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When a drop of fluid containing long, flexible polymers breaks up, it forms threads
of almost constant thickness, whose size decreases exponentially in time. Using an
Oldroyd-B fluid as a model, we show that the thread profile, rescaled by the thread
thickness, converges to a similarity solution. Using the correspondence between
viscoelastic fluids and nonlinear elasticity, we derive similarity equations for the full
three-dimensional axisymmetric flow field in the limit that the viscosity of the solvent
fluid can be neglected. Deriving a conservation law along the thread, we can calculate
the stress inside the thread from a measurement of the thread thickness. The explicit
form of the velocity and stress fields can be deduced from a solution of the similarity
equations. Results are validated by detailed comparison with numerical simulations.
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1. Introduction

When a drop of water falls from a tap, it will break into two or more pieces under
the action of surface tension (Basaran 2002; McKinley 2005; Eggers & Villermaux
2008). Similarly, holding a drop between two solid plates which are then separated
to make this liquid bridge unstable, breakup is observed at some finite time t0. Near
breakup time, drop profiles and the velocity field are characterised by similarity
solutions, which describe the evolution toward smaller and smaller scales.

If even a small amount of long, flexible polymer is added, the singularity is
inhibited (Bazilevskii et al. 1981; Chang, Demekhin & Kalaidin 1999; Amarouchene
et al. 2001; Clasen et al. 2006; Morrison & Harlen 2010; Eggers & Fontelos 2015),
and a thread of almost uniform thickness is formed, as shown in figure 1. This
is because polymers are stretched in the extensional flow near breakup, but resist
the stretching, producing an axial stress, sometimes quantified as an extensional
viscosity. This slows down the pinching, and results in a uniform thread thickness.
In the framework of the Oldroyd-B model for polymer solutions, the characteristic
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FIGURE 1. An illustration of the problem studied in this paper. In (a), a sequence of
experimental images showing the pinch-off of a drop of polymer solution (polyacrylamide)
between two solid plates, forming a uniform thread of radius hthr(t) (Deblais, Velikov
& Bonn 2018b). In (b,c), our numerical simulation of the Oldroyd-B model for flexible
polymer solutions, with dimensionless parameters (defined in § 2.3), chosen as in Turkoz
et al. (2018): De = 60, Oh = 3.16, S = ηs/η0 = 0.25. The elasto-capillary number is
Ec = ηpR0/(λγ )= 0.0395. Times are made dimensionless with the capillary time scale τ ,
and lengths are given in units of the initial bridge radius R0. In (b), hthr(t) is shown to
decrease exponentially in time, with decay exponent 1/3λ, where λ is the polymer time
scale (blue line). For comparison, we also include a simulation with infinite relaxation
time, keeping Ec constant. In (c), a close up of the corner region between the thread and
the drop, showing the axial stress σzz. The stress is very high inside the thread, and decays
very rapidly in the transition region.

relaxation time λ of the polymer selects a constant extension rate ε̇ inside the thread,
which leads to an exponential thinning

hthr = h0 exp
(
−

t
3λ

)
, (1.1)

of the thread radius (Bazilevskii, Entov & Rozhkov 1990; Clasen et al. 2006; Eggers
& Villermaux 2008). This is well confirmed by experiments (Bazilevskii et al. 1990;
Anna & McKinley 2001; Amarouchene et al. 2001; Clasen et al. 2006) in both high
and low viscosity solvents, as well as in full numerical simulations of the Oldroyd-B
equations (Etienne, Hinch & Li 2006; Bhat et al. 2010; Morrison & Harlen 2010;
Turkoz et al. 2018), which have become a standard model for the description of
solutions of long, flexible polymers (Bird, Armstrong & Hassager 1987; Larson 1999;
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Self-similar breakup of polymeric threads 887 A19-3

Morozov & Spagnolie 2015), including capillary flows (Eggers & Villermaux 2008).
The stress contains contributions from both the polymers themselves, and a Newtonian
contribution coming from the solvent. Its main simplifying features are that polymers
are modelled with a single characteristic relaxation time of the polymer λ, and that
each polymer strand is assumed infinitely extensible, so that the extensional viscosity
can become arbitrarily large. For that reason the Oldroyd-B model is the same as the
so-called Hookean dumbbell model (Bird et al. 1987), where polymers are modelled
by Hookean springs, with spherical beads attached at either end. We will measure the
relaxation time relative to the capillary time τ =

√
ρR3

0/γ , where ρ is the density, γ
the surface tension and R0 the initial bridge radius; De= λ/τ is called the Deborah
number.

In figure 1(b,c) we show the results of our own simulations, to be discussed in
more detail below. After a short initial collapse of the liquid bridge, elastic stresses
become important and delay pinch-off. In the case of a finite relaxation time (De=60),
the thread thickness decays exponentially in accordance with (1.1) (blue curve). We
were able to follow this decay over more than one decade (from hthr/R0 ≈ 0.26 at
the beginning of the exponential regime down to hthr/R0 ≈ 0.014), which takes place
over 500 units relative to the capillary time scale. As we will see below, this means
that the thread, and the transition region connecting it to the drop is well converged
toward the asymptotic state we aim to investigate.

As the red curve in figure 1(b) we also show the thread radius for a simulation in
which we have taken the limit of infinite relaxation time. As a result, elastic stresses
do not relax, and a stationary thread thickness is reached at a point where elastic and
surface tension forces balance. Below, we will show that the time-dependent problem
of an exponentially thinning thread is closely related to the stationary elastic problem.
Both are described by the same similarity solution, respectively, in the limit of long
times, and of vanishing elasto-capillary number (given that contributions from the
solvent are small).

The exponential law (1.1) was proposed in Entov (1988) and Bazilevskii et al.
(1990). To calculate the prefactor h0, one must take into account the initial conditions,
in order to know the total stress that has built up inside the thread. However, even
without following the history of the collapse, we will show on the basis of the full
three-dimensional axisymmetric viscoelastic flow equations, but assuming that effects
of the solvent viscosity are negligible, that

σzz =
2γ
hthr

, (1.2)

where γ is the surface tension. Thus, by measuring the thread thickness, and also
recording the extension rate ε̇ = −2ḣthr/hthr of the flow inside the thread, one can
infer the extensional viscosity ηE = σzz/ε̇, and thus use the device as a rheometer
(Bazilevskii et al. 1990; Amarouchene et al. 2001).

Renardy (1995) used lubrication theory to investigate the exponential thread thinning
within the Oldroyd-B model. The lubrication description is valid as long as the
interface slope is small, so the flow inside the thread can be described within a
one-dimensional set of equations. In addition, Renardy (1995) made pioneering use
of Lagrangian variables, introduced into the one-dimensional description in Markovich
& Renardy (1985). The thread was then matched to the neighbouring drop, where
the slope of the interface increases exponentially, as we will show below. As a result,
lubrication theory breaks down, and Renardy (1995) obtained the incorrect result
σzz = γ /(2hthr), which differs from (1.2) by a factor of 1/4.
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Entov & Hinch (1997) revisited the problem, but also allowed for a linear
superposition of relaxation times instead of a single time λ. By considering a force
balance within the thread alone, and making an assumption about the tension inside
the thread, Entov & Hinch (1997) concluded that σzz = γ /hthr, which again differs
from the correct result (1.2). Indeed, it was pointed out by Clasen et al. (2006) that
a proper description of the thread cannot result from a force balance within the
uniform thread alone (along which pressure gradients vanish), since the driving force
of the motion results from the capillary pressure difference between the thread and
the drops which connect to it (cf. sequence in figure 1a). To calculate the resistive
force, one has to consider the flow of liquid emptying from the thread into the drops
(of which in figure 1 there is one on either end of the thread). Thus, the task is to
understand the transition region connecting the thread and the drop, which has the
form of a similarity solution (Clasen et al. 2006; Turkoz et al. 2018): if both the
axial and radial coordinates are rescaled by the thread thickness hthr, the drop profile
in the corner region connecting the thread and the drop falls onto a universal curve.

To deal with the transition toward the drop, Clasen et al. (2006) used an improved
version of the lubrication approximation, obtained by keeping the full curvature
term (Eggers 1993; Eggers & Dupont 1994), so that surface tension contributions
are accounted for correctly inside the drop. By solving the similarity equations in
the limit of vanishing solvent viscosity contribution, it was shown that (1.1) holds
within the improved lubrication approximation. It was also shown that this similarity
solution is identical to the solution found previously by Entov & Yarin (1984) for
the collapse of a soft solid under surface tension. In fact, it is known that, at least
in the one-dimensional approximation (Fontelos 2003), in the limit of infinitely
long relaxation times λ→∞ the viscoelastic equations turn into the equations of
large-deformation neo-Hookean elasticity.

