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ABSTRACT

Wavelet theory is known to be a powerful tool for compressing and process-
ing time series or images. It consists in projecting a signal on an orthonormal
basis of functions that are chosen in order to provide a sparse representa-
tion of the data. The first part of this article focuses on smoothing mortality
curves by wavelets shrinkage. A chi-square test and a penalized likelihood
approach are applied to determine the optimal degree of smoothing. The sec-
ond part of this article is devoted to mortality forecasting. Wavelet coefficients
exhibit clear trends for the Belgian population from 1965 to 2015, they are
easy to forecast resulting in predicted future mortality rates. The wavelet-based
approach is then compared with some popular actuarial models of Lee–Carter
type estimated fitted to Belgian, UK, and US populations. The wavelet model
outperforms all of them.
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1. INTRODUCTION AND MOTIVATION

Mortality projections are known to be of crucial importance for life insurance
companies and pension funds. This topic has thus attracted a lot of attention in
the actuarial literature. A variety of mortality projection models emerged over
the last 30 years, ranging from basic regression models in which age and time
are viewed as continuous features, to sophisticated nonparametric models. We
refer the interested readers to Pitacco et al. (2009) for a general overview of the
topic and to dedicated chapters in Denuit et al. (2019a,b) for applications.
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To be successful, a mortality projection model must be flexible enough to
capture the underlying longevity dynamics and produce time-dependent com-
ponents exhibiting a clear trend. The latter aspect largely explained the success
of the pioneering model proposed by Lee and Carter (1992) whose time index
generally appears to be markedly linear. Despite being simple and transparent,
this model is, however, not very flexible and may fail to capture some impor-
tant aspects of mortality data under study. For this reason, Hyndman and
Ullah (2007) proposed to extend the approach proposed by Lee and Carter
(1992) by adopting a functional data paradigm combined with nonparamet-
ric smoothing (penalized regression splines). Univariate time series are then
fitted to each component coefficient (or level parameter). However, some of
these coefficients time series do not exhibit clear trends making them difficult
to forecast. The new approach for age-specific mortality projection proposed in
this paper suggests that wavelets analysis remedies to this problem since time-
varying coefficients have clear trends. Extrapolation is therefore easy, and the
resulting mortality forecasts appear to be accurate in terms of backtesting.

Let us now explain why wavelets may outperform alternative functional
data approaches. These approaches have in common that mortality curves are
decomposed into a basis of functions. Estimation is known to be particularly
easy if the functions comprised in the selected basis are orthogonal. Examples
of orthogonal bases are orthogonal polynomials (as in Renshaw et al., 1996,
who decomposed mortality curves into Legendre polynomials) and the Fourier
basis. The disadvantage of the approach based on these families is that the basis
functions are not compactly supported so that finding coefficients providing a
reasonable fit in one region can cause the mortality curve to become implau-
sible in remote regions. Splines are compactly supported, but they are not
orthogonal. Wavelets have the advantage that they are compactly supported
and can be defined so as to possess the orthogonality property. The mortality
curve is projected into the space of wavelets and expressed as a sum of func-
tions weighted by coefficients. Most of these wavelet coefficients are close to
zero and considered as random to perturbations of the underlying mortality
structure. Noise is then removed by thresholding the smallest of these coeffi-
cients. Morillas et al. (2016) were among the first authors to apply the wavelets
technique to mortality modeling. They propose a year-by-year method for
smoothing mortality rates based on a wavelets decomposition, combined
with piecewise polynomial harmonic techniques. The quality of the smooth-
ing is then assessed by mean relative errors and by Whittaker–Henderson
smoothness indicators. More recently, Jurado and Sampere (2019) use wavelet
techniques to smooth mortality curves together with bootstrapping to obtain
confidence bands around best-estimate mortality. In the present paper, we
extend these previous works to a dynamic setting and propose more formal
statistical procedures based on penalized Poisson likelihood maximization.

The present paper extends previous research on smoothing and forecasting
of mortality rates in several directions. First, we use a chi-square statistical test
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to determine the optimal threshold under which wavelet coefficients are can-
celed. Next, we propose an alternative approach based on a penalized Poisson
log-likelihood. Specifically, Lasso regularization techniques are applied to
select the optimal wavelets. Thirdly, we perform a wavelets analysis of the
Belgian mortality observed over the period 1965–2015. This numerical illus-
tration reveals that the relevant information contained in the observed death
rates is carried by a few wavelet coefficients common to all mortality curves.
Since these coefficients exhibit clear trends, we propose and test a multivariate
regression model. A parallel may be drawn with the work Hyndman and Ullah
(2007) who proposed to extrapolate coefficients of a functional principal com-
ponent analysis. However, compared to their approach, wavelet coefficients
generally exhibit stable trends that are easy to extrapolate. Finally, we bench-
mark the predictive power of the wavelet model to the Lee and Carter (1992),
Renshaw and Haberman (2003), Renshaw and Haberman (2006), and Cairns
et al. (2006, 2009) models based on a backtesting analysis. This benchmarking
is performed for Belgian, US, and UK populations.

The remainder of the text is organized as follows. We start in Section 2
with a brief introduction to wavelets, gathering detailed results needed for
numerical implementation in the appendix to this paper. Particular attention
is paid to discrete wavelets transform (DWT) since this algorithm is used in
numerical illustrations. Next, we present the chi-square test that can be used to
adjust the level of smoothing of log-mortality rates. We also propose an alter-
native smoothing method based on a least absolute shrinkage and selection
operator (Lasso). This is an L1-penalization of the log-likelihood used in high-
dimensional regressions. In the second part of this paper (Section 3), we study
the dynamics of wavelets coefficients for the Belgian population from 1965 to
2015. The trends in these coefficients suggest that a simple regression model can
be used to forecast future mortality. We conclude with a numerical comparison
with some popular actuarial models of Lee–Carter (LC) type based on back-
testing and validate our conclusions with the US and UK datasets. Section 4
briefly concludes this paper.

2. WAVELETS DECOMPOSITION OF THE MORTALITY CURVE

2.1. Wavelets for nonparametric regression

We provide here a gentle introduction to wavelets for nonparametric regres-
sion. A comprehensive presentation addressing all the issues needed for
application to mortality is provided in the appendix to this paper.

Wavelets are functions that integrate to zero, “waving” above and below
the x-axis, hence their name. Like sines and cosines in Fourier analysis,
wavelets are used as basis functions in representing other functions. According
to Hastie et al. (2016, Chapter 5), wavelets produce a dictionary D consisting
of a very large number of basis functions that can be used to approximate any
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well-behaved unknown function of interest (here, the force of mortality on the
log scale). Selection and regularization methods can then be used to restrict
the entire dictionary to an optimal subset. Wavelets can thus be seen as new
features entering the score in Poisson regression. It is interesting to note that,
contrarily to Generalized additive model involving splines or local Generalized
linear model which typically assume that the force of mortality is a smooth
function of age, wavelets are able to represent both smooth and/or locally
bumpy functions in an efficient way. Wavelets can thus capture the transitory
effect of epidemics for instance.

Wavelets are defined by parent functions: a “father” wavelet φ and a
“mother” wavelet ψ both assumed to be compactly supported. Once the
mother wavelet ψ has been selected, the wavelet basis is obtained by dilating
and translating ψ to form the dictionaryD, that is, ψ( x−ba ) for a> 0 and b ∈R.
It is convenient to take special values for a and b in defining the wavelet basis,
to ensure sparsity: a= 2j and b= k2−j, where k and j are integers. The father
wavelet φ plays the role of scaling function. The functions

φj,k(x)= 2j/2φ
(
2jx− k

)
and ψj,k(x)= 2j/2ψ

(
2jx− k

)
for k, j ∈Z

form the available dictionary D to model the mortality curve.
The simplest type of wavelet is certainly the Haar basis. The mother wavelet

ψ for the Haar family is the so-called Haar function defined on the interval
[0, 1), being equal to 1 on [0, 0.5] and to −1 on (0.5, 1). The corresponding scal-
ing function φ is equal to 1 on the interval [0, 1) and to 0 otherwise. Dilations
and translations ψj,k of the Haar function ψ form an orthogonal basis in the
space of all square-integrable functions. This means that any such function
can be represented as a linear combination (possibly infinite) of these basis
functions.

