. The empty sequence, i.e., the sequence whose domain is empty, is the root of
both Tα and Lα .

2. In Lα each infinite sequence is a leaf.
3. Tα has no leaves.
4. Each Tα is countable.
5. If α > 1, then Lα is uncountable.
6. Lα − Tα consists of exactly the infinite α-valued sequences.
In this section we are primarily interested in T2, although our results hold true
for any α ≥ 2. Let a ≤ b in T2. Suppose that dom(b) has exactly one more element
than dom(a). Call b the left child of a if the last occurring value in b is 0, and the
right child of a if the last occurring value in b is 1. In these cases, we write b = l(a)
and b = r(a), respectively. We also put l 0(a) = a and l k+1(a) = l(l k(a)) for k ∈ �,
as well as r0(a) = a and rk+1(a) = r(rk(a)).
The next lemma is well known. The finite version of it was proved independently
by Gabbay and van Benthem (see, e.g., [21]). The countable version of it can be
found in Kremer [22]. We give our own proof of the lemma since the technique is
useful in later considerations. It is based on the t-comb labeling of [1, Section 4].
With careful unpacking, one may realize that our proof is a condensed version of
Kremer’s proof.
For a partially ordered set (P,≤), we refer to an≤-upset of P simply as an upset.
We also let ↑a = {b ∈ P : a ≤ b} and ↓a = {b ∈ P : b ≤ a} for each a ∈ P.
We call a ∈ T2 a labeling node of T2 provided either a is the root of T2 or a = r(b)
for some b ∈ T2. Since the root of T2 is a labeling node, every ↓a contains a labeling
node; and since each ↓a is a finite chain, there is the greatest labeling node b ∈ ↓a
for each a ∈ T2.
Lemma 5.2. Any countable rooted S4-frame F is a p-morphic image of T2.
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Figure 2. Labeling scheme for a t-comb.

Proof. Let F = (W,R) be a countable rooted S4-frame. For each w ∈ W let
�w : � → R(w) satisfy (�w)−1(v) is infinite for each v ∈ R(w). Label the elements
of T2 as follows. Denote the label of a ∈ T2 by L(a). Label the root of T2 by a root
of F. Suppose a is a labeling node of T2 with L(a) = w. Label l n+1(a) by w and
r(l n(a)) by �w(n) for all n ∈ �; see Figure 2.
This labeling induces an onto p-morphism, namely L : T2 → W . The map L

is well defined because each a ∈ T2 has the greatest labeling node b ∈ ↓a. To
see that L is a p-morphism, observe that L(l(a)), L(r(a)) ∈ R(L(a)) for each
a ∈ T2. Therefore, a ≤ b in T2 implies L(a)RL(b) in F. Suppose L(a)Rw. Then
w ∈ R(L(a)). Let b be the greatest labeling node in ↓a. Then a = l k(b) for some
k ∈ � and L(b) = L(a). So w ∈ R(L(b)) and there is n ∈ � such that n ≥ k
and �L(b)(n) = w. Thus, a = l k(b) ≤ l n(b) ≤ r(l n(b)) and L(r(l n(b))) = w. This
shows that L is a p-morphism. That L is onto is obvious because if w is a root of
F, then W = R(w) and �w : � → R(w) is onto. Consequently, F is a p-morphic
image of T2. �
Remark 5.3. As promised at the end of Section 4, we give an alternative proof

of Lemma 4.8. Let F = (W,R) be a countable rooted S4-frame. By Lemma 5.2,
there is an onto p-morphism f : T2 → W . We view both T2 and F as topological
spaces in their respective Alexandroff topologies. By [3, Claim 2.6], there is an onto
interior map g : Q→ T2. Thus, the composition f ◦g : Q→W is an onto interior
map that factors through T2.

We now show that an analogue of Theorem 4.10 does not hold for T2. For this
we recall the notion of a connected logic from [5]. Let A = (A,♦) be a closure
algebra. Call a ∈ A clopen if �a = a = ♦a (that is, a is both open and closed).
We say A is connected provided the only clopen elements are 0 and 1, and that a
logic L above S4 is connected provided L = Log(A) for some connected closure
algebra A.
For a topological space X , it is clear that X+ is connected iff X is connected,

where we recall that X is connected provided X and ∅ are the only clopen subsets
of X .
Let F = (W,R) be an S4-frame. For w, v ∈W , a path between w and v is a finite

sequence inW , say w0, . . . , wn, such that w0 = w, wn = v, and either wi R wi+1 or
wi+1 Rwi for each i < n. We recall that F is path-connected provided there is a path
between any two elements ofW . Then F+ is connected iff F is path-connected (see,
e.g., [5, Lemma 3.4]).
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Since T2 is rooted, T2 is path-connected. Therefore, T+2 is a connected closure
algebra, and hence each subalgebra of T+2 is also connected. Thus, the logic of any
subalgebra of T+2 is a connected logic (we will strengthen this result at the end
of this section). As there exist logics above S4 that are not connected [5, p. 306],
it follows that subalgebras of T+2 do not give rise to all logics above S4. Therefore,
the direct analogue of Theorem 4.10 obtained by substituting T2 for Q does not
hold. But there is a weaker analogue that does hold for T2.
Lemma 5.4. Let L be a logic above S4. If ϕ /∈ L, then there is a general frame over

T2 validating L and refuting ϕ.
Proof. The proof is the same as the proof of Lemma 4.9, with the only differences
being that Q should be replaced with T2 and Lemma 4.8 should be replaced with
Lemma 5.2. �
The following lemma is a weaker version for T2 of the fact that a countable sum
ofQ is homeomorphic toQ.
Lemma 5.5. A countable disjoint union ofT2 is isomorphic to a generated subframe
of T2.
Proof. Define an : ↓n → 2 by

an(k) =
{
0 if k < n,
1 if k = n.

Then {an : n ∈ �} ⊂ T2. Clearly
⋃
n∈� ↑an is a generated subframe of T2 and

the family {↑an : n ∈ �} is pairwise disjoint; see Figure 3.
Furthermore, the generated subframe of T2 whose underlying set is ↑an is iso-
morphic to T2. To see this observe that the following recursively defined function is
a bijective p-morphism from T2 onto ↑an:

f(a) =

⎧⎨⎩
an if a is the root of T2,
l(f(b)) if a = l(b),
r(f(b)) if a = r(b). �

Let A be a closure algebra. We recall that S(A) is the collection of all subalgebras
of A. We also let H(A) be the collection of all homomorphic images of A, and
SH(A) be the collection of all subalgebras of homomorphic images of A.
Theorem 5.6. For a normal modal logic L, the following conditions are
equivalent.
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Figure 3. Depicting ↑an’s.
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1. L is a logic above S4.
2. There is a general S4-frame F = (W,R,P) such that (W,R) is a generated
subframe of T2 and L = Log(F).

3. There is a closure algebra A ∈ SH(T+2 ) such that L = Log(A).
Proof. (1)⇒(2): Let L be a logic above S4, and let {ϕn : n ∈ �} be an enumer-

ation of the nontheorems of L. By Lemma 5.4, for each n ∈ �, there is a general
frame over T2 validating L and refuting ϕn . Let Fn = (Wn,Rn,Pn) be a copy of
this general frame, and without loss of generality we assume thatWn ∩Wm = ∅

whenever n = m. Let F = (W,R,P) be the disjoint union of the Fn. Because disjoint
unions of general frames preserve validity, F is a general frame for L, and clearly F
refutes each ϕn. Thus, L = Log(F), and by Lemma 5.5, (W,R) is isomorphic to a
generated subframe of T2.
(2)⇒(3): Since (W,R) is a generated subframe of T2, we have (W,R)+ ∈ H(T+2 ).

As P is a subalgebra of (W,R)+, we have P ∈ SH(T+2 ). Finally, L = Log(F) yields
L = Log(P).
(3)⇒(1): This is clear since A is a closure algebra and L = Log(A). �
The next natural question is to characterize those logics aboveS4which arise from

subalgebras of T+2 . We recall [28, Definition 1.10] that a closure algebra A = (A,♦)
is well-connected if ♦a ∧♦b = 0 implies a = 0 or b = 0. Equivalently, �a ∨�b = 1
implies a = 1 or b = 1. It is easy to see that a well-connected closure algebra is
connected, and that a subalgebra of a well-connected closure algebra is also well-
connected.
A simple example of a connected closure algebra that is not well-connected isR+.

For a finite example, consider a finite S4-frameF = (W,R). Then F+ is connected iff
F is path-connected, andF+ is well-connected iff F is rooted (see, e.g., [7, Section 2]).
So a finite path-connectedF that is not rooted gives rise to a finite connected closure
algebra that is not well-connected.

Definition 5.7. We call a logic L above S4 well-connected if L = Log(A) for
some well-connected closure algebra A.

It is easy to see that if F = (W,R) is a rooted S4-frame, then F+ is a well-
connected closure algebra. Therefore, since T2 is rooted, it follows that T+2 is well-
connected. Thus, each A ∈ S(T+2 ) is well-connected. This implies that Log(A) is a
well-connected logic above S4 for each A ∈ S(T+2 ). To prove the converse, we need
the following lemma.

Lemma 5.8. Let {ϕn : n ∈ �} be a set of formulas, F = (W,R) be a frame, and
w ∈W . Suppose that for each n ∈ � there is a valuation �n onF such thatw /∈ �n(ϕn).
Then there is a single valuation � on F such that w /∈ � (ϕ̂n) for each n ∈ �, where ϕ̂n
is obtained from ϕn via substitution involving only propositional letters.

Proof. We build ϕ̂n so that distinct formulas in {ϕ̂n : n ∈ �} have no proposi-
tional letters in common. Let Pn be the set of propositional letters occurring in ϕn.
Since the disjoint union of countably many finite sets is countably infinite, there is
a bijection � :

⋃
n∈� Pn × {ϕn} → Prop. Thus, � assigns each propositional letter

p in ϕn to a new propositional letter so that no two letters in ϕn are assigned to the
same letter, and no two occurrences of p in distinct formulas are assigned to the
same letter. We let ϕ̂n be the substitution instance of ϕn obtained by substituting
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each occurrence of p in ϕn with �(p,ϕn). Then distinct formulas in {ϕ̂n : n ∈ �}
have no propositional letters in common.
Define � by �(�(p,ϕn)) = �n(p). Then for any v ∈W we have

v ∈ �n(ϕn) iff v ∈ � (ϕ̂n) .
In particular, w /∈ � (ϕ̂n) for each n ∈ �. �
We are ready to prove the main result of this section.

Theorem 5.9. Let L be a logic above S4. The following conditions are equivalent.