However, even the improved lubrication theory cannot represent the flow inside the
corner exactly if the slope is no longer small (see figure 1). It is also seen that the
stress distribution has a significant radial dependence (cf. figure 1c), which cannot be
captured by a one-dimensional model. It was therefore thought (Clasen et al. 2006)
that (1.2) could only be an approximation to the true relation between σzz and 1/hthr,
with a constant of proportionality different from 2. Here, we show that (1.2) can in
fact be derived from the full three-dimensional equations without computing the corner
similarity solution explicitly, making use of a new conserved quantity along the thread,
also satisfied by the improved lubrication equation. As a consequence, the result of
Clasen et al. (2006) is correct by serendipity.

Recently, Zhou & Doi (2018) presented a ‘0-dimensional’ approximation of the
thinning thread, representing the problem by a finite number of judiciously chosen
scalar variables. The formation of threads, separated by drops, is modelled as a phase
separation problem (Xuan & Biggins 2017). Using a variational principle, Zhou & Doi
(2018) were able to reproduce the analytical result (1.2) of Clasen et al. (2006).

The present paper aims to close the gap between previous calculations based on
various approximations, by instead solving the full three-dimensional axisymmetric
Oldroyd-B equations, both numerically and theoretically. Since this model assumes a
linear relationship between the stress and the extension of polymers, the exponential
thinning regime described by (1.1) will continue forever, which allows us to focus
on this critical part of the pinching dynamics. If finite extensibility of the polymer
is taken into account (Fontelos & Li 2004; Renardy 2004; Wagner et al. 2005), as
in the so-called FENE-P model (Bird et al. 1987), pinching proceeds in a localised
fashion, similar to the Newtonian case (Renardy 1995, 2002b; Fontelos & Li 2004).
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Self-similar breakup of polymeric threads 887 A19-5

Other models that have been studied with view to including a more realistic, nonlinear
response of the stress are the Giesekus model (Renardy 2001; Renardy & Losh 2002),
the Phan-Thien–Tanner model (Renardy 2002a) or the generalised Newtonian fluid
(Renardy 2002a); an overview of these calculations can be found in Renardy (2004).

However, this mode of breakup does not appear to be a realistic description of
experiment, as instead (Oliveira & McKinley 2005; Sattler, Wagner & Eggers 2008;
Sattler et al. 2012) the polymer thread undergoes a spatially periodic instability, in the
course of which the highly stressed thread partially relaxes, to form a series of small
droplets. This has been called the blistering instability (Oliveira & McKinley 2005;
Sattler et al. 2008, 2012), whose theoretical description (Eggers 2014) has recently
been confirmed experimentally (Deblais et al. 2018b).

In the next section, we present the Oldroyd-B equations of motion. We use our
own code, based on mapping the physical domain onto a simple rectangular domain
(Herrada & Montanero 2016; Deblais et al. 2018a), together with a logarithmic
transformation of the polymeric stress tensor (Fattal & Kupferman 2004; Coronado
et al. 2007), in order to study the self-similar structure of the polymeric pinching
problem in detail. We find that, contrary to previous assumptions, owing to the
stress contribution from the solvent, the stress distribution inside the thread has a
non-constant radial distribution. A similar non-trivial radial dependence of the stress
has been discussed previously in Yao & McKinley (1998). This suggests the similarity
solution in general is non-universal, and dependent on boundary conditions. However,
the contribution from the solvent is often small for realistic parameter values, as
measured by a capillary number v0 based on the solvent viscosity, which we identify
below. As a result, the main focus of our paper is on calculating the universal
similarity solution in the limit of vanishing solvent contribution; the non-universal
part comes from the solvent contribution.

In § 3 we present the similarity equations describing the corner region between the
polymer thread and the drop including solvent contributions. Since inertia is found
to be subdominant asymptotically, the tension in each cross-section is conserved. To
solve the similarity equations for vanishing solvent parameter v0, in § 4 we consider
a related problem in nonlinear elasticity: the collapse of a cylinder of elastic material
under surface tension. As the elastic bridge deforms, elastic stresses build up and
eventually balance surface tension to establish a new stationary equilibrium state. For
small elastic modulus G, a thread of almost uniform thickness is formed, whose radius
goes to zero in the limit of vanishing G. We show that this limit is described by a
similarity solution, which is identical to the similarity solution for the time-dependent
collapse of a viscoelastic fluid bridge.

Using Lagrangian coordinates with respect to the reference state of a cylindrical
elastic bridge, we derive a simplified set of similarity equations for the elastic problem
in the limit G→ 0. The elastic similarity equations are shown to obey a conservation
law involving the pressure and the elastic energy, which is closely related to Eshelby’s
elastic energy–momentum tensor (Eshelby 1975). Physically, it represents invariance of
the equations under a relabelling of Lagrangian coordinates.

With the help of this conservation law, we are able to derive (1.2), without having
to solve the full three-dimensional similarity equations. However, the spatial structure
of the similarity solution is different from what the earlier one-dimensional description
predicts. We then solve the similarity equations numerically to yield the self-similar
interface profile and the stress distribution in the interior. This then solves the problem
both of the time-dependent pinching of a viscoelastic thread, and the collapse of an
elastic thread.

In a final discussion, we compare numerical results to our similarity theory, and
outline future directions of research.
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2. Equations of motion and numerical simulations
The Oldroyd-B model can be described by the following set of equations (Bird et al.

1987; Morozov & Spagnolie 2015):

ρ

(
∂v

∂t
+ (v · ∇)v

)
=−∇p+∇ · σp + ηs1v, (2.1)

∂σp

∂t
+ (v · ∇)σp = (∇v)T · σp + σp · (∇v)−

σp

λ
+
ηp

λ
γ̇ , (2.2)

∇ · v = 0, (2.3)

where v is the velocity field, γ̇ = (∇v)+ (∇v)T the rate-of-deformation tensor and σp
is the extra polymeric stress. Constants characterising the model are the fluid density
ρ, the polymeric viscosity ηp, the solvent viscosity ηs and the polymer relaxation
time λ. As seen on the right of the momentum equation (2.1), the total stress on a
fluid element is the sum of two contributions, coming from the solvent and from the
polymer.

The Oldroyd-B model can be derived as the continuum version of a solution of
non-interacting model polymers, each of which consists of two beads, experiencing
Stokes’ drag, and connected by a Hookean spring. Thus on one hand, springs become
stretched when beads move apart as described by the flow. On the other hand, the
resulting tension in the spring contributes to the polymeric stress, described by the
equation of motion (2.2); (2.3) enshrines incompressibility of the flow.

In the limit of small shear rates (so that polymers are hardly stretched at all),
(2.1)–(2.3) describe a Newtonian fluid of total dynamic viscosity η0 = ηs + ηp.
Polymeric stress relaxes at a rate λ, as seen from the second to last term on the right
of (2.2), while stretching by the flow is described by the first two terms on the right.
In particular, in the case of an extensional flow with constant extension rate ε̇, the
polymeric stress will grow exponentially if ε̇λ> 1/2. This follows from a comparison
of the stretching and relaxation terms. We will see below that in fact ε̇λ= 2/3 inside
the thread.

From a continuum perspective, the first four terms of (2.2) are known as the ‘upper
convected derivative’

O
σ p =

∂σp

∂t
+ (v · ∇)σp − (∇v)Tσp − σp(∇v). (2.4)

Its form can be derived purely from the requirement that the polymeric stress ought
to transform consistently as a covariant tensor (Morozov & Spagnolie 2015).

On account of the axisymmetry of the problem, the velocity field can be written
v=vrer+vzez in cylindrical coordinates, and the polymeric stress tensor is σp=σrrer⊗

er + σrzer ⊗ ez + σzzez ⊗ ez + σθθeθ ⊗ eθ . The stress boundary condition at the free
surface is

n · (σp + ηsγ̇ )= (p− γ κ)n, (2.5)

where
κ =

1
h(1+ h2

z )
1/2
−

hzz

(1+ h2
z )

3/2
, n=

er − ezhz

(1+ h2
z )

1/2
, (2.6a,b)

are (twice) the mean curvature and the surface normal, respectively. If h(z, t) is the
thread profile, the kinematic boundary condition becomes

∂h
∂t
+ vz(z, h)

∂h
∂z
= vr(z, h). (2.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

18
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.18


Self-similar breakup of polymeric threads 887 A19-7

Powerful free-surface codes for flows of Newtonian and viscoelastic fluids have
been under development since the 1980s (Kistler & Scriven 1984; Szady et al. 1995;
Bhat, Basaran & Pasquali 2008; Mitsoulis & Tsamopoulos 2017), making ingenious
use of the conformation tensor (Pasquali & Scriven 2002). Simulations of viscoelastic
liquid bridges have been performed since the 1990s (Yao, McKinley & Debbaut
1998; Yao & McKinley 1998; Yao, Spiegelberg & McKinley 2000) to investigate
filament stretching devices, and more recently to study capillary-driven viscoelastic
flows (Etienne et al. 2006; Bhat et al. 2010; Morrison & Harlen 2010; Turkoz et al.
2018), the subject of the present paper.