The Haar wavelets are simple to understand, but not smooth enough for
representing smooth mortality curves. Continuous basis functions, such as
Daubechies wavelets, are better choices in that respect. The mother wavelet
is not explicitly defined but is implicitly computed from the method for making
the wavelet decomposition.

2.2. DWT of mortality curves

Let μ(t, x) be the force of mortality (or hazard rate) for an individual aged x at
time t. The survival probability to time s≥ t is then given by

spx(t) := exp
(

−
∫ s

t
μ(v, x+ v− t) dv

)
.

Henceforth, we assume that the force of mortality is constant on each square
of the Lexis diagram, that is, for every integer x and t,

μ(t+ τ , x+ ξ )=μ(t, x) for all 0≤ τ < 1 and 0≤ ξ < 1.
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We assume that we have at our disposal a set of observations where time ranges
from year tm to tM and age from xm to xM . The number of observations for
each year is denoted as n= xM − xm + 1. Available demographic data consist
of the number of deaths observed at age x last birthday during year t, nt,x, and
the corresponding exposure to risk, Et,x. Here, Et,x (sometimes called central
exposure to risk at age x) is the total time lived by people aged x last birthday
in calendar year t. An unbiased estimator μ̂(t, x) of the force of mortality is
then given by

μ̂(t, x) = nt,x
Et,x

.

In Denuit and Legrand (2018), it is formally shown that it is not restrictive to
conduct inference under the Poisson assumption for death counts, that is, by
assuming that the observed number of deaths is the realization of a random
variableNt,x that has a Poisson distribution with parameters Et,x μ(t, x) as pro-
posed by Brouhns et al. (2002). The corresponding expected number of deaths
is thus Et,x μ(t, x). The use of wavelets in Poisson regression is discussed, for
example, in Besbeas et al. (2004).

The DWT decomposes the force of mortality on the log scale viewed as a
function of age x, for fixed time t, according to formula (A.9) in appendix. It
requires a number of data points equal to a power of 2. Since n is generally not
a power of 2 in applications, we have to interpolate the log force of mortality.
Morillas et al. (2016) propose a piecewise polynomial harmonic technique. We
use instead a linear regression which appears to be sufficient for our purposes.
We set �x = xM−xm

2J−1 and calculate μ̂(t, x) for noninteger ages x ∈ {xk | xk = xm +
k�x, k= 0, ..., 2J − 1} by linear interpolation, in order to produce a data set
with n= 2J observations. DWT allows us to decompose the log-mortality rates
μ̂(t, x) into a sum of wavelets:

ln μ̂(t, x)= c0(t)φ(x)+
J−1∑
j=0

2j−1∑
k=0

dj,k(t)ψj,k(x). (2.1)

The vector of parameters d(t)= (
dj,k(t)

)
j,k

of dimension 2J is therefore itself the
realization of a multivariate random variable, denoted by D(t). Indeed, if we
denote by

y(t)= (ln μ̂(t, x))x=xm,...,xM

the vector of the log force of mortality, wavelets coefficients are linear combi-
nations of realized log-mortality rates:

d(t)=Ty(t), (2.2)

where T is an orthogonal matrix, that is, TT� = I . The vector d(t) is sparse:
the information carried by y(t) is redistributed among a smaller number of
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coefficients, significantly different from zero. Wavelet fitting can be performed
with the help of the wavethresh package of R. In the next section, we test the
relevance of including all wavelets in the sum (2.1).

The curve of log forces of mortality, stored in a vector y(t), is converted
into a sparse vector d(t) of the same dimension. Knowing d(t) or y(t) is equiva-
lent because we can reconstruct y(t) from d(t) with equation (2.2). This sparse
vector can be layered into subvectors d j(t) for j= 0 to J which contains enough
information for approaching the original signal by a smooth curve with an
increasing accuracy when j→ J. Details and an illustration with the Haar
wavelet are provided in Appendix A.2.

2.3. A chi-square test for wavelets shrinkage of mortality curves

Following the idea of Donoho and Johnstone (1994, 1995), large values of
wavelet coefficients most likely correspond to the true signal, whereas small
coefficients are related to noises. Hence, an efficient estimate d̂(t) of d(t) only
keeps coefficients that are sufficiently large. Donoho and Johnstone (1994) pro-
pose two types of thresholding: the so-called hard and soft ones. In case of hard
thresholding, we cancel all wavelet coefficients smaller in absolute value than a
threshold, noted d∗. Precisely,

d̂j,k(t)=
{
0 if |dj,k(t)|< d∗

dj,k(t) otherwise,

for j ∈ {0, ..., J − 1}, k ∈ {0, ..., 2j − 1}. We denote by μ̂S(t, x) the shrinked
wavelet representation of μ̂(t, x):

ln μ̂S(t, x)= c0(t)φ(x)+
J−1∑
j=0

2j−1∑
k=0

d̂j,k(t)ψj,k(x). (2.3)

The algorithm reconstructing the ln μ̂S(t, x) is called the Mallat’s pyramid. It
is summarized in Appendix A.2, and we refer the reader to Mallat (1989a,b)
for further explanations. The Mallat’s pyramid provides the value of μ̂S(t, x)
at noninteger ages, and log forces of mortality at integer ages are next retrieved
by linear interpolation. In order to determine an acceptable threshold, we use
a chi-square test. As mentioned earlier, it is not restrictive for estimation pur-
poses to assume that the number of deaths Nt,x obeys the Poisson distribution
with parameters Et,xμ(t, x). Given that the expectation and variance of Nt,x are
equal to μ(t, x)Et,x, the first two moments of μ̂(t, x) are given by

E
[
μ̂(t, x)

] =μ(t, x) and V
[
μ̂(t, x)

] = μ(t, x)
Et,x

.

If the size of the population is large enough, the expected number of deaths is
also large and the Poisson distribution for death counts can be approximated

https://doi.org/10.1017/asb.2020.18 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.18


WAVELET-BASED FEATURE EXTRACTION FORMORTALITY PROJECTION 681

by the normal one. This assumption of normality holds if the Cochran (1952)
criterion is satisfied. Let us denote by Pt,x the size of the population of age x
on year t and q̂t,x = nt,x

Pt,x
an estimate of the death probability. The assumption

of normality is accepted if nt,x̂qt,x ≥ 5 and nt,x(1− q̂t,x)≥ 5. In practice, these
conditions are fulfilled for a wide range of ages. This is why we can consider
the following Gaussian approximation for the distribution of μ̂(t, x):

μ̂(t, x)∼Normal
(
μ(t, x),

μ(t, x)
Et,x

)
. (2.4)

To determine if a threshold is admissible, we first build the mortality curve
μ̂S(t, x) from shrinked coefficients with the Mallat’s pyramid. Next, we test for{

H0 : μ(t, x)= μ̂S(t, x),

H1 : μ(t, x) 
= μ̂S(t, x),

with the help of statistics

St =
xmax∑
x=xmin

Et,x

(
μ̂S(t, x)− μ̂(t, x)

)2
μ̂S(t, x)

.

This statistics is approximately chi-square distributed with n− p− 1, where n
and p are, respectively, the number of observations and the number of non-
null wavelet coefficients. If St is too large, that is, exceeds the corresponding
chi-square quantile, we reject the null assumption H0. The age range [xm, xM ]
is restricted to [xmin, xmax]⊂ [xm, xM ], so that the Gaussian approximation for
Nt,x is sufficiently accurate.