1. L is well-connected.
2. L is the logic of a general frame over T2.
3. L = Log(A) for some A ∈ S(T+2 ).
Proof. (1)⇒(2): Let L be well-connected. Then L = Log(A) for some well-
connected closure algebra A = (A,♦). Let F = (W,R,P) be the dual descriptive
frame ofA. Then Log(F) = Log(A) = L. SinceA is well-connected, F is rooted (see,
e.g., [15, Section 3]). Let w be a root of F. Suppose {ϕn : n ∈ �} is an enumeration
of the nontheorems of L. For each n ∈ �, there is a valuation �n on F refuting ϕn.
Sincew is a root,w /∈ �n(�ϕn). By Lemma 5.8, there are a valuation � on F and the
set {�̂ϕn : n ∈ �} such that w /∈ �(�̂ϕn) for each n ∈ �. By Theorem 4.2, there is
a general frame G = (V,S,Q) such that G is a frame for L, V ⊆ W is countable
and contains w, S is the restriction of R to V , Q = {	(ϕ) : ϕ ∈ Form}, where
	(p) = �(p) ∩ V for each p ∈ Prop, and w /∈ 	(�̂ϕn) for each n ∈ �. For each
propositional letter p occurring in ϕn , set 
(p) = 	(�(p,ϕn)). By the definitions of
	 and �, we have 
(p) = �n(p) ∩ V . Therefore, 
(�ϕn) = 	(�̂ϕn), so w /∈ 
(�ϕn)
since w /∈ 	(�̂ϕn). Thus, each ϕn is refuted on G, so L = Log(G). Since (V,S) is
a countable rooted S4-frame, Lemma 5.2 gives that there is an onto p-morphism
f : T2 → V . By Lemma 4.6, there is a general frame over T2 whose logic is L.
(2)⇒(3): Let L = Log(T2,P). Then L = Log(P) and P ∈ S(T+2 ).
(3)⇒(1): This is obvious since each A ∈ S(T+2 ) is well-connected. �

§6. Completeness for general spaces over L2. In this sectionwe take amore careful
look at the infinite binary tree with limitsL2, equip it with the Scott topology, denote
the result by L2, and show that in the completeness results of Section 5, T2 can be
replaced by L2.
We begin by pointing out that L2 is obtained from T2 by adding leaves, which we
realize as limit points via multiple topologies, the first of which is the Scott topology
for a directed complete partial order (DCPO). Recall (see, e.g., [19]) that a poset is
a DCPO if every directed subset has a sup, and that an upset U in a DCPO is Scott
open provided for each directed set S, we have S ∩ U = ∅ whenever sup(S) ∈ U .
The collection of Scott open sets forms the Scott topology.
For each α, it is easy to see that a directed set in Lα is a chain whose sup exists
in Lα . Therefore, each Lα is a DCPO. Moreover, since ↓a is a finite chain for each
a ∈ Tα , we have that ↑a is Scott open for each a ∈ Tα , and so {↑a : a ∈ Tα}
forms a basis for the Scott topology � on Lα . We denote (Lα, �) by Lα . Kremer [22]
proved that S4 is strongly complete with respect to L2.

Lemma 6.1. The Cantor space C is homeomorphic to the subspace L2 − T2 of L2.
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Proof. It is well known that C is homeomorphic to the space whose underlying
set X consists of infinite sequences s = {sn : n ∈ �} in T2 such that s0 is the root
and sn+1 is a child of sn, and whose topology is generated by the basic open sets
Bns = {t ∈ X : sk = tk ∀k ∈↓n} for s ∈ X and n ∈ �. With each a ∈ L2 − T2 we
associate s ∈ X as follows:

s0 = ∅ (the sequence with empty domain; i.e. the root),

sn+1 = a|↓n (the restriction of a to ↓n).
Then the correspondence a �→ s is a well-defined bijection fromL2−T2 toC, under
which the basic open ofL2−T2 arising from the Scott open set ↑(a|↓n) corresponds
to Bns . Thus, L2 − T2 is homeomorphic to C. �
Utilizing a technique similar to the one presented in Section 4, it is convenient to

embed L2 in the lower half plane as shown in Figure 4, where the closed intervals
formed in constructing C are depicted at the top of Figure 4. The elements of T2
are realized as vertices of isosceles right triangles whose hypotenuses coincide with
the closed intervals and whose other sides depict the relation ≤. Projecting the
picture onto the line with arrows gives a realization ofL2 as a subset ofR by adding
to C the midpoint of each open middle third that is removed in constructing C.
Since the Pelczynski compactification [30] of a countable discrete space X is the

compactification of X whose remainder is homeomorphic to C, we can realize L2
as the Pelczynski compactification of T2 viewed as a discrete space.
Lemma 6.2. Viewing L2 as a subspace of R2 (or equivalently as a subspace of R)

gives the Pelczynski compactification of the discrete space T2.
Proof. Clearly the image of L2 under the above described embedding into the

plane (or line) is closed and bounded. Therefore, if we give the image of L2 the
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Figure 4. Embedding L2 in the lower half plane.
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subspace topology, then it is a compact Hausdorff space. It is also clear that each
point of T2 is isolated in the image, and that the image of L2 is the closure of the
image ofT2. Thus, the image ofL2 is a compactification of the image ofT2, which is
a countable discrete space. Finally, by Lemma 6.1, the remainder is homeomorphic
to C, so the image of L2 is the Pelczynski compactification of the image of T2. �
We denote this new topology on L2 by �S . Since the Pelczynski compactification
of a countable discrete space is a Stone space, (L2, �S) is a Stone space. It is clear
from the figure that for a ∈ T2, both ↑a and {a} are clopen in (L2, �S), and
that each clopen set of (L2, �S) is a finite union of clopen sets of these forms.
As {a} = ↑a − (↑l(a) ∪ ↑r(a)), we see that the Boolean algebra P of all clopens
of (L2, �S) is generated by {↑a : a ∈ T2}, which is a basis for the Scott topology
� on L2. Moreover, since for each a ∈ T2, we have that ↓a is finite and ↓(↑a) =
↑a ∪ ↓a, we see that (P , ↓) is a closure algebra. Consequently, (L2,≤,P) is a
descriptive frame. Let �≤ be the Alexandroff topology on L2. Then, by [9, Theorem
2.12], � = �S ∩ �≤.
Remark 6.3. As a result, we have several ways of thinking aboutL2. The first way
is to think aboutL2 as a DCPO leading to the Scott topology �. The second way is a
geometrically motivated approach that realizes L2 as a subspace of R2, which gives
the Stone topology �S . The third way connects the first and second ways by realizing
the Scott topology (which, by the way is theMcKinsey–Tarski topology introduced
in [9]) as the intersection of the Stone and Alexandroff topologies. Moreover, the
Stone topology is the patch topology of the Scott topology. In fact, there is also a
fourthway of thinking aboutL2. LetD be the bounded distributive lattice generated
by {↑a : a ∈ T2}. Then (L2, �S ,≤) is (up to homeomorphism) the Priestley space
of D. Consequently, (L2, �S ,≤) is a Priestley order-compactification of the poset
(T2,≤) (see [10]).
We are ready to prove completeness results that are similar to the ones proved in
Section 5 but involve L2. For this we will take advantage of Kremer’s theorem that
T+2 is isomorphic to a subalgebra of L

+
2 [22, Lemma 6.4].

Lemma 6.4. Let L be a logic above S4. If ϕ /∈ L, then there is a general space over
L2 validating L and refuting ϕ.

Proof. By Lemma 5.4, there is a general frame (T2,P) for L refuting ϕ. By
[22, Lemma 6.4], T+2 is isomorphic to a subalgebra of L

+
2 , so P is isomorphic to

some Q ∈ S(L+2 ). Thus, there is a general space (L2,Q) for L refuting ϕ. �
Theorem 6.5. Let L be a normal modal logic. The following are equivalent.

1. L is a logic above S4.
2. There is a general space over a Scott open subspace of L2 whose logic is L.
3. There is a closure algebra A ∈ SH(L+2 ) such that L = Log(A).
Proof. (1)⇒(2): Let {ϕn : n ∈ �} be an enumeration of the nontheorems
of L. By Lemma 6.4, for each n ∈ �, there is a general space over L2 validat-
ing L and refuting ϕn. Let Xn = (Xn,Pn) be a copy of this general space, and
without loss of generality we assume that Xn ∩ Xm = ∅ whenever n = m. Thus,
the sum X = (X,P) of the general spaces Xn is a general space whose logic is
L. The proof will be complete provided that X is homeomorphic to a Scott open
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subspace of L2. Consider an as in the proof of Lemma 5.5. Then {↑an : n ∈ �}
is a pairwise disjoint family of subsets of L2 such that each ↑an is isomorphic to
L2. To see the isomorphism, extend the map f defined in the proof of Lemma 5.5
to L2 − T2 by setting f(a) = sup{f(a|↓n) : n ∈ �}. Since an ∈ T2, we see
that

⋃
n∈� ↑an is Scott open in L2. As X is homeomorphic to

⋃
n∈� ↑an, we con-

clude that X is homeomorphic to a Scott open subspace of L2, thus finishing
the proof.
(2)⇒(3): Suppose L = Log(X,P), where X is a Scott open subspace of L2.

Then L = Log(P), P ∈ S(X+), and X+ ∈ H(L+2 ). Thus, there is a closure algebra
P ∈ SH(L+2 ) such that L = Log(P).
(3)⇒(1): This is obvious since A is a closure algebra. �
Theorem 6.6. Let L be a logic above S4. The following are equivalent.

1. L is well-connected.
2. There is a general space over L2 whose logic is L.
3. L = Log(A) for some A ∈ S(L+2 ).
Proof. (1)⇒(3): By Theorem 5.9, L = Log(B) for some B ∈ S(T+2 ). By

[22, Lemma 6.4], B is isomorphic to a subalgebra A of L+2 . Thus, L = Log(B) =
Log(A).
(3)⇒(1): Since L+2 is a well-connected closure algebra, it follows that every A ∈

S(L+2 ) is also well-connected. Thus, L = Log(A) is a well-connected logic.
Consequently, (1) and (3) are equivalent, and obviously (2) and (3) are

equivalent. �

§7. Completeness for general spaces over C. The key ingredient in proving that
each logic above S4 is the logic of a general space over Q is that each countable
rooted S4-frame is an interior image of Q. This is no longer true if we replace Q
by the Cantor space C or the real line R [6, Section 6]. In this section we show
that nevertheless there is an interior map from C onto L2, and utilize this fact to
prove that each logic above S4 is the logic of some general space over C. In fact,
we prove that Lα is an interior image of C for each nonzero α ∈ � + 1. This we
do by first constructing an onto interior map f : L2 → Lα . Then restricting f
to L2 − T2 and applying Lemma 6.1 realizes each Lα as an interior image of C.
That L2 is an interior image of C also follows fromKremer’s result [22, Lemma 8.1]
that L2 is an interior image of any complete dense-in-itself metric space. However,
our proof is different. Our approach utilizes the way that C sits inside the DCPO
structure of L2 and the aforementioned f : L2 → Lα is defined by utilizing the
supremum of directed sets. By contrast, Kremer’s method decomposes C (or any
complete dense-in-itself metric space) into equivalence classes that are indexed by
L2 so that mapping each point in an equivalence class to the corresponding index
gives an interior map onto L2.
We use the proof of Lemma 5.2 to label the nodes of T2 by the nodes of Tα .

Recall that we denote the labeling of a ∈ T2 by L(a), and that for each b ∈ Tα we
have a map �b : � → ↑b such that (�b)−1(c) is infinite for each c ∈ ↑b. Then the
root r2 of T2 is labeled by the root rα of Tα , and we write L(r2) = rα . Also, if L(a)
is defined and a is a labeling node, then for n ∈ �, we have L(l n(a)) = L(a) and
L(r(l n(a))) = �L(a)(n). Therefore, for each a ∈ L2 − T2, the sequence {L(a|↓n) :
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n ∈ �} is increasing in Tα , and hence also increasing in the DCPO Lα . Set

f(a) =
{
L(a) if a ∈ T2,
sup{L(a|↓n) : n ∈ �} if a ∈ L2 − T2.

Then f is a well-defined map from L2 to Lα . By Lemma 5.2, f|T2 is a p-morphism
of T2 onto Tα .

Lemma 7.1. f is an interior map from L2 onto Lα .

Proof. The proof consists of three claims.

