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Abstract  Using some formulas of S. Ramanujan, we compute in closed form the Fourier transform of
functions related to Riemann zeta function {(s) = > 72, 1/n® and other Dirichlet series.
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1. Introduction and results

B. Riemann stated the following formula in his famous and epoch-making memoir Ueber
die Anzahl der Primzahlen unter einer gegebenen Grésse [9, 15]:
If s=1/2+1it,t € C then

%s(s - 1)7r_5/2F(s/2)C(; + it) = /OOO O (u) cos(ut)du, (1)

where
o0

D(u) =4 Z(2W2n4egu/2 - 37m265“/2)67”"262u.
n=1

G. H. Hardy proved in 1914 that an infinite number of zeros of the zeta function are on
the critical line. G. Pélya gave a proof of this fact using the above formula [15]. Similar
representations hold for other L—functions and this fact is well known [10]. A recent
paper of D. K. Dimitrov and Y. Xu [7] provides a solution to an old problem of G. Pdlya
on giving necessary and sufficient conditions on an entire function of order one, which
is represented in terms of a Fourier transform, to have only real zeros. In fact, in that
paper, there is a necessary and sufficient condition for the Riemann Hypothesis to hold,
using the above kernel ®(u), in terms of a density condition in Lq(R).

It is worth mentioning that there are other criteria for RH to hold: the classical Nyman—
Beurling criterion [5, 8, 11] and its generalizations and refinements due to Bdez—Duarte
and his collaborators [1, 2].
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Fourier transforms related to ((s) 201

Also, there is a vast literature concerning the location of the zeros of sine or cosine
transforms with contributions of many masters of the classical analysis. The reader may
consult the comprehensive paper [6].

From the above, it seems to be of some interest to have other formulas for {(s) or other
Dirichlet series as Fourier transforms. To name a few more, there is in fact a beautiful
formula due to van der Pol [13] of the sole zeta function as a Fourier transform: if [z] is
the largest integer < x and —1/2 < St < 1/2 then

C(% + Zt) o /+Oo(e—u/2[eu] _ eu/2)e—iutdu.

G+at) )

Also, S. Ramanujan proved other formulas for ((s) [14, p. 72] and one wonders what
other formulas might exist. In the search for other representations for ((s) the author
[12] proved, among others, the following formula: if s = 3 +it and —3/2 < St < 3/2,
then

s(s—=1I'(1—=3)C(s) /1 .
9s—175/2 C(Q +zt>

2u

= 871'/0 { /0 ﬁ{e*g“/2 — e 250y 4 e/ 29022 dx} cos(ut)du. (2)

The kernel in the last integral is an even function of w.

The aim of this note is to present, as an application of certain formulas given by S.
Ramanujan, Fourier transforms related to the Riemann zeta function and two particular
Dirichlet series:
> (—1)"_1

LX4(S) = (2n — 1)5’

n=1

(the Dirichlet series which corresponds to the non-trivial character mod 4) and

2 (=1)"sech{in(2n +1
L(t) :== Z;J =l 2n _i{_zl)i(t—l J

We notice that in formula (2), the poles of the Gamma factors turn out to be such that
they do not cancel with the trivial zeros of ((s) and this is why the formula holds only
in the stated strip (the same phenomenon occurs in Theorems 1 and 5). This is not the
case with formula (1) where cancellations occur and therefore, the Fourier integral is an
entire function (as in Theorems 2, 3 and 4).

The main results of this note are the following theorems.

Theorem 1. Set

Plo) =Y e

n=1
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2 4 oo e~ Tz
I(a) == qu/a) —2(na)?/ /0 e e
O(x) = I(e”).

Then ®(x) = ®(—x) if 0 < x. Also if —3/4 < 3t < 3/4 then

/O " 0 (2) cos(tr) da

= g¥-1/21 (—it - i) {1 — %r(u - Z)r(-u + i) }C(—Qz’t + ;)

Theorem 2. Set

= ()

Le) = ok man)”

n=1

I(a) = I4(a) — alj(a) — %I} ()

Then ®(x) = ®(—x) if 0 < z. Also if t € C

oI (it)

it

/OOo ®(z) cos(wt) dr = (1 + %) (1 - ;)2«#)((# +1).
Moreover if one sets F(t) := (1 + t2)2T(it) /7 (1 — 1/2%)? and t € C then
2 /O h &(x) cosh(z/2) cos(tx) du
= ((z‘t + ;) {F(t+i/2)¢(it —1/2) + F(t —i/2)C(it + 3/2)},
and
% /O " ©(x) sinh(x/2) sin(t) dr

= g(u + ;) {=F(t+1i/2)¢(it —1/2) + F(t —i/2)¢(it + 3/2) }.