Notice that Donoho and Johnstone (1995) apply instead soft shrinkage to
wavelets coefficients. In this approach, coefficients are trimmed as follows:

d̂j,k(t)=
⎧⎨⎩0 if |dj,k(t)|< d∗

sgn(dj,k(t))
(∣∣dj,k(t)∣∣ − d∗) otherwise,

where d∗ is the threshold level. This rule is closely related to optimal coefficients
β ∈R

p of an L1-penalized linear regression:

β = arg min
β

1
2

‖y−Xβ‖2
2 + λ||β||1,

where X is a n× p matrix of p covariates for n observations, y is the n vector
of measurements, and λ ∈R

+ is a penalty. If the matrix X is orthogonal (i.e.,
X�X = Ip, where Ip is the identity matrix), this optimization problem admits a
closed-form solution

β̂ = sgn
(
β̂LS

)
max

(
0,

∣∣β̂LS

∣∣ − λ
)
,
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that is, precisely the trimming formula used in soft shrinkage. Nevertheless, we
do not follow this direction because empirical experiments reveal that the χ 2

statistics rejects curves smoothed with the soft-shrinkage approach.

2.4. Application to Belgian mortality

Let us apply the method described in the preceding sections to mortality rates
observed for the Belgian population (both genders combined) during 2015 and
for ages ranging from 0 to 109 years. The data set comes from the Human
Mortality Database (HMD, www.mortality.org). In practice, raw mortality
rates at older ages are noised due to the lack of observations. There exist mul-
tiple approaches for managing this issue, for example, as the one proposed by
Gbari et al. (2017). We circumvent this drawback by using HMD tables that
contain smoothed mortality rates for ages above 90. The HMD protocol of
Wilmoth et al. (2019) mentions indeed that “above age 80, population esti-
mates are derived by the method of extinct generations for all cohorts that are
extinct and by the survivor ratio method for nonextinct cohorts who are older
than age 90 at the end of the observation period.”

We work with Daubechies wavelets of order 4 (the latter order leading to
the most sparse models). The left and right plots of Figure 1, respectively, show
the evolution of the number of non-null d̂j,k and chi-square statistics in func-
tion of the threshold d∗. Table 1 reports the values of the test statistics St for
increasing thresholds. This statistics is computed with xmin = 0 and xmax = 100.
The null assumption is not rejected by decreasing the number of wavelets coef-
ficients to 22. This reveals that we can explain the term structure of mortality
with only 22 wavelets instead of the 128 initial ones. The last column reports
the power ratio ‖d̂(t)‖2/ ‖y(t)‖2 that quantifies the information captured by
the shrinked model. The values of AIC and BIC obtained under the normal
approximation for mortality rates are reported in Table 1. Given a set of can-
didate models, the preferred model is the one with the lowest AIC or BIC. The
AIC and BIC reward goodness of fit assessed by the likelihood function but
also penalize models with a large number of parameters. According to the AIC
and BIC, the best smoothed curves are, respectively, the ones built with 44
wavelets and 22 wavelets. The BIC usually favors sparse models compared to
the AIC. Figure 2 compares the smoothed and original curves of log-mortality
rates for the year 2015. The smoothed curve still presents some oscillations at
younger ages. Increasing the threshold partly removes these oscillations, but
the chi-square test statistics St lead to a rejection of these curves.

Figure 3 presents the 22 wavelets selected among the 128 ones for smooth-
ing log forces of mortality. It is not possible to assimilate these wavelets
to particular age effects. By essence, the wavelet transform converts a sig-
nal in a sum of wavelet functions chosen for their mathematical properties
(orthogonality and scalable), but these functions are not easily interpretable.
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TABLE 1

BELGIAN POPULATION, YEAR 2015. GOODNESS-OF-FIT STATISTICS FOR DIFFERENT WAVELETS
THRESHOLDS.

Threshold p= # of St χ 2 χ 2 Power
d∗ d̂j,k 
= 0 2.5% 97.5% AIC BIC ratio

0.01 93 10.08 1.69 16.01 −1328.73 −1077.58 1
0.03 60 24.74 24.43 59.34 −1380.04 −1218.01 1
0.05 49 38.99 33.16 72.62 −1387.8 −1255.47 1
0.07 44 41.95 37.21 78.57 −1394.84 −1276.02 1
0.09 37 59.34 42.95 86.83 −1391.44 −1291.52 0.9999
0.11 35 60.24 44.6 89.18 −1394.52 −1300 0.9999
0.13 32 74.4 47.09 92.69 −1385.86 −1299.45 0.9999
0.15 30 78.19 48.76 95.02 −1386.07 −1305.05 0.9998
0.17 29 79.81 49.59 96.19 −1386.45 −1308.14 0.9998
0.19 26 87.56 52.1 99.68 −1384.76 −1314.54 0.9997
0.21 24 96.3 53.78 102 −1380.05 −1315.23 0.9996
0.23 22 98.1 55.47 104.32 −1382.24 −1322.83 0.9995
0.25 22 98.1 55.47 104.32 −1382.24 −1322.83 0.9995
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FIGURE 1: Belgian population, year 2015. Left and right plots, respectively, show the evolution of the
number of non-null d̂j,k and chi-square statistics in the function of the threshold d∗. In the right graph, blue

lines correspond to the 2.5% and 97.5% chi-square quantiles with n− p− 1 degrees of freedom.
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−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Daubechies’s wavelets

Age

W
av

el
et

0 20 40 60 80 100
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2.5. A Lasso approach for wavelets shrinkage

The chi-square test used in the preceding section can be seen as an exploratory
technique since it relies on a normal approximation. An alternative way for
tuning the degree of smoothing consists in selecting the shrinked model to
minimize a penalized Poisson log-likelihood. The Lasso (least absolute shrink-
age and selection operator) is an L1-penalization selecting relevant variables
in order to enhance the accuracy of prediction and interpretability of results.
Lasso was popularized by Tibshirani (1996) for least squares regressions and
can easily be adapted to wavelets shrinkage.

Our approach is based on a Poisson regression model, such as introduced
in Brouhns et al. (2002). Under the assumption that the number of deaths is
Poisson distributed, the likelihood of observations during year t is

P
[
Nt,x = nt,x |μ(t, x)] =

(
μ(t, x)Et,x

)nt,x
nt,x! exp

(−μ(t, x)Et,x

)
.

The log-likelihood for a hard skrinked model μS(t, x) is denoted by
lnLPois

(
d∗,μS

)
and is equal to the sum:

lnLPois(d∗,μS) =
xM∑
x=xm

ln P
[
Nt,x = nt,x |μS(t, x)

]
(2.5)

=
xM∑
x=xm

(
nt,x ln

(
μS(t, x)Et,x

) −μS(t, x)Et,x − ln
(
nt,x!

))
.

If the number of observations n is at least equal to the number of nonredundant
parameters p, we can get a perfect fit by setting μS(t, x)= μ̂(t, x). The corre-
sponding model is the saturated one. This model is trivial and of no practical
interest but since it perfectly fits data, its log-likelihood is the best attainable
one for this distribution. The log-likelihood of the saturated model is

lnLPois(d∗, μ̂) =
xM∑
x=xm

(
nt,x ln

(
μ̂(t, x)Et,x

) − μ̂(t, x)Et,x − ln
(
nt,x!

))
.

The scaled deviance D∗ is defined as the logarithm of the likelihood ratio test
of the model under consideration against the saturated model:

D∗(μ̂,μS)= 2
(
lnLPois(d∗, μ̂)− lnLPois(d∗,μS)

)
= 2

xM∑
x=xm

Et,x

(
μ(t, x) ln

(
μ(t, x)
μS(t, x)

)
+μS(t, x)−μ(t, x)

)
.