Claim 1: f is open.
Proof: We show f(↑a) = ↑f(a) for each a ∈ T2. Let b ∈ ↑a. If b ∈ T2, then
an inductive argument based on the labeling scheme gives f(a) = L(a) ≤ L(b) =
f(b). If b ∈ L2 − T2, then b|dom(a) = a, and so f(a) = L(a) = L(b|dom(a)) ≤
sup{L(b|↓n)} = f(b). Therefore, f(↑a) ⊆ ↑f(a).
Conversely, let b ∈ ↑f(a). Then L(a) = f(a) ≤ b. Assume b ∈ Tα . By
Lemma 5.2, f|T2 is a p-morphism onto Tα . So there is c ∈ ↑a such that f(c) = b.
Now suppose b ∈ Lα − Tα . We build an increasing sequence {an} such that
an ∈ ↑a ∩ T2 for each n ∈ � and c = sup{an} ∈ L2 − T2 satisfies f(c) = b. Let
a0 = a. Let b0 = f(a) and set bn+1 to be the child of bn in ↓b. Then bn = b|dom(bn)
and bn ∈ Tα for each n ∈ �. Furthermore, sup{bn} = b and

f(a) = b0 ≤ bn ≤ bn+1.
Since f|T2 is a p-morphism onto Tα , for each n ∈ � there is an+1 ∈ ↑an ∩ T2 such
that f(an+1) = bn+1. Thus, for c = sup{an : n ∈ �}, we have

b = sup{bn : n ∈ �} = sup{f(an) : n ∈ �}
= sup{L(an) : n ∈ �} = sup{L(c|↓n) : n ∈ �} = f(c),

since the sequence {L(an) : n ∈ �} is an infinite subsequence of {L(c|↓n) : n ∈ �}.
As c ∈ ↑a, we have shown f(↑a) ⊇ ↑f(a).
Lastly since each a ∈ T2 is labeled by an element of Tα , we have that f(a) ∈ Tα

whenever a ∈ T2, giving that f(↑a) = ↑f(a) ∈ �. Thus, f sends basic opens of L2
to basic opens of Lα , hence f is open.

Claim 2: f is onto.
Proof: f(L2) = f(↑r2) = ↑f(r2) = ↑L(r2) = ↑rα = Lα .
Claim 3: f is continuous.
Proof: We show f−1(↑b) = ⋃{↑a : b ≤ L(a)} for each b ∈ Tα . Let c ∈
f−1(↑b). Then b ≤ f(c). If c ∈ T2, then b ≤ f(c) = L(c) and c ∈ ↑c, giving that
c ∈ ⋃{↑a : b ≤ L(a)}. Suppose c ∈ L2 − T2. Then sup{L(c|↓n)} = f(c) ∈ ↑b.
Since b ∈ Tα , we have ↑b is Scott open, so there is n ∈ � such that f(c|↓n) =
L(c|↓n) ∈ ↑b. Therefore, b ≤ L(c|↓n) and c ∈ ↑(c|↓n). Thus, c ∈

⋃{↑a : b ≤ L(a)},
showing that f−1(↑b) ⊆ ⋃{↑a : b ≤ L(a)}.
Conversely, let c ∈ ⋃{↑a : b ≤ L(a)}. Then there is a ∈ T2 such that b ≤ L(a)
and c ∈ ↑a. Therefore,

f(c) ∈ f(↑a) = ↑f(a) = ↑L(a) ⊆ ↑b.
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Thus, c ∈ f−1(↑b), giving f−1(↑b) ⊇ ⋃{↑a : b ≤ L(a)}. This proves that f is
continuous. �
Theorem 7.2. For each nonzero α ∈ � + 1, the space Lα is an interior image

of C.

Proof. By Lemma 6.1,C is homeomorphic to the subspaceL2−T2 ofL2. So it is
enough to show that g = f|L2−T2 is an onto interior map, wheref : L2 → Lα is the
map of Lemma 7.1. Clearly g is continuous since it is the restriction of a continuous
map. That g is onto and open follows from the next claim since f(↑a) = ↑f(a) for
each a ∈ T2.
Claim: For each a ∈ T2, we have g

(↑a ∩ (L2 − T2)) = f(↑a).
Proof: Clearly g

(↑a ∩ (L2 − T2)) = f (↑a ∩ (L2 − T2)) ⊆ f(↑a). Let b ∈
f(↑a). Then there is c ∈ ↑a such thatf(c) = b. If c ∈ L2−T2, then there is nothing
to prove. Suppose c ∈ T2. Define d ∈ L2 − T2 by d (n) = c(n) when n ∈ dom(c)
and d (n) = 0 otherwise. So d is the limit of the sequence {l n(c) : n ∈ �} of the left
ancestors of c. Then d ∈ ↑a and since L(l n(c)) = L(c), we have
g(d ) = f(d ) = sup{L(d |↓n)} = sup{L(l n(c))} = sup{L(c)} = L(c) = f(c) = b.
Thus, g

(↑a ∩ (L2 − T2)) ⊇ f(↑a), and equality follows. �
As an immediate consequence, we obtain:

Corollary 7.3. The space L2 is an interior image of C.

In order to prove the main result of this section, we need the following lemma.

Lemma 7.4. Let L be a logic above S4. If ϕ /∈ L, then there is a general space over
C validating L and refuting ϕ.

Proof. By Lemma 6.4, there is a general space (L2,P) for L refuting ϕ. By
Corollary 7.3,L2 is an interior imageofC, soL+2 is isomorphic to a subalgebra ofC

+.
Therefore,P is isomorphic to someQ ∈ S(C+). Thus, there is a general space (C,Q)
for L refuting ϕ. �
We are ready to prove the main result of this section.

Theorem 7.5. Let L be a normal modal logic. The following conditions are
equivalent.

1. L is a logic above S4.
2. L is the logic of a general space over C.
3. L = Log(A) for some A ∈ S(C+).
Proof. (1)⇒(2): Suppose L is a logic above S4. Let {ϕn : n ∈ �} be an enumer-

ation of the nontheorems of L. By Lemma 7.4, for each n ∈ �, there is a general
space over C validating L and refuting ϕn . Let Xn = (Xn,Pn) be a copy of this gen-
eral space, and without loss of generality we assume that Xn ∩ Xm = ∅ whenever
n = m. Let X = (X,P) be the sum of the Xn. Then Log(X) =

⋂
n∈� Log(Xn) = L.

Although X is not homeomorphic to C, the one-point compactification of X is
homeomorphic to C (see, e.g., [5, Lemma 7.2]).1

1We may realize X geometrically as
⋃
n∈� Xn , where Xn = C ∩

[
2
3n+1
, 13n

]
. Note that each Xn is the

portion ofC that is contained in the right closed third of the iteration of constructingC as the ‘leftovers’
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Let αX = X ∪ {∞} be the one-point compactification of X . Then αX is home-
omorphic to C. Define Q on αX by A ∈ Q iff A ∩ Xn ∈ Pn and either∞ /∈ A and
{n ∈ � : A ∩ Xn = ∅} is finite or∞ ∈ A and {n ∈ � : A ∩ Xn = Xn} is finite.
Claim 1: Q is a closure algebra.
Proof: Let A,B ∈ Q. Then A ∩ Xn,B ∩ Xn ∈ Pn for each n ∈ �. Clearly we
have (A ∩ B) ∩Xn = (A ∩ Xn) ∩ (B ∩Xn) ∈ Pn. Suppose∞ ∈ A or∞ ∈ B. Then
∞ ∈ A ∩ B and

{n : (A ∩ B) ∩ Xn = ∅} ⊆ {n : A ∩ Xn = ∅} ∩ {n : B ∩ Xn = ∅}
is finite since either {n : A∩Xn = ∅} is finite or {n : B ∩Xn = ∅} is finite. Suppose
∞ ∈ A and∞ ∈ B. Then∞ ∈ A ∩ B and

{n : (A ∩ B) ∩ Xn = Xn} ⊆ {n : A ∩ Xn = Xn} ∪ {n : B ∩ Xn = Xn}
is finite since both {n : A ∩ Xn = Xn} and {n : B ∩ Xn = Xn} are finite. Thus, Q is
closed under ∩.
For complement, we clearly have (−A) ∩ Xn = Xn − (A ∩ Xn) ∈ Pn. For every
C ∈ Q, we have

{n : (−C ) ∩ Xn = Xn} = {n : C ∩ Xn = ∅}.
So if∞ ∈ A, then∞ ∈ −A and {n : (−A)∩Xn = Xn} is finite since {n : A∩Xn = ∅}
is finite. On the other hand, if∞ ∈ A, then∞ ∈ −A and {n : (−A) ∩ Xn = ∅} is
finite as {n : A ∩ Xn = Xn} is finite. Thus, Q is closed under complement.
Let c be closure in αX . It is left to show that Q is closed under c. For A ⊆ αX ,
we show that c(A) ∩ Xn = cn(A ∩ Xn), where cn is closure in Xn. As cn(A ∩ Xn) =
c(A∩Xn)∩Xn, one inclusion is clear. For the other inclusion, let x ∈ c(A)∩Xn and
letU be an open neighborhood of x inXn. SinceXn is a clopen subset of αX , we see
thatU is open in αX . As x ∈ c(A), we haveA∩U = ∅. Therefore, (A∩Xn)∩U =
A ∩ (U ∩ Xn) = A ∩U = ∅, and so x ∈ cn(A ∩Xn). Now, since cn(A ∩ Xn) ∈ Pn,
we see that c(A) ∩ Xn ∈ Pn. Suppose ∞ ∈ A. Then {n : c(A) ∩ Xn = ∅} =
{n : A∩Xn = ∅} is finite, and∞ ∈ c(A) because {∞}∪⋃

{n:A∩Xn=∅}Xn is an open
neighborhood of ∞ disjoint from A. Suppose ∞ ∈ A. Then {n : A ∩ Xn = Xn}
is finite. Clearly ∞ ∈ c(A). Since {n : c(A) ∩ Xn = Xn} ⊆ {n : A ∩ Xn = Xn}, it
follows that {n : c(A)∩Xn = Xn} is finite. Thus, c(A) ∈ Q, and henceQ is a closure
algebra.

Claim 2: Q is isomorphic to a subalgebra of the closure algebra P .
Proof: Define � : Q → P by �(A) = A ∩ X = A − {∞}. Note that � is the
identity map when∞ ∈ A. Clearly � is well defined. Let A,B ∈ Q. Then

�(A ∩ B) = (A ∩ B) ∩ X = (A ∩ X ) ∩ (B ∩X ) = �(A) ∩ �(B).
of removing open middle ‘thirds’ and hence each Xn is homeomorphic to C. The only point of C not in
X is 0, which is clearly a limit point of X as viewed as a subset of R (depicted below). So it is intuitively
clear that the one-point compactification of the sum of � copies of C is homeomorphic to C.

]

1

[

2
3

X0
]

1
3

[

2
9

X1
]

1
9

[

2
27

X2
. . .•
0

https://doi.org/10.1017/jsl.2014.59 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.59


TOPOLOGICAL COMPLETENESS OF LOGICS ABOVE S4 545

Moreover,

�(αX − A) = (αX − A) ∩ X = X − A = X − (A ∩ X ) = X − �(A).
Therefore, � is a Boolean homomorphism. We recall that c is closure in αX . Let cX
be closure in X . If∞ ∈ A, then A ⊆ X and c(A) = cX (A), so

�(c(A)) = �(cX (A)) = cX (A) = cX (A ∩ X ) = cX �(A).
Suppose∞ ∈ A. Then c(A) = cX (A ∩ X ) ∪ {∞}. Therefore,

�(c(A)) = �
(
cX (A ∩ X ) ∪ {∞}) = cX (A ∩ X ) = cX (�(A)).

Thus, � is a closure algebra homomorphism.
To see that � is an embedding, let �(A) = X . Then {n : A ∩ Xn = Xn} = ∅, so

∞ ∈ A, and hence A = αX . Thus, � : Q → P is a closure algebra embedding, and
so Q is isomorphic to a subalgebra of P .
Now, since P validates L, we have that Q validates L. Furthermore, since αn :

Q → Pn given by αn(A) = A ∩ Xn is an onto closure algebra homomorphism,
each Pn is a homomorphic image of Q. Thus, Q refutes each ϕn , and hence L =
Log(Q). Consequently, L is the logic of the general space (αX,Q), and as αX is
homeomorphic to C, we conclude that L is the logic of a general space over C.
(2)⇒(3): If L = Log(C,Q), then L = Log(Q) andQ ∈ S(C+).
(3)⇒(1): This is obvious since L is the logic of a closure algebra. �
Remark 7.6. The closure algebra Q constructed in the proof of Theorem 7.5 is

a weak product [16, Appendix, Section 3] of the closure algebras Pn.
Most of the remainder of the paper is dedicated to logics associated with the real

line R.