However, we are not aware of a simulation which looked in detail into the transition
region connecting the viscoelastic thread, where stresses are very large, and the drop,
where stresses have relaxed, as illustrated by the colour map in figure 1(c). In order
to study the asymptotics of the viscoelastic thread requires a regime where the
thread is both much thinner than the drop (to ensure scale separation for a similarity
analysis to be valid), and where elastic forces are strong compared to capillary forces,
resulting in a elastic thread of uniform thickness. This means we aim to trace the
exponential collapse of the thread for as long as possible (for more than a decade of
perfectly exponential decay in the simulation analysed in this paper), at a Deborah
number as large as possible. In our simulation (see figure 1) De= 60, which means
that exponential decay is observed over 500 dimensionless time units. In Turkoz
et al. (2018), a similar benchmark was reached, but there remain problems with this
numerical method, which prevent us from obtaining smooth stress profiles.

The numerical problem of solving (2.1)–(2.3) with boundary conditions (2.5) and
(2.7) under conditions of breakup is highly demanding, for a number of reasons. First,
the Oldroyd-B equation is well known to exhibit numerical instabilities (for reasons
which are not well understood) if ε̇λ is of order unity (Fattal & Kupferman 2004).
This is sometimes known as the high Weissenberg number problem (HWNP). Second,
it is crucial to correctly describe the balance between surface tension forces and the
force exerted by the polymer, both of which go to zero in the limit of vanishing thread
thickness (the tension in the thread goes to zero, since it is the stress multiplied by
the cross-sectional area of the thread).

2.1. Logarithmic transformation
In order to avoid the HWNP as ε̇λ is of order unity, a partial (two-dimensional)
matrix-logarithm transformation of the polymeric stress tensor σp is applied in this
work (Fattal & Kupferman 2004; Turkoz et al. 2018). To this end we write the
polymeric stress in terms of the conformation tensor A according to

σzz = ηp(Azz − 1)/λ, σrr = ηp(Arr − 1)/λ, σrz = ηpArz/λ; (2.8a−c)

the equation of motion for A is

O
A=−

1
λ
(A− I). (2.9)

Now, A is written as the logarithm of a symmetric, positive–definite matrix ψ : A=
lnψ . Equation (2.2), which allows us to advance the stresses σrr, σzz and σrz in time,
is replaced with three equations for the elements of the 2× 2 matrix ψ . The first step
is to decompose this matrix as

ψ =

(
ψzz ψrz
ψrz ψrr

)
=R

(
ln(Λ1) 0

0 ln(Λ2)

)
RT, (2.10)
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ln(Λ1) and ln(Λ2) being the eigenvalues of ψ , and the columns of R containing their
normalised eigenvectors: RRT

= I . The second step is to construct the conformation
tensor A,

A=

(
Azz Arz
Arz Arr

)
=R

(
Λ1 0
0 Λ2

)
RT . (2.11)

Now, the stresses σzz, σrz and σrr can be expressed as function of the elements of ψ
with the help of (2.8).

Finally, the equation of motion for ψ is

∂ψ

∂t
+ (v · ∇)ψ − (Ωψ −ψΩ)− 2B=

1
λ
[A−1
− I], (2.12)

with matrices Ω , B given by

Ω =R
(

0 ω
−ω 0

)
RT, B=R

(
M11 0

0 M22

)
RT . (2.13a,b)

Here

M =

(
M11 M12
M21 M22

)
=RT(∇v)T2dR, (∇v)2d =


∂vz

∂z
∂vr

∂z
∂vz

∂r
∂vr

∂r

 , (2.14a,b)

and ω = [Λ2M12 + M21Λ1]/[Λ2 − Λ1]. In the case that Λ1 = Λ2, matrices Ω , B are
replaced by

Ω = 0, B= 1
2 [(∇v)T2d + (∇v)2d]. (2.15a,b)

The primary quantity in this numerical scheme is ψ , for which we solve (2.12). All
other quantities, such as A, are then derived from it.

2.2. Mapping technique
The numerical technique used in this study is a variation of that developed in
Herrada & Montanero (2016). The spatial physical domain occupied by the fluid is
mapped onto a rectangular domain 0 6 η 6 1, 0 6 ξ 6 L by means of the coordinate
transformation η= r/h(z, t) and ξ = z. It is worth mentioning that the mapping method
can also be applied to situations where the free surface has overhangs (Ponce-Torres
et al. 2017; Deblais et al. 2018a). Now each variable (vz, vr, p, ψrr, ψrz, ψzz, σθθ
and h) and all its spatial and temporal derivatives, which appear in the transformed
equations, are written as a single symbolic vector. For example, seven symbolic
elements are associated with the axial velocity, vz: vz, ∂vz/∂η, ∂vz/∂ξ , ∂2vz/∂

2η,
∂2vz/∂

2ξ , ∂2vz/∂ηξ and ∂vz/∂τ , τ = t being the transformation for time. The next
step is to use a symbolic toolbox to calculate the analytical Jacobians of all the
equations with respect to the symbolic vector. Using these analytical Jacobians, we
generate functions which can be evaluated later point by point once the transformed
domain is discretised in space and time. In this work, we used the MATLAB
tool matlabFunction to convert the symbolic Jacobians and equations in MATLAB
functions.

Next, we carry out the temporal and spatial discretisation of the transformed
domains. The spatial domain is discretised using a set of nξ = 850 equally spaced
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collocation points in the axial (ξ ) direction, while a set of nη = 20 of equally spaced
collocation points are used in the radial (η) direction. Fourth-order finite differences
are employed to compute the collocation matrices associated with the discretised
points. In the time domain, second-order backward finite differences are used for the
discretisation.

The final step is to solve at each time step the nonlinear system of discretised
equations using a Newton procedure, where the numerical Jacobian is constructed
using the spatial collocation matrices and the saved analytical functions. Since the
method is fully implicit, a relatively large fixed time step, dt/τ = 0.1, could be
used in the simulation. Since λ sets a fixed time scale on which the thread evolves,
the simulation remains resolved as the thread thins. We made sure that the results
remained virtually the same when the step size was halved.

2.3. Numerical results and parameters
As a representative example, we simulate a liquid bridge with periodic boundary
conditions, using the parameters of Turkoz et al. (2018). The initial condition is a
cylinder of radius R0, with a sinusoidal perturbation of small amplitude ε added to
it,

h(z, 0)
R0
= 1− ε cos

(
z

2R0

)
, −2π6

z
R0

6 2π, (2.16a,b)

and ε = 0.05. Only half of the domain was simulated, using symmetry.
We define the dimensionless parameters of the simulation as in Clasen et al. (2006).

First, the Deborah number De= λ/τ is the dimensionless relaxation time, compared
to the capillary time scale τ =

√
ρR3

0/γ . The Ohnesorge number Oh= η0/
√

R0ργ

measures the relative importance of viscous and inertial effects, while S = ηs/η0 is
the solvent viscosity ratio. The ratio G= ηp/λ defines an elastic constant; it measures
the effective shear modulus of the viscoelastic fluid on time scales shorter than the
relaxation time λ. Its dimensionless version

Ec =GR0/γ = ηpR0/(λγ ), (2.17)

is known as the elasto-capillary number.
In most of the plots shown below, we choose the same parameter values as those

in Turkoz et al. (2018): De = 60, Oh = 3.16, S = ηs/η0 = 0.25. The elasto-capillary
number is Ec = 0.0395. Our mapping technique allows for the description of all
fields with high accuracy, avoiding the singular behaviour of the stress near the
free surface reported previously (Turkoz et al. 2018). The use of the logarithmic
transformation described in § 2.1, together with a fully implicit formulation, allows
for superior stability. As a result, we were able to follow the dynamical evolution
over dimensionless times in excess of t/τ = 500, while the thread radius is two
orders of magnitude smaller than the original radius, and the exponential decay is
observed over more than a decade. In Etienne et al. (2006), De is similar to ours,
but exponential decay is followed over only 1 dimensionless time unit. In Bhat et al.
(2010), on the other hand, exponential behaviour is followed for a decade, but the
Deborah number is only 0.1 in that case, and so the evolution is only followed for
0.6 time units.
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3. Similarity description
3.1. Solution inside the thread

As shown in Clasen et al. (2006), and illustrated in figure 1, there are three different
regions involved in this problem: first, a thread of uniform thickness, inside which
polymers are highly stretched by an extensional flow of constant extension rate ε̇,

vr(r, z, t)=−ε̇r/2, vz(r, z, t)= ε̇z. (3.1a,b)

As a result, using the kinematic boundary condition at the interface, the thread radius
behaves as

hthr = h0R0e−ε̇t/2
≡ h0`, `= R0e−ε̇t/2, (3.2)

where h0 is a dimensionless constant. Second, fluid is injected from the thread into a
drop, in which elastic stresses have relaxed almost completely, and the force balance is
dominated by capillarity. Third, connecting the thread and the drop is a corner region,
the typical size of which is set by the thread thickness, for which we aim to find a
similarity description. A typical velocity scale is set by the velocity v0 = ε̇L/2 at the
exit of the thread, based on the linear axial velocity field vz (cf. (3.1)), and a vanishing
velocity at the middle of the thread (on account of symmetry), of total length L.