We choose the optimal threshold d∗ among the vector of absolute values of
wavelet coefficients:
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d∗ ∈ |d| = {|dj,k(t)| j ∈ {0, ..., J − 1}, k ∈ {0, ..., 2j − 1}} ,
and the vector of shrinked wavelet coefficients d̂ is such that d̂ j,k(t)= 0 if∣∣d̂ j,k(t)∣∣< d∗ and d̂j,k(t)= dj,k(t) otherwise. The optimal Lasso threshold d∗

minimizes the following penalized deviance:

d∗ = arg min
d∗∈|d|

D∗(μ̂,μS)+ λ

J−1∑
j=1

2J−1∑
k=1

∣∣d̂ j,k(t)∣∣ , (2.6)

where λ ∈R
+ is the Lasso parameter determining the level of shrinkage. The

function in Equation (2.6) corresponds to the Lagrangian of the optimization
problem:

d∗ = arg min
d∗∈|d|

D∗(μ̂,μS) subject to ||̂d||1 ≤ γ , (2.7)

for some upper bound γ ∈R
+ on the L1 norm of d̂. We have applied the Lasso

approach to mortality rates of the Belgian population (both genders) observed
in 2015 and for ages ranging from 0 to 109 years. We choose a Lasso weight
from λ= 7 to 80. For each penalty level, we find the optimal threshold d∗. Next,
we select the model with the lowest AIC or BIC and check the goodness of fit
with the chi-square test of Section 2.3.

The left plot of Figure 4 shows the series of thresholds, |d|, sorted by
ascending order. The right graph shows the evolution of penalized deviances
for λ= 10. Table 2 reports the statistics of smoothing for different Lasso penal-
ties. When λ= 10, the lowest penalized deviance is achieved with 22 non-null
wavelet coefficients, and the chi-square test does not reject the smoothed curve.
The relation between the penalty weight and the number of wavelet coefficients
is a staircase function of λ. Figure 5 compares the smoothed curves of log-
mortality rates for different levels of penalty. Visually, smoothed curves built
with 22 (λ= 25) or 95 (λ= 8) wavelets do not present significant differences.
The Lasso penalty and the BIC leads to the selection of same wavelets. For this
reason, we use BIC to measure goodness of fit in the remainder of this work.

3. MORTALITY PROJECTION

3.1. Shrinkage of the mortality surface

Let us now consider forces of mortality dynamically over time. As demon-
strated in Section 2, the wavelet shrinkage is an efficient procedure for reducing
the information contained in one curve of log forces of mortality. For a given
calendar year, this information is carried by a few wavelet coefficients com-
pared to the initial size of the curve. The natural question that arises is whether
the set of relevant wavelets varies with time. If it remains stable over time and
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TABLE 2

GOODNESS-OF-FIT STATISTICS, YEAR 2015 FOR DIFFERENT LASSO PENALTIES.

Lasso p: # of Rejection
penalty, λ d̂ j,k 
= 0 d∗ log-likelihood D AIC BIC St of H0 ?

7 101 0.01 −398.85 8.75 999.7 1272.45 8.68 No
8 95 0.01 −399.21 9.47 988.42 1244.96 9.4 No
9 95 0.01 −399.21 9.47 988.42 1244.96 9.4 No
10 22 0.42 −444.48 100.56 932.95 992.36 99.95 No
25 22 0.42 −444.48 100.56 932.95 992.36 99.95 No
50 22 0.42 −444.48 100.56 932.95 992.36 99.95 No
80 8 4.47 −2629.32 4472.37 5274.63 5296.23 3672.6 Yes
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FIGURE 4: Smoothing with Lasso, year 2015. Left plot: series of thresholds, |d|, sorted by ascending order.
Right graph penalized deviances. Lasso parameter: λ= 10.

the wavelet coefficients exhibit some regular trend, extrapolating these trends
would allow us to forecast the evolution of mortality rates.

To answer these questions, we perform a wavelet decomposition of Belgian
mortality curves (both genders) from 1965 to 2015 for ages ranging from xm=0
to xM=109 years. Figure 6 shows the surface of the 128 wavelet coefficients for
the period 1965–2015. On this graph, wavelet coefficients are sorted according
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FIGURE 5: Smoothing with Lasso, year 2015. Comparison of smoothed curves for different penalty weights.

to their average value. Figure 6 reveals that most wavelet coefficients are null or
close to zero. Another remarkable observation is that wavelets with coefficients
close to 0 are the same for every calendar year. In other words, a small number
of wavelets can be used for reconstructing all curves of mortality between 1965
and 2015.

Most of wavelet coefficients are null for two reasons. The first one is related
to the intrinsic feature of wavelet functions. The wavelet analysis converts a
signal, here the curve of log forces of mortality, into a linear combination
of orthogonal and compactly supported functions. Compactness implies that
wavelet functions are non-null only on a small subdomain of R. This feature is
visible in Figure A.1 of Appendix A.1. Therefore, we can decompose locally a
signal over a time interval into a finite number of wavelets, and these wavelets
will not interfere with the decomposition of the same signal to some later
time interval. This is a great advantage of wavelet transform over Fourier’s
transform. In a Fourier’s transform, we project the signal over orthogonal
sinusoidal functions. These basis functions are non-null over R, excepted for a
countable number of points. Therefore, the local decomposition of a signal in a
Fourier’s basis over a time interval is pertubated by the projection of the signal
over the entire timeline. The consequence of this lack of compactness is that we
need more Fourier than wavelet basis functions to explain the same signal. The
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second reason is related to the properties of the Daubechies wavelet. These
wavelets have vanishing moments up to order M = 4. It offers then a sparse
representation of polynomials up to the fourth degree. Given that the curve of
log forces of mortality for ages between 30 and 80 years old may be fitted by
a polynomial function of low order, most of wavelets coefficients explaining
mortality trends over this range of ages are null.

To select the optimal number of wavelets, we apply a hard thresholding
based on the average of wavelet coefficients. Let us, respectively, denote by T
and d∗, the number of years in the data set and the threshold. If

1
T

∣∣∣∣∣
T∑
t=1

dj,k(t)

∣∣∣∣∣< d∗ j ∈ {0, ..., J − 1}, k ∈ {0, ..., 2j − 1},

then we set d̂ j,k(t)= 0 for all t ∈ {1, ...,T}. The statistical significance of each
smoothed mortality curves could be checked with the help of the chi-square
testing procedure described above. However, in practice, this procedure fails
to produce a parsimonious representation for all years. Whatever the level of
thresholding, there is always a limited number of smoothed curves that fail the
chi-square test due to abnormal shocks on mortality curves like heatwaves, flu
epidemics, or simply because of the volatility of estimators of log forces of mor-
tality. Explaining these temporary perturbations requires to add a few wavelets
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that are useless for explaining mortality observed during normal years. Here,
we opt for an alternative method based on BIC and AIC that is more toler-
ant with respect to deviations between smoothed and original log forces of
mortality.

This approach is based on the Poisson regression model introduced in
Section 2.5. The Poisson log-likelihood denoted by lnLPois(d∗,μS) is defined
in (2.5) for a single year. Here, this log-likelihood is summed up over all years
to get

lnLPois(d∗,μS) =
T∑
t=1

xM∑
x=xm

(
nt,x ln

(
μS(t, x)Et,x

) −μS(t, x)Et,x − ln
(
nt,x!

))
.

The scaled deviance D∗ is defined in the same way:

D∗(μ̂,μS)= 2
T∑
t=1

xM∑
x=xm

Et,x

(
μ(t, x) ln

(
μ(t, x)
μS(t, x)

)
+μS(t, x)−μ(t, x)

)
.

This Poisson log-likelihood is used to calculate the AIC and BIC:

AIC= 2(T p)− 2 lnLPoiss(d∗,μS),

BIC= ln(T n) (T p)− 2 lnLPoiss(d∗,μS).