§8. Completeness for general spaces over open subspaces of R. As we have seen,
general spaces over bothQ andC characterize all logics above S4. This is no longer
true for T2 and L2. In fact, general frames over T2 and general spaces over L2
characterize all well-connected logics above S4, and in order to characterize all
logics above S4, we need to work with general frames over generated subframes
of T2 or general spaces over open subspaces of L2. In this section we show that a
similar result is also true for the reals. Namely, we prove that a normal modal logic
is a logic above S4 iff it is the logic of a general space over an open subspace of R.
In the next section we address the logics above S4 that arise from general spaces
over R and show that each connected logic arises this way.
We recall that in proving that a logic L above S4 is the logic of a general space

over Q, we enumerated all the nontheorems of L as {ϕn : n ∈ �}, used the CGFP
to find a countable rooted general S4-frame Fn = (Wn,Rn,Pn) for L that refuted
ϕn , and obtained each Fn as an interior image of Q via an onto interior map
fn : Q → Fn. We then used f−1

n to obtain Qn ∈ S(Q+) isomorphic to Pn, thus
producing a general space (Q,Qn). Finally, we took the sum of disjoint copies of
the general spaces (Q,Qn) to obtain a general space whose underlying topological
space was homeomorphic toQ, and whose logic was indeed L.
What can go wrong with this technique when we switch to the reals? One obvious

obstacle is that the sum of countably many copies of R is no longer homeomorphic
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toR because it is no longer connected. However, even before this ‘summation’ stage,
we have no guarantee that a rooted countable S4-frame is an interior image of R.
Quite the contrary, it is a consequence of the Baire category theorem that rooted S4-
frames with infinite ascending chains cannot be obtained as interior images of the
reals [6, Section 6]. We overcome this obstacle by switching from general frames Fn
to general spaces over L2. This can be done as follows. As we saw in Section 5,
we can realize each Fn as a general frame over T2. By Kremer’s result [22,
Lemma 6.4], T+2 is embeddable in L

+
2 , hence each general frame over T2 can be

realized as a general space over L2. We next build an interior map from any (non-
trivial) real interval onto L2. Such maps have already appeared in the literature;
see [22, 26]. The sum of disjoint open intervals produces an open subspace X of
R and a general space over X whose logic is L. Thus, general spaces over open
subspaces of R give rise to all logics above S4.
In realizing L2 as an interior image of a nontrivial real interval I , our method
differs from both Kremer’s [22] and Lando’s [26] methods. Kremer utilizes a
decomposition of I (indeed of any complete dense-in-itself metrizable space) into
equivalence classes indexed by L2, and maps each element in a class to its index.
Lando defines an interior mapping of I onto L2 by successively labeling and rela-
beling the points of I by points in L2. Our construction is similar to Lando’s
construction in that we utilize a labeling scheme; although we make a sequence
of labels that form a directed set. In line with earlier comments in Section 7, our
method utilizes the DCPO structure of L2. All three methods are similar in that
each utilizes a dissection of intervals into nowhere dense “borders” that separate
two collections of intervals to be used in the next stage of the construction.
We start by recalling the construction of the Cantor set in a (nontrivial) real
interval I ⊆ R with endpoints x < y (note I may be closed, open, or neither).
Step 0: Set C0,1 = I .
Step n > 0: Start with the 2n−1 intervals Cn−1,1, . . . , Cn−1,2n−1 from the previous
step, each of which is a closed subset of I of length y−x3n−1 . For eachm ∈ {1, . . . , 2n−1},
remove the open middle third Un−1,m of Cn−1,m. Thus, we end step n with 2n−1

removed open intervalsUn−1,1, . . . , Un−1,2n−1 , each of length
y−x
3n , and the remaining

portion of I , specifically 2n intervals Cn,1, . . . , Cn,2n , each of which is closed in I and
of length y−x3n .
The Cantor set in I is

CI =
⋂
n∈�

2n⋃
m=1

Cn,m.

Note thatC = C[0,1] and, as subspaces ofR,CI is homeomorphic toCwhenever I is
closed. When we need to keep track of I , we write CIn,m and U

I
n,m for the intervals

involved in the construction of CI .
We now describe a modification of the technique developed in [7] which realizes
each finite rooted S4-frame as an interior image of R. We first partition [0, 1] using
recursively definedCantor sets in certain intervals. During this process we label each
Cantor set in I by an element of T2, denoted L(CI ). We next point out some facts
about this partition. Finally, utilizing the partition and facts, we define an interior
mapping of R onto L2.

https://doi.org/10.1017/jsl.2014.59 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.59


TOPOLOGICAL COMPLETENESS OF LOGICS ABOVE S4 547

Step 0: Label the Cantor set C[0,1] by the root of T2. Set C0 = {C[0,1]} and
U0 = {U [0,1]i,j : i ∈ �, j = 1, . . . , 2i}.

Step n + 1: For each J = UIi,j ∈ Un, set

L(CJ ) =
{
lL(CI ) if j is odd,
rL(CI ) if j is even.

Set Cn+1 = {CI : I ∈ Un} and
Un+1 = {UIi,j : I ∈ Un, i ∈ �, j = 1, . . . , 2i}.

The proofs of the following useful facts concerning the construction are straight-
forward.

Facts.

1. ∀n ∈ �, Un is a countable pairwise disjoint family of open intervals and the
maximum length of an interval in Un is 1

3n+1 .
2. ∀n ∈ �, ∀C ∈ Cn+1, ∃I ∈ Un, C ⊂ I .
3. C = {C : ∃n ∈ �, C ∈ Cn} is a countable pairwise disjoint family.
4.

⋂
n∈� (

⋃Un) = [0, 1]−
⋃ C.

5. ∀x ∈ [0, 1] − ⋃ C = ⋂
n∈� (

⋃Un), ∀n ∈ �, there is a unique Ix,n ∈ Un such
that x ∈ Ix,n and the length of Ix,n is at most 1

3n+1 .
6. ∀x ∈ [0, 1]−⋃ C = ⋂

n∈� (
⋃Un), the family {Ix,n : n ∈ �} is a local basis for

x and {x} = ⋂{Ix,n : n ∈ �}.
7. ∀x ∈ [0, 1] − ⋃ C, the set {L(CIx,n ) : n ∈ �} is a chain in T2 and hence a
directed set in the DCPO L2.

8. The set
⋃ C is dense in [0, 1].

Define f : [0, 1]→ L2 by

f(x) =
{
L(CI ) if x ∈ CI for some CI ∈ C,
sup{L(CIx,n ) : n ∈ �} if x ∈ ⋃ C and {x} = ⋂{Ix,n : n ∈ �}.

That f is a well-defined function follows from Facts (3), (6), and (7) above. The
intuitive idea behind this mapping can be described as follows. We send the Cantor
set in [0, 1] to the root of T2. In the remaining open intervals, we send ‘half ’ of the
Cantor sets occurring in these intervals to the left child of the root and the other
‘half ’ to the right child. In the next remaining open intervals, we again send the
Cantor sets to appropriate left or right children. So any point occurring in one of
these Cantor sets is sent to an element of T2. By Fact (3), there are only countably
many suchCantor sets. The Baire category theorem implies theremust be something
left over in [0, 1] (see Fact (4) above). This ‘left over’ portion of the interval is sent
to L2 − T2.
Lemma 8.1. The map f into L2 is open.
Proof. Let U ⊆ [0, 1] be an open interval. First we show that f(U ) is an upset.
Let x ∈ U . If f(x) ∈ L2 − T2, then ↑f(x) = {f(x)} ⊆ f(U ). So assume that

f(x) ∈ T2. Then x ∈ CI for some CI ∈ C. Because CI = ⋂
i∈�

⋃2i
j=1 C

I
i,j , there are

i ∈ � and j ∈ {1, . . . , 2i} such that x ∈ CIi,j ⊆ U .
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For each a ∈ L2 − T2, we show that if a ∈ ↑f(x), then ↑f(x) ∩ ↓a ⊆ f(U ).
Let a0 = f(x) and set an+1 to be the child of an in ↓a. Then {an : n ∈ �} is a
(strictly ascending) chain in T2 with a = sup{an : n ∈ �}. Notice that ↑f(x) ∩ ↓a
consists exactly of the an and a. Define recursively a sequence of open intervals
{In : n ∈ �} as follows. Let x0 < y0 be the endpoints of CIi,j and put I0 = (x0, y0).
There is an odd k ∈ {1, . . . , 2i+1} such thatUIi+1,k andUIi+1,k+1 are the open middle
thirds removed from the two closed thirdsCIi+1,k , C

I
i+1,k+1 ⊂ CIi,j which remain after

removing UIi,j from C
I
i,j . Set

I1 =

{
UIi+1,k if a1 = la0,

U Ii+1,k+1 if a1 = ra0.

For n ≥ 1, set
In+1 =

{
UIn1,1 if an+1 = lan,
U In1,2 if an+1 = ran.

It follows by induction that for n > 0, we have f(y) = an for all y ∈ CIn ⊂ U ;
that is, an = L(CIn ). Furthermore, if y ∈ ⋂

n∈� In, then

f(y) = sup{L(CIy,n ) : n ∈ �} = sup{L(CIn ) : n > 0} = sup{an : n > 0} = a
since {L(CIn ) : n > 0} is a tail of the sequence {L(CIy,n) : n ∈ �}. To see that⋂
n∈� In = ∅, let xn < yn be the endpoints of In. Set

Kn =
[
xn +

yn − xn
9
, yn − yn − xn9

]
.

Then In+1 ⊂ Kn ⊂ In. Since {Kn : n ∈ �} is a strictly decreasing family of closed
intervals whose lengths tend to 0 as n → ∞,

{y} =
⋂
n∈�
Kn ⊂

⋂
n∈�
In ⊂ I0 ⊂ U

for some y ∈ [0, 1]. Therefore, ↑f(x) ∩ ↓a ⊆ f(U ). Thus, ↑f(x) ⊆ f(U ), and
hence f(U ) is an upset.
It is left to show that f(U ) is Scott open. It is sufficient to show that for each
x ∈ U with f(x) ∈ L2−T2 there is y ∈ U such that f(y) ∈ T2 and f(y) ≤ f(x).
Since {Ix,n ∈ Un : n ∈ �} is a local basis forx, there is n ∈ � such that Ix,n ⊂ U . For
each y ∈ CIx,n ⊆ Ix,n ⊆ U , we have f(y) = L(CIx,n ) ∈ T2. Moreover, f(y) ≤ f(x)
since f(x) = sup{L(CIx,n ) : n ∈ �}. Thus, f(U ) is Scott open, which completes
the proof that f is an open map. �
Lemma 8.2. The map f is onto.

Proof. Let U be an open subset of [0, 1] with U ∩ C[0,1] = ∅. Then the root of
L2 belongs to f(U ). By Lemma 8.1, f(U ) is an upset. Thus, f(U ) = L2, and so
f is onto. �
Lemma 8.3. For each n ∈ � and I ∈ Un, we have f(I ) = ↑L(CI ).
Proof. By Lemma 8.1, f(I ) is an upset. Since I is an open interval containing
CI and L(CI ) = f(x) ∈ f(I ) for each x ∈ CI , it follows that ↑L(CI ) ⊆ f(I ).
Conversely, let x ∈ I . Either x ∈ C for some C ∈ Cm with m > n or x ∈ ⋃ C.
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In the former case, induction onm > n gives that L(CI ) ≤ f(x). In the latter case,
since I ∈ {Ix,n : n ∈ �}, we have L(CI ) ≤ sup{L(CIx,n ) : n ∈ �} = f(x). Thus,
f(I ) ⊆ ↑L(CI ). �
Lemma 8.4. The map f onto L2 is continuous.