We begin by finding the solution inside the thread, where the radius is assumed
uniform, shrinking at an exponential rate, consistent with the incompressible
extensional velocity field (3.1). Owing to translational invariance along the thread,
we assume that the polymeric stress is z-independent, but allow for an arbitrary
dependence in the radial direction. We expect stresses to be of the same magnitude
as the capillary pressure, which scales like γ /hthr. We thus introduce the scaling

σzz =
γ

`
σ 0(r)+C, r=

r
`
, (3.3)

where σ 0 is the dimensionless axial stress inside the thread. Inserting (3.3) into (2.2),
the axial component of the terms on the left are,

∂σzz

∂t
+ vr

∂σzz

∂r
=
ε̇γ

2`
σ 0 +

ε̇γ

2`
rσ ′0 −

ε̇γ

2`
rσ ′0 =

ε̇γ

2`
σ 0,

and thus the axial component of (2.2) becomes

ε̇γ

2`
σ 0 =

(
2ε̇ −

1
λ

)(
γ σ 0

`
+C

)
+

2ε̇ηp

λ
.

For this to be a solution, we have ε̇= 2/(3λ) (Bazilevskii et al. 1990; Entov & Hinch
1997) and C=−4ηp/λ, so that the solution in the thread becomes

σzz =
γ

`
σ 0(r)−

4ηp

λ
. (3.4)

Here, σ 0(r) inside the thread can have an arbitrary radial profile, whereas usually a
uniform profile has been assumed. The exact form of the profile will be determined by
the initial (non-universal) dynamics of the thread. Analysing the other two components
in a similar manner, we find to leading order

σrz =
γ

R3
0
σ (0)rz (r)`

2, σ rr =−
2ηp

5λ
. (3.5a,b)

Thus, inside the thread, the axial stress σzz dominates over the remaining components.
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3.2. Similarity solution for the corner region
We now describe the transition region at the end of the thread, assuming that the
thread thickness hthr ∝ ` is the only length scale,

h(z, t)= `h(z), p(z, r, t)=
γ

`
p(z, r),

v(z, r, t)= v0v(z, r), σ (z, r, t)=
γ

`
σ (z, r),

 (3.6)

where z= z/` and r= r/`. Then, to leading order as `→ 0, the similarity equations
become

∇p=∇ · σ p + v01v, (3.7)

(v · ∇)σ p = (∇v)T · σ p + σ p · (∇v), (3.8)

∇ · v = 0, (3.9)

where v0 = v0ηs/γ = ηsL/(3λγ ), and the stress boundary condition is,

n · (σ p + v0γ̇ )= (p− κ)n. (3.10)

The dimensionless quantity v0 is a capillary number based on the solvent viscosity.
Remarkably, the solvent still appears in the leading-order balance even as polymeric
stresses go to infinity, as already observed in Clasen et al. (2006).

The system (3.7)–(3.10) does not contain time, but there are matching conditions
to be satisfied for z→±∞. For z→−∞, the solution has to tend toward the thread
solution

v→ ez, h→ h0, p→ 1/h0, σ p→ σ 0(r)ez ⊗ ez. (3.11a−c)

The first condition says that, since the scale of the similarity solution hthr is much
smaller than the length L of the thread, the velocity of the similarity solution has
to match the velocity at the exit of the thread. The other conditions correspond to
thickness and the stress distribution inside the thread. To verify the similarity form
(3.6) we present our numerical results in scaled form in figures 2 and 3. We indeed
observe a collapse of the data and moreover the numerics confirm the matching
conditions (3.11). To obtain another measure of the quality of convergence toward
the similarity solution, we show two more critical quantities in figure 4. On the left,
we demonstrate that the polymeric stress decays very rapidly as one moves from the
thread into the drop. Over a distance of 10 in units of the thread thickness, the stress
has decayed by five orders of magnitude. Owing to the dominance of elastic stresses,
the thread radius has converged to a virtually constant value over its entire length.

Note that the similarity equations (3.7)–(3.8) are invariant under the transformation
h→ ch, p→ p/c, and σ p→ σ p/c, and hence the dimensionless thread thickness h0

cannot be calculated as part of the solution. However, the combination hσ p is invariant,
which means the axial stress σzz can be calculated in terms of h0, as we will do below.

As implied by (3.4) and (3.11), the stress will in general not be constant across
the fibre cross-section, corresponding to a stress distribution σ 0(r), which depends on
the radius explicitly. A similar dependence of the radial stress profile on the initial
evolution of the filament has been described by Yao & McKinley (1998). The presence
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FIGURE 2. Results of a numerical simulation with parameters as in figure 1, rescaled
to similarity variables according to (3.6). The profiles for three different times collapse
onto a time-independent similarity solution. Panels (a–d) are the components of the stress
tensor, evaluated at the surface, while (e–h) show the components of the velocity, the
pressure (again at the surface), as well as the surface profile itself. All profiles collapse
onto the time-independent similarity solution defined by (3.6). The profiles (as well as all
corresponding results below) have been interpolated with splines as appropriate for their
representation as fourth-order polynomials inside our numerical code.

of a non-trivial radial stress distribution is confirmed in figure 5, although deviations
from a constant stress are small, since the dimensionless exit velocity v0 = 0.035 is
small. Indeed, we will see below that, for v0 = 0, the radial stress distribution is
uniform. On the top we show the axial stress on the axis and on the surface, which
converge to different values in the long-time limit. While for S = 0.25 the stress is
greater on the axis, for S= 0.7 it is the other way around.

On the bottom we show the corresponding profiles across the thread for the two
different values of the solvent viscosity. The two shapes are entirely different, and
indicate a non-universal dependence of the stress distribution on the initial dynamics
of the collapsing bridge.

3.3. Force balance
The similarity equation (3.7) contains no inertia, and hence by Newton’s third law
there must be a constant tension force in the liquid bridge, independent of the axial
position. As we will see below, this tension has a contribution from both the fluid
stress, integrated over the cross-section, and from surface tension Clasen et al. (2006).
We follow Eggers & Fontelos (2005) and integrate (3.7), written in the form ∇ · (σ p+

v0γ̇ − pI)≡∇ · σ = 0, over the fluid volume bounded by the planes z= z±. Using the
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FIGURE 3. Contour plots of stresses, rescaled according to (3.6), obtained as in figure 2,
for the last dimensionless time t/τ = 550.
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FIGURE 4. The axial stress σ zz on the surface (a), and a magnified view of the thread
radius h (b), as a function of z, for the last dimensionless time t/τ = 550. At z= 5, inside
the drop, the stress has decayed by five orders of magnitude relative to its value inside
the thread. The thread radius, shown on the right, only varies by a relative amount of
10−5 over its entire length.
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FIGURE 5. A convergence study of the axial stress distribution inside the uniform thread,
taken at the middle of the thread z = 0. Panels (a,c,e) correspond to S = ηs/η0 = 0.25
as in figure 1, and (b,d, f ) to S = 0.7; all other parameters are as in figure 1. Panels
(a,b) demonstrate convergence toward a self-similar stress distribution, which remains
non-constant over the radius, as the dimensionless exit velocity converges toward its
asymptotic value (c,d). Panels (e, f ) show the self-similar stress profiles σ 0(r). The shape
of the profiles, scaled according to (3.6), depends on the solvent ratio S.

dynamic boundary conditions in the form n · σ =−κn, we have

0=
∮

S
n · σ ds=−

∫
O
κn ds+

∫
C+

ez · σ ds−
∫

C−

ez · σ ds, (3.12)

where S is the closed surface between the planes z= z+ and z= z−, denoted C±, as
well as the jet surface O. According to Eggers & Fontelos (2005), the integral over
O is ∫

O
κn ds=−

2πh√
1+ h

2
z

∣∣∣∣∣∣
z+

z−

ez,

and the integral over the z-component of C+ and C− can be converted to (using
incompressibility to transform the viscous term)∫

C±

ez · σ · ez ds= 2π

[∫ h

0
rσ (p)

zz dr−
∫ h

0
rp dr− 2v0hvr(h, z)

]
z=z±

.