For the next theorem, we need to recall the definition of the Bernoulli numbers B,,.
These are defined by the formula
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Theorem 3. Assume that 2 < n < m and that B,, are the Bernoulli numbers. Set

an 1
-« Z 27k Yo _
% B2m * B2n

O(x) :=2I(e”).

Ift € C and either n, m are both even numbers or n, m are both odd numbers then

nl"(mt +n) . : Bam,
mI(mit +m) . . Ba,
(@) ) C(mat +m)C(mit —m+1) ™

/OOO ®(x) cos(tx) dx,
i /O " 0 (2) sin(ta) do,

respectively.

The next two theorems give sine or cosine transform formulas for certain Dirichlet
series.

Theorem 4. Set
( 1>n+1

Is(a) := Z (Qn — 1) cosh{(2n — 1)ar/2}’

:Z n—l

=1

3

Ift € C then

2UT (it + 1) , , o0 _
t———— Ly, (it) Ly, (it + 1) = O () sin(tz) d.

™ 0

Moreover if we set F(t) := t2UT'(it + 1) /7% and t € C then
oo
2/ ®(x) cosh(z/2) sin(tz) dx
0

= Ly (it )P+ /DL it~ 1/2)+ Pl - 3/2) L G+ 3/2),
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and
Qi/o () sinh(z/2) cos(tzx) dx

=L,, (zt + ){F t+1/2)Ly, (it —1/2) — F(t —i/2) Ly, (it + 3/2)}.

Theorem 5. Set

2\ (=1)"sech{3m(2n + 1)}

- , (te).
r;) (2n+ 1)1
QZ "(2n+1) sech{2 (2n + )}

cosh{ 2n + 1)z} + cos{(2n + 1)z}’

and
O(x) := 2F(e’”7r/\/§).

Then ®(x) = ®(—=x) if 0 < . If St < 2 one has

2it/2 00 pittl 0
- {/ dx}L(t) :/ ®(x) cos(tx)dx.
it o coshx 4 cosx 0

The following lemma is a rather trivial result about the zeros of L(t).

Lemma 1. If St < 1.6 then L(t) # 0.

Proof. Using the series defining L(t) one has that

1(1)] > seeh(r/2) = 3 éj fl(flf_?}

n=1

= sech(m/2) — g(St),

where ¢(St) is increasing in St. But one has the value ¢(1.6) =.369307--- while
sech(m/2) = .398537- - -. O

2. Preliminaries observations

For the proof, we will use the following lemma.

Lemma 2. Assume that I(«), J(«) are defined for real a >0 and, for fixed s,
that o*~1I(a), a*~tJ(a) are absolutely integrable in o on [0, o], [0, 1], respectively.
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Moreover, assume that they satisfy with cg > 0:

I(a) = j:c()](;) + ().

Then

oS} o0 1
/ o H(a)da = / UG {as + coa_s} do + / o J(a) da.
0 1 @ 0

Furthermore, if one has ¢o =1, J =0 and s = it, t € R, then setting ®(x) := 2I(e"), the
following formula holds

/000 a* I (a) do = /000 ®(x) cos(tz) dz,

in case one takes the plus sign. In case one takes the minus sign, the following formula
holds

/OOO o (a)da = z‘/ooo ®(z) sin(tz) de.

Proof. One has

1 1 1
/0 ozsflf(oz)doz::tco/o ozsflf(l/oz)dosz/o a* () da
[e3) 1
::I:co/1 B57(B) dﬁ+/0 a*~1J(a)da.

where in the last equality we changed variables aw = 1/f. Inserting this in

e 1 [e'S)
/ asfll(a)da:/ +/ ,
0 0 1

e8] < J 1
/ o (a)da = / (a){as + coa_s} da —|—/ a* 1 (a)da,
0 1 a 0

and the first part of the lemma follows.
If co =1, s=it, J =0 with ¢t € R, taking the plus sign and making the change of
variable o = e”, one gets

yields

/000 o H(a)da = /000 O (x) cos(tx) da.