Proof. It is sufficient to show that f−1(↑a) is open for each a ∈ T2. If a is the
root, then f−1(↑a) = [0, 1]. Therefore, we may assume that a is not the root. Then
dom(a) = ↓n for some n ∈ �. We show that

f−1(↑a) =
⋃

{I ∈ Um : n ≤ m & L(CI ) ∈ ↑a}.
The ⊇ direction follows from Lemma 8.3 as

f
(⋃

{I ∈ Um : n ≤ m & L(CI ) ∈ ↑a}
)

=
⋃

{f(I ) : I ∈ Um & n ≤ m & L(CI ) ∈ ↑a}
=

⋃
{↑L(CI ) : I ∈ Um & n ≤ m & L(CI ) ∈ ↑a}

⊆ ↑a.
Let x ∈ f−1(↑a). Then a ≤ f(x), giving dom(f(x)) ⊇ ↓n. Supposef(x) ∈ T2.

By definition of f, there is C ∈ C such that x ∈ C and f(x) = L(C ). So for some
m ∈ �, C ∈ Cm, and hence C = CI for some I ∈ Um−1. Then f(x) = L(CI ),
x ∈ CI ⊆ I , and dom(f(x)) = ↓(m − 1). Since n ∈ ↓n ⊆ dom(f(x)) = ↓(m − 1),
it follows that n ≤ m− 1. So x ∈ I , I ∈ Um−1, n ≤ m− 1, and a ≤ f(x) = L(CI ).
Therefore, x ∈ ⋃{I ∈ Um : n ≤ m & L(CI ) ∈ ↑a}. Next suppose that f(x) ∈
L2 − T2. There is a unique I ∈ Un such that x ∈ I and

L(CI ) ≤ sup{L(CIx,m ) : n ≤ m} = sup{L(CIx,n ) : n ∈ �} = f(x).
Since ↓f(x) is a chain, ↓f(x) contains exactly one element whose domain is ↓n.
Because botha andL(CI ) are in ↓f(x) and havedomain ↓n, it follows thatL(CI ) =
a ∈ ↑a. Since I ∈ Un (and n ≤ n), we have x ∈ ⋃{I ∈ Um : n ≤ m & L(CI ) ∈ ↑a}.
Thus, f is continuous. �
Putting together Lemmas 8.1, 8.2, and 8.4 yields:

Theorem 8.5. L2 is an interior image of any (nontrivial ) interval in R.

Proof. Since f sends the entire Cantor set C[0,1] to the root of L2, it is straight-
forward that bothf|(0,1) andf|[0,1) are interior maps from (0, 1) and [0, 1) onto L2,
respectively. The result follows since any (nontrivial) real interval is homeomorphic
to either (0, 1), [0, 1), or [0, 1]. �
In order to prove the main result of this section, we need the following lemma.

Lemma 8.6. Let L be a logic above S4. If ϕ /∈ L, then there is a general space over
any (nontrivial ) interval in R validating L and refuting ϕ.

Proof. By Lemma 6.4, there is a general space (L2,P) for L refuting ϕ. By
Theorem 8.5, L2 is an interior image of any (nontrivial) interval I in R, so L+2 is
isomorphic to a subalgebra of I+. Therefore, P is isomorphic to some Q ∈ S(I+).
Thus, there is a general space (I,Q) for L refuting ϕ. �
We are ready to prove the main result of this section.
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Theorem 8.7. For a normal modal logicL, the following conditions are equivalent.
1. L is a logic above S4.
2. L is the logic of a general space over an open subspace of R.
3. There is a closure algebra A ∈ SH(R+) such that L = Log(A).
Proof. (1)⇒(2): Let L be a logic above S4, and let {ϕn : n ∈ �} be an enumer-
ation of the nontheorems of L. By Lemma 8.6, for each n ∈ �, there is a general
space Xn = ((n, n + 1),Pn) for L refuting ϕn. Taking the sum of Xn gives the gen-
eral space X = (

⋃
n∈�(n, n + 1),P), where A ∈ P iff A ∩ (n, n + 1) ∈ Pn. Clearly⋃

n∈�(n, n + 1) is an open subspace of R and Log(X) = L.
(2)⇒(3): Suppose thatX is an open subspace ofR,X = (X,P) is a general space
overX , and L = Log(X). Since X is an open subspace of R, we haveX+ ∈ H(R+).
As P is a subalgebra of X+, we have P ∈ SH(R+). Finally, L = Log(X) yields
L = Log(P).
(3)⇒(1): This is clear since A is a closure algebra and L = Log(A). �
Putting together what we have established so far yields:
Corollary 8.8. Let L be a normal modal logic. The following are equivalent.
1. L is a logic above S4.
2. L = Log(A) for some A ∈ S(Q+).
3. L = Log(B) for someB ∈ S(C+).
4. L = Log(C) for some C ∈ SH(R+).
5. L = Log(D) for someD ∈ SH(L+2 ).
6. L = Log(E) for some E ∈ SH(T+2 ).
In the proof of Theorem 8.7, instead of takingX =

⋃
n∈�(n, n+1), we could have

taken X to be larger. But in general, the ‘largest’ X can get is a countably infinite
union of pairwise disjoint open intervals that is dense in R. In the next section
we characterize the logics above S4 that arise from general spaces over the entire
real line.

§9. Connected logics and completeness for general spaces over R. In this section
we characterize the logics above S4 that arise from general spaces over R. Since R+

is connected, so is each subalgebra of R+, so if L is the logic of a general space
over R, then L is connected. In [5] it was shown that if L is a connected logic above
S4 that has the FMP, then L is the logic of some subalgebra of R+. We strengthen
this result by proving that a logic L above S4 is connected iff L is the logic of some
general space over R, which is equivalent toL being the logic of some subalgebra of
R+. This is the main result of the paper and solves [5, p. 306, Open Problem 2]. The
proof requires several steps. For a connected logicL, we show that each nontheorem
ϕn of L is refuted on a general space over an interior image Xn of L2. For this we
use the CGFP and Kremer’s embedding of T+2 into L

+
2 . We also utilize that L2 is

an interior image of R, which allows us to obtain each Xn as an interior image
of R. We generalize the technique of ‘gluing’ from [5] to glue the Xn accordingly,
and design an interior map from R onto the glued copies of the Xn, which yields a
general space over R whose logic is L.
For the readers’ convenience, we first state the main result and provide the sketch
of the proof. The various technical tools that are utilized in the proof, as well as the
rigorous definitions of some of the constructions are provided later in the section.
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Theorem 9.1 (Main Result). Let L be a logic above S4. The following are
equivalent.

1. L is connected.
2. L is the logic of a countable path-connected general S4-frame.
3. L is the logic of a countable connected general space.
4. L is the logic of a general space over R.
5. L = Log(A) for some A ∈ S(R+).
Some of the implications of the Main Result are easy to prove. Indeed, to see

that (2)⇒(3), if F = (W,R,P) is a general S4-frame, then XF = (W, �R,P) is a
general space. Now since (W, �R) is connected iff (W,R) is path-connected (see,
e.g., [5, Lemma 3.4]), the result follows. The implications (3)⇒(1) and (5)⇒(1) are
clear because a subalgebra of a connected closure algebra is connected and X+ is
connected iff X is connected [5, Theorem 3.3]. The equivalence (4)⇔(5) is obvious.
Thus, to complete the proof of the Main Result it is sufficient to establish (1)⇒(2)
and (1)⇒(5). Below we give an outline of the proof of these implications. Full
details are given in Sections 9.1 and 9.2. In both proof sketches we will distinguish
two cases depending on whether the logic L is above S4.2 or not, where we recall
that S4.2 = S4+ ♦�p → �♦p.
Proof sketch of (1)⇒(2).
Since L is connected, it is the logic of a connected closure algebra A. Let F =

(W,R,P) be the dual descriptive frame of A. In general, F does not have to be
path-connected [5, Section 3].
Case 1: L is above S4.2.
Step 1.1: Show that F contains a unique maximal cluster, so F is path-connected.
Step 1.2: Extract a countable path-connected general frame G from F by using

a modified version of the CGFP alluded to in Remarks 4.3 and 4.4 so that L =
Log(G).
Case 2: L is not above S4.2. In this case F may not be path-connected, so we

employ a different strategy.
Step 2.1: Introduce a family of auxiliary frames, which we refer to as forks; see

Figure 5.
Step 2.2: Choose a countable family of countable rooted ‘refutation frames’ forL

via the modification of CGFP that yields for each nontheorem ϕn of L a countable
rooted general S4-frame Gn for L that refutes ϕn at a root and contains a maximal
cluster.

Cα

rα

mα

Figure 5. The α-fork Fα .
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Figure 6. Gluing of Gn and Fαn .

Step 2.3: For each refutation frame Gn there is a corresponding fork that has
a maximal cluster isomorphic to a maximal cluster of Gn. Gluing the two frames
along the maximal clusters gives a countable family of ‘attached frames’, say Hn;
see Figure 6.
Step 2.4: Each of the attached frames Hn has a maximal point. Gluing the family

Hn along their maximal points yields a countable path-connected general frame H
such that L = Log(H); see Figure 7.

Proof sketch of (1)⇒(5).
We utilize the frames occurring in the proof sketch of (1)⇒(2).
Case 1: L is above S4.2. Let G be as in Step 1.2 of (1)⇒(2).
Step 1.1: For each nontheorem ϕn, select a rooted generated subframe Gn of G
so thatGn refutes ϕn.
Step 1.2: Construct an interior image Xn of L2 so that there is a general space

Xn = (Xn,Qn) satisfyingLog(Xn) = Log(Gn). Gluing the familyXn yields a general
space X whose logic is L.

H0

H1

H2

...

...

�

H0

H1

H2

...

Figure 7. Gluing of the frames Hn.
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Step 1.3: Realize each Xn as an interior image of any nontrivial real interval.
Step 1.4: Produce an interiormapf : R→ X via the interior mappings of Step 1.3

and, utilizing f−1, obtain a subalgebra of R+ whose logic is L.
Case 2: L is not above S4.2. Let Gn be as in Step 2.2 of (1)⇒(2).
Step 2.1: Build general spaces Xn as described in Step 1.2 so that Log(Xn) =

Log(Gn).
Step 2.2: Gluing Xn with the corresponding fork gives the general space Yn.

Gluing the Yn along the appropriate isolated points yields the general space Y
whose logic is L.
Step 2.3: Produce an interior map f : R → Y using that each Xn and each

fork is an interior image of any nontrivial real interval and, utilizing f−1, obtain a
subalgebra of R+ whose logic is L.
The next two subsections are dedicated to developing in full detail the two proof

sketches just presented. We end the section with an easy but useful corollary of the
Main Result.

9.1. Proof of (1)⇒(2). Let L be a connected logic above S4. Then L = Log(A)
for some connected closure algebra A. Let F = (W,R,P) be the dual descriptive
frame of A. We distinguish two cases.
Case 1: L is above S4.2.

Step 1.1: We show that in this case F contains a unique maximal cluster, where
we recall that a cluster C in F is an equivalence class of the equivalence relation
∼R given by w ∼R v iff w R v and v R w. A cluster C in F is maximal provided
C = R(C ).
Lemma 9.2. F has a unique maximal cluster.
Proof. Since F is a descriptive S4-frame, it has a maximal cluster (see, e.g., [16,

Chapter III.2]). Suppose C1 and C2 are distinct maximal clusters of F. As F is a
descriptive S4-frame, C1, C2 are closed, and R(C1) ∩ R−1(C2) = ∅, there is an
R-upset U ∈ P such that C1 ⊆ U and U ∩ C2 = ∅. Since A is connected and U is
neither ∅ norW , it cannot be simultaneously an R-upset and anR-downset. AsU
is an R-upset, U then is not an R-downset. Set �(p) = U . Since U is an R-upset,
we have �(�p) = U , so �(♦�p) = R−1(U ). On the other hand,C1 ⊆ R−1(U ) and
C2 ∩ R−1(U ) = ∅ imply that R−1(U ) is neither ∅ norW . Therefore, as R−1(U )
is an R-downset, R−1(U ) is not an R-upset. Thus, since �(�♦p) is the largest
R-upset contained in R−1(U ), it is strictly contained in R−1(U ). Consequently,
♦�p → �♦p is refuted in F, and hence in A. The obtained contradiction proves
that F has a unique maximal cluster. �
Since F is a descriptive S4-frame, the unique maximal cluster of F is accessible

from every point of F, so F is path-connected.
Step 1.2: As indicated in the proof sketch, we develop the modified version of the
CGFP (Theorem 4.2) outlined in Remarks 4.3 and 4.4.
Theorem 9.3. Let L be a normal modal logic, F = (W,R,P) be a general frame

for L, and U be a countable subset ofW .
1. If F refutes a nontheorem ϕ of L, then there is a countable general frame

G = (V,S,Q) such that G is a subframe of F, U ⊆ V , G is a frame for L, and
G refutes ϕ.