Thus, taking the z-component of (3.12), the force balance in the z-direction becomes

0= 2π

 h√
1+ h

2
z

+

∫ h

0
r
(
σ (p)

zz − p
)

dr− 2v0hvr(h, z)

z+

z−

,
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which expresses the fact that the tension πT in the liquid thread is constant,

T =
2h√

1+ h
2
z

+ 2
∫ h

0
r(σ (p)

zz − p) dr− 4v0hvr(h, z). (3.13)

First, we evaluate the tension inside the thread, where we can use (3.11) (and thus
vr = 0, p= 1/h0 and σ (p)

zz = σ 0(r)) to find that

T = 2
∫ h0

0
rσ 0(r) dr+ h0. (3.14)

Note that the solvent term is subdominant inside the thread, and the remaining
contributions are from the axial polymeric stress and from a capillary term, both of
which are positive quantities, as we will confirm below.

Entov & Hinch (1997) attempted to develop a theory of the polymeric pinching by
considering a force balance over the uniform, cylindrical part alone, a strategy pursued
further in a number of subsequent publications (McKinley & Tripathi 2000; Anna &
McKinley 2001; Torres et al. 2014; Wagner, Bourouiba & McKinley 2015). Entov &
Hinch (1997) argued that the tension can be taken to vanish, because ‘the filament is
attached to large stagnant drops on stationary end plates’. Clearly, this cannot be a
correct approximation, since the right-hand side of (3.14) is strictly positive, and thus
the tension must be strictly positive. This means that, for an isolated, inertialess drop
(for which the tension would be zero, since no external forces are acting on the drop
(Eggers & Fontelos 2005)), (3.14) could never be satisfied. Hence, such an isolated
polymeric drop cannot form a pinching thread, just like an isolated drop of Newtonian
fluid cannot break up (Eggers & Fontelos 2005).

The problem with Entov & Hinch’s (1997) argument is that the physical thread
tension T = γπT` goes to zero as the thread thins, so that the tension that needs
to be supported by the end drops also vanishes as they relax toward a steady state. A
small and vanishing deviation from a purely spherical shape is enough to provide a
consistent balance. In fact, the assumption actually adopted by Entov & Hinch (1997)
is to take T = 2h0, so that T cancels with the first term on the right of (3.13) within
the thread; as shown in (4.30), the correct expression is T = 3h0. Assuming a constant
polymeric stress σ 0 over the cross-section of the thread, (3.14) becomes T=h

2
0σ 0+h0;

combining with T = 2h0, one finds σ 0= 1/h0, which differs by a factor of 2 from the
correct expression (1.2), as stated in the Introduction.

To bring (3.13) into a more convenient form for the task of calculating the tension
inside the drop we note that

2h√
1+ h

2
z

− 2
∫ h

0
rκ dr=

2h√
1+ h

2
z

− h
2
κ = h

2
K,

where
K =

1
h(1+ h2

z )
1/2
+

hzz

(1+ h2
z )

3/2
, (3.15)

and correspondingly for the rescaled quantity K. As a result, (3.13) can be written as

T ≡ 2
∫ h0

0
rσ 0(r) dr+ h0 = 2

∫ h

0
rσ (p)

zz dr+ 2
∫ h

0
r(κ − p) dr− 4v0hvr(h, z)+ h

2
K

∣∣∣∣∣
z=z+

.

(3.16)
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As seen in figures 2–4 and discussed in more detail below, all viscous and elastic
stresses decay rapidly inside the drop, and the balance is maintained by surface tension
forces alone. As a result, the polymeric stress component σ (p)

zz as well as the velocity
vr decay rapidly as z→∞, and the pressure almost equals the capillary pressure: p≈
κ . Only the fourth term on the right of (3.16), coming from surface tension, survives,
and equation describing the shape of the capillary region is (Eggers & Fontelos 2015),

T = h
2
K. (3.17)

This equation describes the cross-over toward the drop, whose dimensionless radius
Rd=Rd/hthr diverges in the limit. Indeed, in the intermediate region where h�Rd, the
only way the right-hand side of (3.17) can be constant is to require that hz/h→ const.,
which is achieved for

h=Heaz, z→∞. (3.18)

This means the right-hand side of (3.17) becomes 2/a in the limit, and we obtain

T =
2
a
. (3.19)

4. The elastic correspondence
At least in the limit that the contribution from the solvent in the momentum balance

(3.7) is negligible, one can make use of the fact that, in the similarity equations (3.7)–
(3.8), terms containing the relaxation time λ have disappeared. Thus, we anticipate that
the same set of equations can be obtained in a purely elastic description, where we
take the limit λ→∞ such that elastic stresses do not relax. In the absence of inertia,
the elastic equations describe the equilibrium between surface tension, which tends to
deform the elastic medium, and elasticity, which resists deformation. Thus for λ→∞,
but keeping G= ηp/λ fixed, this equilibrium state is described by

∇p=∇ · σp, (4.1)
O
σ p =Gγ̇ , (4.2)
∇ · v = 0, (4.3)

using that ∂tσp = 0. One can already see that, in the limit of vanishing elasticity,
G→ 0, (4.1)–(4.3) are identical to the similarity equation (3.7)–(3.8) for the case
where v0 = 0 (the stress coming from the solvent can be neglected). So indeed, the
similarity solution can be computed from the elastic limit. However, it is advantageous
to first retain the elastic term Gγ̇ , as it will allow us to properly introduce the history
dependence into the description, and to determine the value of h̄0 we are looking for.

To proceed, we first show (see Larson (1988) and Snoeijer et al. (2019) for more
details), that, instead of solving (4.2) with the constraint (4.3), one can write σp
as the stress tensor of a neo-Hookean elastic solid, which depends quadratically
on the deformation from an unstressed reference state. Thus one needs to find a
transformation of the undeformed state (e.g. a cylinder), parameterised by variables
R, Z, into a deformed state r = r(R, Z), z = z(R, Z) such that elastic and surface
tension forces are balanced. The equilibrium state is characterised by the deformation
tensor (in Cartesian coordinates)

FiK =
∂xi

∂XK
, (4.4)
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which satisfies incompressibility

det F=
r
R

(
∂r
∂R

∂z
∂Z
−
∂r
∂Z

∂z
∂R

)
= 1. (4.5)

Here, lower case variables and lower case indices refer to the deformed state, upper
case variables and upper case indices refer to the undeformed state.

If we write the stress tensor as σp =G(A− I), where A is the conformation tensor

as in (2.8), then (4.2) simplifies to
O
A = 0. Using the fact that v = dx/dt, where the

time derivative is taken at a constant material point X, one shows that (Morozov &
Spagnolie 2015)

O
A=F

[
d
dt
(F−1A(FT)−1)

]
FT . (4.6)

From this relation, it is clear that A = FFT indeed provides an integral to the

equation
O
A = 0. In addition, this solution satisfies the condition that σp = 0 in the

initial configuration, where F= I .
With the above steps we have managed to integrate (4.2), and have identified σp,

satisfying a stress-free initial condition. Since −GI can be written as part of the
pressure p, the elastic stress tensor becomes

σ =−pI + σp ≡−pI +GFFT, (4.7)

which is the classical result for the ‘true’ stress tensor of a neo-Hookean solid (Suo
2013a,b). Then, in terms of the deformation, the stress tensor becomes (Negahban
2012)

σp =G



(
∂r
∂R

)2

+

(
∂r
∂Z

)2

0
∂r
∂R

∂z
∂R
+
∂r
∂Z

∂z
∂Z

0
( r

R

)2
0

∂r
∂R

∂z
∂R
+
∂r
∂Z

∂z
∂Z

0
(
∂z
∂Z

)2

+

(
∂z
∂R

)2

 . (4.8)

The true elastic stress satisfies the same equilibrium conditions as those of a fluid
(Suo 2013b) (but with vs = 0),