The other case is similar. O
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3. Ramanujan’s formulas

We first recall the theta transformation formula: set
i 2
) — Z e " 7717
n=1

! {2¢(1/x)—|—1}.

Iy(z) = 7z
Lemma 3 (formula (2.6.3) p. 22 of [15]). If0 < « then
IQ(O[) = Io(l/a)

It is convenient to reformulate some of Ramanujan’s formulas. Therefore, we define

an 1

—azemw

oo
- 27r\/az n?log(l — e~ 2™V,
n=1

Mg

1
T4 — n? smh2 (mn/a)

oo e*ﬂ'aw

( 1)n+1

— 3

= (2n — 1) cosh{(2n — am/2}
oo n+1

Z smh{nom'}

Finally set

"(2n + 1)3sech{3m(2n + 1)}
”* Z cosh{ (2n + 1)z} + cos{(2n + 1)z}’

Is(a) == F(am/V2).

Lemma 4 (Ramanujan). Assume that B, are the Bernoulli numbers and 0 < a.

Then if 2 < n is even:
Ba, 1
I’ =TI*(1 — - — .
H0) = I (1 /o) + 2 (a a)

Also if 3 < n is odd:
1

Iite) = /) + 2 (k).

Proof. These formulas correspond to Entry 13 p. 261 of [3]. In this cited formula
change o by 7 {/a and 8 by 7 {/B. O
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Lemma 5 (Ramanujan). If0 < « then

72 1 72
Il(()é) = —11(1/04) + 120<OZ+ a) — 6’

IQ(O() :Ig(l/Oé),
L) = ~I3(1/a) + 7.

I4(0) = 14(1/a) 1= (a - 1),

«

I5(C¥) = 15(1/04)

Proof. The first formula of the lemma corresponds to Entry 11 p. 323 of [3]: in this
entry changing o by 7/« and 8 by /[ yields the first formula.

The second formula corresponds to formula (13) of [14], p. 56 of the paper Some definite
integrals, Messenger of Mathematics, XLIV, (1915), pages 10-18.

The third formula is formula (1) p. 129 of [14] of the paper On certain infinite series,
Messenger of Mathematics, XLV, (1916), pages 11-15. In the cited formula set ¢t = 0 and
change a by wa/2 and 3 by 73/2. The fourth formula follows from formula (10) of the
same paper with ¢ = 0, changing « by wa and § by 7(.

The fifth formula is given in Entry 31 p. 461 of [4]. O

Next, we use the above formulas to define suitable functions I(«) to be used together
with Lemma 2.

Corollary 1. Set
1

/T

I(a) = Ip(a) — I(a).

3

Then if 0 < «
I(a) =1(1/a).

Corollary 2. Assume that 2 < n < m and that either n, m are both even numbers or
n, m are both odd numbers. Using the above formulas set for 0 < «

BQm
4m

(o) 2 (3)

I(a) =1, m(a) = I;(a)
Then in the first case
I(a) = I(1/a),
and in the second case
I(a) = =I(1/a).

In any case, there exists positive numbers ¢, r (depending on n, m) such that I(a) =
O(e= V) as a — co+.
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Corollary 3. Set

7r2 " T 7'('221 *
1(0) = 113 (0) = T 1a(0) = (@) = T2 (@) = g Ta(e) = Ta(a).

Then if 0 < «
I(a) = —I(1/a).

There exists positive numbers ¢, r such that I(a) = O(e=°V®) as a — co+.

4. Proof of Theorem 1

In this proof (and in the sequel), we will use the following well-known formula without
further notice

/00 e "t dy = if), (Rs > 1). (4)
0 n

From the definitions of Iy(a) and I3(«), one sees that

1

4

I(a) :=

71_[0(04) — _[2(0[)

.5

—Tax
(&

= =10 ~2ma) [T

and we have, from Corollary 1, that the transformation formula I(«) = I(1/a) holds.
Observe that for any negative n, one has a™(1/a) — 0 as a — 0+. Therefore,

I(a) = O(a®*),
as a — 0+, which implies using the transformation formula that
I(a) = O(1/a*/),
as a — 0o+. We have proved the following result.