2. If L = Log(F), thenG may be selected so thatU ⊆ V and L = Log(G).
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Proof. (1) The proof of the CGFP given in Theorem 4.2 needs to be adjusted
only slightly. Since ϕ is refuted in F, there is a valuation � and w ∈ W such that
w ∈ �(ϕ). Now proceed as in the proof of Theorem 4.2 but set the starting set V0
to be equal to U ∪ {w}. The resulting countable general frame G = (V,S,Q) is a
subframe of F,U ⊆ V ,G is a frame forL, andG refutes ϕ. Thus, (1) is established.
(2) For each nontheorem ϕn of L, there is a valuation �n and wn ∈ W such
that wn /∈ �n(ϕn). We use Lemma 5.8 to make the propositional letters occurring
in substitution instances of ϕn and ϕm distinct whenever n = m. This gives the set
{ϕ̂n : n ∈ �}. Let � be a single valuation that refutes all the ϕ̂n, and let V0 = {wn ∈
W : wn /∈ �(ϕ̂n)} ∪ U . Then proceed precisely as in the proof of (1) to obtain a
countable general frameG = (V,S,Q) such thatG is a subframe of F, U ⊆ V , and
G is a frame forL. To see that each ϕn is refuted inG, note that by our construction,
ϕ̂n is refuted in G, and ϕ̂n is obtained from ϕn by substituting propositional letters
with other propositional letters. By a straightforward adjustment of the valuation
according to the substitution, we obtain a refutation of ϕn. Thus, L = Log(G). �
We use the modified CGFP. Take any point m from the unique maximal cluster
of F provided by Lemma 9.2, and set U = {m}. By Theorem 9.3(2), there is a
countable general frame G such that G is a subframe of F, it contains U , and its
logic is L. Moreover, G is path-connected since m is accessible from every point of
G, thus finishing the proof of Case 1.

Case 2: L is not above S4.2.
Step 2.1: We introduce some very simple auxiliary frames that will be used later on
for gluing refutation frames for L into one connected general frame whose logic
is L. Let α ∈ �+1 be nonzero. We let Cα = (W,R) denote the α-cluster; that is, Cα
is the S4-frame consisting of a single cluster of cardinality α, soW = {wn : n ∈ α}
and R = W ×W . We also let Fα = (Wα,Rα) denote the α-fork; that is, the S4-
frame obtained by adding two points to Cα = (W,R), a root below the cluster and
a maximal point unrelated to the cluster. SoWα = {rα,mα} ∪W and

Rα = {(rα, rα), (mα,mα), (rα ,mα), (rα , wn), (wn,wm) : n,m ∈ α}.
How Cα sits inside Fα is depicted in Figure 5.
Lemma 9.4. Let L be a logic above S4, F = (W,R,P) be a descriptive S4-frame
for L, and F have an infinite maximal cluster C. Then
1. Cn |= L for each nonzero n ∈ �.
2. C� |= L.
Proof. (1) Since C is a maximal cluster of F, it is clear that C is an R-upset of

F. In fact, C = R(w) for each w in C, and as R(w) is closed, C is a closed R-upset
of F. Therefore, C is a descriptive S4-frame for L (see, e.g, [16, Lemma III.4.11]).
Since C is an infinite Stone space, for each nonzero n ∈ �, there is a partition of C
into n-many clopens U0, . . . , Un−1. Define f : C → Cn by sending all points of the
clopen Ui to wi in Cn. It is straightforward to verify that f is a p-morphism. Thus,
as C |= L, we have Cn |= L.
(2) If C� |= L, then there are ϕ ∈ L, n ∈ �, and a valuation � on C� such that
wn ∈ �(ϕ). Define an equivalence relation ≡ on C� by

wi ≡ wj iff (∀� ∈ Subϕ) (wi ∈ �(�)⇔ wj ∈ �(�)) ,
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where Subϕ is the set of subformulas of ϕ. Since Subϕ is finite, so is the set of
equivalence classes, and we let {Ck : k ∈ m} be this set. Then f : C� → Cm, given
by f(wi) = wk whenever wi ∈ Ck , is an onto p-morphism. Moreover, Cm refutes
ϕ at f(wn) under the valuation 	 = f ◦ �. But this contradicts (1), completing the
proof of (2). �
Lemma 9.5. Let L be a logic above S4. If Fk |= L for each k ∈ �, then F� |= L.
Proof. Suppose that F� |= L. Then there are ϕ ∈ L, a valuation �, and v ∈W�

such that v ∈ �(ϕ). Let ≡ be the equivalence relation on C� defined in the proof
of Lemma 9.4(2), and let {Ck : k ∈ n} be the set of ≡-equivalence classes. Define
f : F� → Fn by

f(w) =

⎧⎨⎩rn if w = r�,
mn if w = m�,
wk if w ∈ Ck.

Then f is an onto p-morphism.Moreover, Fn refutes ϕ atf(v) under the valuation
	 = f ◦ �. This contradicts Fn |= L. Thus, F� |= L. �
Step 2.2: For each nontheorem ϕn of L, there is a valuation �n and wn ∈ W such
thatwn /∈ �n(ϕn). Letmn ∈ R(wn) be a maximal point of F. (Suchmn exists because
F is a descriptive S4-frame; see, e.g., [16, Chapter III.2].) By Theorem 9.3(1), there
is a countable general frameGn = (Wn,Rn,Pn) containing {wn,mn} that validates
L and refutes ϕn. Clearly wn is a root of Gn . Let Cn be the maximal cluster of Gn
generated by mn . If αn is the cardinality of Cn, then we identify Cn with Cαn . Let C
be the maximal cluster of F from which Cn was selected. If C is finite, then C |= L,
so Cαn |= L. If C is infinite, then as αn ∈ �+1 is nonzero, by Lemma 9.4, Cαn |= L.
Step 2.3: Since L is not above S4.2, it is well known (see, e.g., [34, Section 6.1])
that F1 |= L. If αn is finite, [5, Lemma 4.2] gives that Fαn |= L. If αn = �, we get
that Cm |= L for each nonzero m ∈ � because each Cm is a p-morphic image of
C� . By [5, Lemma 4.2], each Fm |= L. Therefore, by Lemma 9.5, F� |= L. Thus,
Fαn |= L.
For our next move, we need to introduce the operation of gluing for general S4-

frames, which generalizes the gluing of finite S4-frames introduced in [5]. However,
later on we will also need to glue general spaces. Because of this, we introduce
the operation of gluing for general spaces, which is similar to the operation of
attaching space or adjunction space, a particular case of which is the wedge sum.
Both constructions are used in algebraic topology. Since general S4-frames are
a particular case of general spaces, we will view gluing of general S4-frames as a
particular case of gluing of general spaces.We start by defining gluing of topological
spaces.

Definition 9.6. Let Xi be a family of topological spaces indexed by I . Without
loss of generality we may assume that {Xi : i ∈ I } is pairwise disjoint. Let Y be a
topological space disjoint from eachXi and such that for each i ∈ I there is an open
subspace Yi of Xi homeomorphic to Y . Let fi : Y → Yi be a homeomorphism.
Define an equivalence relation ≡ on⋃i∈I Xi by
x ≡ z iff x = z or x ∈ Yi , z ∈ Yj, and (∃y ∈ Y )(x = fi(y) and z = fj(y)).
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We call the quotient space X =
⋃
i∈I Xi/≡ the gluing of the Xi along Y through Yi

via fi . We typically assume that Yi and fi are given a priori and fixed, allowing us
to simply call X the gluing of the Xi along Y (or Yi).

Lemma 9.7. Let theXi andY be as in Definition 9.6, and let X be the gluing of the
Xi along Y . We let � :

⋃
i∈I Xi → X be the quotient map. Then � is an onto interior

map.

Proof. Since a quotient map is always continuous and onto, we only need to
check that � is open. By [14, Corollary 2.4.10], it is sufficient to show that �−1�(U )
is open in

⋃
i∈I Xi for each U open in

⋃
i∈I Xi . We have U =

⋃
i∈I Ui , where each

Ui is open in Xi . Therefore, Ui ∩ Yi is open in Yi , and hence f−1
i (Ui ∩ Yi) is open

in Y . Thus, V =
⋃
i∈I f

−1
i (Ui ∩Yi) is open in Y . This implies Vi = fi(V ) is open

in Xi , yielding �−1(�(U )) =
⋃
i∈I (Ui ∪Vi). This shows that � is indeed open. �

We note in passing that the gluing operation is actually a pushout in the cate-
gory of topological spaces with interior maps as morphisms. We next generalize
Definition 9.6 to general spaces.

Definition 9.8. Let Xi = (Xi ,Pi) be a family of general spaces indexed by I .
Without loss of generality we may assume that {Xi : i ∈ I } is pairwise disjoint.
Let Y = (Y,Q) be a general space such that Y is disjoint from each Xi and for
each i ∈ I there is an open subspace Yi = (Yi,Qi ) of Xi homeomorphic to Y.
Suppose fi : Y → Yi is a homeomorphism. Let X be the gluing of the Xi along
Y through Yi via fi , and let � :

⋃
i∈I Xi → X be the quotient map. Define

P = {A ⊆ X : �−1(A) ∩ Xi ∈ Pi ∀i}. Lemma 9.7 yields that P is a subalgebra
of X+, hence X = (X,P) is a general space. We call X the gluing of the Xi along Y
throughYi via fi . Upon the assumption that the Yi and fi are chosen and fixed,
we simply call X the gluing of the Xi alongY (or Yi).

We now produce a new frame by gluing Fαn and Gn along the cluster Cαn . Since
Cαn is a maximal cluster in both Gn and Fαn , if we view Gn and Fαn as general
Alexandroff spaces, Cαn becomes an open subspace of both. Let Hn be the general
S4-frame obtained by gluing Gn and Fαn along Cαn ; see Figure 6. Then Hn is a
p-morphic image of the disjoint union of Gn and Fαn . As both validate L, so does
Hn. Also, since Gn is (isomorphic to) a generated subframe of Hn and Gn refutes
ϕn, so does Hn.

Step 2.4: In this final step we glue theHn along themaximal elementmαn as depicted
in Figure 7. This gluing is analogous to the wedge sum in algebraic topology. The
resulting general S4-frame H is countable and path-connected. Moreover, since
disjoint unions andp-morphic images of general frames preserve validity,H validates
L; and as each Hn is (isomorphic to) a generated subframe of H, we see that H
refutes ϕn . Consequently, L = Log(H). This finishes the proof of (1)⇒(2).
9.2. Proof of (1)⇒(5). As before we consider two cases.
Case 1: L is above S4.2.
Let G be the countable general S4-frame constructed in Step 1.2 of the proof of
(1)⇒(2). Then G has a unique maximal cluster C , which is accessible from each
point w in G, and the logic of G is L.
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Step 1.1: For each nontheorem ϕn of L, there are a valuation �n and a point wn in
G such that wn ∈ �n(ϕn). Let Gn = (Wn,Rn,Pn) be the subframe of G generated
by wn. Then Gn is a general frame for L that refutes ϕn. Furthermore,Gn has C as
its unique maximal cluster and Rn(w) contains C for each point w in Gn .