∇ · σ = 0, n · σp

∣∣
S = γ (p− κ)n, (4.9a,b)

where derivatives are to be taken with respect to current coordinates. If R0 is the
radius of the unperturbed interface as usual, the free surface h(z) has the parametric
representation

h(z(R0, Z))= r(R0, Z). (4.10)

Transforming the equilibrium condition (4.9) to Lagrangian coordinates, we obtain in
cylindrical coordinates,

GR
r

[
∂2r
∂R2
+

1
R
∂r
∂R
−

r
R2
+
∂2r
∂Z2

]
=
∂p
∂R

∂z
∂Z
−
∂p
∂Z

∂z
∂R
, (4.11)

GR
r

[
∂2z
∂R2
+

1
R
∂z
∂R
+
∂2z
∂Z2

]
=
∂p
∂Z

∂r
∂R
−
∂p
∂R

∂r
∂Z
, (4.12)
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for the radial and axial force balances, respectively. The stress boundary conditions
on the surface are

−
h2

zσzz − 2hzσrz + σrr

1+ h2
z

= γ (κ − p)
∣∣∣∣

r=h

, (4.13)

hz(σrr − σzz)+ (1− h2
z )σrz = 0

∣∣
r=h . (4.14)

4.1. Elastic similarity equations
We now analyse the elastic problem in the limit Ec=GR0/γ → 0, which corresponds
to the similarity solution for the pinching of a polymeric thread. We expect a static
balance between elastic stresses and surface tension to be established at a thread
thickness which scales like an elasto-capillary length scale `e: z ∝ r ∝ `e. Here, we
have anticipated that, as in the similarity solution (3.6), both Eulerian coordinates
scale in the same way. By contrast, the Lagrangian coordinates do not have the same
scales for R and Z. Namely, the radial coordinate R must be rescaled by the original
radius R0; on account of incompressibility (4.5) we have that Z ∝ `3

e/R
2
0. This implies

that d/dZ� d/dR, so that the dominant stress contributions in (4.8) is of the order of
σp ∝GR4

0/`
4
e . The curvature κ scales as the inverse radius h−1

∝ `−1
e of the thread (cf.

(2.6)), and thus on account of the stress balance (4.9) GR4
0/`

4
e ∝ γ /`e. As a result,

the elasto-capillary length scale becomes

`e =

(
GR4

0

γ

)1/3

= R0E1/3
c , (4.15)

which sets the thickness of the thread (Eggers & Fontelos 2015), at which elastic and
capillary forces are balanced.

According to the scaling analysis above, we introduce the similarity solution

z= `eφ(R, Z), r= `eψ(R, Z), p= (γ /`e)Π(R, Z), (4.16a−c)

valid in the limit Ec → 0, where R = R/R0 and Z = ZR2
0/`

3
e . The rescaled thread

thickness h is defined by h= `eh, and z= `ez, so the slope hz = hz remains invariant
under the scalings, and hzz = `

−1
e hzz. As a result, the curvature scales as κ = `−1

e κ ,
where κ is defined as in (2.6), but on the basis of h(z). Note that, with this scaling,
σp ∝ GE−4/3

c , so that the right-hand side of (4.2) becomes subdominant in the limit.
As a result, the elastic similarity equations defined by the above rescaling become
identical to (3.7)–(3.8) in the limit that solvent effects are negligible (v0 = 0), and
the similarity profiles (overlined variables defined above) are the similarity profiles
defined by (3.6) in that limit. The only way G still enters into the problem is through
the initial condition, for which we require that the conformation tensor A = I . The
rescaling (3.6), on the other hand, still contains a free length scale R0, which we
choose such that the similarity profiles of both the time-dependent problem and of
the elastic problem are the same.

The key observation is that the ratio Ec = (`e/R0)
3 between a characteristic axial

scale and a radial scale in Lagrangian coordinates becomes very small in the limit.
As a result, radial derivatives can be neglected relative to axial ones. It also means
that, in the limit Ec→ 0, fluid elements become stretched out in the axial direction,
so that the self-similar region comes from just a single point along the Z-axis in the
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reference configuration. The radius R0 has to be taken as the radius at that point in
the reference configuration.

With the scalings (4.16), the similarity equations become, beginning with
incompressibility,

ψ

R
(ψRφZ −ψZφR)= 1. (4.17)

The equilibrium conditions (4.11) and (4.12) are, to leading order as Ec→ 0,

R
ψ
ψZZ =ΠRφZ −ΠZφR,

R
ψ
φZZ =ΠZψR −ΠRψZ. (4.18a,b)

The key point is that the second radial derivatives on the right-hand side have
disappeared, and as result the equations are of first order only in the radial
coordinates.

The extra stresses are at leading order

σzz =
γ

`e
φ2

Z, σrz =
γ

`e
φZψZ, σrr =

γ

`e
ψ2

Z , (4.19a−c)

and so the boundary conditions (4.13), (4.14), to be evaluated at the surface R = 1,
become to leading order

−
h2

zφ
2
Z − 2hzφZψZ +ψ

2
Z

1+ h2
z

= κ −Π, (4.20)

hz
(
ψ2

Z − φ
2
Z

)
+ (1− h2

z )φZψZ = 0. (4.21)

But along the surface we have

ψZ

φZ

∣∣∣∣
R=1

=
∂r
∂z

∣∣∣∣
R=1

= hz,

and so dividing through (4.20) and (4.21) by φ2
Z , the left-hand side of both equations is

seen to vanish. As a result, the tangential stress balance (4.21) is satisfied identically
in the limit Ec→ 0, while the kinematic boundary condition as well as the normal
stress balance become

ψ(1, Z)= h(φ(1, Z)), Π(1, Z)= κ. (4.22a,b)

Thus, as (4.18) is only of first order in R, there is only one stress boundary condition
to be satisfied instead of two.

We now show that the pressure may be eliminated from the leading-order equations.
Multiplying the first equation of (4.18) by φZ and using (4.17), we find

φZφZZ =ΠZ +
ψ

R
ψZ (ΠZφR −ΠRφZ)=ΠZ −ψZψZZ,

using the second (4.18) in the second step. This can be integrated over Z to
1
2

(
φ2

Z +ψ
2
Z

)
=Π +C, (4.23)

where the constant of integration C is in general still a function of R. In our particular
case, we will see that in fact C= 0. The conservation law expressed by (4.23) can be
shown to be a special case of conservation laws discovered by Eshelby (1975).
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4.2. Numerical simulations of the elastic equations
Before we continue with solving the similarity equations, we test the similarity ansatz
(4.16) by rescaling full numerical simulations of the elastic equations (4.7)–(4.10). For
the numerical treatment, we define the reference state by

R= R0(Z)η, Z = Z0(ξ),

with the elastic domain defined by η ∈ [0, 1] and ξ ∈ [0, 1]. The function Z0(ξ) is
computed as part of the numerical solution by imposing the constraint of constant
grid spacing in the deformed (current) z-coordinate along the axis. As a result (cf.
figure 7), the function depends on the value of Ec. This accounts for the extreme
stretching in the Z-direction within the thread for small values of Ec, and ensures
that enough points remain in the corner region. As can be seen in figure 7, points
are concentrated into an increasingly smaller Z-region, which in turn is stretched out
over the entire thread at large deformations.

As an initial condition, we take the free-surface shape

hin(z)= 1− ε cos(z/2), (4.24)

where ε = 0.005. We are looking for two unknown functions f and g, where r =
r(R, Z) = f (η, ξ) and z = z(R, Z) = g(η, ξ), as well as the pressure p(η, ξ). These
three unknowns are found from solving the three equations (4.5) and (4.9). The free
surface h(z) then is given by the parametric representation h(g(1, ξ))= f1(1, ξ), from
which the curvature κ can be evaluated. Periodic boundary conditions are applied at
the ends, as in § 2.3.

The domain is discretised using fourth-order finite differences with 11 equally
spaced points in the η-direction and 4001 points in the ξ -direction. The resulting
system of nonlinear equations is solved using a Newton–Raphson technique (Herrada
& Montanero 2016). We start from the reference state as an initial guess and Ec
sufficiently large (Ec = 100) to ensure the convergence of the Newton–Raphson
iterations. Once we get a solution, we use this solution in a new run with a smaller
value of Ec. As seen in figure 6, rescaled stresses as defined by

σ =
γ

`e
σ (4.25)

converge nicely onto a universal similarity solution.