Proposition 1. The integral

/ I(a)a* ! da,
0
is absolutely convergent for —3/4 < Rs < 3/4.
Next note that if we set ¢y (z) := 25:1 e’ ™ then 0 < ¢y () < h(z) = O(1//T)

if © — 0+. Also ¢(z) = O(e™ ™) as & — oco+. All these can be used in what follows
to interchange the sum and the integral using the dominated Lebesgue’s theorem: if
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Rs < —1/4 and using (4)

Ooi s—1 _ = —s+1/4—1
/0 U1/ da /O $(8)8 a3

S > 2 s4+1/4—1
:Z/ e Wﬁﬁ—é-l- /4— dg
n=1 0

CT(-s+1/4) & 1 ~ D(—s+1/4) 1
T gost1/4 2;1”2(75“/4) T gpst+l/4 Cl —2s+ 3 )

and if —=3/4 <Rs < —1/4

0 00 —Tox F(S + §) 0 1.7573/4
3/4 € s—1 _ 4
/0 o {/0 eQﬂﬁldx}a da ey /0 627r\/5f1d$
F(s+§)2 o0 p=25-1/2 _ F(s+§)2r(—23+§)C og L
mst3/a C [ e — 1 TsT3/4 (27)—2s+1/2 2/

Therefore, using this last two results, one has:

/ I(a)a* ' da
0

SR R G
= 27r51/2F($ + i) {1 — \/%F(s + i)F(s + i) }C(?s + ;)

where in the last equality, we have used Legendre’s duplication formula. This identity
holds true for —3/4 < Rs < 3/4 using the last proposition and analytic continuation.
Now the theorem follows if s = it, using Lemma 2 and analytic continuation (we have
cancelled the number 2 on both sides of the formula).

5. Proof of Theorem 2

Observe that from the definition of Iy, one has I(a) = O(e™?™®) as a — co+. Also from
the transformation formula for I, given in Lemma 5, one gets that I4(a) = O(1/«) if
o — 0+.

Next note that if we set Iy n(a) := Ziﬁl (—=1)"*! /nsinh{nar} then 0 < Iy y(a) <
I,(«) if 0 < . These can be used in what follows to interchange the sum and the integral
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using the dominated Lebesgue’s theorem. If 2 < s then

e’} -1 n+12
/ ( ) as—l da
0 n

enam (1 _ 62no¢7r)

—1)rtly [
( ) / {e—anﬂ + e—30m7r + e—5o¢n‘n’ .. }as—l da
0

n

M

1

3
Il

M

3
Il
_

M

(—1)n+12r(s){ 11 1 }
— ( + .
1 m™n

2T (s) (1 1

™ U 2

3
Il

)2<<s><<s 1),

The derivative of the transformation formula (i.e. Lemma 5) for I, multiplied by «
yields

aly(0) = ~ - 1j(1/a) - = (a " ;)

and the derivative of this last formula multiplied by « yields

a{I4(a) + i)} = ~{I(1/a) + 1/aL}(1/a)} — = <a . 1)_

T a 12 a

Subtracting this last formula from the transformation formula for I, yields that if we set
I(a) == I4(a) — alj(a) — a®I}(a) then one has the transformation formula

I(a) =1(1/a).

Integrating by parts one sees that (1 < Rs)

/ Ij(a)a® da = —s Li(a)a* ! da,
0 0

/ I/ (@) da = s(s + 1)/ Li(a)a’ da,
0 0

which yields

/000 I(a)a*tda = ; {I4(a) — alj(a) — I} ()}’ ! da

=(1- 52) /000 I4(a)as_1 dav.