The optimal threshold level d∗ is either the one minimizing the AIC or the
BIC, depending upon the sought level of sparsity. Table 3 contains the AIC,
BIC, and log-likelihood for a range of thresholds. The lowest AIC and BIC are
obtained with d∗ ∈ [0.12 0.24], and the number of non-null wavelet coefficients
is 24. We have also computed the chi-square statistics for each year between
1965 and 2015. This statistics is computed with xmin = 0 and xmax = 109. The
third column of Table 3 reports the percentage of smoothed curves that pass
the chi-square test of Section 2.3. For a threshold level in [0.12, 0.24], 59% of
smoothed curves are accepted. Table 3 reveals that thresholding wavelet coef-
ficients with an absolute value higher than 0.30 cause a jump in the deviance.
Figure 7 shows the heat map of differences between the smoothed and observed
log-mortality rates. We observe in the upper part of this map an increasing
straight line. This line corresponds to cohorts born around the second world
war. These cohorts experience a higher mortality rates than the other ones.

3.2. Mortality forecasting

In the previous section, we have seen that the information contained in the
mortality surface from 1965 to 2015 may be summarized by a surface of p=24
wavelet coefficients observed over 51 years. Figures 8, 9, 10, and 11 show the
evolution over time of these 24 time series of wavelets coefficients. For most of
them, we observe a clear linear increasing or decreasing trend. Based on this
remarkable observation, we regress linearly these coefficients with respect to
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TABLE 3

GOODNESS-OF-FIT STATISTICS OF GOODNESS OF FIT FOR SHRINKED MORTALITY CURVES, PERIOD
1965–2015.

Percentage
Threshold p= # of of chi-square

d∗ d̂ j,k 
= 0 tests passed lnL(d∗,μS) D∗(μ,μS) AIC BIC

1 0.03 33 0.76 −23, 103.12 4920.3 49,572.24 60,734.41
2 0.06 30 0.76 −23, 167.18 5048.34 49,394.35 59,541.78
3 0.09 28 0.76 −23, 221.25 5157.44 49,298.5 58,769.44
4 0.12 24 0.59 −23, 785.23 6283.42 50,018.46 58,136.4
5 0.15 24 0.59 −23, 785.23 6283.42 50,018.46 58,136.4
6 0.18 24 0.59 −23, 785.23 6283.42 50,018.46 58,136.4
7 0.21 24 0.59 −23, 785.23 6283.42 50,018.46 58,136.4
8 0.24 24 0.59 −23, 785.23 6283.42 50,018.46 58,136.4
9 0.27 22 0.31 −24, 318.95 7350.23 50,881.89 58,323.34
10 0.3 21 0 −29, 637.46 17,987.36 61,416.93 68,520.13
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FIGURE 7: Heat map of differences between the smoothed and observed log-mortality rates.

time. Precisely, all non-null wavelet coefficients d̂ j,k(t) ∈ d̂(t) obey the following
dynamics:

D̂(t)= α + βt+ E(t),
where E(t) is mutually independent, multivariate normal random vectors with a
zero mean vector variance–covariance matrix � of dimension p× p. The p vec-
tors α and β contain the intercepts and regression factors. Table 4 reports the
statistics of goodness of fit for residuals. The Shapiro–Wilk test validates the
assumption of normality (at 5% confidence level) for 22 time series out of 24.
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TABLE 4

STATISTICS ABOUT LINEAR REGRESSIONS OF THE 24 WAVELET COEFFICIENTS, PERIOD 1965–2015.

Wavelets p-values Gaussian p-values Independent
n◦ Shapiro residuals R2 Llung–Box increments

1 0.06 Yes 0.98 0 No
2 0.83 Yes 0.85 0 No
3 0.46 Yes 0.77 0 No
4 0.62 Yes 0.97 0.23 Yes
5 0.64 Yes 0.69 0 No
6 0.03 No 0.14 0.04 No
7 0.21 Yes 0.76 0 No
8 0.72 Yes 0.98 0.02 No
9 0.53 Yes 0.84 0.92 Yes
10 0.37 Yes 0.83 0.14 Yes
11 0.36 Yes 0.77 0.22 Yes
12 0.17 Yes 0.27 0 No
13 0 No 0.72 0 No
14 0.6 Yes 0.97 0.06 Yes
15 0.8 Yes 0.81 0.19 Yes
16 0.9 Yes 0.36 0.5 Yes
17 0.5 Yes 0.05 0.18 Yes
18 0.82 Yes 0.96 0 No
19 0.64 Yes 0.81 0.31 Yes
20 0.99 Yes 0.04 0.23 Yes
21 0.1 Yes 0.11 0.34 Yes
22 0.85 Yes 0.97 0 No
23 0.47 Yes 0.97 0 No
24 0.18 Yes 0.74 0.8 Yes

Furthermore, 62.5% of linear regressions have an R2 above 75%, while 16.66%
of regressions have an R2 smaller than 25%. For 12 regressions, the Llung–Box
test validates the assumption of independent increments (5% confidence level).
These statistics confirm that linear regressions succeed to explain the evolution
of wavelets coefficients.

Remark.A better fit can be achieved with an auto-regressive model of the form

d̂(t)= α + β1 t+ β2 � d̂(t)+ ε(t),

where � is the Hadamard product and α, β1, and β2 are the p vectors. For
95.83% of wavelets, the Shapiro–Wilk test does not reject the assumption
of normality. We validate in 95.83% of cases, the assumption of indepen-
dent increments. However, forecasting life expectancy with this model slightly
decreases from 2015 to 2020 before increasing again, and the auto-regressive
model has been discarded for this reason.
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FIGURE 8: Time series of coefficients of wavelets 1–6. The red dotted line is the linear regression.

By linear extrapolation, we can simulate future log-mortality rates. The left
plot of Figure 12 compares 2015 log forces of mortality to the average simu-
lated mortality rates in 2046, computed with 1000 simulations. The mid plot
shows the evolution of average future log-mortality rates from 2016 to 2046.
These two graphs clearly emphasize that mortality rates will continue to decline
according to the wavelet model. The right panel of Figure 12 displays 1000
simulated curves of mortality rates for the year 2046. This underlines the abil-
ity of our model to generate various scenarios of mortality. To better grasp
the amplitude of this reduction of mortality, we have computed cross-sectional
life expectancy from 2016 to 2045. Table 5 reports these statistics at birth and
at ages 20, 40, 60, and 80. The wavelet model forecast an increase of the life
expectancy at birth from 80.61 in 2016 up to 85.37 years in 2045. At age 80, the
average gain of longevity over this period is around 2 years.

3.3. Validation by backtesting

In order to benchmark the predictive power of the wavelet approach, we
compare it to competitors proposed (Lee and Carter, 1992; Renshaw and

https://doi.org/10.1017/asb.2020.18 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.18


694 DONATIEN HAINAUT AND MICHEL DENUIT

TABLE 5

EVOLUTION OF FORECAST CROSS-SECTIONAL LIFE EXPECTANCIES FROM 2016 TO 2045.

Cross-sectional life expectancy

Year At birth Age 20 Age 40 Age 60 Age 80

2016 80.61 61.03 41.69 23.58 8.62
2020 81.34 61.7 42.33 24.14 8.9
2025 82.2 62.51 43.1 24.81 9.25
2030 83.05 63.31 43.86 25.47 9.61
2035 83.84 64.06 44.58 26.1 9.94
2040 84.62 64.81 45.3 26.72 10.29
2045 85.37 65.53 45.99 27.33 10.63
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FIGURE 9: Time series of coefficients of wavelets 7–12. The red dotted line is the linear regression.