Step 1.2: For eachGn we will construct a general space Xn = (Xn,Qn) such thatXn
is an interior image ofL2 andPn is isomorphic toQn, yielding Log(Gn) = Log(Xn).
Consider a countable rooted S4-frame, say F = (W,R), with a maximal cluster,

say C . By Lemma 5.2, there is a p-morphism f from T2 onto F. Let α : T+2 → L+2
be the closure algebra embedding defined in [22, Lemma 6.4]. We forego recalling
the full details for α since we only need the existence of the embedding and the
properties that U ⊆ α(U ) and α(U ) − U ⊆ L2 − T2 for each U ⊆ T2. Since C is
a maximal cluster of F, we have f−1(C ) is an upset in T2. Therefore, α(f−1(C )) is
open in L2. Consider the equivalence relation ≡ on L2 given by

a ≡ b iff a = b or (∃w ∈ C )(a, b ∈ α(f−1(w)).

Let X be the quotient space L2/ ≡ and let � : L2 → X be the quotient map
(see Figure 8).

Lemma 9.9. The space X is an interior image of L2 under �.
Proof. Since a quotient map is always continuous and onto, we only need to

show that � is open. It is sufficient to show that U ∈ � implies �−1(�(U )) ∈ �.
Let U ∈ �. If U ∩ α(f−1(C )) = ∅, then �−1(�(U )) = U ∈ �. Suppose that
U ∩ α(f−1(C )) = ∅.

Claim: U ∩ α(f−1(w)) = ∅ for each w ∈ C .
Proof: Since∅ = U ∩α(f−1(C )) ∈ �, there is a ∈ U ∩α(f−1(C ))∩T2. As both

U and α(f−1(C )) are upsets in L2, we have ↑a ∩ T2 ⊂ ↑a ⊆ U ∩ α(f−1(C )) ⊆
α(f−1(C )).
Moreover,

α(f−1(C )) ∩ T2 =
(
f−1(C ) ∪ (

α(f−1(C ))− f−1(C )
)) ∩ T2

=
(
f−1(C ) ∩ T2

) ∪ ((
α(f−1(C ))− f−1(C )

) ∩ T2)
= f−1(C ) ∪∅ = f−1(C ).

Figure 8. Constructing X and � : L2 → X .
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L+2

F+ X+

α ◦ f−1 �−1

Lemma 9.10

Figure 9. An embedding of F+ into X+.

This gives
↑a ∩ T2 ⊆ α(f−1(C )) ∩ T2 = f−1(C ).

Therefore,f(↑a∩T2) ⊆ C . In fact,f(↑a∩T2) = C becauseC is a cluster, ↑a∩T2
is an upset in T2, and f is a p-morphism. Since ↑a ∩ T2 ⊂ ↑a ⊆ U , we see that
C ⊆ f(U ), so U ∩ f−1(w) = ∅ for each w ∈ C . Thus, as f−1(w) ⊆ α(f−1(w)),
we conclude that U ∩ α(f−1(w)) = ∅ for each w ∈ C , proving the claim.
Consequently, �−1(�(U )) = U ∪ α(f−1(C )) ∈ �, completing the proof of the
lemma. �
The next lemma is depicted in Figure 9.

Lemma 9.10. Let F and X be as above. Then F+ is isomorphic to a subalgebra
of X+.

Proof. Since both f−1 : F+ → T+2 and α : T
+
2 → L+2 are closure algebra

embeddings, α ◦ f−1 : F+ → L+2 is a closure algebra embedding. By Lemma 9.9,
� : L2 → X is an onto interior map. Therefore, �−1 : X+ → L+2 is a closure algebra
embedding. We show that if A ∈ F+, then α(f−1(A)) = �−1(�(α(f−1(A)))).
Clearly α(f−1(A)) ⊆ �−1(�(α(f−1(A)))). For the converse, recalling that C is a
maximal cluster of F, since A = (A ∩ C ) ∪ (A− C ), we have

f−1(A) = f−1(A− C ) ∪
⋃

{f−1(w) : w ∈ A ∩ C}.
Therefore,

α(f−1(A)) =
(
α(f−1(A)) − α(f−1(C ))

) ∪⋃
{α(f−1(w)) : w ∈ A ∩ C}.

Now suppose a ∈ �−1(�(α(f−1(A)))). Then there is b ∈ α(f−1(A)) such that
�(a) = �(b). If �(a) is a singleton, then b = a, so a ∈ α(f−1(A)). If �(a) is
not a singleton, then there is w ∈ A ∩ C such that b ∈ α(f−1(w)). Therefore,
a ∈ α(f−1(w)). Since w ∈ A, it follows that a ∈ α(f−1(A)). Thus, α(f−1(A)) =
�−1(�(α(f−1(A)))).
Consequently, α ◦f−1 embeds F+ into the image of X+ under �−1. This implies
that the image of F+ under α ◦ f−1 is a subalgebra of the image of X+ under �−1.
Thus, F+ is isomorphic to a subalgebra of X+. �
By the above construction, we may associate an interior imageXn of L2 with each

Gn. Letfn : T2 → Gn be the onto p-morphismused in definingXn , and let�n : L2 →
Xn be the quotient map. By Lemma 9.10, each Pn is isomorphic to a subalgebraQn
of X+n . So Xn = (Xn,Qn) is a general space satisfying Log(Gn) = Log(Xn), and
hence Xn is a general space for L refuting ϕn. Moreover, the maximal cluster C of
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Figure 10. Gluing of Xn along �n(α ◦ f−1
n (C )).

Gn is realized as the open set �n(α ◦f−1
n (C )) ⊆ Xn. Note that sinceL is above S4.2,

C is a unique maximal cluster accessible from each point of Gn, so the closure of
�n(α ◦ f−1

n (C )) is Xn. We now perform the gluing of Xn along �n(α ◦ f−1
n (C )) to

yield a general space X = (X,Q) (see Figure 10). Since sums and interior images
preserve validity, X |= L. Moreover, since each Xn is (homeomorphic to) an open
subspace of X refuting ϕn, it follows that X refutes ϕn . Thus, L = Log(X).

Step 1.3: We next show that each Xn is an interior image of any nontrivial real
interval.

Lemma 9.11. Let X be an interior image of L2 constructed above and let I be a
nontrivial interval in R. Then there is an onto interior map f : I → X such that f
maps the endpoints of I (if present) to the root of X .

Proof. By Theorem 8.5, L2 is an interior image of I and the endpoints get
mapped to the root. By Lemma 9.9, X is an interior image of L2, and the root of
L2 is mapped to the root of X . Taking the composition yields that X is an interior
image of I , and the endpoints are mapped to the root of X . �
Step 1.4: As the final step, we produce an interior map from R onto X . Since X is
obtained by gluing along the image ofC inXn, wemay identifyC as an open subset
of X that is countable.

Lemma 9.12. Let I be a nontrivial interval inR and let α ∈ �+1 be nonzero. Then
1. Cα is an interior image of I .
2. Fα is an interior image of I .

Proof. (1) The case where α is finite is well known. If α = �, then take any
partition {Zn : n ∈ �} of I into �-many dense and nowhere dense sets. It is routine
to check that f : I → C� is an onto interior map, where f(x) = wn whenever
x ∈ Zn; see [27, Lemma 4.3].
(2) Again the case where α is finite is well known. Let α = �. Choose z in I such

that z is not an endpoint of I . Let I0 = {x ∈ I : x > z}. By (1), there is an onto
interior mapping f0 : I0 → C� .
Define f : I → F� by

f(x) =

⎧⎨⎩m� if x < z,
r� if x = z,
f0(x) if x > z.

It is straightforward to check that f is an onto interior map. �
For each n ∈ �, Lemma 9.12(1) gives an onto interiormapfn : (2n, 2n+1)→ C .

By Lemma 9.11, there is an onto interior map gn : [2n + 1, 2(n + 1)] → Xn that
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sends the endpoints 2n+1 and 2(n+1) to the root ofXn. Definef : (0,∞)→ X by

f(x) =
{
fn(x) if x ∈ (2n, 2n + 1),
gn(x) if x ∈ [2n + 1, 2(n + 1)].

Lemma 9.13. The map f : (0,∞)→ X is an onto interior map.
Proof. Since each gn is onto,f is onto. For an open interval I ⊆ (0,∞), we have

f(I ) =
⋃
n∈�

(
fn(I ∩ (2n, 2n + 1)) ∪ gn(I ∩ [2n + 1, 2(n + 1)])) .

Each fn(I ∩ (2n, 2n+1)) is either C or∅, both of which are open inXn, and hence
open in X . Since I ∩ [2n + 1, 2(n + 1)] is open in [2n + 1, 2(n + 1)], we see that
gn(I ∩ [2n + 1, 2(n + 1)]) is open in Xn, and hence open in X . Thus, f is open.
The basic open sets in X arise from sets in Xn of the form �n(↑a), where a ∈ T2.
We have

f−1(�n(↑a)) = g−1n (�n(↑a)) ∪
⋃
k∈�
(2k, 2k + 1) ∪

⋃
k∈�
g−1k (C ). (1)

Either g−1n (�n(↑a)) is a proper subset of [2n + 1, 2(n + 1)] or not. If g−1n (�n(↑a))
is proper, then the root of Xn is not in �n(↑a), giving g−1n (�n(↑a)) is open in
(2n+1, 2(n+1)), and hence g−1n (�n(↑a)) is open in (0,∞). If g−1n (�n(↑a)) = [2n+
1, 2(n+1)], then we may replace g−1n (�n(↑a)) by (2n, 2(n+1)+ 1) in Equation (1)
and equality remains since

(2n, 2(n + 1) + 1) = (2n, 2n + 1) ∪ [2n + 1, 2(n + 1)] ∪ (2(n + 1), 2(n + 1) + 1)
= (2n, 2n + 1) ∪ g−1n (�n(↑a)) ∪ (2(n + 1), 2(n + 1) + 1).

Similarly, for each k ∈ �, either g−1k (C ) is a proper subset of [2k + 1, 2(k + 1)] or
not. If g−1k (C ) is proper, then the root of Xk is not in C , giving g

−1
k (C ) is open in

(2k+1, 2(k+1)), and hence g−1k (C ) is open in (0,∞). If g−1k (C ) = [2k+1, 2(k+1)],
thenwemay replace g−1k (C ) by (2k, 2(k+1)+1) in Equation (1) and retain equality
because

(2k, 2(k + 1) + 1) = (2k, 2k + 1) ∪ [2k + 1, 2(k + 1)] ∪ (2(k + 1), 2(k + 1) + 1)
= (2k, 2k + 1) ∪ g−1k (C ) ∪ (2(k + 1), 2(k + 1) + 1).

Since (2j, 2(j+1)+1) is open in (0,∞) for any j ∈ �, when replacing as prescribed,
we get that f is continuous. Thus, f is an onto interior map. �
SinceX is an interior image of (0,∞) and (0,∞) is homeomorphic toR, it follows
that X is an interior image of R. Since L = Log(X) and X is an interior image of R,
the proof for the case L ⊇ S4.2 is completed by applying Lemma 4.6.
Case 2:L is not above S4.2. For each nontheoremϕn ofL, letGn = (Wn,Rn,Pn)
be the countable rooted general S4-frame which was constructed in Step 2.2 of the
proof of (1)⇒(2). Recall that Gn is a general frame for L that refutes ϕn at a root
and thatGn has a maximal cluster Cn that is isomorphic to Cαn .

Step 2.1: By the construction in Step 1.2 (of (1)⇒(5)) and Lemma 9.10, there is a
general spaceXn = (Xn,Qn) such thatXn is an interior image of L2 arising fromGn
and Log(Xn) = Log(Gn). Thus, Xn is a general space for L refuting ϕn. We point
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out that themaximal clusterCn ofGn is realized as the open subset �n(α◦f−1
n (Cn)),

which we identify with Cαn .