Note that the first integral in this last formula is defined for all values of s: I(«) has
exponential decay at infinity and for o = 0 one uses the transformation formula for I(«).
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Finally, using the first formula of this section and Lemma 2 with s = it yields

00 . 2
/ 2I(e*) cosxtdr = (1 + tz)QF(;t) (1 - 211t> ¢Gat)C(it + 1),
0 m

which is the desired first result.
Next set F(t) = (1 +t2)20(it) /7" (1 — 1/2%)? and ®(x) = 2I(e*). Then changing in
the last formula ¢ by ¢ +4/2 with ¢ real yields

/ () (cos t coshz/2 — isin ta sinh z/2) dz = F(t + i/2)C (it — 1/2)C(it + 1/2),
0
o0
/ ®(z)(costx cosha/2 + isintxsinha/2)de = F(t —i/2)C(it + 1/2)¢(it + 3/2).
0
Adding and subtracting these two formulas yield

2/ ®(x) cosh /2 costa dx
0

= <<n+ ){F(t+z/2) Cit —1/2) + F(t — i/2)C(it + 3/2)},

21 / ®(x) sinh /2 sin ta da
0

= C(zt + ){ F(t+1i/2)¢(it —1/2) + F(t —/2)((it +3/2)},
which proves the theorem using analytic continuation.

6. Proof of Theorem 3

From the definition of I}(«), one has
I (@) = O0(e™), (5)

for some positive constant ¢ (which depends on n) as @ — oo+. Also, from Lemma 4 (its
transformation formula) one has that I;;(a) = O(1/a) as a — 0+. If one sets I; () :=

SOV k212 Va1 then 0 < I n(a) < Ii(). Therefore, Lebesgue’s dominated
theorem can be used to interchange the sum and the integral in what follows: if 1 < Rs
then

., an 1
/0 I ( da—/ Ze%k" ada

OOanl

ns+n—1
(2n) n<s+1> Z/ s LA
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_n 5 - E 1 1
- (27r)n(s+1) (ns + TL) kz kns+n + ons+n + 3ns+n +-
=1
nl(ns +n)
= Wg(ns +n)((ns—n+1).
Therefore, if 2 <n < m and if
BZm B2n

I(Ol) = In(a) Am - Im(a)ﬂa
where n, m are both even numbers or n, m are both odd numbers then from Corollary 2
one has I(a) = £1(1/c). This and formula (5) implies that [ I(a)a®~! da is absolutely
convergent for all values of s.

Next, observe that

/Ooo I(a)o® tda = WC(ns +n){(ns —n+ 1)?172;;
r Ban
_ W((ms +m)¢(ms —m+1) 42

The theorem follows setting s = it and using Lemma 2.

7. Proof of Theorem 4

From the definition of I3, one has I3(a) = O(e™™/?) as a — oo+. Also from the
transformation formula for I3 given in Lemma 5 one gets that I3(«) — 7/4 if o — 0+.
Thus, for 1 < Rs, one has

~ n+1
/0 L(a)a* tda = /0 Z (2n —1) CO(Sh?(Qn — 1)a7r/2} o~ Lda
i_": omn j} /0°° {ea(znll)ﬂ./Q _ e3a(2n171),r/2 . e5a<2n171>7r/2 o }as—l da
71'/2 i on n?{ T v~ ,11)533 + flms - }
- %LXAS)L)@(S +1).

Lemma 2 yields (Jos > 1)

/ Ig(a)asflda:/ Ig(a){asas}daer.
0 1 « 4s
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Observe that the integral in the right-hand side of the last formula is defined for all values
of s. Therefore, multiplying the last formula by s, setting s = it and integrating by parts

00 ) g 1
S/ as—1[3(a)da:2/ Ig(a){tbln(toga)}da_i_ﬂ-
0 1 «@ 4

= —2I3(1) — 2/ I3(a)’ cos(tlog o) dev + %
1

= 72/ I3(a)' cos(tlog o) da,
1

where we have used the fact that I3(1) = 7/8, which follows from the transformation
formula for I3. Integrating by parts again

0 2 0 /
—2/ I3(a)’ cos(tlog ) da = %/ {alg(oz)’} sin(tlog o) dav.
1 1

Therefore, we have proved that for all values of s =it

s+1 00 !
8271:(8)LX4(8)LX4(8 +1)= %/ {alg(a)’} sin(tlog o) dev,
g 1
or
tMLM(S)LM(S +1) = / {13(04)' + Oéfg(oz)”} sin(tlog o) da.
T 1

The first result in the theorem follows making the change of variable a = e*.
Next set F(t) = t2"T (it + 1) /7" and ®(z) = e®{I3(e*) + e"I3(e*)"}. Then changing
in the last formula ¢ by ¢t 4 4/2 with ¢ real yields