Haberman, 2003, 2006; Cairns et al., 2006, 2009). In the Lee–Carter (hence-
forth referred to as LC) model, the log mortality rates are related to ages as
follows:

lnμ(t, x)= αx + βxκt, (3.1)

where αx ∈R
xmax is the constant vector representing the permanent impact of

age on mortality. Whereas βx ∈R
xmax is the constant vector that quantifies the
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FIGURE 10: Time series of coefficients of wavelets 13–18. The red dotted line is the linear regression.

marginal effect of the latent factor κt on mortality at each age. κt is the latent
process that describes the evolution of mortality over time. We consider a
bivariate extension (henceforth referred to as RH 2D) as proposed by Renshaw
and Haberman (2006). In the RH 2D, the log force of mortality is a linear com-
bination of two time latent factors, κ1t and κ2t , with covariates that depend on
the age as follows:

lnμ(t, x) = αx + β1
xκ

1
t + β2

xκ
2
t , (3.2)

where β1
x and β

2
x ∈R

xmax , and κ1t and κ
2
t are the latent processes. The next model

that we consider (henceforth referred to as RH coh) adds a cohort effect in the
dynamic of log force of mortality:

lnμ(t, x)= αx + β1
xκt + β2γt−x, (3.3)

where β2 ∈R represents the marginal effect of a generation factor γt−x on mor-
tality. In a fourth test, we fit the CBD (Cairns, Blake and Dowd, 2006) model
for which:

logit q(t, x)= κ
(1)
t + (x− x̄) κ (2)t , (3.4)
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FIGURE 11: Time series of coefficients of wavelets 19–24. The red dotted line is the linear regression.

where x̄ is the average of ages. The last model, proposed by Cairns et al. (2009),
adds a cohort effect to the CBD model and is referred to as M7:

logitq(t, x)= κ
(1)
t + (x− x̄) κ (2)t + (

(x− x̄)2 − σ̂ 2
x

)
κ
(3)
t + γt−x. (3.5)

In this equation, σ̂ 2
x is the variance of ages and γt−x is the generation factor. The

LC, RH 2D, RH coh, CBD, and M7 models are estimated by log-likelihood
maximization with the R package StMoMo.

The six models are fitted to Belgian mortality curves (both genders) from
1965 to 2005 for ages ranging from 0 to 90 years (including older ages causes
numerical instabilities for the RH coh model). Next, we forecast log forces of
mortality for years 2006 to 2015 and compare with the observed ones. For
the RH coh model, we exclude all cohorts that have fewer than three obser-
vations. Table 6 reports the sum of squared errors between the predicted and
observed log-mortality rates. Whatever the year, the wavelet model outper-
forms its three competitors. The RH coh model has the lowest performance
due to the difficulty to extrapolate the time series of γt−x, which is nonlinear
over the considered period.
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TABLE 6

SUM OF SQUARED ERRORS BETWEEN THE FORECAST AND REAL LOG-MORTALITY RATES.

Wavelet
(24 coefficients) LC RH 2D RH coh CBD M7

2006 2.11 2.59 1.96 4.32 64.57 41.83
2007 1.14 1.43 1.37 12.51 67.44 48.87
2008 1.29 1.62 1.21 29.54 65.32 56.02
2009 1.77 2.77 2.59 53.47 67.54 59.41
2010 4.01 5.12 4.91 87.54 69.31 76.11
2011 3.01 3.77 4.03 124.45 72.75 71.38
2012 5.18 6.3 6.4 179.46 74.49 78.79
2013 3.81 5.42 4.86 235.79 71.57 97.82
2014 4.00 5.49 5.48 294.46 70.09 105.42
2015 4.69 5.95 5.41 380.99 71.2 107.2
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FIGURE 12: Left plot: log forces of mortality in 2015 and 2046. Mid plot: average log forces of mortality
from 2016 to 2046. Right plot: 1000 scenarios of log-mortality rates, year 2046.

Table 7 presents the log-likelihoods, deviances, and AIC of the six models.
The lowest deviance is obtained with the wavelet model. Notice, however, that
due to its high number of parameters, the best AIC is obtained with an RH 2D
model. These results confirm that the wavelet model is a reliable alternative to
existing approaches for modeling log-mortality rates.
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TABLE 7

GOODNESS-OF-FIT STATISTICS, PERIOD 1965–2005.

p: # of
lnL(d∗,μS) D∗(μ,μS) AIC parameters

Wavelets −16, 636.68 4734.78 35,241.35 984
LC −17, 182.62 5729.67 34,807.24 221
RH 2D −16, 716 4863.88 34,130.00 349
Rensh. Haber. −248, 575.96 5855.26 497,841.93 345
CBD −263, 059.84 492,684.73 526,283.69 82
M7 −415, 382.74 166,349.05 831,255.47 245

TABLE 8

US POPULATION. SUM OF SQUARED ERRORS BETWEEN THE FORECAST AND REAL LOG-MORTALITY
RATES.

Wavelet LC RH 2D RH coh CBD M7
(24 coefficients)

2006 0.26 0.52 0.46 36.52 43.62 48.69
2007 0.25 0.54 0.46 65.87 44.73 57.31
2008 0.29 0.71 0.51 107.93 44.57 70.68
2009 0.54 0.93 0.7 162.91 44.46 81.73
2010 0.62 1.1 0.79 233.54 44.47 97.75
2011 0.6 1.05 0.83 320.87 46.39 109.47
2012 0.68 1.14 0.96 427.44 47.85 124.44
2013 0.8 1.2 1.1 553.83 49.36 136.64
2014 1.03 1.23 1.23 694.87 51.32 151.17
2015 1.44 1.32 1.64 861.92 57.15 160.82

3.4. US and UK populations

We fit a model with 24 wavelets to the US and UK populations and benchmark
it to LC, RH 2D, RH coh, CBD, and M7 models. As for the Belgian popula-
tion, the χ 2 statistics does not reject most of smoothed curves obtained with
this approach. The six models are fitted to mortality rates (both genders) from
1965 to 2005 for ages ranging from 0 to 90 years. Next, we forecast log forces
of mortality for years 2006 to 2015. Tables 8 and 9 report the sum of squared
errors between the modeled and observed log-mortality rates. The best perfor-
mance is achieved by the Wavelet model. Surprisingly, the cohort model , RH
coh, has an excellent predictive power for the UK population compared to its
performance with the Belgian and US datasets.

As in Section 3.2, we forecast log-mortality rates from 2016 to 2046 for the
US and UK populations. For this purpose, the wavelets model is estimated
with data from 1965 to 2015 and for ages from 0 to 109 years. Tables 10 and 11
report the forecast cross-sectional life expectancies. UK figures are comparable
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TABLE 9

UK POPULATION. SUM OF SQUARED ERRORS BETWEEN THE FORECAST AND REAL LOG-MORTALITY
RATES.

Wavelet LC RH 2D RH coh CBD M7
(24 coefficients)

2006 0.45 1.58 0.64 0.53 74.86 42.67
2007 0.37 1.53 0.58 0.55 76.79 49.9
2008 0.76 2.18 0.88 0.79 78.88 58.97
2009 0.63 1.61 0.79 0.65 76.38 72.51
2010 1.14 2.17 1.31 0.85 76.56 80.78
2011 1.78 2.5 1.95 0.96 74.75 97.33
2012 2.15 2.98 2.36 1.74 75.64 103.88
2013 1.76 2.77 2.19 2.19 77.16 118.45
2014 1.8 3.12 2.21 2.98 82.1 124.52
2015 1.52 3 1.95 4.68 85.23 138.8

TABLE 10

US POPULATION: EVOLUTION OF FORECAST CROSS-SECTIONAL LIFE EXPECTANCIES
FROM 2016 TO 2045.