Step 2.2: We view the αn-fork Fαn as a general space. Let Yn be the result of gluing
Xn and Fαn along Cαn . In each Yn there is the isolated point mαn coming from Fαn .
LetY = (Y,Q) be obtained by gluing theYn along a homeomorphic copy of {mαn}.
Then each Yn is (homeomorphic to) an open subspace of Y and hence Y refutes
each ϕn. Moreover, since Fαn |= L and Yn |= L for each n, we have that Y |= L.
It follows that L = Log(Y).

Step 2.3: Lastly, we need to observe that Y is an interior image of R.
Lemma 9.14. Let F be obtained by gluing the forks Fα and F� along their maximal

pointsmα andm� . Let I be a nontrivial interval and y < z in I be such that neither y
nor z is an endpoint of I . There is an onto interior mapf : I → F such thatf(x) ∈ Cα
when x < y and f(x) ∈ C� when x > z.

Proof. Let I0 = {x ∈ I : x < y} and I1 = {x ∈ I : x > z}. By Lemma 9.12(1),
there are interior mappingsf0 : I0 → Cα andf1 : I1 → C� . Letm ∈ F be the image
of mα and m� . Define f : I → F by

f(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m if x ∈ (y, z),
rα if x = y,
r� if x = z,

fi(x) if x ∈ Ii .
The map f is depicted in Figure 11. It is easy to check that f is an onto interior
map. Clearly f(I0) = Cα and f(I1) = C� . �
We are ready to show that there is an interior map fromR ontoY . For each n ∈ �

we consider In,0 = (2n, 2n+1) and In,1 = [2n+1, 2(n+1)]. Let f0,0 : I0,0 → Fα0 be
the interior mapping as defined in Lemma 9.12(2) with z = 2

3 . For n ∈ �− {0}, let
fn,0 be the interior mapping of the interval In,0 onto the frame obtained by gluing
Fαn−1 and Fαn along the maximal point that is defined in the proof of Lemma 9.14,
where y = 2n + 1

3 and z = 2n +
2
3 , such that fn,0(2n, 2n +

1
3) = Cαn−1 and

Cα

rα

m

r�

C�

( •
y

•
z

)
I0 (y, z) I1

Figure 11. Mapping I to F.
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rαn−1 rαn

m

2n + 13 2n + 23
2n 2n + 1

[ ]( )[ ]
In−1,1

Xn−1

In,0 In,1

Xn

Cαn−1 Cαn−1 Cαn Cαn

Figure 12. Depiction of f.

fn,0(2n + 2
3 , 2(n + 1)) = Cαn . Let fn,1 : In,1 → Xn be given by Lemma 9.11.

Then the endpoints of In,1 are sent to the root of Xn. Define f : (0,∞) → Y by
f(x) = fn,k(x) when x ∈ In,k (see Figure 12).
Lemma 9.15. The map f : (0,∞)→ Y is an onto interior map.
Proof. It is clear thatf is onto since Fαn is contained in the image off|In,0 = fn,0
andf|In,1 = fn,1 is ontoXn for each n ∈ �. Let I ⊆ (0,∞) be open. Then I ∩ In,k is
open in In,k , and hence f(I ∩ In,k) = fn,k(I ∩ In,k) is open in fn,k(In,k). Therefore,
f(I ∩ In,k) is open in Y . Thus,

f(I ) =
⋃
n∈�
fn,0(I ∩ In,0) ∪ fn,1(I ∩ In,1)

is open in Y . This implies that f is an open map.
Let U ⊆ Y be open. Then
f−1(U ) =

⋃
n∈�

(
(fn,0)

−1(U ∩ Fαn) ∪ (fn,1)−1(U ∩ Xn) ∪ (fn+1,0)−1(U ∩ Fαn)
)
. (2)

Let n ∈ �. Then (fn,0)−1(U ∩ Fαn) is open in (2n, 2n + 1), and hence open in
(0,∞). Similarly, (fn+1,0)−1(U ∩Fαn ) is open in (0,∞) since it is open in (2(n+1),
2(n + 1) + 1). If Xn ⊆ U , then (fn,1)−1(U ∩ Xn) is open in (2n + 1, 2n + 2)
by Lemma 9.11, and hence it is open in (0,∞). Suppose that Xn ⊆ U . Then
(fn,1)−1(U ∩ Xn) is the closed interval In,1. We show that (fn,0)−1(U ∩ Fαn ) ∪
(fn,1)−1(U ∩ Xn) ∪ (fn+1,0)−1(U ∩ Fαn ) is open in (0,∞). In the case rαn ∈ U ,
we have (fn,0)−1(U ∩ Fαn ) =

(
2n + 13 , 2n + 1

)
and (fn+1,0)−1(U ∩ Fαn ) =(

2(n + 1), 2(n + 1) + 23
)
. Therefore,

(fn,0)−1(U ∩ Fαn) ∪ (fn,1)−1(U ∩ Xn) ∪ (fn+1,0)−1(U ∩ Fαn )

=
(
2n +

1
3
, 2n + 1

)
∪ [
2n + 1, 2(n + 1)

] ∪ (
2(n + 1), 2(n + 1) +

2
3

)
=

(
2n +

1
3
, 2(n + 1) +

2
3

)
.
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Suppose rαn ∈ U . If m ∈ U , then (fn,0)−1(U ∩ Fαn ) =
(
2n + 23 , 2n + 1

)
and

(fn+1,0)−1(U ∩ Fαn ) =
(
2(n + 1), 2(n + 1) + 13

)
. So

(fn,0)−1(U ∩ Fαn ) ∪ (fn,1)−1(U ∩ Xn) ∪ (fn+1,0)−1(U ∩ Fαn )

=
(
2n +

2
3
, 2n + 1

)
∪ [
2n + 1, 2(n + 1)

] ∪ (
2(n + 1), 2(n + 1) +

1
3

)
=

(
2n +

2
3
, 2(n + 1) +

1
3

)
.

On the other hand, if m ∈ U , then

(fn,0)−1(U ∩ Fαn ) =
(
2n +

1
3
, 2n + 1

)
−
{
2n +

2
3

}
and

(fn+1,0)−1(U ∩ Fαn ) =
(
2(n + 1), 2(n + 1) +

2
3

)
−
{
2(n + 1) +

1
3

}
,

giving

(fn,0)−1(U ∩ Fαn ) ∪ (fn,1)−1(U ∩Xn) ∪ (fn+1,0)−1(U ∩ Fαn)

=
(
2n +

1
3
, 2(n + 1) +

2
3

)
−

{
2n +

2
3
, 2(n + 1) +

1
3

}
.

Thus, f is continuous. �
Since (0,∞) is homeomorphic to R, it follows that Y is an interior image of R.

Applying Lemma 4.6 finishes the proof of (1)⇒(5), and hence the proof of theMain
Result.
We conclude this section by mentioning the following useful consequence of the

Main Result. Recall that S4.1 = S4+�♦p→ ♦�p. By [5, Theorem 5.3], each logic
above S4.1 is connected. Also, S4.1 ⊆ S4.Grz, where S4.Grz = S4 + �(�(p →
�p) → p) → p is the Grzegorczyk logic. As an immediate consequence of the
Main Result, we obtain:

Corollary 9.16. If L is a logic above S4.1, then L is the logic of a general space
over R or equivalently L is the logic of a subalgebra of R+. In particular, if L is a logic
above S4.Grz, then L is the logic of a general space over R or equivalently L is the
logic of a subalgebra of R+.

§10. Intermediate logics. In this section we apply our results to intermediate
logics. We recall that intermediate logics are the logics that are situated between
the intuitionistic propositional calculus IPC and the classical propositional calcu-
lus CPC; that is, L is an intermediate logic if IPC ⊆ L ⊆ CPC. There is a dual
isomorphism between the lattice of intermediate logics and the lattice of nonde-
generate varieties of Heyting algebras, where we recall that a Heyting algebra is
a bounded distributive lattice H equipped with an additional binary operation→
that is residual to ∧; that is, a ∧ x ≤ b iff x ≤ a → b.
There is a close connection between closure algebras and Heyting algebras. Each

closure algebra A = (A,♦) gives rise to the Heyting algebra H(A) = {a ∈ A :
a = �a} of open elements of A, where we recall that �a = ¬♦¬a. Conversely,
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each Heyting algebraH = (H,→) generates the closure algebraA(H) = (B(H ),♦),
whereB(H ) is the freeBoolean extension ofH and forx ∈ B(H ), ifx = ∧n

i=1(¬ai∨
bi), then �x =

∧n
i=1(ai → bi) and ♦x = ¬�¬x [29, 31]. Also, if F = (W,R,P)

is a general S4-frame and R is a partial order, then IF = (W,R,PR) is a general
intuitionistic frame, where we recall thatPR = {A ∈ P : A is anR-upset}, and there
is an isomorphism between partially ordered descriptive S4-frames and descriptive
intuitionistic frames (see, e.g., [13, Chapter 8]).
This yields the well-known correspondence between intermediate logics and log-
ics above S4. Namely, each intermediate logic can be viewed as a fragment of a
consistent logic above S4, and this can be realized through the Gödel translation
(which translates each formula ϕ of the language of IPC to the modal language
by adding � to every subformula of ϕ). Then the lattice of intermediate logics is
isomorphic to an interval in the lattice of logics above S4, and the celebrated Blok-
Esakia theorem states that this interval is exactly the lattice of consistent logics
above S4.Grz (see, e.g., [13, Chapter 9]).
An element a of a Heyting algebra H is complemented if a ∨ ¬a = 1, and H is
connected if 0, 1 are the only complemented elements ofH. Also, H is well-connected
if a ∨ b = 1 implies a = 1 or b = 1. Then it is easy to see that a closure algebra A is
connected iff the Heyting algebra H(A) is connected, and that A is well-connected
iff H(A) is well-connected.
An intermediate logic L is connected if L = Log(H) for some connected Heyting
algebra H, and L is well-connected if L = Log(H) for some well-connected Heyt-
ing algebra H. By [5, Theorem 8.1], each intermediate logic is connected. Since a
Heyting algebra A is well-connected iff its dual descriptive intuitionistic frame is
rooted ([4, 15]), by [13, Theorem 15.28], L is well-connected iff L is Hallden com-
plete, where we recall thatL isHallden complete provided from ϕ ∨� ∈ L and ϕ,�
having no common propositional letters it follows that ϕ ∈ L or � ∈ L.
For a topological space X , let Ω(X ) denote the Heyting algebra of open subsets
of X . Similarly, for a partially ordered frame F = (W,≤), let Up(F) denote the
Heyting algebra of upsets of F. For a general space X = (X, �,P), recall that
P� = P ∩ �. Then P� is a Heyting algebra, and for each Heyting algebra H, there
is a descriptive space X such that (X, �) is a T0-space and H is isomorphic to P�.
We callX a generalT0-space provided (X, �) is a T0-space. For a generalT0-spaceX,
we call IX = (X, �,P�) a general intuitionistic space.
The Blok–Esakia theorem together with the results obtained in this paper yield
the following theorems.
Theorem 10.1. The following are equivalent.
1. L is an intermediate logic.
2. L is the logic of a countable path-connected general intuitionistic frame.
3. L is the logic of a general intuitionistic space over R.
4. L is the logic of a general intuitionistic space overQ.
5. L is the logic of a general intuitionistic space over C.
6. L is the logic of a Heyting subalgebra of the Heyting algebra Ω(R).
7. L is the logic of a Heyting subalgebra of the Heyting algebra Ω(Q).
8. L is the logic of a Heyting subalgebra of the Heyting algebra Ω(C).
Theorem 10.2. Let L be an intermediate logic. The following are equivalent.
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1. L is well-connected.
2. L is Hallden complete.
3. L is the logic of a general intuitionistic frame over T2.
4. L is the logic of a general intuitionistic frame over L2.
5. L is the logic of a Heyting subalgebra of the Heyting algebraUp(T2).
6. L is the logic of a Heyting subalgebra of the Heyting algebra Ω(L2).
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