4.3. The thread thickness
In solving the similarity equations, we first concentrate on the free surface profile,
shown in figure 8 as a real-space profile in similarity variables. We now show that
the dimensionless thread thickness h0 can in fact be calculated without first solving
the full similarity equations. Inside the thread, a cylinder of constant dimensionless
thickness R= 1 (the reference state) is transformed into a thread whose thickness h0 is
constant. This elastic problem has as its exact solution the transformation ψ=h0R, and
thus from incompressibility (cf. (4.17)) φZ = 1/h

2
0. Then using (4.8), the extensional

part of the axial stress becomes σ 0= φ
2
Z = 1/h

4
0. In particular, the radial stress profile

σ 0(r) of § 3 is uniform in the purely elastic case S=ηs/ηp=0. This statement remains
true even if the initial condition has a non-trivial shape, as in fact is the case in
the elastic simulations to be described below, cf. (4.24). The reason is that, owing to
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FIGURE 6. Convergence of the elastic solution toward the similarity solution (4.16) for
smaller and smaller values of the dimensionless elasto-capillary number Ec = GR0/γ .
Stresses have been rescaled according to (4.25). Profiles from the similarity solution as
described in § 4.4 are shown as the dashed line for comparison.
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FIGURE 7. The transformation Z0(ξ) designed to account for stretching in the Z-direction
for three values of Ec.

mass conservation, the material inside the thread in the limit of small thread thickness
only comes from a tiny region near the point of symmetry. This means that in the
normalisation of (4.16) R0 has to be replaced by 1 − ε, but otherwise the solution
stays the same.

Since in the elastic case there is no contribution from the velocity, (3.16) becomes

T = 2
∫ h

0
rσ zz dr+ 2

∫ h

0
r(κ −Π) dr+ h

2
K. (4.26)
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FIGURE 8. The interface h(z) in similarity variables. The solid line is the rescaled profile
obtained from the simulation for Ec= 10−6, the dashed line is the solution to the similarity
equations. The thread thickness is h0; for large arguments the profile grows exponentially.

Evaluating (4.26) inside the thread of constant thickness, one obtains a finite tension,

T = h
2
0/h

4
0 + h0 = h0 +

1

h
2
0

> 0. (4.27)

This corresponds to the earlier conclusion that there must be a positive tension in
a liquid bridge (polymeric or Newtonian) in order for pinching to occur (Eggers &
Fontelos 2005; Clasen et al. 2006).

On the other hand, toward the ‘drop’ side of the elastic bridge, where h becomes
large, elastic stresses decay rapidly, as is confirmed by our numerics. As a result, the
balance (4.26) is between T and the second term on the left, which must approach a
constant. As a result, it follows that, for large z, the similarity profile must be of the
form

h=Heaz, a=
2
T
=

2h
2
0

1+ h
3
0

. (4.28a,b)

Using (4.28), both radial and axial contributions to the mean curvature (2.6) scale
like e−2az, and cancel to leading order, resulting in κ ∼ e−4az. The prefactor H can
be normalised to unity by shifting the coordinate system. Thus, putting H = 1 is a
way of fixing the origin, ensuring a unique solution.

Applying the conservation law (4.23) to the thread surface R= 1, we have Π = κ ,
and thus

1
2

(
φ2

Z +ψ
2
Z

)∣∣
R=1 = κ +C. (4.29)

The left-hand side is the same as tr(σ )/2, which vanishes in the limit z→∞. Since
the curvature vanishes as well for z→∞, we have C= 0. On the other hand, for z→
−∞, φZ = 1/h

2
0 and ψZ = 0, while κ = 1/h0. As a result, (4.29) yields 1/(2h

4
0)= 1/h0,

and in summary

h0 = 2−1/3, σ 0 = 24/3, T = 3
21/3 , a= 24/3

3 . (4.30a−c)
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Thus, we have calculated the dimensionless thread thickness without explicitly solving
the similarity equations. Remarkably, these results are identical to those found using
lubrication theory (Entov & Yarin 1984; Clasen et al. 2006; Eggers & Fontelos
2015), although the similarity solution does not satisfy the slenderness (small slopes)
requirement for lubrication to be valid. The reason is that (4.30) only relies on the
conservation laws (4.29) and (4.26), which are preserved in the lubrication limit.

4.4. The similarity solution
It remains to calculate the actual form of the profile and of the deformation field
inside. We can eliminate Π from (4.18), which yields after simplification using (4.17)

φRφZZ +ψRψZZ = φZφZR +ψZψZR. (4.31)

This can be solved together with the incompressibility constraint (4.17),

ψ (ψRφZ −ψZφR)= R.

On the surface R= 1, we have (4.22), which in view of (4.29) takes the form

ψ(1, Z)= h(φ(1, Z)), 1
2

(
φ2

Z +ψ
2
Z

)∣∣
R=1 = κ. (4.32a,b)

Differentiating the first equation of (4.32), it follows at constant R= 1 that ψZ =φZhz,
and hence the second equation can also be rewritten

1
2
φ2

Z(1, Z)=
κ

1+ h
2
z

. (4.33)

For Z→−∞ the boundary condition is

ψ = 2−1/3R, φZ = 22/3, (4.34a,b)

clearly there can be an arbitrary shift in Z. For Z→∞ we must have

h=ψ(R= 1, Z)= eaφ(R=1,Z), (4.35)

where the prefactor has been chosen H = 1. For the other elastic fields the boundary
condition is that the pressure and all the elastic stresses decay for Z→∞.

To obtain the similarity solution numerically, the domain [−L 6 Z̄ 6 L] × [0 6
R̄ 6 1] was discretised using nR̄ and nZ̄ Chebyshev collocation points in the R̄ and
Z̄ directions, respectively. Here L is the value at which the Z̄ coordinate is truncated.
Since strong axial gradients are expected near the origin Z̄ = 0 the grid is stretched
around that location using the stretching function

Z̄ = L
arctanh(βs)
arctanh(β)

. (4.36)

Here, s is in the original Chebyshev interval (−1 6 s 6 1), and β a stretching
parameter.

Equations (4.17) and (4.18) with boundary conditions given by (4.32) and (4.34)
are discretised in the numerical domain. At Z̄ = L, the soft boundary condition
φZ̄Z̄ = ψZ̄Z̄ = 0 is used. The resulting discrete system of nonlinear equations have
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FIGURE 9. Convergence onto the similarity solution. In (a), the ratio hz/h approaches
the limit a = 24/3/3, over a wide range of Z. In (b), we show contours of the function
Π in the [φ, ψ] domain, showing the transition region between the thread and the drop
region. Red dashed lines correspond to contours obtained by rescaling the pressure in the
elastic simulation with Ec = 10−6. Although the radial dependence is weak, the profile is
not one-dimensional.

been solved using the MATLAB function fsolve. As an initial guess for the nonlinear
solver, the numerical solution for the elastic simulation with Ec = 1× 10−6, rescaled
and interpolated into the similarity mesh, was used. Results presented have been
obtained using nR̄ = 5, nZ̄ = 450, β = 0.995 and L = 150. A larger computational
domain by imposing a L> 150 does not alter the results.

The resulting similarity profiles are shown in figures 6–9. In figure 6 we compare
representative stress profiles obtained from solutions of the elastic problem with those
calculated from the similarity solution; in figure 8 the profile h(z) is compared in
greater detail. In figure 9(a) we show that the solution to the similarity equations has
converged in a large domain, using two different methods. In particular, according to
(3.18) and (4.30), hz/h converges to a= 24/3/3, as confirmed in figure 9.

Apart from a full numerical solution of the two-dimensional similarity equations,
we also show the result of a different method of solution, explained in more detail
in appendix B. In view of the weak radial dependence, we expand the solution into
a power series (B 1) in the radial direction. The results of both methods of solution
agree very well. In figure 9(b), we show contours of the self-similar pressure Π in
the [φ, ψ] domain. Once more, agreement with contours obtained by rescaling the
simulation for Ec = 10−6 agree very well with the full similarity solution.

As a final check, we return to the original problem of the exponential thinning of a
viscoelastic liquid bridge, as shown in figure 10. Since the capillary number v0=0.035
is small for our simulations, solvent corrections are expected to be small. Indeed, there
is good agreement between our similarity theory based on elastic effects alone, and the
full viscoelastic simulations. As we reiterate in the discussion below, there is fading
memory in the viscoelastic simulation, and hence there is one adjustable parameter
in the comparison, which we choose so that σ zz = 24/3 inside the thread; h = 2/σ zz

is then predicted without adjustable parameters. This is an effect of De being finite;
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FIGURE 10. Comparison of the similarity solution as described in § 4.4 with the rescaled
profiles (3.6) obtained from the time-dependent simulation shown in figure 1 for De= 60.
The time-dependent simulation has been rescaled according to (3.6), with an effective R0
chosen such that σ zz = 24/3 inside the thread.

for the value of De= 60 being used in the present simulation, relaxation effects are
almost negligible, as discussed below.