/ ®(z)(sintx coshx/2 +icostesinhx/2)de = F(t +1i/2)L,, (it —1/2)L,, (it +1/2),

0

/ ®(z)(sintx coshx/2 —icostesinha/2)de = F(t —i/2)Ly, (it + 1/2) Ly, (it + 3/2).
0

Adding and subtracting these two formulas yield

2/00 ®(x) coshz/2sin ta dx
0

=1L, (it + ;) {F(t +1i/2)Ly, (it —1/2) + F(t —i/2) Ly, (it + 3/2)},
2i /OO ®(x)sinh /2 costa dx

0

=L, (it + ;) {F(t +1/2) Ly, (it — 1/2) = F(t —i/2) Ly, (it + 3/2)},

which proves the theorem using analytic continuation.
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8. Proof of Theorem 5

Observe that I5(«) has exponential decay at infinity and recall that by Lemma 5
Is(@) = I5(1/a),

if 0 < . Therefore, the integral fooo Is(a)a®~! da converges absolutely for all values of s.
Therefore, one may use Lemma 2 (here a, = 7%/2(—1)"(2n + 1)3sech{37(2n + 1)})
with s = it, ¢ € R which yields:

/ o H(a)da
0
2

- nz:%a" /o o cosh {(2n + 1)a7r/\/§}a+ cos {(zn n 1)om/\/§} "

where the change of variables 8 = (2n + 1)an/v/2 yields

- ‘ 50 \@ s+2 oo ﬂs+1
/O O (x) cos(tx) do = Z a”{7r(2n+l)} /0 cosh 3 + cos 3 .

n=0

This last integral is well defined for —2 < Rs. The theorem follows cleaning this last
expression and using analytic continuation.

9. Final remarks

If one sets

221 T
I(e) = —=I3(a) = 1g1s(e) — Ii(a),
then by Corollary 3 one has I(«) = I(1/a). Set ®(z) := 2I(e*).
The following result holds.

Lemma 6. Ift € C and Ly, (s) := >, % then

(o)
z/ ®(x)sin(tz) dr
0
w263 D(3it + 3)
T 5 (2m)3(it+1)
I 21T (it)

9 it

C(3it + 3)¢(3it — 2)

2I'(2it)
(2m)2it

Ly, (it) L, (it + 1) — {1 — 2it}¢(2it — 1)¢(2it + 2).
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Proof. As above and with some care, one may prove that for 1 < Rs

/ L(a)a* ! da
0
1 & 1 =
- —_——— 2T/« n?log(l — e~ 2™V }as_l da
/0 {4 g n? sinh? (mny/a) W\F; 8l )

— 1
_ Z 7/ {e—2ﬂ'nf + 26—47rnf + Se—ﬁﬂn\f +. } s—1 dav
— n

o o —dnny/a —6mn/a
—27r\/EZn2/ {6_2””\/5—#6 5 +e 3 +...}a5_1da
n=1 0
— 1 1 2 3
—91(2 Sl
( 8); n? { (2mn)2s i (4mn)2s * (67n)2s N }

- 1 1
— 2721 (2 1) cee
m2l(2s + g { 2mm)2s+1 i 2(4mn)2s+t i 3(6mrn)2s+! i }
_2T(2s)
B (2m)2s

_2r(@2s) . s . .
= ) {1—2s}¢(2s — 1)¢(2s + 2).

20(2s + 1)
e (25— 125 +2)

C(2s —1)C(2s +2) — 27

We have already proved that (1 < Rs)

| n@atda = 2 () (5 4+ 1)

7-(-5
and

/o I (@)a*tda = Wﬁ(ns +n)¢(ns—n+1).

Next, observe that I(a) has exponential decay at infinity and using Corollary 3, one has

that I(«) = —1I(1/a) if 0 < . Therefore, the following integral is absolutely convergent
for all values of s

/ I(a)a* tda
0

201 31(3s + 3
= %(();,g(;l))g(k%s +3)¢(3s — 3+ 1)

2s+1r( )
18

2T (2s)
(2m)?

Setting s = it and using Lemma 2 finishes the proof. O

Lya(s)Lys(s +1) = S {1 =25}C(25 — 1)¢(2s + 2).
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