Cross-sectional life expectancy (US)

Year At birth Age 20 Age 40 Age 60 Age 80

2016 79.01 59.71 40.76 23.09 8.9
2020 79.61 60.25 41.26 23.5 9.08
2025 80.32 60.89 41.86 23.98 9.29
2030 81.01 61.51 42.45 24.47 9.51
2035 81.68 62.13 43.03 24.94 9.73
2040 82.32 62.71 43.58 25.39 9.94
2045 82.95 63.3 44.13 25.84 10.15

TABLE 11

UK POPULATION: EVOLUTION OF FORECAST CROSS-SECTIONAL LIFE EXPECTANCIES
FROM 2016 TO 2045.

Cross-sectional life expectancy (UK)

Year At birth Age 20 Age 40 Age 60 Age 80

2016 80.47 60.93 41.56 23.25 8.55
2020 81.16 61.57 42.19 23.78 8.79
2025 81.96 62.31 42.91 24.39 9.08
2030 82.73 63.04 43.62 25 9.38
2035 83.46 63.73 44.29 25.57 9.66
2040 84.21 64.44 44.98 26.17 9.97
2045 84.87 65.07 45.59 26.7 10.24
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with Belgian life expectations of Table 5. Whereas the wavelets model predicts
a lower increase of life expectancy at birth for the US than for UK or Belgium.
In 2045, the life expectancy at birth in Belgium is around 85 years, whereas it
is only 83 years for US.

4. CONCLUSIONS

The numerical illustrations performed in this paper suggest that wavelets are
powerful tools for analyzing mortality trends. The first part of this work pro-
poses two alternative approaches to optimize the smoothing of log-mortality
rates by wavelets shrinkage. The first method is based on a chi-square test built
with a Gaussian approximation of log forces of mortality. The second one uses
a penalized Poisson likelihood to find a compromise between statistical rele-
vance and sparsity. Both approaches reveal that a mortality curve with 110
death rates may be summarized by around 20 wavelet coefficients.

The second part of this article focuses on mortality forecasting. We show
that the set of significant wavelet coefficients is stable over the last half century.
A small number of wavelets can be used for reconstructing all curves of mor-
tality between 1965 and 2015. Furthermore, most of these coefficients exhibit
clear trends that can be extrapolated with a basic multivariate linear regression.
This technique allows us to predict that the cross-sectional life expectancy for
the Belgian population (both gender) will increase on average up to 85.37 years
in 2045. In the last section of this work, we have demonstrated that the wavelet
model widely outperforms other popular actuarial models fitted to Belgian,
US, andUK populations, both in terms of goodness of fit and predictive errors.
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APPENDIX A. WAVELETS IN A NUTSHELL

A.1. Definition

The wavelets analysis consists to project a function on an orthornormal basis. We denote
by L2(R) the space of square-integrable functions equipped with the inner product and the
norm, respectively, defined by

〈f , g〉 =
∫ +∞

−∞
f (x)g(x)dx ||f || = √〈f , f 〉 ,

for f , g ∈L2 (R). Functions f and g are orthonormal if they are orthogonal 〈f , g〉 = 0 and of
norm equal to 1. L2(R) is an Hilbert space for this inner product. Recall that a Hilbert space
is a complete inner product space, that is, all Cauchy sequences converge to a limit in this
space. An orthornormal basis of V ⊂L2(R) is a maximal subset B= (fk)k∈Z of orthonormal
functions such that if g ∈V with 〈g, fn〉 = 0 for all fn ∈B, then g= 0.

Definition. The multiresolution analysis consists of a collection of closed subspace of L2(R),
noted

(
Vj

)
j∈Z and of a scaling function, also referred to as father wavelet, φ ∈V0, satisfying

the following conditions. First, the function φ forms an orthonormal basis of V0 by translation.
Every function f ∈V0 can then be rewritten as an infinite sum:

f (x) =
∑
k∈Z

〈φ(x− k), f (x)〉 φ(x− k).

Second, the spaces Vj are nested in the sense that Vj−1 ⊂Vj for all j ∈Z and is dense in
L2(R). The only function belonging to all

(
Vj

)
j∈Z is the null function. Finally, we have the

following properties for all j ∈Z:

f (x) ∈V0 ⇐⇒ f (2jx) ∈Vj , (A.1)

f (x) ∈V0 ⇐⇒ f (x− k) ∈V0.

If sets
(
Vj

)
j∈Z and scaling function φ satisfy the conditions of the multiresolution anal-

ysis, the norms of the projection of any function f ∈L2(R) on Vj , noted Pjf for j ∈Z, satisfy
the relation:

||Pjf || ≤ ||Pj+1f || ,

and limj→∞ Pjf = f given that
(
Vj

)
j∈Z are dense. We can also show that limj→−∞ Pjf = 0.

We refer the reader to Nickolas (2017) for details. Furthermore, conditions (A.1) imply that

φj,k(x)= 2j/2φ
(
2jx− k

)
k ∈Z

are in Vj and forms an orthonormal basis of this set.
An example of father wavelet φ satisfying the conditions of the multiresolution

analysis is

φ(x)=
{
1 0≤ x< 1

0 otherwise.
(A.2)
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Since
(
φ0,k(x)

)
k∈Z and

(
φj,k(x)

)
k∈Z, respectively, form an orthonormal basis of V0 and Vj ,

Vj is the set of piecewise constant functions:

Vj =
{
f ∈L2 (R) : f is constant on

[
k
2j
,
k+ 1
2j

)
for all k ∈Z

}
.

The projection of any function f ofL2(R) onVj is then its piecewise constant approximation.
For this reason, the spaces Vj can be referred to as approximation spaces.

In the remainder, we denote by Wj =V⊥
j the orthogonal complement of Vj in Vj+1.

Every function f of Vj+1 admits therefore a unique representation as

f = fj + f⊥
j ,

where fj =Pjf ∈Vj and f⊥
j ∈Wj . By induction, we can show that for each i ∈Z, f ∈Vi is

expressible as a convergent series f = ∑i
−∞ wj, where wj ∈Wj . We say that Vi is the direct

sum ofWj and denote it by

Vi =
[
j= −∞]i⊕Wj .

We now define a wavelet as follows.
Definition. A wavelet is a function ψ of L2(R) whose scaled, dilated, and translated copies

ψj,k(x)= 2j/2ψ
(
2jx− k

)
k, j ∈Z (A.3)

form an orthornormal basis of L2(R).

The link between the multiresolution analysis and wavelets comes from the following
theorem. For a proof, see Theorem 6.6 in Nickolas (2017).

Theorem. Let us consider spaces
(
Vj

)
j∈Z and a scaling function φ ∈V0 that form a multireso-

lution analysis. If
(
ψj,k

)
k∈Z ∈Vj+1 is a family of functions such that

{φj,k : k ∈Z} ∪ {ψj,k : k ∈Z}
is an orthonormal basis for Vj+1, then ψ is a wavelet, referred as mother wavelet.

In themultiresolution analysis, we know that the collection
(
φj,k

)
k∈Z forms an orthonor-

mal basis of Vj . Hence, for any function f ∈L2(R), the series

fj =Pjf =
∑
k∈Z

αj,kφj,k,

where αj,k = 〈
f , φj,k

〉
is the projection of f into Vj . It is the best approximation to f in Vj

and Vj is, for this reason, referred to as an approximation space. On the other hand, the
projection of f on Vj+1 admits an unique decomposition as

fj+1 = fj + f⊥
j ,

where fj ∈Vj and f⊥
j ∈Wj . Given that f⊥

j admits the decomposition

∞∑
k=−∞

βj,kψj,k = f⊥
j ,
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where βj,k = 〈
f ,ψj,k

〉
, and ψj,k is an orthonormal basis of Wj =V⊥

j . The series∑∞
k=−∞ βj,kψj,k provides then the extra details which when added to the best approximation

of f in Vj provide the best approximation in Vj+1. The space Wj is for this reason referred
to as the detail space. The fact that ψ is a wavelet is a direct consequence of ψj,k ∈Vj+1 and
of conditions (A.1).