5. Discussion
The aim of this paper has been to find similarity solutions describing the

time-dependent pinch-off of a polymeric thread. In the process, we found that this
similarity solution also describes another problem, the collapse of a soft elastic bridge
under surface tension. This fact had been noticed before (Clasen et al. 2006), but
is generalised here to the full axisymmetric equations. In doing so, we make use of
the very general correspondence between fluid flow and nonlinear elasticity (Snoeijer
et al. 2019).

A particular use of our theory is that we can now calculate the radius of the thread
that has formed in the middle of the collapsed bridge. In the purely elastic case,
returning to dimensional variables, (4.30) implies that the thread thickness is

hthr = R0

(
Ec

2

)1/3

, (5.1)

where R0 is the initial radius of the elastic bridge. In the case of very long relaxation
times λ, such that an initial thread is formed on short times without the polymer
having a chance to relax, followed by exponential relaxation in the limit of long times,
(5.1) can be combined with (1.1) to give (Clasen et al. 2006) h0 = R0(Ec/2)1/3, and
so

hthr = R0

(
Ec

2

)1/3

exp
(
−

t
3λ

)
, De� 1. (5.2)

This is illustrated in figure 1(a), where the thread radius is shown for De= 60 and for
De=∞, such that no relaxation takes place. The initial evolution is almost identical

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

18
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.18


887 A19-26 J. Eggers, M. A. Herrada and J. H. Snoeijer

for the two cases, and the thread radius at the beginning of the exponential relaxation
(blue line) is just slightly below the asymptotic value without any relaxation at all
(red line).

The present work provides an example of a similarity solution in three dimensions,
which does not reduce to an effective one-dimensional theory (Chen & Steen 1997;
Day, Hinch & Lister 1998; Cohen et al. 1999; Zhang & Lister 1999; Eggers &
Courrech du Pont 2009; Eggers 2018). It is to be expected that non-trivial similarity
solutions in higher dimensions abound, but not many have been found, owing to
technical difficulties in obtaining them. Another, and perhaps related feature concerns
the universality of similarity solutions. In a one-dimensional approximation, and
taking into account effects of the solvent viscosity, one obtains similarity solutions
which depend on the value of the parameter v0 alone (Clasen et al. 2006).

Here, we provide evidence (cf. figure 5) that the three-dimensional, axisymmetric
solution to the Oldroyd-B model is far less universal, and that there exists a similarity
solution for a given stress distribution σ 0(r) inside the thread. To answer this question
conclusively, one would have to solve the full similarity equations (3.7)–(3.8) for a
prescribed profile σ 0(r), which we have not yet attempted. In the one-dimensional
description of Clasen et al. (2006), the equivalent of the dimensionless coefficient
h0 (cf. (4.30)) was seen already to depend on v0. In the present three-dimensional,
axisymmetric case and for finite solvent viscosity S > 0, we expect it to depend on
σ 0(r) as well. In the absence of a solvent (S= 0) one recovers a uniform stress profile
over the cross-section of the thread, and, strictly speaking, (5.2) only applies to that
case. It is however worth while keeping in mind that these corrections coming from
the solvent viscosity are small in practice. For example, for the experiments by Clasen
et al. (2006), using a quite elevated solvent viscosity, v0= 0.031; for the experiments
by Sattler et al. (2008), using water as a solvent, v0 = 1.1× 10−3.

Finally, it is worth commenting on the experimental situation, since the Oldroyd-B
model considered here may be popular for its conceptual simplicity, but cannot be
considered a first-principles description of polymeric flow. While an exponential
thinning regime of the polymer thread is observed almost universally, indicating
exponential stretching of polymer strands, there are experimental indications of a
more abrupt change in polymer conformation (Ingremeaux & Kellay 2013).

As for the shape of the self-similar profile, Turkoz et al. (2018) find that the
experimental free-surface profile grows significantly faster toward the drop when
compared to full numerical simulations of the three-dimensional Oldroyd-B equations.
This means that the theoretical result a = 24/3/3 for the growth exponent in the
free-surface profile (4.28) underpredicts the experimentally observed value by
approximately a factor of two. A possible explanation could be that one has to
take the finite extensibility of polymers into account, as it is done in the FENE-P
model (Bird et al. 1987; Morozov & Spagnolie 2015).

Now that a fully quantitative prediction of the Oldroyd-B fluid is finally in place,
and given the time that has passed since the original experiments (Clasen et al. 2006),
it would be well worth repeating the measurements for a different system. Another
avenue to pursue is to allow for polymer models with more free parameters, such as
a spectrum of relaxation times. It might well be that different regions between the
drop and the thread are governed by different time scales.
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Appendix A. Force balance in Lagrangian coordinates
In order to solve the similarity equations by an expansion in the radial variable,

described in appendix B below, it is useful to implement the force balance (4.26) in
Lagrangian coordinates. To this end, within the leading-order balance (4.19), we use
the z-component of (3.12)

∫
O
κn ds=−

2πh√
1+ h

2
z

∣∣∣∣∣∣
Z+

Z−

=

∫
C±

n± · σ · ez ds. (A 1)

However, now O is the surface of the thread between two fixed Lagrangian
coordinates Z±, and C± are the surfaces

z= φ(R, Z±), r=ψ(R, Z±), (A 2a,b)

parameterised by R between 0 and 1; here, n± are the outward normals to these
surfaces. Inside the thread, z is constant, and hence n− =−ez, while on the right

n+ = (ψR,−φR)/

√
φ2

R +ψ
2
R,

which follows from the parameterisation (A 2).
The integral over the extra part of the stress is∫

C+

n+ · σ p · ez ds = 2π

∫ 1

0
n+ · σ p · ezψ

√
φ2

R +ψ
2
R dR

= 2π

∫ 1

0

(
ψRφ

2
Z − φRψZφZ

)
ψ dR= 2π

∫ 1

0
φZR dR,

having used incompressibility (4.17) in the last step. The pressure contribution is

−

∫
C+

Πn+ · ez ds=−2π

∫ 1

0
ΠψRψ dR.

Inside the thread,
n− · σ · ez =−σzz =

1
2

(
ψ2

Z + φ
2
Z

)
=−21/3,

having used (4.34) and (4.30). Thus the integral over the cross-section πh
2
0 yields∫

C−

n± · σ · ez ds=−π2−1/3.
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Finally, since inside the thread h= h0, (A 1) yields

2h√
1+ h

2
z

+ 2
∫ 1

0
φZR dR−

∫ 1

0
(φ2

Z +ψ
2
Z)ψRψ dR= T =

3
21/3

, (A 3)

where we inserted the expression (4.23) for the pressure, with C= 0.

Appendix B. Solution by radial expansion

The similarity profiles only have a weak dependence in the R-direction, and are thus
well represented by a polynomial in R. Thus we seek a solution by expanding in the
R-coordinate according to

φ = φ0 + φ2R2
+ · · · , ψ =ψ1R+ψ3R3

+ · · · . (B 1a,b)

First, from incompressibility we have

ψ1 =
1

φ
′1/2
0

, ψ3 =−
φ′0φ

′

2 + φ
′′

0φ2

4φ′5/20

. (B 2a,b)

Expanding (4.31) in a power series in R we find at first order that

− 4φ′40 φ
′

2 + 4φ′30 φ
′′

0φ2 − φ
′

0φ
′′′

0 + φ
′′2
0 = 0, (B 3)

which is valid exactly, as an equation between Taylor coefficients.
The second equation is (4.33), which can be satisfied approximately by truncating

the expansion (B 1) after the first two terms. Hence, we obtain(
φ′0 + φ

′

2

)2

2
=

κ

1+ h
2
z

, (B 4)

where

h=ψ1 +ψ3, hz =
ψ ′1 +ψ

′

3

φ′0 + φ
′

2
hzz =

ψ ′′1 +ψ
′′

3(
φ′0 + φ

′

2

)2 −

(
ψ ′1 +ψ

′

3

) (
φ′′0 + φ

′′

2

)(
φ′0 + φ

′

2

)3 ,

and ψ1, ψ3 is expressible through φ0 and φ2 using (B 2). We have to solve the system
of (B 3), (B 4) for the two variables φ0 and φ2 with conditions φ′0 = 22/3 and φ2 = 0
for Z→−∞.

A problem with (B 4) is that it is of quite high order. A much better alternative is
to use (A 3), because it only requires first derivatives hz, and because it implements
the force balance exactly; inserting (B 1), the integrals can be done easily. The
approximated solution was obtained with the same numerical procedure used to
obtain the solution to the full similarity equation.
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