When the scaling function φ is defined by (A.2), the associated wavelets are called Haar
wavelets. These wavelets are obtained by translating, scaling, and dilating a function H :

H(x)=

⎧⎪⎪⎨⎪⎪⎩
1 0≤ x< 1

2

−1 1
2 ≤ x< 1

0 otherwise.

The functions Hj,k for k ∈Z are then defined by

Hj,k(x) = 2j/2H(2jx− k),

for j, k ∈Z. The function Hj,k is null outside its support
[
k
2j
, k+1

2j

)
. The Hj,k forms an

orthornormal basis ofWj , and any function f ∈L2(R) admits the projection into Vj+1

fj+1 =
∑
k∈Z

cj,kφj,k +
∑
k∈Z

dj,kHj,k.

By recurrence, we also have that

fj+1 =
∑
k∈Z

c0,kφ0,k +
j∑

j′=0

∑
k∈Z

dj′,kHj′,k.

If the support of the function f is bounded, for example, [0, 1], then

fj+1(x)= c0φ(x)+
j∑

j′=0

2j−1∑
k=0

dj′,kHj′,k(x). (A.4)

where c0φ =c0 = ∫ 1
0 f (x)dx can be interpreted as the average of f (x) over [0, 1].

The Haar wavelet is nevertheless not the only function compatible with the multires-
olution analysis. From the ladder of subspaces, Vj−1 ⊂Vj for all j ∈Z, the space V0 is
a subspace of V1. Since

(
φ1,k

)
k∈Z is a basis for V1 and φ ∈V0 ⊂V1, any eligible scaling

function is the solution of the dilation or scaling equation

φ
(x
2

)
=

∑
k∈Z

akφ(x− k), (A.5)

where ak = 〈
φ

( x
2

)
, φ (x− k)

〉
. Wavelets are orthogonal to the subspaces generated by scaled,

translated scaling functions. Therefore, the wavelets ψ(.) associated to any scaling function
satisfying (A.5) are defined by

ψ(x) =
∑
k∈Z

(− 1)ka1−kφ(2x− k). (A.6)
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FIGURE A.1: Daubechies wavelets with vanishing moments up toM=1, 2, 4, and 8. ForM=1, we retrieve
the Haar wavelet.

For a proof, see Theorem 6.9 in Nickolas (2017). Scaling and wavelet functions, solution of
Equations (A.5) and (A.6), may be used for constructing by recursion of the projection of f
on Vj+1:

fj+1(x)=Pj+1f =
∑
k∈Z

cj,kφj,k(x)+
∑
k∈Z

dj,kψj,k(x). (A.7)

In the next section, we will see how to infer scaling and wavelets coefficients.
The Daubechies Wavelets ψM is a family of functions satisfying Equations (A.5) and

(A.6) with vanishing moments up to a certain orderM, that is,∫ +∞

−∞
xmψM (x)dx = 0 for m= 0, 1, ...,M. (A.8)

Using wavelets with vanishing moments allows a sparse representation of piecewise poly-
nomial functions of L2(R). Unfortunately, there does not exist any closed-form expression
for the Daubechies wavelets and its scaling function. However, they are easily numerically
computable because coefficients ak in Equation (A.5) are known. The Daubechies scaling
function is largely asymmetric. As alternative, Daubechies has proposed the least asym-
metric wavelet that has vanishing moments with better symmetry. Coiflets have similar
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properties to Daubechies wavelets except the scaling function is also chosen so that it has
vanishing moments. In other words, the scaling function satisfies (A.8) with φ instead of
ψ . There exist many others wavelets, for instance, in the complex space, that are out of the
scope of this article.

A.2. Discrete wavelet transform

Let us assume that we observe the values yi = f (xi) of an L2(R) function, for an equi-
spaced sequence {x1, . . . , xn} of length 2J . The DWT computes a vector of parameters
as in Equation (A.3), consisting of the last, most coarse, scaling coefficient c0, and the
wavelet coefficients dj,k for j= 0, ..., J − 1 and k= 0, ..., 2j − 1. These coefficients allow us
to construct an approximation fJ of f :

fJ (x)= c0φ
(

x− xm
xM − xm

)
+

J−1∑
j=0

2j−1∑
k=0

dj,kψj,k

(
x− xm
xM − xm

)
, (A.9)

with fJ (xi)= yi for i= 1, ..., n.

If we denote hk = 2−1/2ak, the scaling Equation (A.5) may be rewritten as

φ (x)=
∑
k∈Z

hkφ1,k(x). (A.10)

If we define gk = (− 1)k2−1/2a1−k, the wavelet Equation (A.6) becomes

ψ(x) =
∑
k∈Z

gkφ1,k(x). (A.11)

Even if the wavelets do not have any closed-form expression, the value of coefficients (hk)k∈Z
and (gk)k∈Z are computable and are the only information needed for estimating scaling and
wavelets coefficients in the decomposition (A.9).

We first show that it is possible to obtain coarser-level wavelet coefficients in Equation
(A.7) from finer ones (level j− 1 from j). As

(
φj−1,k

)
k∈Z is an orthonormal basis for Vj−1,

we have that

cj−1,k =
∫
R

f (x)φj−1,k(x)dx . (A.12)

On the other hand, from Equation (A.10), we can develop φj−1,k as follows:

φj−1,k(x) = 2(j−1)/2φ
(
2j−1x− k

)
= 2(j−1)/2

∑
n∈Z

hnφ1,n
(
2j−1x− k

)
= 2j/2

∑
n∈Z

hnφ
(
2jx− 2k− n

)
=

∑
n∈Z

hnφj,n+2k (x). (A.13)
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If we substitute (A.13) into (A.12), then we infer that

cj−1,k =
∑
n∈Z

hn

∫
R

f (x)φj,n+2k (x) dx

=
∑
n∈Z

hncj,n+2k.

Or after rearrangement,

cj−1,k =
∑
n∈Z

hn−2kcj,n. (A.14)

In a similar manner, we can prove that

dj−1,k =
∑
n∈Z

gn−2kcj,n. (A.15)

Computing with accuracy, the initial fine father coefficient (layer J) is a hard task. However
in practice, the wavelet transform is initialized using the original function samples, that is,

cJ,k = yk+1 k= 0, 1, . . . , 2J . (A.16)

This approach is, for example, implemented in the R package wavetresh and is satisfactory
for our analysis. We also use a technical assumption of periodicity for computing coefficients
at the beginning and end of the series. Notice, however, that this method of initialization is
sometimes called the wavelet crime (see Strang andNguyen, 1996). Equations (A.14), (A.15),
and (A.16) allow us to calculate recursively the vector of coefficients

d =
(
c0,

(
dj,k

)
j∈{0,...,J−1},k∈{0,...,2j−1}

)
.

Notice also that these coefficients are obtained by linear transformation of yk for i ∈
{1, ..., 2J}. If the vector of (yi)i∈{1,...,2k} is denoted by y, then we can show that

d =Ty,

where T is an orthogonal matrix, that is, TT� = I . Another consequence is that

‖d‖2 = ‖y‖2 .
Given that the vector d is sparse, the information carried by y, and measured ‖y‖2, referred
to as the “power,” is redistributed among a smaller number of coefficients, significantly
different from zero.

Finally, Mallat (1989a,b) has shown that we can retrieve scaling coefficients of level j
from those of level j− 1 by inverting Equations (A.14) and (A.15):

cj,n =
∑
k∈Z

hn−2kcj−1,k +
∑
k∈Z

gn−2kdj−1,k. (A.17)

This relation is often referred to as the Mallat’s pyramid. In this framework, the function
f (xk) is approached by fJ (x)= ∑

k cJ,k1{x=xk}.
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